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ABSTRACT

In this work, we theoretically investigate the generalization properties of neural
networks (NN) trained by stochastic gradient descent (SGD) with large learning
rates. Under such a training regime, our finding is that, the oscillation of the NN
weights caused by SGD with large learning rates turns out to be beneficial to the
generalization of the NN, potentially improving over the same NN trained by SGD
with small learning rates that converges more smoothly. In view of this finding, we
call such a phenomenon “benign oscillation”. Our theory towards demystifying
such a phenomenon builds upon the feature learning perspective of deep learning.
Specifically, we consider a feature-noise data generation model that consists of
(i) weak features which have a small ℓ2-norm and appear in each data point; (ii)
strong features which have a large ℓ2-norm but appear only in a certain fraction
of all data points; and (iii) noise. We prove that NNs trained by oscillating SGD
with a large learning rate can effectively learn the weak features in the presence
of those strong features. In contrast, NNs trained by SGD with a small learning
rate can only learn the strong features but make little progress in learning the weak
features. Consequently, when it comes to the new testing data points that consist
of only weak features, the NN trained by oscillating SGD with a large learning
rate can still make correct predictions, while the NN trained by SGD with a small
learning rate could not. Our theory sheds light on how large learning rate training
benefits the generalization of NNs. Experimental results demonstrate our findings
on the phenomenon of “benign oscillation”.

1 INTRODUCTION

While deep neural networks (NNs) have achieved tremendous empirical success in various domains
including images, language processing, decision-making, etc, the theoretical understanding of deep
learning is still far behind satisfactory, especially the relationships between optimization of the NN
and its generalization. From the viewpoint of optimization, using large learning rates in NN training
has been empirically shown to be of vital importance for generalization (He et al., 2016; Xing et al.,
2018; Damian et al., 2022; Kaur et al., 2023). Nevertheless, a principled theoretical understanding
of the mechanism behind the benefits of large learning rate training still remains limited.

To better capture the key ingredients in the training dynamics of stochastic gradient descent (SGD)
with large learning rates, we train a ResNet (He et al., 2016) using SGD with small and large learning
rates and present the training and testing results in Figure 1. When using a large learning rate SGD,
we can observe an “oscillating” training curve, i.e., the training loss fluctuates at different iterations
(generally this happens only when the learning rate exceeds the inverse of the objective smoothness),
while for small learning rate SGD, the training curve is smooth and converges rapidly. On the other
hand, the smooth convergence in training loss cannot bring any benefit for the test accuracy – SGD
with large learning rates achieves a significantly higher test accuracy than SGD with small learning
rates. These empirical observations suggest that the oscillation during training can be closely tied to
the better generalization performance achieved by SGD with large learning rates.

In this paper, we study the learning dynamics of SGD with large learning rates by investigating the
oscillation happening during the optimization process, and explain its benefit to the generalization
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Figure 1: Training and test performance of ResNet-18 on CIFAR-10 dataset, when trained via SGD with small
and large learning rates (η = 0.01 vs. η = 0.75). We adopt the same configuration as in Andriushchenko et al.
(2023): using weight decay but no momentum and no data augmentation. A clear difference between the large
learning rate training and small learning rate training can be observed: SGD with a large learning rate leads
to an “oscillating” training curve with higher testing accuracy; SGD with a small learning rate has a rapid and
smooth convergence but gives lower testing accuracy.

performance. The key message is that compared to the smooth convergence achieved by SGD with
small learning rates, the oscillation prevents the over-greedy convergence and serves as the engine
that drives the learning of less-prominent data patterns. These data patterns would be beneficial for
the NN to generalize well on unseen testing data. Thus we explain from the theoretical side why
large learning rate training can help NN to generalize better in practice.

Our investigation of SGD with large learning rates for NN training builds on the feature learning per-
spective of deep learning theory (Allen-Zhu and Li, 2022), which explicitly considers data models
consisting of different types of features and noise. For the sake of our goal, we devise a feature-noise
data model consisting of two types of features that have different strengths and different distribu-
tions. Based upon the new data model, by carefully tracking the process of feature learning of a
NN trained by SGD with large or small learning rates, we prove that only when trained with large
learning rates can the NN effectively learn the key features for generalizing to each new data point.
The NN trained by small learning rate SGD fails to generalize to certain testing data because of the
limited learning of the features which are crucial to the generalization to those new data points.

To explain such a phenomenon, our theory identifies the core incentives for the superior performance
of learning the key features with large learning rate SGD as the oscillation during NN training, which
is also related to the regime of “edge of stability” (Cohen et al., 2020). Intuitively, the oscillation can
prevent over-greedy convergence which could only leverage the most prominent components of the
data, thus allowing for all the useful components to be discovered and learned by gradient descent. In
view of our finding that indicates oscillating NN training with large learning rates possibly resulting
in better generalization, we refer to such a phenomenon as “benign oscillation”.

1.1 OUR CONTRIBUTIONS

Dynamic analysis framework for SGD with large learning rates. We provide a theoretical frame-
work to understand and explain the oscillation in NN training via SGD with a large learning rate.
Specifically, we consider a feature-noise data generation model consisting of two types of features –
the strong features and the weak features – that have different strengths and distributions to capture
our core ideas towards explaining the relationships between large learning rate SGD training and
generalization. Then, our theoretical framework establishes a sharp characterization of the training
dynamics of these features and noises, based on which we can precisely analyze the generalization
of NN trained by SGD with small or large learning rates. We remark that in general studying the
NN optimization dynamics when the learning rate is greater than twice inversed smoothness is quite
challenging, and our theoretical analysis framework based upon the feature-noise model potentially
provides useful guidance which can be leveraged to study other nonconvex optimization problems.

A new theoretical argument for feature learning driven by oscillation. The key to explaining the
large learning rate training regime is a new theory on learning the weak features driven by oscillation.
As we illustrate in Section 3, the oscillation of the NN values (predictions) around the target (label)
does not cancel with each other. Instead, the fluctuations accumulate linearly over time. This further
serves as the engine driving the learning of the weak features, resulting in better generalization. This
characterizes the distinctive training dynamics of SGD under the large learning rate training regime,
revealing the benefits of the oscillation in learning useful data patterns.
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Division for generalization by different learning rates. In contrast to effectively learning the
weak features by large learning rate oscillating training, we also show that the smooth and rapid
convergence achieved by SGD with small learning rates would not help NN learn the weak features,
thus being unable to generalize to the new data without strong features. This gives a division of the
generalization property of NNs trained by large and small learning rates.

2 PROBLEM SETTING

In this section, we introduce the theoretical setting for our investigation of generalization properties
of SGD through the task of binary classification. We first introduce the multi-view data generation
model and then define the two-layer convolutional neural network and the SGD algorithm.

Data generation model. We let v ⊥ u ∈ Rd be two fixed vectors, denoting the signal (or feature)
part shared by each data point. Then each data point, denoted by (x, y) where x = (x(1),x(2),x(3))
contains 3 patches, is generated as following: let y ∈ {1,−1} be independently generated according
to P(y = 1) = P(y = −1) = 1/2, and

• Weak signal patch. one patch of x is taken by the weak signal y · v;
• Strong signal patch. with probability 1− ρ, one patch of x that is different from y · v, is taken

by the strong signal y · u, where ρ ∈ (0, 1/2) is the probability.
• Noise patch. all remaining patches are taken by independent Gaussian noise ξ ∼ N(0, σ2

p(Id−
vv⊤/∥v∥22 − uu⊤/∥u∥22)) for some variance σp > 0.

For simplicity, we refer to the data with strong signal as the strong data, denoted by ((yu, yv, ξ), y),
and we refer to the data with only weak signal as the weak data, denoted by ((ξ̃, yv, ξ), y). Here by
“strong”, we mean a vector with a larger ℓ2-norm, as we would specify in the theory part. Intuitively,
the weak signal y·v can be interpreted as the invariant and common signals across data like the shape
of key objects in an image. The strong signal y·u can be understood as the background or the domain
information which is stronger but only appears in a certain fraction of all data points. This indicates
that in order for a classifier to generalize to new data, it must effectively learn the weak signal.

Our proposed data generation model is adapted from the feature-learning-based line of research on
deep learning (Allen-Zhu and Li, 2022; Cao et al., 2022; Zou et al., 2023), and it can serve as a good
theoretical platform to explain the relationships between oscillating NN training with large learning
rates and NN generalization. Finally, we remark that this data model can be extended for generality,
e.g., multiple features, more patches, multi-class data. In fact, as long as the signal and noise patches
have properly different strength and fractions, our theoretical analysis can be directly applied.

Two-layer CNN. We consider a two-layer convolutional neural network (CNN) with filters applied
to the three patches separately. We assign the parameters of the second layer of the CNN to a fixed
+1 and −1, respectively. Formally, the CNN f(·;W) : R3d 7→ R is defined as

f(x;W) =
∑

j∈{±1}

jFj(x;Wj), Fj(x;Wj) =
1

m

∑
r∈[m]

3∑
p=1

σ(⟨wj,r,x
(p)⟩), (1)

wherem ∈ N+ is the number of filters (i.e., neurons), σ(z) = (max{z, 0})2 is the ReLU2 activation
function, and wj,r ∈ Rd denotes the weights of the r-th neuron of Fj . We use W = {Wj}j∈{±1}
and Wj = {wj,r}r∈[m] to denote the collection of the weights.

Loss function and stochastic gradient descent (SGD). Having access to n i.i.d. samples from the
data generation model, S = {(xi, yi)}i∈[n], we solve a binary classification task by minimizing the
following mean squared loss,

L(W) =
1

n

∑
i∈[n]

ℓ(f(xi;W), yi) =
1

2n

∑
i∈[n]

(
f(xi;W)− yi

)2
, (2)

where ℓ(f(xi;W), yi) = (f(xi;W)−yi)2/2 is the loss on a single data point. Inspired by “edge of
stability” (Cohen et al., 2020), adopting mean squared error is believed to make it easier to identify
the effects of large learning rates. Besides, mean squared loss has also been demonstrated to be
comparable or even better than cross-entropy loss in many classification tasks (Hui, 2020).
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We optimize the loss function (2) via multi-pass stochastic gradient descent (SGD), initializing from
some Gaussian weights, where each entry of W(0)

+1 and W
(0)
−1 is sampled from N(0, σ2

0). The SGD
goes for several epochs. In each epoch, we use each data (xi, yi) for exactly once, in the exact order
of (x1, y1) → (x2, y2) → · · · → (xn, yn)

1. Thus, the weights of the CNN are updated obeying the
following rule,

w
(t+1)
j,r = w

(t)
j,r − η · ∇wj,rℓ(f(W

(t),xit), yit)

= w
(t)
j,r −

jη

m
·
(
f(W(t),xit)− yit

)
·

3∑
p=1

σ′(⟨w(t)
j,r,x

(p)
it

⟩) · x(p)
it
, (3)

for each j ∈ {±1} and r ∈ [m], where it = (t+ 1) mod n and η > 0 is the learning rate.

Generalization via signal (feature) learning. Our goal is to study the generalization property of the
CNN trained by SGD (3). Given a new testing data point (x⋄, y⋄) sampled from the data generation
model, we measure the generalization of the CNN by the correctness of the classification,

E[1{y⋄ · f(x⋄;Wsgd) > 0}] = P(y⋄ · f(x⋄;Wsgd) > 0),

where Wsgd denotes the weights trained by SGD, Zhang et al. (2021).

We investigate the generalization property via looking through the process of signal (feature) learn-
ing. Specifically, by the SGD updates (3), the weights w(t)

j,r of the CNN is a linear combination of

the initialization w
(0)
j,r , the strong signal j ·u, the weak signal y ·v, and the noise vectors ξi, ξ̃i. This

motivates us to consider the following representation of the weights, for j ∈ {±1}, r ∈ [m],

w
(t)
j,r ≈ w

(0)
j,r +

⟨w(t)
j,r, ju⟩
∥u∥22

· ju+
⟨w(t)

j,r, jv⟩
∥v∥22

· jv + noise parts.

The relative scales of these combination coefficients actually imply how the weights learn the strong
signal u, the weak signal v, or memorizing the noise which determines how the CNN can generalize.

As is shown by Cao et al. (2022), the CNN tends to fit the training dataset using patches with higher
strength when trained by small learning rate gradient descents. Therefore, in such a training regime,
the CNN tends to fit the training data using the strong signal y · u, making less progress in learning
the weak signal y ·v, thus resulting in misclassification when the testing data lacks the strong signal
component. On the contrary, our paper investigates the large learning rate regime, and suggests that
the oscillation of SGD is beneficial for learning the weak signal, giving better generalization results.

Thus, our main focus in the sequel would be studying the dynamics of the inner products ⟨w(t)
j,r, ju⟩,

⟨w(t)
j,r, jv⟩, and ⟨w(t)

j,r, ξ⟩. We will show that under large learning rate SGD training ⟨w(t)
j,r, jv⟩ can

be effectively learned to a relatively large scale compared to its initialization. This is further provably
useful for generalizing to all new data points.

3 UNDERSTAND THE OSCILLATION: SINGLE TRAINING DATA CASE

Before giving our main theory on large learning rate SGD training, let’s first study a simplified setup
where we consider only a single training data point consisting only of a weak signal patch y · v and
a strong signal patch y ·u, without any noise patch. Such a setting helps to illustrate the key insights
behind our main theory regarding the understanding of oscillation. Without loss of generality, we
denote the single training data as (x, y) with x = (y · v, y · u), and we can also simplify the CNN
expression (1) and the SGD updates (3) to

f(x;W) =
∑

j∈{±1}

jFj(x;Wj), with Fj(x;Wj) =
1

m

∑
r∈[m]

σ(⟨wj,r, yu⟩) + σ(⟨wj,r, yv⟩), (4)

w
(t+1)
j,r = w

(t)
j,r −

ηj

m
·
(
f(x;W(t))− y

)
·
(
σ′(⟨w(t)

j,r, yu⟩) · yu+ σ′(⟨w(t)
j,r, yv⟩) · yv

)
. (5)

1We consider the same order for all epoch for the simplicity of analysis. Our analysis can be easily extended
to multi-pass SGD with shuffling.
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Figure 2: The progress of signal learning and the values of yf(x;W(t)) and L(W(t)) under different learning
rate η. The CNN in the first two figures is trained by SGD with η = 0.5 (large LR), while the CNN in the
last two figures is trained by SGD with η = 0.1 (small LR). For signal learning (first and third figures), the
gray lines depict the strong signal learning ⟨w(t)

y,r, yu⟩ by all neurons r ∈ [m], and the light blue lines depict
the weak signal learning ⟨w(t)

y,r, yv⟩ by all neurons r ∈ [m]. As we can see, with large LR, the value of CNN
oscillates around y, and

∑
t(1−yf(x;W(t))) is going to increase, which, as our theory indicates, incentivizes

⟨w(t)
y,r, yv⟩ to increase. In contrast, with small LR, ⟨w(t)

y,r, yv⟩ would stay at the same scale as its initialization.

In such a simplified setup, we aim to explain that, when SGD training belongs to certain oscillation
regime, which typically occurs under large learning rate η, the CNN is guaranteed to make progress
in learning the weak signal y·v. Here by oscillation, we mean that the values of the CNN f(x;W(t))
keep oscillating around the label y during training. This phenomenon greatly contrasts with known
results for feature learning when gradient descent training converges smoothly under relatively small
learning rates (Allen-Zhu and Li, 2022; Cao et al., 2022).

Review: small learning rate training regime. Firstly, we make a review of what may happen when
using SGD with a small learning rate η. The following proposition proves that in this case the CNN
can not make much progress in learning the weak signal y · v.
Proposition 1 (Small learning rate training: single training data (informal)). Under mild conditions
on (d,m, σ0, ∥u∥2, ∥v∥2), if we choose learning rate η ≤ m/(6∥u∥22) small enough, then with high
probability, the training loss can smoothly converge with

max
j∈{±1},r∈[m]

{
|⟨w(t)

j,r, jv⟩|
}
≤ Õ(σ0∥v∥2).

Please refer to Appendix D for more details about the proposition. It shows that in the small learning
rate training regime, the CNN only learns the weak signal y ·v to the same scale as its initialization.
CNN trained in this manner may fail to generalize to testing data without strong features (substituted
by a noise patch ξ), because it would make predictions relying mainly on the random noise. On the
contrary, in the following we intuitively explain that under certain large learning rate training regime,
the CNN can learn the weak signal up y · v to a constant level higher than its initialization. Such a
phenomenon is depicted in Figure 2 on an 8-neuron CNN trained by SGD with η = 0.1.

Theoretical motivations: large learning rate regime and oscillation. When using a large enough
learning rate η that exceeds the twice inversed smoothness, the weights of the CNN would keep
oscillating, which makes the value of f(x;W(t)) fluctuate around y. The key finding towards our
theory is that the fluctuations of f(x;W(t)) around y would not cancel with each other. Instead,
the oscillation accumulates over time, which serves as the engine driving the learning of the weak
signal y · v. In the sequel, we explain why the cancellation does not happen.

The core idea is that, with a reasonably large learning rate, the CNN weights will be quickly enlarged
from the learning of strong feature u and then keep oscillating, but still stay well bounded. As a
result of the SGD updates (5), the summation of the gradient terms is also well bounded. More
specifically, let’s look carefully into the dynamics of learning the strong signal y · u. For some time
steps t0, t1 and certain neuron r ∈ [m], it holds from (5) that

O(1) =
∣∣∣⟨w(t1+1)

y,r , yu⟩ − ⟨w(t0)
y,r , yu⟩

∣∣∣ ≈ Θ

(
t1∑

s=t0

(
1− yf(x;W(s))

)
· ⟨w(s)

y,r, yu⟩

)
. (6)

Now we split the summation on the right hand side of (6) into two parts: one part is S+ containing s
such that yf(x;W(s)) > 1 and the other part is S− containing s such that yf(x;W(s)) < 1. It turns
out that if the weak signal component of the CNN is relatively small compared with the strong signal
component, the whole behavior will be dominated by the dynamics of the strong signal component.
In other words, when yf(x;W(s)) > 1, the inner products ⟨w(s)

y,r, yu⟩ would also take a relatively

5



Published as a conference paper at ICLR 2024

large value. Conversely, when yf(x;W(s)) < 1, the inner products ⟨w(s)
y,r, yu⟩ would also take a

relatively small value. Consequently, in view of (6), we can see that the total increase of ⟨w(s)
y,r, yu⟩

and decrease of ⟨w(s)
y,r, yu⟩ during the oscillation period are approximately balanced, i.e.,∑

s∈S+

(
yf(x;W(s))− 1

)︸ ︷︷ ︸
yf(x;W(s))>1

· ⟨w(s)
y,r, yu⟩︸ ︷︷ ︸

relatively large

≈
∑
s∈S−

(
1− yf(x;W(s))

)︸ ︷︷ ︸
yf(x;W(s))<1

· ⟨w(s)
y,r, yu⟩︸ ︷︷ ︸

relatively small

.

Consequently, the summation of 1 − yf(x;W(s)) over s ∈ S− would take a larger value than the
summation of yf(x;W(s))− 1 over s ∈ S+. This means that the whole summation∑

s∈S+∪S−

(
yf(x;W(s))− 1

)
=
∑
s∈S−

(
1− yf(x;W(s))

)
−
∑
s∈S+

(
yf(x;W(s) − 1)

)
≿ 0.

That is, the oscillation of f(x;W(s)) around the label y over time does not tend to cancel with each
other. Instead, the summation of the fluctuations would have a determined sign. Furthermore, if the
CNN values are bounded away from the label by a uniform constant δ (i.e., the magnitude of the
oscillation), we can further prove that∑

s∈S+∪S−

(
yf(x;W(s))− 1

)
≿ Ω

(
δ ·max{|S+|, |S−|}

)
≿ Ω

(
δ · (t1 − t0)

)
. (7)

This is the key motivation behind our theory for studying the oscillating SGD. With (7) in hand, we
can further show that once the weak signal component of the CNN is still small, which means that
the weak signal hasn’t been well learned, the linear accumulation of the oscillation would incentivize
the learning of the weak signal ⟨w(t)

y,r, yv⟩ by a careful analysis of its updates (5).

Outcome of oscillation. Based on previous discussions, we can arrive at our result for the simplified
setup of this explanatory section: the oscillating SGD can indeed make progress in learning the weak
signal y ·v, which helps the CNN to generalize to new data points which possibly lacks strong signal
y · u. This is summarized in the following (informal) theorem and corollary.
Theorem 2 (Large LR training, single data case (informal)). Under mild conditions on dimension
d, width m, initialization σ0, and learning rate η > m/(4∥u∥22), if the SGD training (5) oscillates
in the sense that |yf(x;W(t)) − 1| ≥ δ for some constant δ > 0 and each t ≥ 0, then with high
probability there exists a t⋆ ≤ Tmax with Tmax ∈ poly(d,m, η−1, δ−1, ∥u∥−1

2 , ∥v∥−1
2 ) such that

1

m

∑
r∈[m]

σ(⟨w(t)
y,r, yv⟩) ≥ δ, ∀t ≥ t⋆.

Please refer to Appendix C for formal and detailed statement of Theorem 2 and its proofs. Theorem 2
shows that via oscillating SGD training, the CNN learns the weak signal y · v up to a constant scale
of δ, which is typically much larger than the scale of its initialization, since

1

m

∑
r∈[m]

σ(⟨w(0)
y,r, yv⟩) ≲ Õ(σ2

0 · ∥v∥22) ≪ δ ≤ 1

m

∑
r∈[m]

σ(⟨w(t⋆)
y,r , yv⟩),

whenever the initializations of the CNN is small. We remark that here we mainly consider neurons
with j = y and testing data with label y since the CNN is trained only on a single data with label y.

Implications to the simple signal-noise model. Our findings could also be adapted to explain the
setting with data model considered by Cao et al. (2022). In that case, one data point x = (y · µ, ξ)
consists of a single signal patch y ·µ and a single Gaussian noise patch ξ. Therefore a trained neural
network can generalize to new data points only when it learns the common signal vector µ.

As is shown by Cao et al. (2022), under small learning rate training regime, if the data model has a
low signal-to-noise ratio (SNR), that is, the strength of the noise patch is relatively stronger than the
the strength of the signal patch, then overfitting the training data would result in poor generalization
(harmful overfitting). That is because the neural network would memorize the noise patch quickly
so as to fit the data, and consequently the signal patch is not well learned. In contrast, we can show
that under the oscillating SGD training regime, the signal can also be well learned even with a low
SNR. The mechanism behind this is still that the oscillation during training would accumulate and
incentivize the neural network towards signal learning.
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4 MAIN THEORY

In this section, we present our main theory on benign oscillation of SGD training with large learning
rates for the setup introduced in Section 2. We will first introduce the key conditions and assumptions
required by our theory in Section 4.1. Then we present our theoretical results in Section 4.2. Finally
in Section 4.2, we also compare large learning rate oscillating training to small learning rate training.

4.1 KEY CONDITIONS AND ASSUMPTIONS

Before presenting our theoretical results, we first outline the key conditions and assumptions needed
on the model and the training dynamics. Firstly, our results are based upon the following conditions
on the initialization scale σ0, dimension d, number of data n, and neural network width m.
Assumption 3 (Conditions on hyperparameters). Suppose that the following conditions hold: (i) the
CNN weight initialization scale σ0 = Θ̃(max{∥u∥2, ∥v∥2, σp

√
d}−1 · d−1/2); (ii) the dimension

d = Ω(n2,polylog(m)); (iii) the signal strength: ∥v∥2 ≤ 0.1∥u∥2, ∥u∥−2
2 + ∥v∥−2

2 ≤ n(σ2
pd)

−1.
(iv) the learning rate m/(4∥u∥22) ≤ η ≤ 2m/(5∥u∥22). (v) the weak data fraction ρ ≤ c for some
small constant c.

We explain the conditions in Assumption 3 one by one. The conditions on the initialization scale σ0
and the learning rate η are to ensure that the whole training process is well bounded while oscillates
(rather than converging smoothly). The condition on the dimension d puts us in the regime of high
dimensions for which independent Gaussian noise has small correlations. Finally, the conditions on
the signal strength separate the strong signal from the weak signal by ℓ2-norm. Also, we ensure that
the data are not too noisy by restricting the variance of the Gaussian noise.

The next assumption is on the training process, which requires that the SGD oscillates. For simplic-
ity, we denote the index of weak training data points lacking the strong feature patch as W .
Assumption 4 (Oscillating SGD). We assume that there exists a constant δ ∈ (0.2, 0.8), such that
|yitf(xit ;W

(t))− 1| ≥ δ holds for any t ≥ 0 such that it /∈ W .

Through Assumption 4, we require that the value of yf(x;W(t)) on data points with strong features
oscillates around the desired value, 1, by a scale of δ ∈ (0.2, 0.8), i.e., the magnitude of the oscilla-
tion is at least δ. Here the range for δ is only for technical considerations to simplify the theoretical
analyses.

It is notable that Assumption 4 implicitly requires that the learning rate η should be scaled properly.
A large η forces the training trajectories to escape from the regular region, while a small η shall result
in smooth convergence. In both cases the phenomenon described in Assumption 4 does not happen.
We also remind readers that the η condition in Assumption 3 is only sufficient for the regularities
such as boundedness and sign stability. Readers can refer to Appendix C.7 for a discussion of the
necessary conditions of Assumption 4.

We remark that in general the dynamics of the training process could be quite subtle when oscillation
happens, and there exist other more complicated patterns of oscillations if one deliberately chooses
a specific learning rate η. Our work focuses on a relatively simple but common pattern of oscillation.
It turns out that under the oscillation pattern in Assumption 4, we can show the benefits of oscillation
on the generalization properties of the CNN. Actually, we can also extend our theoretical analysis to
a weakened version of Assumption 4 that the time average of |yitf(xit ;W

(t))− 1| is larger than δ.

Finally, we remark that we only assume the oscillation on strong data, since intuitively on weak data
the CNN fits the label via the weak features and the noise (both have smaller strength than strong
features) and may converge slower and more smoothly. See Section 4.3 for experimental evidence.

4.2 MAIN THEORETICAL RESULTS

Our main results are that, under previous conditions and assumptions on the hyperparameters and
the training dynamics, the CNN can make enough progress in learning the weak signal v thanks to
the oscillation happening during training. We refer to Appendix E for a detailed proof of the results.
Theorem 5 (Weak signal learning: oscillating training with large learning rate). Under Assumptions
3 and 4, w.p. at least 1 − 1/poly(d), there exists t⋆ ≤ poly(d,m, n, δ−1, η−1σ−1

p , ∥u∥−1
2 , ∥v∥−1

2 )
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Figure 3: The dynamics of signal learning under a large learning rate ηlarge = 1.2 and a small learning rate
ηsmall = 0.1. The values of signal learning are obtained by characterizing the inner products ⟨w(t)

j,r,u⟩ and

⟨w(t)
j,r,v⟩. It can be seen that when using the large LR, strong signal learning as well as the NN outputs will

oscillate, during which weak signal will be gradually learned. When using the small LR, strong signal learning
will converge quickly, and the weak signal learning will stay at the same scale as its initialization.

such that

max
j∈{±1}

 1

m

∑
r∈[m]

σ(⟨w(t)
j,r, jv⟩)−

1

m

∑
r∈[m]

σ(⟨w(t)
−j,r, jv⟩)

 ≥ δ

4
.

In contrast, under the small learning rate regime, the CNN would not learn the weak features, which
is the following proposition with proofs in Appendix F.
Proposition 6 (Small LR training). Under Assumption 35 on (d,m, n, σ0, ∥u∥2, ∥v∥2, σp), if we
choose learning rate η ≤ m/(6∥u∥22) small enough, then with high probability, the training loss
can smoothly converge with

max
j∈{±1},r∈[m]

{
|⟨w(t)

j,r, jv⟩|
}
≤ Õ(σ0∥v∥2).

Division of generalization. Suppose we are given a new testing data point (x⋄, y⋄) with an input
x⋄ = (y⋄v, ξ⋄, ξ̃⋄) only consisting of the weak signal v. Then a reliable prediction can only count
on utilizing the weak signal v. In the regime specified by Theorem 5, there holds y⋄ ·f(x⋄;W(t)) ≥
δ/4− o(1) > 0 corresponding to correct prediction almost certainly. In contrast, when applying the
small learning rate, as specified by Proposition 6, the trained NN fails to take advantage of the weak
signal v from the data x⋄. Therefore, it will be likely to make the prediction based on a random guess
(the randomness stems from the random initialization and the noise patches ξ⋄, ξ̃⋄ ). Consequently,
note that the weak data takes up ρ fraction of the dataset (see our data model in Section 2), SGD
with large LR will achieve a Θ(ρ) higher test accuracy than SGD with small LR, demonstrating the
benefit of oscillation and large learning training in terms of the generalization ability.

4.3 NUMERICAL EXPERIMENTS

In this part, we conduct numerical experiments to demonstrate our findings on “benign oscillation”.
We follow the same data generation model and optimization algorithm as we described as Section 2.
Specifically, we consider a dataset with n = 16 and |W| = 2, that is, ρ ≈ 0.125. The dimension is
d = 64, and the number of neurons for each direction j is m = 8. We generate the data with strong
signal ∥u∥2 = 2, weak signal ∥v∥2 = 0.4, and noise ∥ξ∥2 ≈ σpd

1/2 = 0.8.

Weak signal learning. We run the SGD to train the CNN with two different scale of learning rates:
a large learning rate ηlarge = 1.2, a small learning rate ηsmall = 0.1. We plot the dynamics of signal
learning for each neuron r ∈ [m] from these two training regimes in Figure 3. The first two figures
plot the large learning rate training, and the last two figures plot the small learning rate training.

As we can see from Figure 3, with large learning rate SGD training, the CNN can effectively learn
the weak signal to a scale much larger than the initialization. On the contrary, by small learning rate
SGD training, the CNN does not learn the weak signal since it just remains at the same level as the
initialization. This demonstrates our main theory in Section 4.

Furthermore, in Figure 3, we plot the values of yif(xi;W
(t)) on certain data points i ∈ [n] and the

value of L(W(t)) for the two training regimes. In specific, we plot the values of yif(xi;W
(t)) on a

strong data i /∈ W (randomly sampled) and the value of yif(xi;W
(t)) on the weak data i ∈ W . As

we can see from the large learning rate training case, the value of f on the strong data oscillates while
the values of f on the weak data do not. This matches our theoretical assumption in Assumption 4
that the oscillation in f value only happens for strong data. Also, for the small learning rate training

8
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case, the values of f on the weak data converge slower than those on the strong data. This is because
on the weak data the CNN mainly uses the noise to fit the target which is of lower strength than the
strong signals on strong data. But still, the noise out weights the weak signals and consequently the
CNN makes no progress in learning the weak signal if trained smoothly.

Generalization properties. Finally, we test the CNN trained by two different learning rates on new
testing data generated in the same way as the training data, The testing data size 32 with 4 weak data
points. We repeat the testing evaluation over 5 random seeds and take the average. The result is that
for the CNN trained by ηlarge the test accuracy is 99.38%, and for the CNN trained by ηsmall the
test accuracy is 93.75%, matching our theoretical insights that large learning rate training benefits
NN generalization. For the CNN trained by ηsmall, it misclassifies certain weak data points. As we
previously discussed, on data without strong signal, the CNN approximately uses a random guess.

5 RELATED WORKS

Large learning rate NN training. Gradient descent training coped with large learning rates for
deep learning is receiving an ever increasing attention for recent years (Cohen et al., 2020; Jas-
trzebski et al., 2021; Andriushchenko et al., 2023). For GD training, the phenomenon of “edge of
stability” (Cohen et al., 2020; 2022) showed that the sharpness of the loss Hessian would finally
hover just above 2/η and thus a larger learning rate would prefer a flatter minimum and possibly
better generalization, and have received great attention in recent years (Arora et al., 2022; Chen and
Bruna, 2022; Damian et al., 2022; Wang et al., 2022; Zhu et al., 2022b). Besides, Li et al. (2019)
studied the regularization effect of large learning rates of SGD at initialization which results in better
generalization than using a small initial learning rate training. Wu et al. (2021) studied the implicit
bias of SGD with a moderate large learning rate for overparametrized linear regression. Wu et al.
(2023) then studied the implicit bias of large learning rate GD training in logistic regression. In
addition, Andriushchenko et al. (2023) showed that SGD with a large learning rate can help NNs to
learn sparse features from data, but did not provide rigorous theoretical justifications. We highlight
that our theoretical work on large learning rate SGD builds upon a multi-pass fashion of SGD and a
feature-noise data generation model (see Section 2), which is different from previous works (Li et al.,
2019; Wu et al., 2021; Andriushchenko et al., 2023) where noise-approximated-SGD is adopted for
analysis. Also, we study the behavior of large LR SGD by focusing on the role of oscillation, which
is also largely different from the prior works.

Feature learning in deep learning theory. There has been a long line of research in deep learning
theory from the perspective of feature learning during training of neural network (Allen-Zhu and
Li, 2022; Wen and Li, 2021; Zou et al., 2022; Cao et al., 2022; Chen et al., 2022; Zou et al., 2023;
Huang et al., 2023; Yang et al., 2023). The idea is that, by explicitly characterizing the dynamics of
feature learning during training, one can figure out how different algorithms and data structures can
influence the learning of features by the neural network, further uncovering the properties of interest
in deep learning, e.g., ensemble (Allen-Zhu and Li, 2022), adaptive gradients (Zou et al., 2022),
the phenomenon of benign overfitting (Cao et al., 2022), data augmentation via mixup (Zou et al.,
2023), etc. Specifically, the work of Cao et al. (2022) showed that under small learning rate regimes,
training on data with low signal-to-noise ratio (SNR) would result in harmful overfitting, leading to
poor generalization abilities of the neural network. Our work extends this line of research to the less
theoretically understood regime of large learning rates by characterizing the feature learning process
when oscillation happens during gradient descent and explaining its benefits to generalization.

Further related works. Please see Appendix A for more related works.

6 CONCLUSIONS

This work theoretically investigated NN training with large learning rates and established a theoret-
ical framework to understand the oscillation phenomenon. We revealed the benefit of oscillation to
the NN generalization, which we summarize as the phenomenon of “benign oscillation”. Our theory
demystified the phenomenon based on a feature learning perspective and showed that the oscillation
can drive the learning of weak but important patterns from data that are crucial to generalization.
Our theory shed light on the understanding of large learning rate NN training and provided useful
guidance towards the optimization analysis when smooth convergence is guaranteed.
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A FURTHER RELATED WORKS

Additional related works on large LR NN Training. Ziyin et al. (2021); Zhu et al. (2022a); Ziyin
et al. (2023); Even et al. (2023) also study neural network training with large learning rates. More
specifically, the work of Ziyin et al. (2021; 2023) is from the perspective of loss landscape of neural
network optimization under large learning rates and different signal-to-noise ratios. In contrast, we
explain the better generalization properties given by large learning rate training through the lens of
feature learning, which has a different target and provides a different viewpoint. Zhu et al. (2022a)
explain the “catapult phase” exhibited by large learning rate NN training on neural quadratic models.
Even et al. (2023) investigate the impact of large learning rate on the implicit regularisation of (S)GD
over 2-layer diagonal linear networks.

Diagonal linear neural networks. There is a line of theoretical works on the training of diagonal
linear neural networks (Pesme et al., 2020; 2021; Andriushchenko et al., 2023; Even et al., 2023),
where the impact of large learning rate is also investigated (Andriushchenko et al., 2023; Even et al.,
2023). As is shown (Andriushchenko et al., 2023; Even et al., 2023), for the diagonal linear neural
networks, large learning rate training can lead to sparse features, which is somehow related to our
dynamic analysis. More specifically, it turns out that our theoretical analysis not only indicates that
the weak signal is properly learned (i.e., for ⟨wy,r, yv⟩ > 0, it increases), but can also be leveraged
to prove that all the negative parts (i.e., ⟨w−y,r, yv⟩ > 0 and ⟨w−y,r, yu⟩ > 0) are “unlearned”, that
is, they are pushed towards zero (we did not explicitly prove it since an upper bound of these negative
parts are sufficient for our analysis, see Lemma 16 or Lemma 31). Therefore, once we prove this,
we can actually conclude that the model not only learns the weak signal, but also implicitly learns a
“sparse” solution to some extent. Also, learning more useful features, which is the outcome of large
learning rate SGD, can sortly suppress the noise memorization, since the more noisy model could
lead to higher sharpness than the model that largely learns features to fit the training data. This may
also connect to the sparsity of the learned model.

B PRELIMINARY LEMMAS ON CONCENTRATION

In this section, we give finite-sample concentration results to characterize the high-probability con-
centration properties of the random elements involved in our problem. Throughout this paper, we
fix a small constant failure probability p = 1/poly(d).

Lemma 7. Suppose that n ≥ 8 log(4/p), then with probability at least 1− p, we have that

|{i ∈ [n] : yi = 1}| ∧ |{i ∈ [n] : yi = −1}| ≥ n

4
.
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Proof of Lemma 7. See Lemma B.1 in Cao et al. (2022) for a proof.

Lemma 8. Suppose that n ≥ 8 log(4/p), then with probability at least 1− p, we have that

|W| ≤ 2ρ

n
.

Proof of Lemma 8. This follows from the same proof as Lemma 7.

Lemma 9. Suppose that d = Ω(log(4n/p)), then with probability 1− p, we have that

σ2
pd/2 ≤ ∥ξ∥22 ≤ 3σ2

pd/2, |⟨ξi, ξi′⟩| ≤ 2σ2
p ·
√
d log(2n/p)

hold for all i, i′ ∈ [n].

Proof of Lemma 9. See Lemma B.2 in Cao et al. (2022) for a proof.

Lemma 10. Suppose that d ≥ Ω(log(mn/p)). Then with probability at least 1− p, we have that

σ0∥u∥2/2 ≤ max
j∈{±1},r∈[m]

⟨w(0)
j,r , ju⟩ ≤

√
2 log(16m/p) · σ0∥u∥2,

min
j∈{±1},r∈[m]

⟨w(0)
j,r , ju⟩ ≥ −

√
2 log(16m/p) · σ0∥u∥2,

σ0∥v∥2/2 ≤ max
j∈{±1},r∈[m]

⟨w(0)
j,r , jv⟩ ≤

√
2 log(16m/p) · σ0∥v∥2,

min
j∈{±1},r∈[m]

⟨w(0)
j,r , jv⟩ ≥ −

√
2 log(16m/p) · σ0∥v∥2.

σ0σp
√
d/4 ≤ max

r∈[m]
j · ⟨w(0)

j,r , ξi⟩ ≤ 2
√

log(16mn/p) · σ0σp
√
d, ∀i ∈ [n],

Proof of Lemma 10. See Lemma B.3 in Cao et al. (2022) for a proof.

C PROOFS FOR SINGLE TRAINING DATA CASE (SECTION 3)

In this section, we give a formal statement and a detailed proof for our main results on the single
noiseless training data setup, Theorem 2.

We begin with the formal statement on the conditions and assumptions required for Theorem 2.
Firstly, we put requirements on the data model, initialization, and learning rates.
Assumption 11 (Conditions on hyperparameters). Suppose that the following holds:

1. The learning rate m/(4∥u∥22) ≤ η ≤ 2m/(5∥u∥22);

2. The weight initialization scale σ0 = Θ̃(max{∥u∥2, ∥v∥2}−1 · d−1/2);

3. The signal strength ∥v∥2 < 0.01 · ∥u∥2;

4. The dimension d satisfies d = Ω(polylog(m)).

These conditions are the simplified version of conditions of Assumption 3 for the multiple data setup.
The first condition on the learning rate guarantees the regularity of the training trajectories, including
the boundedness and the sign stability. The second condition on the weight initialization scale makes
sure that the CNN is not initialized too large, which is common in practice and also helps regularize
the training trajectory. The third condition on the signal strength separates the strong signal from the
weak signal by their ℓ2-norm. Finally, the last condition on the dimension d puts us in the regime of
high dimensions for which independent Gaussian noise has small correlations.

We make some additional remarks on the choice of the weight initialization scale σ0. It is to ensure
that the scale of initialization is smaller than the oscillation magnitude (at least in the high dimen-
sional region). A direct benefit of this is that by Theorem 2, one can immediately conclude that the
weak signal is guaranteed to be learned to the scale much higher than its initialization, improving
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over the small learning rate training regime (Proposition 1). Also, small weight initialization is also
assumed in the original edge-of stability paper (Cohen et al., 2020), as they need to guarantee “pro-
gressive sharpening”, where the sharpness at the initialization should be smaller than the sharpness
at the oscillation phase. So the whole thing we want is a weight initialization that is not too large so
that it is smaller than the scale of oscillation. Any other conditions on initialization would also work
if this is guaranteed, e.g., it can be relaxed to σ0 = Θ̃(max{∥u∥2, ∥v∥2}−1 · d−α) for some α > 0.

The next assumption is on the training process, which requires that the SGD oscillates.
Assumption 12 (Oscillations SGD: single training data case). We assume that there exists some
constant δ ∈ (0.2, 0.8), such that |yf(x;W(t)) − 1| ≥ δ for any t ≥ 0, where (x, y) denotes the
single data point, W(t) denotes the weights found by SGD (5).

Again, we refer the readers to Section 4.1 for an explanation of Assumption 12. With Assump-
tions 11 and 12, our formal statement of Theorem 2 is the following theorem.
Theorem 13 (Restatement of Theorem 2). Under Assumptions 11 and 12, with probability at least
1− 1/poly(d), there exists a step T(v) such that for j = y and any t ≥ T(v), it holds that

1

m

∑
r∈[m]

σ(⟨w(t)
j,r, jv⟩)−

1

m

∑
r∈[m]

σ(⟨w(t)
−j,r, jv⟩) ≥

δ

4
,

where δ > 0 is specified in Assumption 12 and T(v) ≤ Θ̃(m ·η−1 ·∥v∥−2
2 ·δ−1 · log(mδσ−1

0 ∥v∥−1
2 )).

Proof of Theorem 13. Please refer to Appendix C.3 for a detailed proof.

The following of this section is organized as following. Appendix C.1 presents important properties
of the whole training dynamics and the CNN, which serve as the basis for all the following proofs.
Appendix C.2 presents the fundamental step that allows for proving weak signal learning. Based
on that, we prove the main theorem in Appendix C.3. Finally, the remaining subsections collect the
proof for all the lemmas and technical results involved in Appendix C.

C.1 BASIC PROPERTIES OF TRAINING DYNAMICS AND THE TWO-LAYER CNN

Properties of training dynamics. We first define some neuron subsets. For j ∈ {±1}, we define
that

U (t)
j,+ =

{
r ∈ [m] : ⟨w(t)

y,r, yu⟩ > 0
}
, U (t)

j,− =
{
r ∈ [m] : ⟨w(t)

y,r, yu⟩ ≤ 0
}
.

and
V(t)
j,+ =

{
r ∈ [m] : ⟨w(t)

y,r, yv⟩ > 0
}
, V(t)

j,− =
{
r ∈ [m] : ⟨w(t)

y,r, yv⟩ ≤ 0
}
.

By the update formula (5), we know that the gradient descent iterates the inner products
{⟨w(t)

j,r, ju⟩}t≥0 as follows:

⟨w(t+1)
y,r , yu⟩ = ⟨w(t)

y,r, yu⟩+
η∥u∥22
m

·
(
1− yf(x;W(t))

)
· σ′(⟨w(t)

y,r, yu⟩
)
, (8)

⟨w(t+1)
−y,r ,−yu⟩ = ⟨w(t)

−y,r,−yu⟩+
η∥u∥22
m

·
(
1− yf(x;W(t))

)
· σ′(−⟨w(t)

−y,r,−yu⟩
)
. (9)

Analogously, we have that

⟨w(t+1)
y,r , yv⟩ = ⟨w(t)

y,r, yv⟩+
η∥v∥22
m

·
(
1− yf(x;W(t))

)
· σ′(⟨w(t)

y,r, yv⟩
)
, (10)

⟨w(t+1)
−y,r ,−yv⟩ = ⟨w(t)

−y,r,−yv⟩+
η∥v∥22
m

·
(
1− yf(x;W(t))

)
· σ′(−⟨w(t)

−y,r,−yv⟩
)
.

Then we invite readers to some facts that helps to understand the behavior of the inner products
during the training processes. First, we note that by (8), for any r ∈ U (0)

y,−,{
⟨w(t)

y,r, yu⟩
}
t≥0
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stays fixed at its initialization, thus automatically keeps a fixed sign. The same phenomenon that the
inner products are fixed can be verified on following neuron sets,{
⟨w(t)

−y,r,−yu⟩
}
t≥0

, ∀r ∈ U (0)
−y,+;

{
⟨w(t)

y,r, yv⟩
}
t≥0

, ∀r ∈ V(0)
y,−;

{
⟨w(t)

−y,r,−yv⟩
}
t≥0

, ∀r ∈ V(0)
−y,+.

The benefit of this phenomenon is when looking at the prediction f(·;W(t)) on the single data with
label y,

f(x;W(t)) =
y

m

∑
r∈[m]

σ
(
⟨w(t)

y,r, yu⟩
)
+ σ

(
⟨w(t)

y,r, yv⟩
)
− σ

(
⟨w(t)

−y,r, yu⟩
)
− σ

(
⟨w(t)

−y,r,−yv⟩
)
.

(11)

By splitting the summation over r ∈ [m] according to our defined neuron sets, we can simplify (11)
as

f(x;W(t)) =
y

m

∑
r∈U(t)

y,+

σ
(
⟨w(t)

y,r, yu⟩
)
+
y

m

∑
r∈V(t)

y,+

σ
(
⟨w(t)

y,r, yv⟩
)

− y

m

∑
r∈U(t)

−y,−

σ
(
−⟨w(t)

−y,r,−yu⟩
)
− y

m

∑
r∈V(t)

−y,−

σ
(
−⟨w(t)

−y,r,−yv⟩
)
, (12)

which only involves w(t)
y,r with r ∈ U (t)

y,+ ∪ V(t)
y,+ and w

(t)
−y,r with r ∈ U (t)

−y,− ∪ V(t)
−y,−. Combined

with previous observations, we only need to track the training dynamics of the neurons appearing in
(12).

Thanks to these facts and the signal strength regime in Assumption 12, we can then retreat to tracking
the movements of{

⟨w(t)
y,r, yu⟩

}
t≥0

, ∀r ∈ U (0)
y,+ and

{
⟨w(t)

−y,r,−yu⟩
}
t≥0

, ∀r ∈ U (0)
−y,−

whenever the weak signal part is not yet effectively learned and the strong signal part still dominates.
Ideally, only the inner products ⟨w(t)

y,r, yu⟩, r ∈ U (t)
y,+ take the lead.

Then a natural and crucial question is the boundedness of these inner products, which turns out to
be the cornerstone for the subsequent analysis. A straightforward but helpful lemma indicates that
the inner products that are initialized to be the maximal (resp. minimal) among all inner products
continue to be the maximal (resp. minimal) throughout the training process. To put formally, we
have the following.

Lemma 14 (Maximum and minimum neurons). Suppose that the signs of all the related inner prod-
ucts do not change throughout [t1, t2], i.e., U (t)

y,+ = U (t1)
y,+ and U (t)

−y,− = U (t1)
−y,− for all t ∈ [t1, t2].

Then we have that

argmax
r∈[m]

⟨w(t1)
y,r , yu⟩ = argmax

r∈[m]

⟨w(t)
y,r, yu⟩,

argmin
r∈[m]

⟨w(t1)
−y,r,−yu⟩ = argmin

r∈[m]

⟨w(t)
−y,r,−yu⟩

hold for all t ∈ [t1, t2].

Proof of Lemma 14. See Appendix C.4.1 for a detailed proof.

A direct profit of this lemma is that when the signs keep invariant, it suffices to track two specific
indices in U (t)

y,+ and U (t)
−y,−, the maximum and the minimum, to analyze upper and lower bounds for

all neurons.
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Single neuron behaves similarly to CNN. The proof of boundedness utilizes another property of
two-layer CNN defined in Equation (1) that exhibits the connections between the behavior of inner
products ⟨wy,r, yu⟩ and the outcome of the model f(· ;W). We state it as follows.

Lemma 15 (Single neuron imitates entire CNN). Define the major part of y · f(x;W) as

g(x, y;W) =
1

m

∑
r∈[m]

σ
(
⟨wy,r, yu⟩

)
.

Suppose that there is t1 < t2 such that U (t)
y,+ = U (t1)

y,+ for all t ∈ [t1, t2]. Then, for any c > 0,
g(x, y;W(t)) ≥ c implies that for all t ∈ [t1, t2],

max
r∈[m]

⟨w(t)
y,r, yu⟩ ≥ (β∗

u
(t1)mc)1/2.

On the other hand, g(x;W(t)) ≤ c implies that for all t ∈ [t1, t2],

max
r∈[m]

⟨w(t)
y,r, yu⟩ ≤ (β∗

u
(t1)mc)1/2.

Here β∗
u
(t) is defined as

β∗
u
(t) =

maxr∈[m] σ(⟨w
(t)
y,r, yu⟩)∑

r∈[m] σ(⟨w
(t)
y,r, yu⟩)

.

Proof of Lemma 15. See Appendix C.4.2 for a detailed proof. For multiple training data setting, the
proof is in Appendix E.6.2.

Being a subtle condition required in the previous two lemmas, whether the signs of these inner
products are invariant throughout the process remains unknown, making the behaviors of these inner
products complicated. The answer to this question is affirmative, as we are able to prove that,
under proper conditions, the signs of these inner products are fixed throughout the process. Using
Lemmas 14 and 15, we prove the boundedness and the sign stability simultaneously through a
sophisticated inductive argument. The formal statement of this result is as follows.

We first define a stopping time. Let

T(v) =min
t≥0

t : 1

m

∑
r∈[m]

σ
(
⟨w(t)

y,r, yv⟩
)
> δ

 . (13)

Such a stopping time helps to control the non-dominating terms in the CNN. Moreover, once the
process reaches T(v), the conclusion in Theorem 13 is nearly achieved. Our results are summarized
as follows.

Lemma 16 (Boundedness and sign stability: single training data case). Suppose that Assump-
tions 11 and 12 hold. With probability at least 1 − p = 1 − 1/poly(d), we have the following
bounds:

max
r

⟨w(t)
y,r, yu⟩ ≤ 1.5 ·

(
1.05β∗

um
)1/2

, ∀t ≤ T(v), (14)

min
r

⟨−w
(t)
−y,r,−yu⟩ ≥ −

√
2 log(16m/p) · σ0∥u∥2, ∀t ≤ T(v), (15)

min
r

⟨−w
(t)
−y,r,−yv⟩ ≥ −

√
2 log(16m/p) · σ0∥v∥2, ∀t ≤ T(v), (16)

0 ≤ yf(x;W(t)) ≤ 3, ∀t ≤ T(v).

Here β∗
u := β∗

u
(0) is defined in Lemma 15. Besides, the sign stability holds before T(v), i.e. U (t)

±y,±

and V(t)
±y,± remain invariant in t, and the superscript (t) can be dropped.

Proof of Lemma 16. See Appendix C.4.3 for a detailed proof.
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Thanks to the stopping time defined in (13) which puts controls on the scale of ⟨w(t)
j,r, jv⟩, the

major part function g defined in the previous lemma dominates the entire CNN, as the negative parts
⟨w(t)

−y,r,−yu⟩, ⟨w
(t)
−y,r,−yv⟩ can be lower bounded in Lemma 16 through a delicate analysis of the

training dynamics.

Lemmas 14, 15, and 16 reveal the key properties of the training dynamics and the two-layer CNN.
Several remarks are put here again. Lemmas 14 and 15 are temporarily local, with the condition
on the local sign stability. They are not informative until we are able to extend the sign stability
to a wider sense, which is achieved by Lemma 16. Nevertheless, these two local lemmas are used
frequently throughout the subsequent analysis, so we single them out here to make the proof more
readable.

C.2 FUNDAMENTAL REASONING TOWARDS THE WEAK SIGNAL LEARNING

The previous section presents several basic properties of the training dynamics and the CNN. How-
ever, they are insufficient in interpreting the driving force of the weak signal learning during os-
cillation. In the lemma below, we discover a quantitative interpretation towards the increasing on
⟨w(t)

y,r, yv⟩, which formalizes the illustration of the function of oscillation in Section 3.
Lemma 17 (Weak signal learning: single training data case). Under Assumptions 11 and 12, sup-
pose that there exists t0 ≤ t1, such that:

1. The sign stability holds on [t0, t1], i.e., i.e. U (t)
±y,± and V(t)

±y,± remain invariant in t;

2. maxr∈[m]⟨w
(t)
y,r, yu⟩ < B · (β∗

um)1/2, ∀t ∈ [t0, t1] for some B > 0;

3. minr∈[m]⟨w
(t)
−y,r,−yu⟩ > −0.1 and minr∈[m]⟨w

(t)
−y,r,−yv⟩ > −0.1, ∀t ∈ [t0, t1];

4. 1
m

∑
r∈[m] σ(⟨w

(t)
y,r, yv⟩) < δ, ∀t ∈ [t0, t1];

5. −2 ≤ 1− yf(x;W(t)) ≤ 1, ∀t ∈ [t0, t1].

Then we have that
t1−1∑
s=t0

(
1− yf(x;W(s))

)
≥ 2ϵ · (t1 − t0)−

mB

η∥u∥22
√
1.05− δ

.

Consequently, we further have that for any r ∈ Vy,+ = {r ∈ [m] : ⟨w(t0)
y,r , yv⟩ > 0}, it holds that

⟨w(t1)
y,r , yv⟩ ≥ ⟨w(t0)

y,r , yv⟩ · exp
{
η∥v∥22ϵ
m

· (t1 − t0)−
∥v∥22
∥u∥22

· B

(1.05− δ)1/2

}
.

Here ϵ = (δ − δ(1.05− δ)1/2)/4 with δ specified in Assumption 12.

Proof of Lemma 17. See Appendix C.5 for a detailed proof.

This lemma asserts that, stable oscillation in a bounded and favorable training area leads to a linear
increasing lower bound for

∑
t(1− yft). This is the first part of Lemma 17. The second part of this

lemma relates the increasing speed of ⟨w(t)
y,r, yv⟩ to the summation of 1−yft. The derivation of this

part relies on the fact that α = ∥v∥22/∥u∥22 ∈ (0, 1) and is close to 0. This observation motivates us
to approximate the ratio with a first-order Taylor expansion,

⟨w(t1)
y,r , yv⟩

⟨w(t0)
y,r , yv⟩

=

t1−1∏
t′=t0

{
1 + αη̃

(
1− yf(x;W(t′))

)}

≈ 1 + αη̃

t1−1∑
t′=t0

(
1− yf(x;W(t′))

)
.

The proof of the second part of this lemma justifies this intuition formally with more delicate anal-
ysis. With all these collected results, we are ready to present the proof of the main theorem.
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C.3 PROOF OF THEOREM 13

Proof of Theorem 13. We prove Theorem 13 by contradiction. Recall that in the previous section
we have defined that

T(v) = min
t≥0

t : 1

m

∑
r∈[m]

σ
(
⟨w(t)

y,r, yv⟩
)
> δ

 .

With this definition, our first goal is to prove that T(v) is bounded by a finite time with explicit
expression. To put it precisely, we are going to prove by contradiction that

T(v) < T0 :=
m

η∥v∥22ϵ
·

{
log

(
2
√
mδ

σ0∥v∥2

)
+ 1.5 · ∥v∥

2
2

∥u∥22
·
√

1.05

1− δ

}
,

where ϵ is specified in Lemma 17 and δ is specified in Assumption 12. Suppose otherwise that
T(v) ≥ T0. By Lemma 16 we can see that for t ∈ [0, T0] all the conditions of Lemma 17 are
satisfied. Then Lemma 17 implies that,

⟨w(T0)
y,r∗ , yv⟩ ≥ ⟨w(0)

y,r∗ , yv⟩ · exp

{
η∥v∥22ϵ
m

· T0 − 1.5 · ∥v∥
2
2

∥u∥22
·
√

1.05

1.05− δ

}

≥ 1

2
σ0∥v∥2 ·

2
√
mδ

σ0∥v∥2
≥

√
mδ.

where r∗ = argmaxr∈[m]⟨w
(t)
y,r, yv⟩ are fixed throughout t ∈ [0, T0] (see Lemma 14) and in the

second inequality we apply Lemma 10 to lower bound the initialization. This leads to the following,

1

m

∑
r∈[m]

σ
(
⟨w(T0)

y,r , yv⟩
)
≥ 1

m
σ
(
⟨w(T0)

y,r∗ , yv⟩
)
≥ δ,

which contradicts the definition of T(v), and therefore T(v) < T0.

The rest part of the proof is to show that the sequence 1

m

∑
r∈[m]

σ
(
⟨w(t)

y,r, yv⟩
)

t≥T(v)

(17)

does not fall below δ/2. Intuitively, as long as the sequence above falls below δ, the sequence
would have the incentive to increase, as the results in Lemma 17 are revived again based on another
boundedness argument. The analysis resembles the proof of Lemma 16 with slight differences. We
provide the following proposition with the proofs delayed to Appendix C.6.
Proposition 18 (Weak signal memorization). It holds that

1

m

∑
r∈[m]

σ
(
⟨w(t)

y,r, yv⟩
)
>
δ

2
, ∀t ≥ T(v).

Proof of Proposition 18. See Appendix C.6.1 for a detailed proof.

This proposition finalizes the proof of Theorem 13, and we are done.

C.4 PROOF OF LEMMAS IN APPENDIX C.1

C.4.1 PROOF OF LEMMA 14

Proof of Lemma 14. By our assumption that the signs of the inner products does not change through-
out [t1, t2], it is straightforward that U (t)

y,+ = U (t1)
y,+ for every t ∈ [t1, t2]. The same is true for U (t)

−y,−.
Therefore, we are able to drop the superscript (t) temporarily, as the attention is restricted to a local
interval [t1, t2].
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Regarding the maximal index, introducing r′ ̸= r ∈ Uy,+, we have following relation

argmax
r∈[m]

⟨w(t)
y,r, yu⟩ = argmax

r∈Uy,+

⟨w(t)
y,r, yu⟩,

= argmax
r∈Uy,+

⟨w(t)
y,r, yu⟩/⟨w

(t)
y,r′ , yu⟩

= argmax
r∈Uy,+

⟨w(t1)
y,r , yu⟩ ·

∏t−1
t′=t1

(
1 +

2η∥u∥2
2

m ·
(
1− yf(x;W(t))

))
⟨w(t1)

y,r′ , yu⟩ ·
∏t−1

t′=t1

(
1 +

2η∥u∥2
2

m ·
(
1− yf(x;W(t))

))
= argmax

r∈Uy,+

⟨w(t1)
y,r , yu⟩/⟨w

(t1)
y,r′ , yu⟩

= argmax
r∈Uy,+

⟨w(t1)
y,r , yu⟩.

The same relation can be verified for ⟨w(t
−y,r, yu⟩ with r ∈ U−y,−, finishing the proof.

C.4.2 PROOF OF LEMMA 15

Proof of Lemma 15. Again, the local sign stability assumption ensures that each inner product grows
proportionally and the superscript (t) in the neuron index sets can be dropped, with

g(x, y;W(t)) =
1

m

∑
r∈[m]

σ
(
⟨w(t)

y,r, yu⟩
)

=
1

m

∑
r∈Uy,+

σ
(
⟨w(t1)

y,r , yu⟩
)
·

t−1∏
t′=t1

(
1 +

2η∥u∥22
m

·
(
1− yf(x;W(t′))

))2

=
maxr∈[m] σ

(
⟨w(t1)

y,r , yu⟩
)

mβ
∗,(t1)
u

t−1∏
t′=t1

(
1 +

2η∥u∥22
m

·
(
1− yf(x;W(t′))

))2

=
σ
(
maxr∈[m]⟨w

(t)
y,r, yu⟩

)
mβ

∗,(t1)
u

.

Here the second line and the last equality is true because (8) implies that all the positive ⟨w(t)
y,r, yu⟩

iterates by sequentially multiplying the same factor

1 +
2η∥u∥22
m

·
(
1− yf(x;W(t′))

)
.

The third equality comes from the definition of β∗,(t1)
u in Lemma 15. Thus, g(x, y;W(t)) ≥ c

implies that

σ

(
max
r∈[m]

⟨w(t)
y,r, yu⟩

)
> β∗,(t1)

u ·mc

and the desired lower bound follows. The upper bound can be proved analogously and is omitted
here.

C.4.3 PROOF OF LEMMA 16

Proof of Lemma 16. A roadmap is provided to help understand how every single step is achieved so
that the readers can skip the details without leaving the key ideas behind.

Recap on notations. Recall that, U (t)
j,+ is the set of indices r ∈ [m] such that ⟨w(t)

j,r, ju⟩ > 0 and

U (t)
j,− is the set of indices r ∈ [m] such that ⟨w(t)

j,r, ju⟩ ≤ 0. Specially, let Uy,+ = U (0)
y,+ and U−y,− =

U (0)
−y,−. With probability one, it holds that Uj,− ∪ Uj,+ = [m]. Let r∗ := argmaxr∈[m]⟨w

(0)
y,r, yu⟩
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and r∗ := argminr∈[m]⟨w
(0)
−y,r,−yu⟩, i.e., r∗ (resp. r∗) denote the index of the maximum (resp.

minimum) throughout the process as we are able to extend the results in Lemma 14 globally.

We also introduce several supplemental notations here to facilitate the proof. Recursively, we define

T̄k := min
t≥0

{
t : t > T̄k−1, yf(x;W

(t)) ≥ 1 and yf(x;W(t−1)) < 1
}
, (18)

with T̄0 = 0. Similarly, we define that

¯
Tk := min

t≥0

{
t : t >

¯
Tk−1, yf(x;W

(t)) < 1 and yf(x;W(t−1)) ≥ 1
}
,

and
¯
T0 = 0. Intuitively, T̄k captures the times that yf(x;W(t)) just exceeds 1, and similarly for

¯
Tk.

Roadmap. From a high level, three steps are required to establish the full proof:

1. We verify that the lower bound in Inequality (15) in Lemma 16 holds for all t ∈ [0, T̄1] with
a direct monotonicity argument. Additionally, we can prove that the upper bound in Inequal-
ity (14) holds for t ∈ [0, T̄1) by using Lemma 15 and the definition of T̄1. The signs do not
change in this stage, as shown in the details below.

2. We extend the results in Lemma 16 to t ∈ [T̄1, T̄2) with repeated use of Lemma 15. The sign
stability is guaranteed from an intermediate upper bound on |1− yf(x;W(t))|.

3. Note that the condition on [0, T̄1) (which is proved in the first step) required for the proof of the
second step is again true for t ∈ [0, T̄2), which is a consequence of the second step. Therefore
we can repeat the second step to extend the results in Lemma 16 to t ∈ [T̄2, T̄3), and so on. So
the results are true for all t ≤ T(v).

The first and the last step above are relatively straightforward. However, the second step requires a
delicate break-down analysis. Here we provide a more detailed roadmap for the second step. The
goal is to prove the results in Lemma 16, restricted to t ∈ [T̄1, T̄2). This would be achieved in four
split steps:

2.1 Firstly, we prove the upper bound in Inequality (14) for t = T̄1 by tracking one-step gradient
descent and the upper bound for ⟨w(T̄1−1)

y,r∗ , yu⟩. Then with a monotonicity argument,

⟨w(t)
y,r∗ , yu⟩ ≤ ⟨w(T̄1)

y,r∗ , yu⟩, ∀t ∈ [T̄1,
¯
T1].

Besides, for t ∈ [T̄1,
¯
T1) we can give a lower bound on ⟨w(t)

y,r∗ , yu⟩ with the help of Lemma 15.

2.2 Based on the previous lower and upper bounds on ⟨w(T̄1)
y,r∗ , yu⟩, we can derive a lower bound

on ⟨w(
¯
T1)
y,r∗ , yu⟩ by tracking one-step gradient descent. We apply this worst-case tight lower

bound to conclude the sign stability. We note that this step is free of the lower bound on
⟨w(t)

−y,r∗ ,−yu⟩ for t ∈ (T̄1,
¯
T2], which we have not yet proved to be true.

2.3 Now we give lower bounds on ⟨w(
¯
T1)
−y,r∗ ,−yu⟩ and ⟨w(

¯
T1)
−y,r∗ ,−yv⟩. We achieve this by a

delicate usage of the lower bound on ⟨w(
¯
T1)
y,r∗ , yu⟩ (which we have proved in Step 2.2) plus

an inequality that connects the relative increment of ⟨w(t)
y,r∗ , yu⟩ and ⟨w(t)

−y,r∗ ,−yu⟩ (or

⟨w(t)
−y,r∗ ,−yv⟩). Thus we prove Inequalities (15) and (16) for t =

¯
T1, and this can be fur-

ther extended to the entire [T̄1, T̄2] by another monotonicity argument since
¯
T1 is the local

minima.

2.4 The remaining to is upper bound ⟨w(t)
y,r∗ , yu⟩ for t ∈ (

¯
T1, T̄2). This is again a consequence of

Lemma 15, as exactly what has been done to upper bound ⟨w(t)
y,r∗ , yu⟩, t ≤ T̄1 in Step 1.

Now with the roadmap in mind, we are ready to dive into the details of every step.
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Step 1: Pre-T̄1 Analysis. Lemma 10 indicates that the lower bound in Inequality (15) holds at
initialization t = 0 under Assumption 11. Moreover, the upper bounds on the maximal initial inner
products in Lemma 10 with Assumption 11 indicate that

|yf(x;W(0))| ≤ 2 · max
r∈[m]

⟨w(0)
y,r, yu⟩2 ∨ max

r∈[m]
⟨w(0)

−y,r,−yu⟩2

= Õ
(
σ2
0∥u∥22

)
≪ 1.

From this we know that T̄1 ≥ 1 and the upper bound in Inequality (14) is true at t = 0.

Then the first step to do is to extend the lower on ⟨w(t)
−y,r,−yu⟩ to [1, T̄1]. Definition of T̄1 implies

that yf(x;W(t)) ≤ 1 for t ∈ [0, T̄1). Therefore for r ∈ U (0)
−y,−, Equation (9) gives that

⟨w(t+1)
−y,r ,−yu⟩ = ⟨w(t)

−y,r,−yu⟩+
η∥u∥22
m

·
(
1− yf(x;W(t))

)
· σ′(− ⟨w(t)

−y,r,−yu⟩
)

= ⟨w(t)
−y,r,−yu⟩ −

2η∥u∥22
m

·
(
1− yf(x;W(t))

)
· ⟨w(t)

−y,r,−yu⟩ (19)

≥ ⟨w(t)
−y,r,−yu⟩.

And furthermore
⟨w(T̄1)

−y,r,−yu⟩ ≥ ⟨w(0)
−y,r,−yu⟩ ≥ −

√
2 log(16m/p) · σ0∥u∥2.

Taking minimum with respect to r ∈ [m] gives the result. Same argument can be applied to
⟨w(T̄1)

−y,r,−yv⟩. So the lower bounds in Inequalities (15) and (16) hold for t ∈ [1, T̄1].

Also, (8) and (10) imply that ⟨w(t)
y,r, yu⟩, r ∈ U (0)

y,+ and ⟨w(t)
y,r, yv⟩, r ∈ V(0)

y,+ increase for all t < T̄1.
A natural consequence is that yf(x;W(t)) is non-decreasing in t in this stage, since every summand
(possibly with the negative sign before) in the summation is non-decreasing.

Now we can prove the sign stability. For r ∈ U (0)
y,+, we know from (8) that ⟨w(t)

y,r, yu⟩ >

⟨w(0)
y,r, yu⟩ > 0, hence r ∈ U (t)

y,+ is non-vanishing in t by induction. Additionally, for r ∈ U (0)
y,−,

⟨w(t)
y,r, yu⟩ stays fixed in t, as mentioned in Appendix C.1. Two points together ensure that

U (t)
y,+ = U (0)

y,+ for t ∈ [1, T̄1].

For r ∈ U (0)
−y,−, let’s take a closer look at Equation (19) with t = 0:

⟨w(1)
−y,r,−yu⟩ = ⟨w(0)

−y,r,−yu⟩ −
2η∥u∥22
m

·
(
1− yf(x;W(0))

)
· ⟨w(0)

−y,r,−yu⟩

= ⟨w(0)
−y,r,−yu⟩ ·

(
1− 2η∥u∥22

m
·
(
1− yf(x;W(0))

))
︸ ︷︷ ︸

>0 if η<(1−o(1))/2·m∥u∥−2
2

.

Assumption 11 ensures that η < 0.4m∥u∥−2
2 < (1− o(1))/2 ·m∥u∥−2

2 so the sign change does not
happen at t = 0. As mentioned before, yf(x;W(t)) ≤ 1 is non-decreasing in t at this stage, and
putting them together we know that

1− 2η∥u∥22
m

(
1− yf(x;W(t))

)
≥ 0, ∀t ∈ [1, T̄1).

The same sign stability can be verified for ⟨w(t)
−y,r,−yv⟩, and therefore, the sign stability for U (t)

−y,−

and V(t)
−y,− is ensured for t ∈ [0, T̄1] and the lower bound in Inequality (15) holds for t ∈ [1, T̄1].

Now we turn to prove the upper bound (14). Note that yf(x;W(t)) ≤ 1 for t < T̄1, and the
definition of T(v) then implies that

g(x, y;W(t)) ≤ 1 + 2
(√

2 log(16m/p) · σ0∥u∥2
)2 ≤ 1.05.

Now that the sign stability holds for t ∈ [0, T̄1), Lemma 15 gives that

max
r∈[m]

⟨w(t)
y,r, yu⟩ ≤

(
1.05β∗

um
)1/2

. (20)

Here β∗
u is defined in 15 with the superscript (0) dropped.
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Step 2.1: Bounding maxr⟨w(t)
y,r, yu⟩ for t ∈ [T̄1,

¯
T1). In order for the upper bound to be tight, we

need a lower bound on yf(x;W(T̄1−1)). Let η̃ = 2η∥u∥22/m > 1/2, we have the following result.
Proposition 19. For every k ≥ 1, suppose that

ET̄k−1 :=
1

m

∑
r∈[m]

σ
(
− ⟨w(T̄k−1)

−y,r ,−yu⟩
)
+ σ

(
− ⟨w(T̄k−1)

−y,r ,−yv⟩
)
<
δ

2
.

Then we have that

yf(x;W(T̄k−1)) ≥ 2 + η̃ −
√
η̃2 + 4η̃

2η̃
. (21)

Moreover, it holds that

yf(x;W(T̄k)) ≤ yf(x;W(T̄k−1)) ·
(
1 + η̃ ·

(
1− yf(x;W(T̄k−1))

))2
+ 2ET̄k−1. (22)

Also, it is notable that the result here still holds for T̄k ≥ T(v).

Proof of Proposition 19. See Appendix C.6.2 for a detailed proof.

Clearly, the conditions required for Proposition 19 is true for before T̄1. So consider a one-step
gradient descent at t = T̄1 − 1, by Proposition 19 and Equation (8),

⟨w(T̄1)
y,r∗ , yu⟩ = ⟨w(T̄1−1)

y,r∗ , yu⟩+ η∥u∥22
m

·
(
1− yf(x;W(T̄1−1))

)
· σ′(⟨w(T̄1−1)

y,r∗ , yu⟩
)

≤ ⟨w(T̄1−1)
y,r∗ , yu⟩ ·

(
1 + η̃

(
1− η̃ + 2−

√
η̃2 + 4η̃

2η̃

))
≤ 1.5 ·

(
1.05β∗

um
)1/2

. (23)
Here the first inequality above comes from Inequality (21), and the second inequality is derived
from taking the suprema η̃ = 1/2 and Inequality (20). Additionally, we can further deliver an upper
bound on yf(x;W(T̄1)). Inequality (73) and Inequality (74) that have been proved to be true on
[0, T̄1] indicate that ET̄1

= Õ(σ2
0∥u∥22) ≪ 1. Combining with Inequality (22), it holds that

yf(x;W(T̄1)) ≤ yf(x;W(T̄k−1)) ·
(
1 + η̃ ·

(
1− yf(x;W(T̄k−1))

))2
+ o(1)

≤
(
1 + η̃ ·

(
1− yf(x;W(T̄k−1))

))2
+ o(1)

≤
(
1 +

(
η̃ − 1− η̃/2 +

√
η̃2/4 + η̃

))2
+ o(1)

=
(
η̃/2 +

√
η̃2/4 + η̃

)2
+ o(1). (24)

Since η̃ < 1, we know that yf(x;W(T̄1)) ≤ 3 and |yf(x;W(T̄1)) − 1| ≤ 2. (We keep η̃ in the
upper bound above for deriving a sufficient condition on η̃ for the sign stability later.)

Now we look to the lower bound. The definition of T̄1, T(v) and Assumption 12 implies that
yf(x;W(t)) > 1 + δ, hence g(x, y;W(t)) > 1 + δ − δ = 1 for t ∈ [T̄1,

¯
T1). Thus Lemma 15

implies that

⟨w(t)
y,r∗ , yu⟩ > (β∗

um)1/2, t ∈ [T̄1,
¯
T1).

Step 2.2: Lower bounding ⟨w(
¯
T1)
y,r , yu⟩. Note that yf(x;W(t)) ≤ yf(x;W(T̄1)) from the local

monotonicity. Consider doing one-step gradient descent with Equation (8):

⟨w(
¯
T1)
y,r∗ , yu⟩ = ⟨w(

¯
T1−1)
y,r∗ , yu⟩ ·

(
1− η̃ ·

(
yf(x;W(

¯
T1−1))− 1

))
≥ ⟨w(

¯
T1−1)
y,r∗ , yu⟩ ·

(
1− η̃ ·

(
yf(x;W(T̄1−1))− 1

))
≥ (β∗

um)1/2 ·
(
1− η̃

((
η̃/2 +

√
η̃2/4 + η̃

)2 − 1
)
− o(1)

)
︸ ︷︷ ︸

>0 with η̃<4/5

. (25)
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Here the last inequality is a consequence of Inequality (24) and the deterministic estimation that

min
η̃∈[1/2,4/5]

{
1− η̃

((
η̃/2 +

√
η̃2/4 + η̃

)2 − 1
)}

> 1/4. (26)

We note that every step above is free of the lower bound in Inequality (15). Therefore, the sign
stability is true on [T̄1,

¯
T1], because all the inner products are non-decreasing in t ∈ [

¯
T1, T̄2]

Step 2.3: Lower bounding ⟨w(
¯
T1)
−y,r,−yu⟩ and ⟨w(

¯
T1)
−y,r,−yv⟩. The key is to notice that the sign

stability on [0,
¯
T1] guarantees that for every t ≤

¯
T1 − 1,

1± η̃ ·
(
1− yf(x;W(t))

)
> 0, 1± η̃ · ∥v∥

2
2

∥u∥22
·
(
1− yf(x;W(t))

)
> 0.

From Equation (9), we have that

⟨w(
¯
T1)
−y,r,−yu⟩ = ⟨w(0)

−y,,−yu⟩ ·
¯
T1−1∏
t=0

(
1− η̃

(
1− yf(x;W(t))

))

≥ ⟨w(0)
−y,,−yu⟩ · exp

−η̃
¯
T1−1∑
t=0

(
1− yf(x;W(t))

) . (27)

On the other hand,

⟨w(
¯
T1)
y,r∗ , yu⟩

⟨w(0)
y,r∗ , yu⟩

=
¯
T1−1∏
t=0

(
1 + η̃ ·

(
1− yf(x;W(t))

))
≤ exp

¯
T1−1∑
t=0

η̃ ·
(
1− yf(x;W(t))

) .(28)

However, ⟨w(0)
y,r∗ , yu⟩ ≤ (β∗

um)1/2 ·
√

2 log(16m/p) · σ0∥u∥2 and Inequality (25) imply that

⟨w(
¯
T1)
y,r∗ , yu⟩

⟨w(0)
y,r∗ , yu⟩

≥ (β∗
um)1/2 · (1/4− o(1))

(β∗
um)1/2 ·

√
2 log(16m/p) · σ0∥u∥2

≥ 1. (29)

Combining Inequalities (28) and (29), we can obtain that
∑

¯
T1−1
t=0

(
1− yf(x;W(t))

)
≥ 0. Together

with Inequality (27), this in turns leads to

0 > min
r∈[m]

⟨w(
¯
T1)
−y,r,−yu⟩ = min

r∈[m]
⟨w(0)

−y,r,−yu⟩ · exp

−η̃
¯
T1−1∑
t=0

(
1− yf(x;W(t))

)
≥ min

r∈[m]
⟨w(0)

−y,r,−yu⟩ ≥ −
√
2 log(16m/p) · σ0∥u∥2.

Analogously we have that

0 > min
r∈[m]

⟨w(
¯
T1)
−y,r,−yv⟩ = ⟨w(0)

−y,r,−yv⟩ · exp

−η̃ · ∥v∥
2
2

∥u∥22
·
¯
T1−1∑
t=0

(
1− yf(x;W(t))

) .

≥ min
r∈[m]

⟨w(0)
−y,r,−yv⟩ ≥ −

√
2 log(16m/p) · σ0∥v∥2.

In conclusion, we have that
max
r∈[m]

⟨w(t)
y,r, yu⟩ ≥ 0.2(β∗

um)1/2, t ∈ [T̄1, T̄2],

min
r∈[m]

⟨w(t)
−y,r,−yu⟩ ≥ −

√
2 log(16m/p) · σ0∥u∥2, t ∈ [T̄1, T̄2],

min
r∈[m]

⟨w(t)
−y,r,−yv⟩ ≥ −

√
2 log(16m/p) · σ0∥v∥2, t ∈ [T̄1, T̄2].

Additionally, the lower bound on maxr∈[m]⟨w
(t)
y,r, yu⟩ indicates that the sign stability holds on

[T̄1, T̄2), since the last drop step does not change the sign of ⟨w(t)
y,r, yu⟩. Furthermore, once the

u-sign stability holds, the v-sign stability can be easily derived. To see this, we note that the u-sign
stability implies that, for any t ∈ [0, T(v)], it holds that 1 ± 2η∥u∥22 · (1 − yf(x;W(t)))/m > 0.
Now that ∥u∥2 > ∥v∥2, one clearly sees that 1±2η∥v∥22 ·(1−yf(x;W(t)))/m > 0 and the v-sign
stability holds.
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Step 2.4: Upper bounding ⟨w(t)
y,r, yu⟩ for t ∈ (

¯
T1, T̄2). This is exactly the same as the proof of

Inequality (20) in Step 1, and is thus omitted.

Step 3. Finalizing proofs. At this point, all the results in Lemma 16 have been proved to be true
on t ∈ [T̄1, T̄2). It is important to note that the only inductive hypothesis used for the local extension
on [T̄1, T̄2) is the lower bound on ⟨w(t)

−y,r,−yu⟩ for t ≤ T̄1. The rest part merely comes from the
definition of T̄1 and

¯
T2 and Assumption 12. So repeating the same argument extends previous steps

to all t ≤ T(v).

Remark 20. In the proof, we implicitly utilize the fact that T̄k,
¯
Tk < +∞, ∀k ≥ 0. One may

conjecture that there could be cases that for some k, yf(x;W(t)) > 1 (resp. < 1) for all t ≥ T̄k
(resp.

¯
Tk). However, Assumption 12 (guaranteed by tuning a proper η) indicates that this cannot

happen. One can argue that once yf(x;W(t)) > 1, the Assumption 12 enables the dynamic to
bounce back towards 1 with at least exponential rate. Therefore, yf(x;W(t)) falls below 1 + δ
within a few steps and Assumption 12 forces yf(x;W(t)) < 1− δ, and

¯
Tk < +∞. Same argument

can be used to prove that T̄k < +∞.

C.5 PROOF OF FUNDAMENTAL REASONING (LEMMA 17)

Proof of Lemma 17. Let r∗ := argmaxr∈[m]⟨w
(t0)
y,r , yu⟩. For the step t0 < t1, (8) implies that

⟨w(t1)
y,r∗ , yu⟩ = ⟨w(t0)

y,r∗ , yu⟩+
2η∥u∥22
m

·
∑

s∈[t0,t1−1]:

yf(x;W(s))≥1

(
1− yf(x;W(s))

)
· ⟨w(s)

y,r∗ , yu⟩

+
2η∥u∥22
m

·
∑

s∈[t0,t1−1]:

yf(x;W(s))<1

(
1− yf(x;W(s))

)
· ⟨w(s)

y,r∗ , yu⟩. (30)

By Condition 4 in Lemma 17, for all s ∈ [t0, t1], 1
m

∑
r∈[m] σ(⟨w

(s)
y,r, yv⟩) < δ. Therefore by

Assumption 12, for s such that yf(x;W(s)) ≥ 1 (and thus > 1 + δ), it holds from (12) that

g(x, y;W(t)) =
1

m

∑
r∈[m]

σ
(
⟨w(s)

y,r, yu⟩
)
≥ 1 + δ − δ = 1.

Hence by Lemma 15, we have that

⟨w(s)
y,r∗ , yu⟩ ≥ (β∗

um)1/2. (31)

On the other hand, by Conditions 3 in Lemma 17, for all s ∈ [t0, t1], it holds that
minr∈[m]⟨w

(s)
−y,r,−yu⟩ > −0.1 and minr∈[m]⟨w

(s)
−y,r,−yv⟩ > −0.1, which lead to

1

m

∑
r∈[m]

σ
(
− ⟨w(s)

−y,r,−yu⟩
)
+ σ

(
− ⟨w(s)

−y,r,−yv⟩
)
≤ 2× 0.12 < 0.05.

Therefore by Assumption 12, for s such that yf(x;W(s)) ≤ 1 (and thus < 1 − δ), it holds from
(12) that

g(x, y;W(t)) =
1

m

∑
r∈[m]

σ
(
⟨w(s)

y,r, yu⟩
)
≤ 1− δ + 0.05.

Hence by Lemma 15, we know that

⟨w(s)
y,r∗ , yu⟩ ≤ (1.05− δ)1/2 · (β∗

um)1/2. (32)

Meanwhile, Condition 1 (u-sign stability) and Condition 2 (boundedness) in Lemma 17 imply that∣∣∣⟨w(t1)
y,r∗ , yu⟩ − ⟨w(t0)

y,r∗ , yu⟩
∣∣∣ ≤ ∣∣∣⟨w(t1)

y,r∗ , yu⟩
∣∣∣ ∨ ∣∣∣⟨w(t0)

y,r∗ , yu⟩
∣∣∣ ≤ B · (β∗

um)1/2. (33)
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Putting Inequality (31), (32), (33) and Equation (30) together, we have that

B · (β∗
um)1/2 ≥

∣∣∣∣∣∣∣∣∣
2η∥u∥22
m

·
∑

s∈[t0,t1−1]:

yf(x;W(s))≥1

(
1− yf(x;W(s))

)
· ⟨w(s)

y,r∗ , yu⟩

+
2η∥u∥22
m

·
∑

s∈[t0,t1−1]:

yf(x;W(s))<1

(
1− yf(x;W(s))

)
· ⟨w(s)

y,r∗ , yu⟩

∣∣∣∣∣∣∣∣∣
≥ 2η∥u∥22

m
·

∑
s∈[t0,t1−1]:

yf(x;W(s))≥1

(
yf(x;W(s))− 1

)
· ⟨w(s)

y,r∗ , yu⟩

− 2η∥u∥22
m

·
∑

s∈[t0,t1−1]:

yf(x;W(s))<1

(
1− yf(x;W(s))

)
· ⟨w(s)

y,r∗ , yu⟩

≥ 2η∥u∥22
m

· (β∗
um)1/2 ·

∑
s∈[t0,t1−1]:

yf(x;W(s))≥1

(
yf(x;W(s))− 1

)

− 2η∥u∥22
m

· (β∗
um)1/2 · (1.05− δ)1/2 ·

∑
s∈[t0,t1−1]:

yf(x;W(s))<1

(
1− yf(x;W(s))

)
.

This is also equivalent to∑
s∈[t0,t1−1]:

yf(x;W(s))<1

(
1− yf(x;W(s))

)
· ⟨w(s)

y,r∗ , yu⟩ ≥
∑

s∈[t0,t1−1]:

yf(x;W(s))≥1

(1.05− δ)−1/2 ·
(
yf(x;W(s))− 1

)

− mB

2η∥u∥22
√
1.05− δ︸ ︷︷ ︸

:=∆(B)

. (34)

Now we are ready to lower bound the summation that we are interested in. Since

|{s ∈ [t0, t1 − 1] : yf(x;W(s)) < 1}|+ |{s ∈ [t0, t1 − 1] : yf(x;W(s)) > 1}| = t1 − t0,

we have either |{s ∈ [t0, t1 − 1] : yf(x;W(s)) > 1}| > (t1 − t0)/2, which by (34) implies that
t1−1∑
s=t0

(
1− yf(x;W(s))

)
=

∑
s∈[t0,t1−1]:

yf(x;W(s))<1

(
1− yf(x;W(s))

)
−

∑
s∈[t0,t1−1]:

yf(x;W(s))>1

(
yf(x;W(s))− 1

)

≥
(
(1.05− δ)−1/2 − 1

)
·

∑
s∈[t0,t1−1]:

yf(x;W(s))>1

(
yf(x;W(s))− 1

)
−∆(B)

≥ 1

2

(
δ(1.05− δ)−1/2 − δ

)
· (t1 − t0)−∆(B), (35)

or |{s ∈ [t0, t1 − 1] : yf(x;W(s)) < 1}| > (t− t0)/2, which by (34) implies that
t1−1∑
s=t0

(
1− yf(x;W(s))

)
=

∑
s∈[t0,t1−1]:

yf(x;W(s))<1

(
yf(x;W(s))− 1

)
−

∑
s∈[t0,t1−1]:

yf(x;W(s))>1

(
1− yf(x;W(s))

)
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≥
(
1− (1.05− δ)1/2

)
·

∑
s∈[t0,t1−1]:

yf(x;W(s))<1

(
1− yf(x;W(s))

)
− (1.05− δ)1/2 ·∆(B)

≥ 1

2

(
δ − δ(1.05− δ)1/2

)
· (t1 − t0)− (1.05− δ)1/2 ·∆(B). (36)

In both two cases we have used Assumption 12 to bound yf(x;W(s)) from 1. Combining (35) and
(36), we have that

t1−1∑
s=t0

(
1− yf(x;W(s))

)
≥ 1

2

(
δ − δ(1.05− δ)1/2

)
· (t1 − t0)−∆(B). (37)

Now plugging in the definition of ∆(B) in (34), we have proved the linear increasing lower bound
for the summation, which is the first conclusion of Lemma 17.

Then we turn to prove the second conclusion of Lemma 17. For simplicity, we denote α :=
∥v∥22/∥u∥22 and ϵ = (δ − δ(1.05 − δ)1/2)/4. Note that from the v-sign stability (Condition 1)
and (10), we have that

1 +
2η∥v∥22
m

·
(
1− yf(x;W(t))

)
> 0, ∀t ∈ [t0, t1 − 1].

Therefore, we can lower bound the logarithmic ratio ⟨w(t)
y,r, yv⟩/⟨w(0)

y,r, yv⟩ for r ∈ Vy,+ as (recall
that η̃ = 2η∥u∥22/m)

t1−1∑
t=t0

log
(
1 + αη̃

(
1− yf(x;W(t))

))

=

t1−1∑
t=t0

∫ α

0

η̃
(
1− yf(x;W(t))

)
1 + η̃z

(
1− yf(x;W(t))

)dz
=

t1−1∑
t=t0

∫ α

0

η̃ ·
((

1− yf(x;W(t))
)
+ 2
)

1 + η̃z
(
1− yf(x;W(t))

) dz −
t1−1∑
t=t0

∫ α

0

2η̃

1 + η̃z
(
1− yf(x;W(t))

)dz.(38)

Note that by Condition 5 in Lemma 37, −2 ≤ 1 − yf(x;W(t)) ≤ 1, which further lower bounds
(38) as

(38) ≥
t1−1∑
t=t0

∫ α

0

η̃ ·
((

1− yf(x;W(t))
)
+ 2
)

1 + η̃z
dz −

t1−1∑
t=t0

∫ α

0

2η̃

1− 2η̃z
dz

=

∫ α

0

η̃ ·
(∑t1−1

t=t0

(
1− yf(x;W(t))

)
+ 2(t1 − t0)

)
1 + η̃z

dz −
∫ α

0

2η̃(t1 − t0)

1− 2η̃z
dz. (39)

Now applying (37) to the summation in (39), we can arrive at

(39) ≥
∫ α

0

η̃ ·
(
2ϵ(t1 − t0)−∆(B) + 2(t1 − t0)

)
1 + η̃z

dz −
∫ α

0

2η̃(t1 − t0)

1− 2η̃z
dz

≥
(
2ϵ(t1 − t0)−∆(B) + 2(t1 − t0)

)
· log(1 + αη̃) + (t1 − t0) · log(1− 2αη̃)

≥
(
2ϵ(t1 − t0)−∆(B)

)
· log(1 + αη̃) + (t1 − t0) · log

(
(1 + αη̃)2 · (1− 2αη̃)

)
. (40)

To further lower bound (40), we note that αη̃ > log(1 + αη̃) ≥ 1
2αη̃ since by Assumption 11,

0 < αη̃ < 1. Furthermore, Assumption 11 guarantees that α < ϵ/2 = (δ− δ · (1.05− δ)1/2)/8 and
2α3η̃3 + 3α2η̃2 ≤ 4α2 < 1/5 ∧ 2ϵ/5, so we have that

log
(
(1 + αη̃)2 · (1− 2αη̃)

)
= log

(
1− 3α2η̃2 − 2α3η̃3

)
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= − log

(
1 +

3α2η̃2 + 2α3η̃3

1− 3α2η̃2 − 2α3η̃3

)
≥ −3α2η̃2 − 2α3η̃3

1− 3α2η̃2 − 2α3η̃3

≥ −5α2. (41)

Putting (40) and (41) together, we have that

t1−1∑
t=t0

log
(
1 + αη̃

(
1− yf(x;W(t))

))
≥
(
αη̃ϵ− 5α2

)
· (t1 − t0)−∆(B) · log(1 + αη̃)

≥ 1

2
αη̃ϵ · (t1 − t0)−∆(B)αη̃ (42)

And consequently we have the following result, for all r ∈ Vy,+,

⟨w(t1)
y,r , yv⟩ = ⟨w(t0)

y,r , yv⟩ ·
t1−1∏
t=t0

(
1 + αη̃

(
1− yf(x;W(t))

))

= ⟨w(t0)
y,r , yv⟩ · exp

{
t1−1∑
t=t0

log
(
1 + αη̃

(
1− yf(x;W(t))

))}

≥ ⟨w(t0)
y,r , yv⟩ · exp

{
1

2
αη̃ϵ · (t1 − t0)−∆(B)αη̃

}
,

where in the last inequality we use (42). Plugging in the expression of ϵ, α, η̃, and ∆(B), we have
proved the second conclusion of Lemma 17. This concludes the proof of Lemma 17.

C.6 PROOF OF TECHNICAL RESULTS

C.6.1 PROOF OF PROPOSITION 18

Proof of Proposition 18. We want to track the sequence (17) after it falls below δ. To this end, we
define two stopping times

T(v),δ,L = min

t ≥ T(v) :
1

m

∑
r∈[m]

σ
(
⟨w(t)

y,r, yv⟩
)
< δ

 ,

T+,2
(v) = min

t ≥ T(v),δ,L :
1

m

∑
r∈[m]

σ
(
⟨w(t)

y,r, yv⟩
)
≥ δ

 .

If T(v),δ,L = +∞, then the proof is over. Otherwise we prove that, before T+,2
(v) ≤ +∞ (possibly

equal), the sequence never falls below δ/2.

Let’s take a closer look at the controls over the negative parts while the weak signal remain learned.
Note that for t ∈ [T(v), T(v),δ,L] and r ∈ Vy,+, we have that

⟨w(t)
y,r, yv⟩ = ⟨w(0)

y,r, yv⟩ ·
t−1∏
s=0

(
1 +

2η∥v∥
m

·
(
1− yf(x;W(s))

))

≤ ⟨w(0)
y,r, yv⟩ · exp

{
2η∥v∥22
m

·
t−1∑
s=0

(
1− yf(x;W(s))

)}
.

Meanwhile, for t ∈ [T(v), T(v),δ,L], we have that ⟨w(t)
y,r, yv⟩ > (β∗

vmδ)
1/2 ≫ ⟨w(0)

y,r, yv⟩. Hence

exp

{
2η∥v∥22
m

·
t−1∑
s=0

(
1− yf(x;W(s))

)}
> 1, ∀t ∈ [T(v), T(v),δ,L − 1],
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and in consequence we have that
t−1∑
s=0

(
1− yf(x;W(s))

)
> 0, ∀t ∈ [T(v), T(v),δ,L − 1]. (43)

On the other hand, for r ∈ V−y,−, it holds that ⟨w(0)
−y,r,−yv⟩ < 0 and thus by (43) we have that

⟨w(t)
−y,r,−yv⟩ = ⟨w(0)

−y,r,−yv⟩ ·
t−1∏
s=0

(
1− 2η∥v∥22

m
·
(
1− yf(x;W(s))

))

≥ ⟨w(0)
−y,r,−yv⟩ · exp

{
−2η∥v∥22

m
·
t−1∑
s=0

(
1− yf(x;W(s))

)}
≥ ⟨w(0)

−y,r,−yv⟩ ≥ −
√
2 log(16m/p) · σ0∥v∥2, (44)

for all t ∈ [T(v), T(v),δ,L]. Analogously, we also have that

⟨w(t)
−y,r,−yu⟩ ≥ ⟨w(0)

−y,r,−yu⟩ ≥ −
√
2 log(16m/p) · σ0∥u∥2 (45)

for all t ∈ [T(v), T(v),δ,L]. Therefore, we have that for all t ∈ [T(v), T(v),δ,L],

Et :=
1

m

∑
r∈[m]

σ
(
− ⟨w(t)

−y,r,−yu⟩
)
+ σ

(
− ⟨w(t)

−y,r,−yv⟩
)

≤ 2 · max
r∈[m]

{
σ
(
− ⟨w(t)

−y,r,−yu⟩
)
∨ σ
(
− ⟨w(t)

−y,r,−yv⟩
)}

≤ 2
(√

2 log(16m/p) · σ0∥u∥2
)2

≪ δ

2
. (46)

This allows us to leverage Proposition 19 to upper bound yf(x;W(t)) for t ∈ [T(v), T(v),δ,L].
Specifically, we locate the last step before T(v),δ,L when yf just bounces up over 1, which is,

T̄k∗ := max
{
T̄k : T̄k ≤ T(v),δ,L

}
,

where T̄k is defined in (18). Then Proposition 19 with Inequality (46) implies that

yf(x;W(T̄k∗ )) ≤ yf(x;W(T̄k∗−1)) ·
(
1 + η̃

(
1− yf(x;W(T̄k−1))

))2
+ 2ET̄k∗−1

≤
(
1 + η̃

(
1− yf(x;W(T̄k∗−1))

))2
+ o(1)

≤
(
1 + η̃

(
1− 1

2η̃

(
η̃ + 2−

√
η̃2 + 4η̃

)))2
+ o(1)

≤ 3, (47)

where we have applied the fact that η̃ < 1. On the other hand, we have that
1

m

∑
r∈[m]

σ
(
⟨w(T̄k∗−1)

y,r , yu⟩
)
≤ 1.05,

for which Lemma 15 indicates that maxr∈[m]⟨w
(T̄k∗−1)
y,r , yu⟩ ≤ (1.05β∗

um)1/2. As in Inequal-
ity (23), one step gradient descent then gives that

⟨w(T̄k∗ )
y,r , yu⟩ ≤ ⟨w(T̄k∗−1)

y,r , yu⟩ ·
(
1 +

2η∥u∥22
m

·
(
1− yf(x;W(T̄k∗−1))

))
≤ 1.5 ·

(
1.05β∗

um
)1/2

.

Now we consider the scale of these inner products right at T(v),δ,L. From the definitions of T(v),δ,L
and T̄k∗ we know that yft > 1 between these steps (otherwise the sequence wouldn’t fall below δ).
Thus by (47),

1 < yf(x;W(t)) < yf(x;W(T̄k∗ )) ≤ 3, ∀t ∈ [T̄k∗ , T(v),δ,L].
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We first state that 1
m

∑
r∈[m] σ(⟨w

(T(v),δ,L)
y,r , yv⟩) is not far away from δ. Note that by (43),

1

m

∑
r∈[m]

σ
(
⟨w(T(v),δ,L)

y,r , yv⟩
)
=

1

m

∑
r∈[m]

σ
(
⟨w(T(v),δ,L−1)

y,r , yv⟩
)
·
(
1 +

2η∥v∥22
m

·
(
1− yf(x;W(T(v),δ,L−1))

))

≥ δ ·
(
1 +

2η∥v∥22
m

· (1− 3)

)
≥ δ ·

(
1− 2 · ∥v∥

2
2

∥u∥22

)
≥ 3

4
δ. (48)

Last inequality uses the fact that ∥v∥22/∥u∥22 ≤ 1/4. This shows that the sequence does not fall
below 3δ/4 at the step T(v),δ,L. In the sequel, we study the behavior of the sequence after step
T(v),δ,L.

Firstly, by Inequalities (44) and (45) with t = T(v),δ,L, we obtain that the negative parts satisfy

min
r∈[m]

⟨w(T(v),δ,L)
−y,r ,−yu⟩ ≥ −

√
2 log(16m/p) · σ0∥u∥2,

min
r∈[m]

⟨w(T(v),δ,L)
−y,r ,−yv⟩ ≥ −

√
2 log(16m/p) · σ0∥v∥2.

which by definition of Et in (46) implies that

ET(v),δ,L
≤ 2

(√
2 log(16m/p) · σ0∥u∥2

)2
≪ 1. (49)

For the positive part, we have that

max
r∈[m]

⟨w(T(v),δ,L)
y,r , yu⟩ < max

r∈[m]
⟨w(T̄k∗ )

y,r , yu⟩ < 1.5 · (1.05β∗
um)1/2, (50)

and by the same argument as Inequality (25) we can obtain the lower bound of
maxr∈[m]⟨w

(T(v),δ,L)
y,r , yu⟩,

max
r∈[m]

⟨w(T(v),δ,L)
y,r , yu⟩ ≥ max

r∈[m]
⟨w(T(v),δ,L−1)

y,r , yu⟩
(
1 +

2η∥u∥22
m

(
1− yf(x;W(T(v),δ,L−1))

))
≥ 0.2 ·

(
β∗
um
)1/2

, (51)

and finally for t ∈ [T(v),δ,L, T
+,2
(v) ], we have that

1

m

∑
r

σ(⟨w(t)
y,r, yv⟩) < δ. (52)

With all these initial conditions (49), (50), (51), and (52), one can then consider all the steps
¯
Tk′ ,

T̄k′ > T(v),δ,L and apply an inductive argument exactly the same as in the proof of Lemma 16 to
conclude that for all t ∈ [T(v),δ,L, T

+,2
(v) ] it holds that

0.2 · (β∗
um)1/2 ≤ max

r
⟨w(t)

y,r, yu⟩ ≤ 1.5 · (1.05β∗
um)1/2,

min
r

⟨−w
(t)
−y,r,−yu⟩ > −

√
2 log(16m/p) · σ0∥u∥2,

min
r

⟨−w
(t)
−y,r,−yv⟩ > −

√
2 log(16m/p) · σ0∥v∥2,

0 ≤ yf(x;W(t)) ≤ 3,

and the sign stability is also true throughout t ∈ [T(v),δ,L, T
+,2
(v) ]. Therefore, Lemma 17 and (48)

implies that for any t ∈ [T(v),δ,L, T
+,2
(v) ], it holds that

1

m

∑
r

σ
(
⟨w(t)

y,v, yv⟩
)
≥ 1

m

∑
r

σ
(
⟨w(T(v),δ,L)

y,v , yv⟩
)
· exp

{
−2 · ∥v∥

2
2

∥u∥22
· 1.5

√
1.05√

1.05− δ

}
≥ 1

2
δ.
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In conclusion, we have obtained that
1

m

∑
r∈[m]

σ
(
⟨wy,r, yv⟩

)
≥ δ/2, ∀t ∈ [T(v),δ,L, T

+,2
(v) ].

If T+,2
(v) ̸= +∞, repeat the above argument and we can finish the proof of Proposition 18.

C.6.2 PROOF OF PROPOSITION 19

Proof of Proposition 19. We continue with the notation η̃ = 2η∥u∥22/m. Define the function

hη̃(z) :=
(
1 + η̃(1− z)

)2 · z.
Note that ∥v∥22 ≤ ∥u∥22 and that

2η∥u∥22
m

·
(
1− yf(x;W(T̄k−1))

)
<

2η∥u∥22
m

< 1,

from the definition of T̄k − 1. Thus we have the following,

yf(x, y;W(T̄k))

=
1

m

∑
r∈[m]

σ
(
⟨w(T̄k−1)

y,r , yu⟩
)
·
(
1 +

2η∥u∥22
m

·
(
1− yf(x;W(T̄k−1))

))2

+
1

m

∑
r∈[m]

σ
(
⟨w(T̄k−1)

y,r , yv⟩
)
·
(
1 +

2η∥v∥22
m

·
(
1− yf(x;W(T̄k−1))

))2

− 1

m

∑
r∈[m]

σ
(
− ⟨w(T̄k−1)

−y,r ,−yu⟩
)
·
(
1− 2η∥u∥22

m
·
(
1− yf(x;W(T̄k−1))

))2

− 1

m

∑
r∈[m]

σ
(
− ⟨w(T̄k−1)

−y,r ,−yv⟩
)
·
(
1− 2η∥v∥22

m
·
(
1− yf(x;W(T̄k−1))

))2

≤ 1

m

∑
r∈[m]

(
σ
(
⟨w(T̄k−1)

y,r , yu⟩
)
+ σ

(
⟨w(T̄k−1)

y,r , yv⟩
))

·
(
1 +

2η∥u∥22
m

·
(
1− yf(x;W(T̄k−1))

))2

− 1

m

∑
r∈[m]

(
σ
(
− ⟨w(T̄k−1)

−y,r ,−yu⟩
)
+ σ

(
− ⟨w(T̄k−1)

−y,r ,−yv⟩
))

·
(
1− 2η∥u∥22

m
·
(
1− yf(x;W(T̄k−1))

))2

= yf(x;W(T̄k−1)) ·
(
1 + η̃

(
1− yf(x;W(T̄k−1))

))2
+

1

m

∑
r∈[m]

(
σ
(
− ⟨w(T̄k−1)

−y,r ,−yu⟩
)
+ σ

(
− ⟨w(T̄k−1)

−y,r ,−yv⟩
))

·
(
2η̃
(
1− yf(x;W(T̄k−1))

))2
︸ ︷︷ ︸

<2η̃<2

≤ yf(x;W(T̄k−1)) ·
(
1 + η̃

(
1− yf(x;W(T̄k−1))

))2
+ 2ET̄k−1. (53)

Thus by (53) we have proved the second conclusion of Proposition 19. In the following, we prove
the first conclusion of Proposition 19.

By Assumption 12, we know that yf(x;W(T̄k)) > 1 + δ. The definition of T(v) along with with
Inequality (53) imply that

hη̃
(
f(x;W(T̄k−1))

)
= yf(x;W(T̄k−1)) ·

(
1 + η̃

(
1− yf(x;W(T̄k−1))

))2
≥ 1 + δ − δ = 1.(54)
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Now it suffices to consider the equation hη̃ − 1 = 0, and one can easily verify that it has three roots

z1 = 1,

z2 =
η̃ + 2−

√
η̃2 + 4η̃

2η̃
,

z3 =
η̃ + 2 +

√
η̃2 + 4η̃

2η̃
>

2η̃ + 2

2η̃
> 1.

And the second root z2 < 1 if and only if η̃ > 1/2.

Now if 0 < η̃ ≤ 1/2, then z1 ≤ z2 < z3, and then h(z) < 1 for z < z1 = 1. Therefore
Inequality (54) implies that yf(x;W(T̄k−1)) ≥ z1 = 1, and recursively implies that yf(x;W(0)) ≥
1, which contradicts with the fact that yf(x;W(0)) ≤ 2

√
2 log(16m/p) · σ0∥u∥2. So in order for

T̄1 < +∞, we must have η̃ > 1/2. In conclusion, one necessary condition for the stable oscillation
Assumption 12 is that η̃ > 1/2, and therefore

yf(x;W(T̄−1)) ≥ z2 =
η̃ + 2−

√
η̃2 + 4η̃

2η̃
.

This finishes the proof of Proposition 19.

C.7 DISCUSSION: NECESSARY CONDITION FOR δ-OSCILLATION

Inequality (24) provides an upper bound involving η̃, which should be compatible with Assump-
tion 12, hence (

η̃/2 +
√
η̃2/4 + η̃

)2
> 1 + δ ⇔ η̃ > (1 + δ−1)

(√
1 + δ − 1

)
.

One can verify with software that RHS is monotonically increasing in δ ∈ [0, 1] with minimal value
0.5, when η̃ = 0, which is in line with the weakest oscillation condition discovered in the last part.
And the maximal value taken at δ = 1 is less than 0.83.

On the other hand, Inequality (21) should also be compatible with the Assumption 4, which indicates

1− δ > yf(x;W(T̄k−1)) >
2 + η̃ −

√
η̃2 + 4η̃

2η̃
.

The readers can see that it is equivalent to η̃ > δ−1((1 − δ)−1/2 − 1). Furthermore, we have that
δ−1((1− δ)−1/2 − 1) > (1 + δ−1)(

√
1 + δ − 1) thus it is a stronger requirement on η.

D SINGLE TRAINING DATA CASE: SMALL LEARNING RATE REGIME

This section focuses on training our model with single noiseless data point (x, y), where x =
(yu, yv) contains two signal patches with u much stronger than v. Therefore, the whole objec-
tive can be rearranged by

L(W) =
1

2

(
f(x;W)− y

)2
=

1

2

 ∑
j∈{±1}

j

m

∑
r∈[m]

σ(⟨wj,r, yu⟩) + σ(⟨wj,r, yv⟩)− y

2

.

In this simplified setting, each weight vector is updated by

w
(t+1)
j,r = w

(t)
j,r −

jyη

m
·
(
f(x;W(t))− y

)
·
(
σ′(⟨w(t)

j,r, yu⟩)u+ σ′(⟨w(t)
j,r, yv⟩)v

)
.

Then we can directly obtain the following updating rules of the inner products,

⟨w(t+1)
j,r ,u⟩ = ⟨w(t)

j,r,u⟩ −
jyη

m
·
(
f(x;W(t))− y

)
· σ′(⟨w(t)

j,r, yu⟩) · ∥u∥
2
2,

⟨w(t+1)
j,r ,v⟩ = ⟨w(t)

j,r,u⟩ −
jyη

m
·
(
f(x;W(t))− y

)
· σ′(⟨w(t)

j,r, yv⟩) · ∥v∥
2
2,
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since u and v are assumed to be orthogonal in our data generation model. In this section, we also
denote the fitting residual at iteration t as ℓ(t) = f(x;W(t))− y for convenience.

To better prepare for the analysis of this section, we single out the following concentration results
from Appendix B which provides a high-probability bound on the initialization W(0).
Lemma 21 (Initialization). Suppose that d = Ω(log(m/p)) and m = Ω(log(1/p)). Then with
probability at least 1− p, there holds

σ0∥u∥/2 ≤ max
r∈[m]

⟨w(t)
j,r, ju⟩ ≤

√
2 log(16m/p)σ0∥u∥,

σ0∥v∥/2 ≤ max
r∈[m]

⟨w(t)
j,r, jv⟩ ≤

√
2 log(16m/p)σ0∥v∥,

for all j ∈ {±1}.

The result of this section relies on the following conditions on the data model and the initialization.
Assumption 22 (Conditions on hyperparameters). Suppose that the following holds:

1. The weight initialization scale σ0 = Θ̃(∥u∥−1
2 );

2. The signal strength ∥u∥2 > Ω̃(m2) · ∥v∥2;

3. The dimension d satisfies d = Ω(polylog(m)).
Theorem 23 (Restatement of Proposition 1). Under Assumption 22, choosing the learning rate
η ≤ m/6∥u∥22 small enough and ϵ = 0.01, then with probability at least 1 − p = 1 − 1/poly(d),
there exist

T † =
m

η(1− τ)∥u∥22
log

(
2ι

σ0∥u∥2

)
, T = T † +

⌊
Cm3

2ηϵ∥u∥2

⌋
,

with τ , ι defined in (55), (56), such that: (i) the average loss over iterations [T †, T ] decreased to 2ϵ,
i.e.

1

T − T † + 1

T∑
s=T †

L(W(s)) ≤ 2ϵ,

(ii) the model does not learn weak signal v well enough, compared to initialization, i.e.

max
j∈{±1},r∈[m]

∣∣∣⟨w(t)
j,r,v⟩

∣∣∣ ≤ 2
√
2 log(16m/p) · σ0∥v∥2.

In the small learning rate regime, the dynamics go through two stages, in which the strong signal
u will be firstly learned exponentially fast, and subsequently fully fit the given data point (x, y)
therefore stabilizing the training process. The following lemma plays an important role in the expo-
nentially increasing stage, for which we single it out here.
Lemma 24 (Derivative lower bound). For any 0 < τ < 1 to be tuned later, suppose at some time t
there holds

max
r∈[m],j∈{±1}

{∣∣∣⟨w(t)
j,r,u⟩

∣∣∣ , ∣∣∣⟨w(t)
j,r,v⟩

∣∣∣} ≤
√
τ

2
,

then we can lower bound the fitting residual by −yℓ(t) ≥ 1− τ .

Proof of Lemma 24. Plug into the CNN model definition (4), we have that

−yℓ(t) = 1− Fy(x;W
(t)) + F−y(x;W

(t)) ≥ 1− Fy(x;W
(t)).

We can upper bound Fy(x;W
(t)) further by

Fy(x;W
(t)) =

1

m

∑
r∈[m]

σ(⟨w(t)
y,r, yu⟩) + σ(⟨w(t)

y,r, yv⟩)

≤ max
r∈[m]

{
⟨w(t)

y,r, yu⟩2 + ⟨w(t)
y,r, yv⟩2

}
≤ τ.

Then it follows that −yℓ(t) ≥ 1− τ .
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D.1 STAGE 1. EXPONENTIAL GROWTH

We will mainly track the maximal inner product between w and the signal vectors v and u, i.e.,

Ψ(t) = max
j,r

∣∣∣⟨w(t)
j,r,v⟩

∣∣∣ , Φ(t) = max
j,r

∣∣∣⟨w(t)
j,r,u⟩

∣∣∣ .
In the following, we would take

τ = max

{
2σ0∥u∥2 (2 log(16m/p))1/2−∥v∥2

2/4∥u∥
2
2 , 1− 6

√
2∥v∥22

∥u∥22 log(2/
√

2 log(16m/p))

}
,(55)

ι = σ0∥u∥2 · exp

{
1− τ

6
log

( √
τ/2

σ0∥u∥2
√

2 log(16m/p)

)}
. (56)

By the conditions in Assumption 22 on ∥v∥22/∥u∥22, we find τ, ι both constants in (0, 1).

Lemma 25 (First stage: one training data case). Under the same conditions as Theorem 23, there
exists time

T † =
m

η(1− τ)∥u∥22
log

(
2ι

σ0∥u∥2

)
,

such that: (i) the model learns the strong signal to a constant level, i.e.,

max
r∈[m]

⟨w(T †)
y,r , yu⟩ ≥ ι,

(ii) compared to the random initialization, the model does not learn weak signal that much, i.e.,

max
j∈{±1},r∈[m]

∣∣∣⟨w(T †)
j,r ,v⟩

∣∣∣ ≤ 2
√

2 log(16m/p) · σ0∥v∥2.

Proof of Lemma 25. Firstly, we would find {Ψ(t),Φ(t)}t≥0 having an exponentially growing upper
bound. Recursively, we would have that

Ψ(t+1) ≤ Ψ(t) + max
j∈{±1},r∈[m]

∣∣∣∣jyηm ·
(
f(x;W(t))− y

)
· σ′(⟨w(t)

j,r, yv⟩) · ∥v∥
2
2

∣∣∣∣
= Ψ(t) +

η

m
·
∣∣∣ℓ(t)∣∣∣ · ∥v∥22 · max

j∈{±1},r∈[m]
σ′(⟨w(t)

j,r, yv⟩)

≤ Ψ(t) +
2η

m
·
∣∣∣ℓ(t)∣∣∣ · ∥v∥22 ·Ψ(t)

≤ exp

(
6η∥v∥22
m

)
·Ψ(t).

Therefore, we have that

Ψ(t) ≤ exp

(
6η∥v∥22t
m

)
·Ψ(0) ≤ exp

(
6η∥v∥22t
m

)
·
√

2 log(16m/p) · σ0∥v∥2. (57)

It follows by the same argument that that

Φ(t) ≤ exp

(
6η∥u∥22t
m

)
Φ(0) ≤ exp

(
6η∥u∥22t
m

)
·
√
2 log(16m/p) · σ0∥u∥2. (58)

Note that the growing rates of these two bounds differ a lot due to the different magnitudes of ∥u∥2
and ∥v∥2. Our subsequent analysis illustrates that Φ(t) can grow into a constant-level magnitude
since the strong signal u is significant enough. Now we can track how well our model learns u by

A(t) = max
r∈[m]

⟨w(t)
y,r, yu⟩.
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By the definition, A(t) ≤ Φ(t) also admits an exponentially growing upper bound. For a certain
τ ∈ (0, 1), due to the previous upper bounds (57) and (58), max{Φ(t),Ψ(t)} ≤

√
τ/2 remains true

at least until

T1 =
m

6η∥u∥2
log

( √
τ/2

σ0∥u∥2
√
2 log(16m/p)

)
. (59)

Consequently, until at least T1, we can use Lemma 24 to conclude that −yℓ(t) ≥ 1 − τ , which
enables lower bounding A(t). Specifically, start with the updating rule

⟨w(t+1)
y,r , yu⟩ = ⟨w(t)

y,r, yu⟩+
η

m
·
(
− yℓ(t)

)
· σ′(⟨w(t)

y,r, yu⟩) · ∥u∥22

≥ ⟨w(t)
y,r, yu⟩+

2η(1− τ)∥u∥22
m

· max
r∈[m]

{
⟨w(t)

y,r, yu⟩, 0
}
,

and take maximum over r ∈ [m] to see that

A(t+1) ≥ A(t) +
2η(1− τ)∥u∥22

m
·A(t) ≥ exp

(
η(1− τ)∥u∥22

m

)
·A(t),

where the last equality is by 1 + z ≥ exp(z/2) for any 0 ≤ z ≤ 2. Consequently, we would have

A(t) ≥ exp

(
η(1− τ)∥u∥22t

m

)
·A(0) ≥ exp

(
η(1− τ)∥u∥22t

m

)
· σ0∥u∥2/2, (60)

at least until t ≤ T1 defined in (59). Then we define another time

T2 =
m

η(1− τ)∥u∥22
log

(
2ι

σ0∥u∥2

)
≤ T1,

where the inequality is due to the scaling of ι upon τ . Plugging T2 into the exponential lower bound
(60), we can conclude that

Φ(T2) ≥ A(T2) ≥ ι,

which already grows up to a constant level magnitude by the time T2. Lastly, we plug the definition
of T2 to upper bound Ψ(T2) as

Ψ(T2) ≤ exp

(
6∥v∥22

(1− τ)∥u∥22
log

(
2ι

σ0∥u∥2

))
·
√

2 log(16m/p)·σ0∥v∥2 ≤ 2
√

2 log(16m/p)·σ0∥v∥2.

In conclusion, by taking T † = T2, this lemma is completely proved.

D.2 STAGE 2. STABILIZED CONVERGENCE

In the second stage, our lemmas would suggest that before the model really learns the weak signal v
(i.e. before maxj,r |⟨w(t)

j,r,v⟩| breaks the Õ(σ0∥v∥2) upper bound), the model already fits the given
data point by exploiting the strong signal u and decreasing the loss to ϵ.
Lemma 26 (Second stage: one training data case). Under the same conditions as Theorem 23, for
any ϵ = 0.01, there exists time

T = T † +

⌊
Cm3

2ηϵ∥u∥22

⌋
such that: (i) the average loss over iterations within this stage has decreased to 2ϵ, i.e.,

1

T − T † + 1

T∑
s=T †

L(W(s)) ≤ 2ϵ,

(ii) throughout the training dynamics 0 ≤ t ≤ T , there holds

max
j∈{±1},r∈[m]

|⟨w(t)
j,r,v⟩| ≤ 2

√
2 log(16m/p)σ0∥v∥2.
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The proof of Lemma 26 relies on the following three lemmas (Lemmas 27, 28, and 29). We present
these lemmas with proofs and then combine them to give the proof of Lemma 26.

Firstly, we identify when the upper bound on ⟨w(t)
j,r,v⟩ breaks and find that the conclusions of

Lemma 25 still holds before that time.
Lemma 27. Under the same conditions in Theorem 23, take η ≤ m/6∥u∥22. There exists a time

T ‡ =
m

6η∥v∥22
log(2) ≥ T †

such that

max
r∈[m]

⟨w(t)
y,r, yu⟩ ≥ ι/2, max

j∈{±1},r∈[m]

∣∣∣⟨w(t)
j,r,v⟩

∣∣∣ ≤ 2
√
2 log(16m/p) · σ0∥v∥2.

hold for any T † ≤ t ≤ T ‡.

Proof of Lemma 27. Firstly, we need to adopt the exponential upper bound derived in proving
Lemma 25,

Ψ(t) ≤ exp

(
6η∥v∥22t
m

)
·Ψ(0) ≤ exp

(
6η∥v∥22t
m

)
·
√

2 log(16m/p) · σ0∥v∥2.

Then we naturally find that before T ‡, it would always hold that

max
j∈{±1},r∈[m]

∣∣∣⟨w(t)
j,r,v⟩

∣∣∣ ≤ 2
√
2 log(16m/p) · σ0∥v∥2.

Due to the conditions on ∥u∥22/∥v∥22, T ‡ is found to be much larger than T †. Then we proceed
by induction to prove the other assertion. At time t = T †, the lower bound maxr⟨w(t)

y,r, yu⟩ ≥ ι/2
holds as a consequence of the previous lemma. Suppose it holds until time t. We restate the updating
rule by

⟨w(t+1)
y,r , yu⟩ = ⟨w(t)

y,r, yu⟩+
η

m
·
(
1− yf(x;W(t))

)
· σ′(⟨w(t)

y,r, yu⟩) · ∥u∥22,

from which we find maxr∈[m]⟨w
(t+1)
y,r , yu⟩ ≥ maxr∈[m]⟨w

(t)
y,r, yu⟩ must hold when yf(x;W(t)) ≤

1. Otherwise, once yf(x;W(t)) > 1, it immediately follows that

1 < yf(x;W(t)) = Fy(x;W
(t))− F−y(x;W

(t))

≤ Fy(x;W
(t)) =

1

m

∑
r∈[m]

σ(⟨w(t)
y,r, yu⟩) + σ(⟨w(t)

y,r, yv⟩)

≤ max
r∈[m]

⟨w(t)
y,r, yu⟩2 + 2 log(16m/p) · σ2

0∥v∥22.

Consequently, for the specific neuron r∗ = argmaxr∈[m]⟨w
(t)
y,r, yu⟩, there holds

⟨w(t+1)
y,r∗ , yu⟩ ≥ ⟨w(t)

y,r∗ , yu⟩ −
3η

m
· ⟨w(t)

y,r∗ , yu⟩ · ∥u∥22

≥
(
1− 2 log(16m/p) · σ2

0∥v∥22
)
·
(
1− 3η

m
· ∥u∥22

)
≥ ι

2
,

where the last inequality is enabled by taking η ≤ m/6∥u∥22 and σ0 ≤√
1− ι/(2 log(16m/p)∥v∥2). Thus by induction, we have finished the proof of Lemma 27.

Our subsequently analysis confirms that even before T ‡, the model can already fit the given data
point by exploiting u. For the given 0 < ϵ < 1, define a reference point W∗ as

w∗
j,r =

4m(1 + ϵ)

ι
· ju

∥u∥22
, j ∈ {±1}, r ∈ [m]. (61)
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Lemma 28. Under the same condition as the previous lemma, for all T † ≤ t ≤ T ‡, there holds that

y⟨∇f(x;W(t)),W∗⟩ ≥ 2 · (1 + ϵ).

Proof of Lemma 28. Recall the definition of the CNN in (4) and that u ⊥ v, so we have

y⟨∇f(x;W(t)),W∗⟩ = 1

m

∑
j∈{±1},r∈[m]

σ′(⟨w(t)
j , yu⟩) · ⟨w∗

j,r, yu⟩

=
∑

j∈{±1},r∈[m]

σ′(⟨w(t)
j,r, yu⟩) ·

4(1 + ϵ)

ι

≥ max
r∈[m]

⟨w(t)
y,r, yu⟩ ·

4(1 + ϵ)

ι

≥ 2 · (1 + ϵ),

where the last inequality is by maxr∈[m]⟨w
(t)
y,r, yu⟩ ≥ ι/2 as shown by the previous lemma.

Lemma 29. Continued from the previous setting, we know that for T † ≤ t ≤ T ‡, it holds that

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F ≥ 2ηL(W(t))− 2ηϵ2.

Proof of Lemma 29. Firstly we expand the difference by

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F = 2η · ⟨∇L(W(t),W(t) −W∗⟩ − η2 · ∥∇L(W(t)∥2F .(62)

With one data point, ∇L(W(t)) = ℓ(t)∇f(x;W(t)) admits a simplified expression, where ℓ(t) =
f(W(t),x) − y denotes the fitting residual. Since the neural network f(W,x) is 2-homogeneous
in W due to the activation function σ(z) = max{z, 0}2, we can have

⟨∇f(x;W(t)),W(t)⟩ = 2f(x;W(t)).

Stack these observations into the first term of previous difference expansion to obtain that

⟨∇L(W(t),W(t) −W∗⟩ = ℓ(t) · ⟨∇f(x;W(t)),W(t) −W∗⟩
= ℓ(t) ·

(
2f(x;W(t))− ⟨∇f(x;W(t)),W∗⟩

)
= 2ℓ(t) ·

(
f(x;W(t))− y

)
+ ℓ(t) · y ·

(
2− y⟨∇f(x;W(t)),W∗⟩

)
.

Note that the first term is exactly 4L(W(t)). As for the second term, we need to plug in Lemma 28
to see 2− y⟨∇f(x;W(t)),W∗⟩ ≤ −2ϵ < 0, so that∣∣∣ℓ(t) · y · (2− y⟨∇f(x;W(t)),W∗⟩

)∣∣∣ ≤ 1

2

(
ℓ(t)
)2

+ 2ϵ2 = L(W(t)) + 2ϵ2.

As a result, we would know ⟨∇L(W(t),W(t) −W∗⟩ ≥ 3L(W(t)) − 2ϵ2. Next, an upper bound
on the second order term η2 · ∥∇L(W(t)∥2F is given by

η2 · ∥∇L(W(t))∥2F = η2 ·
(
ℓ(t)
)2 ·

∥u∥22
∑

j∈{±1},r∈[m]

σ′(⟨w(t)
j,r, yu⟩) + ∥v∥22

∑
j∈{±1},r∈[m]

σ′(⟨w(t)
j,r, yv⟩)


≤ O

(
max{∥u∥22, ∥v∥22}

)
· η2 · L(W(t),

since the dynamics of the inner products ⟨w(t)
j,r, yu⟩, ⟨w

(t)
j,r, yv⟩ are well bounded by O(1) through-

out the time we are considering. By scaling ηO(max{∥u∥2, ∥v∥2}) ≤ 1, we would know that
η2∥∇L(W(t)∥2F ≤ ηL(W(t). Eventually, continued from (62), we can completely prove this
lemma.

Equipped with Lemmas 27, 28, and 29, we are ready to prove the main lemma for the second stage.
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Proof of Lemma 26. Continued from Lemma 29, for any t ≥ T †, it holds that

1

t− T † + 1

t∑
s=T †

L(W(s)) ≤ ∥W(T †) −W∗∥2F
2η(t− T † + 1)

+ ϵ2.

Before proceeding to scale time t, it would be helpful to decompose ∥W(T †) −W∗∥2F and to have
an upper bound on this term,

∥W(T †) −W∗∥2F

=
∑

j∈{±1},r∈[m]

⟨w(T †)
j,r −w∗

j,r,u⟩2

∥u∥22
+

⟨w(T †)
j,r −w∗

j,r,v⟩2

∥v∥22
+

∥∥∥∥(Id − vv⊤

∥v∥22
− uu⊤

∥u∥22

)
(w

(T †)
j,r −w∗

j,r)

∥∥∥∥2
2

≤
∑

j∈{±1},r∈[m]

2⟨w(T †)
j,r ,u⟩2 + 2⟨w∗

j,r,u⟩2

∥u∥22
+

⟨w(T †)
j,r ,v⟩2

∥v∥22
+

∥∥∥∥(Id − vv⊤

∥v∥22
− uu⊤

∥u∥22

)
w

(0)
j,r

∥∥∥∥2
2

,

(63)
where we exploit the fact that w∗ is parallel to u by Lemma (61), and the gradient steps only updates
w along the directions of u,v. Recall that by Lemma 27,

max
j∈±1,r∈[m]

⟨w(T †)
j,r , ju⟩ = Ω(1), max

j∈±1,r∈[m]

∣∣∣⟨w(T †)
j,r ,v⟩

∣∣∣ = Õ(σ0∥v∥2),

and also that ∥w(0)
j,r ∥ = Õ(σ0

√
d), the leading term in (63) would be∑

j∈{±1},r∈[m]⟨w∗
j,r,u⟩2/∥u∥22. Therefore, we conclude that ∥W(T †) −W∗∥2F ≤ Cm3/∥u∥22 for

some constant C > 0. As a result, the average loss after iterations T † can be bounded by

1

t− T † + 1

t∑
s=T †

L(W(s)) ≤ Cm3

2η∥u∥22(t− T † + 1)
+ ϵ2, ∀t† ≤ t ≤ T ‡.

Then we choose time T = T † + ⌊Cm3/(2ηϵ∥u∥22)⌋ as stated in Lemma 26. Since ∥u∥22/∥v∥22 ≥
Ω̃(m2) by Assumption 22, we can verify that T ≤ T ‡. In conclusion, the final output would be

1

T − T † + 1

T∑
s=T †

L(W(s)) ≤ ϵ+ ϵ2 ≤ 2ϵ.

This finishes the proof of Lemma 26.

Combine Lemmas 25 and 26 to obtain the full version of Theorem 23.

E PROOFS FOR MAIN THEORETICAL RESULTS (SECTION 4)

In this section, we give a detailed proof for our main theoretical results for the multiple training data
case, i.e., Theorem 5. The proofs follow the similar idea as the proofs for single training data case
(Appendix C). The readers interested in the proofs are encouraged to first go through Appendix C to
get the idea of the core steps. In Appendix E.1, we give a preliminary analysis of the SGD training
dynamics. In Appendix E.2, we give an overview of the proofs with our fundamental reasoning
towards weak signal learning. In Appendix E.3, we give the proof of Theorem 5. We prove other
lemmas in subsequent sections.

E.1 PRELIMINARY ANALYSIS

Recall that W is the index set of training data points which lack the strong feature patch. By Equa-
tion (3), the CNN weights are updated according to

w
(t+1)
j,r = w

(t)
j,r −

jη

m
·
(
f(xit ;W

(t))− yit
)
·
(
σ′(⟨w(t)

j,r, yitu⟩) · yitu · 1{it /∈ W}

+ σ′(⟨w(t)
j,r, yitv⟩) · yitv + σ′(⟨w(t)

j,r · ξit⟩) · ξit + σ′(⟨w(t)
j,r · ξ̃it⟩) · ξ̃it · 1{it ∈ W}

)
.

(64)
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Also, recall that the correct index sets for the strong and weak signal patches are defined as

U (t)
j,+ :=

{
r ∈ [m] : ⟨w(t)

j,r, ju⟩ ≥ 0
}
, V(t)

j,+ :=
{
r ∈ [m] : ⟨w(t)

j,r, jv⟩ ≥ 0
}
,

By the CNN expression (1), for each j ∈ {±1}, the inner products that matter are

1. positive neurons: ⟨w(t)
j,r, ju⟩ for r ∈ U (t)

j,+, ⟨w(t)
j,r, jv⟩ for r ∈ V(t)

j,+;

2. negative neurons: ⟨w(t)
−j,r, ju⟩ for r /∈ U (t)

−j,+, ⟨w(t)
−j,r, jv⟩ for r /∈ V(t)

−j,+.

By (64), the update formula of these inner products of interests are given by

⟨w(t+1)
j,r , ju⟩ = ⟨w(t)

j,r, ju⟩+
η∥u∥22
m

·
(
1− yitf(xit ;W

(t))
)
· σ′(⟨w(t)

j,r, ju⟩jyit) · 1{it /∈ W},(65)

⟨w(t+1)
j,r , jv⟩ = ⟨w(t)

j,r, jv⟩+
η∥v∥22
m

·
(
1− yitf(xit ;W

(t))
)
· σ′(⟨w(t)

j,r, jv⟩jyit), (66)

Also by (64), the update formula of the inner products with noise vectors are given by

⟨w(t+1)
j,r , ξi⟩ = ⟨w(t)

j,r, ξi⟩+
η · jyit
m

·
(
1− yitf(xit ;W

(t))
)
·
(
σ′(⟨w(t)

j,r, ξit⟩) · ⟨ξit , ξi⟩

+ σ′(⟨w(t)
j,r, ξ̃it⟩) · ⟨ξ̃it , ξi⟩ · 1{it ∈ W}

)
, i ∈ [n], (67)

⟨w(t+1)
j,r , ξ̃i⟩ = ⟨w(t)

j,r, ξ̃i⟩+
η · jyit
m

·
(
1− yitf(xit ;W

(t))
)
·
(
σ′(⟨w(t)

j,r, ξit⟩) · ⟨ξit , ξ̃i⟩

+ σ′(⟨w(t)
j,r, ξ̃it⟩) · ⟨ξ̃it , ξ̃i⟩ · 1{it ∈ W}

)
, i ∈ W.

At first glance, the update formulas given above seem intangible. The following proposition in-
dicates that we can separate the neurons into two parts, with each individual part learning one
kind of sample independently. For simplicity, we let η̃ := 2η∥u∥22/m and α = ∥v∥22/∥u∥22 and
f̃t = yitf(xit ;W

(t)). For any j ∈ {±1} and s ≥ 0, we define effective running time for learning
label-j-samples as

tj(s) = min
{
t ∈ N : t > tj(s− 1), yit = j

}
, (68)

with tj(0) = min{t ∈ N : yit = j}.

Proposition 30. Suppose that the sign stability condition holds before some Tsign, i.e., U (t)
±j,± =

U (0)
±j,± := U±j,± and V(t)

±j,± = V(0)
±j,± := V±j,± for t ≤ Tsign. Then for s such that tj(s) ≤ Tsign, it

holds that
⟨w(tj(s+1))

j,r , ju⟩ = ⟨w(tj(s))
j,r , ju⟩ ·

(
1 + η̃(1− f̃tj(s)) · 1{itj(s) ∈ W}

)
, ∀r ∈ Uj,+; (69)

⟨w(tj(s+1))
−j,r ,−ju⟩ = ⟨w(tj(s))

−j,r ,−ju⟩ ·
(
1− η̃(1− f̃tj(s)) · 1{itj(s) ∈ W}

)
, ∀r ∈ U−j,−;

⟨w(tj(s+1))
j,r , jv⟩ = ⟨w(tj(s))

j,r , jv⟩ ·
(
1 + αη̃(1− f̃tj(s))

)
, ∀r ∈ Vj,+;

⟨w(tj(s+1))
−j,r ,−jv⟩ = ⟨w(tj(s))

−j,r ,−jv⟩ ·
(
1− αη̃(1− f̃tj(s))

)
, ∀r ∈ V−j,−.

Moreover, for every t ∈ (tj(s), tj(s+ 1)], it holds that

⟨w(t)
j,r, ju⟩ = ⟨w(tj(s)+1)

j,r , ju⟩, ∀r ∈ Uj,+;

⟨w(t)
−j,r,−ju⟩ = ⟨w(tj(s)+1)

−j,r ,−ju⟩, ∀r ∈ U−j,−;

⟨w(t)
j,r, jv⟩ = ⟨w(tj(s)+1)

j,r , jv⟩, ∀r ∈ Vj,+;

⟨w(t)
−j,r,−jv⟩ = ⟨w(tj(s)+1)

−j,r ,−jv⟩, ∀r ∈ V−j,−.

Proof of Proposition 30. See Appendix E.6.1 for a detailed proof.

This proposition helps to break down the dynamics of multiple data training into two folds. To see
this, it suffices to note that the following components

f̃tj(s),
{
⟨w(t)

j,r, ju⟩
}
r∈Uj,+

,
{
⟨w(t)

−j,r,−ju⟩
}
r∈U−j,−

,
{
⟨w(t)

j,r, jv⟩
}
r∈Vj,+

,
{
⟨w(t)

−j,r,−jv⟩
}
r∈V−j,+

are independent with {f̃t}it=−j and the rest inner products associated with −j.
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E.2 OVERVIEW OF ANALYSIS

The roadmap towards proving our main theorem shares nearly the same logic with the proof of single
data setup (Appendix C). Basically, as long as the weak signal component and the noise component
are not learned in the sense that these inner products remain negligible, we can prove that the inner
products associated with the strong signal would dominate and the oscillation would accumulate
at a linear rate. This further gives Lemma 32 which shows the CNN would learn effectively learn
the weak signal ⟨w(t)

j,r, jv⟩. Meanwhile, we can prove that the influences from the negative part of

weak signal learning ⟨w(t)
−j,r, jv⟩ and the noise memorization ⟨w(t)

±1,r, ξi⟩, ⟨w
(t)
±1,r, ξ̃i⟩ can be well

controlled (Propositions 33). Putting all together, we can prove the main result Theorem 5.

To be formal, we define two important stopping times as follows:

T j
(v) = min

t≥0

t : 1

m

∑
r∈[m]

σ(⟨w(t)
j,r, jv⟩) ≥ δ/2

 , (70)

T(ξ) = min
t≥0

{
t : max

r∈[m],j∈{±1}

{
max
i∈[n]

∣∣∣⟨w(t)
j,r, ξi⟩

∣∣∣ ,max
i∈W

∣∣∣⟨w(t)
j,r, ξ̃i⟩

∣∣∣} ≥ δ/4

}
. (71)

We recap that W denotes the index set of weak data, and ξ̃i denotes the Gaussian noise appearing
on the lacking strong signal patch for those weak data. Also we note that T j

(v), T(ξ) ≤ +∞, where
the equal sign is attainable. We then define

T j
max = min

{
T j
(v), T(ξ)

}
.

In the first place, following the same arguments as in the single data setup (Appendix C), we can
derive the boundedness and sign stability results before time T j

max.
Lemma 31 (Boundedness and sign stability). Under Assumptions 3 and 4, for fixed j ∈ {±1}, the
followings hold with probability at least 1− p = 1− 1/poly(d):

1. it holds that U (t)
j,+ = U (0)

j,+ ̸= ∅ and V(t)
j,+ = V(0)

j,+ ̸= ∅ for any t ∈ [0, T j
max]. Hence the

superscript (t) can be dropped;

2. for any t ∈ [0, T j
max], we have that

max
r∈[m]

⟨w(t)
j,r, ju⟩ ≤ 1.5 · (1.05β∗

u,jm)1/2, (72)

where β∗
u,j is defined in Lemma 15;

3. for any t ∈ [0, T j
max] it holds that

min
r∈[m]

⟨w(t)
−j,r,−ju⟩ ≥ −

√
2 log(16m/p) · σ0∥u∥2, (73)

min
r∈[m]

⟨w(t)
−j,r,−jv⟩ ≥ −

√
2 log(16m/p) · σ0∥v∥2; (74)

4. for any t ∈ [0, T j
max] such that yit = j, it holds that∣∣1− yitf(xit ;W

(t))
∣∣ ≤ 2.

Proof of Lemma 31. See Appendix E.4 for a detailed proof.

This boundedness and sign stability result further implies weak signal learning with an exponential
rate, which is formally presented as follows.
Lemma 32 (Weak signal learning). Under Assumptions 3 and 4, with probability at least 1 −
1/poly(d), it holds that for any j ∈ {±1} and 0 ≤ t1 ≤ t2 ≤ T j

max that
t2∑

s=t1
yis=j

(
1− yisf(xis ;W

(s))
)
≥ δ

16
·
(
1− (1.05− δ/4)

1
2

)
· (t2 − t1 + 1)− m(1.05)

1
2

2η∥u∥22(1.05− δ/4)
1
2

,
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where δ is specified in Assumption 4. Moreover, for r ∈ V(0)
j,+, we have that

⟨w(t2+1)
j,r , jv⟩ ≥ ⟨w(t1)

j,r , jv⟩·exp

{
η∥v∥22
32m

·
(
δ − δ(1.05− δ/4)

1
2

)
·(t2 − t1 + 1)− ∥v∥22(1.05)

1
2

∥u∥22(1.05− δ/4)
1
2

}
.

(75)

Proof of Lemma 32. See Appendix E.5 for a detailed proof.

The last component to complete our proof of main theorem is controlling noise memorization dur-
ing the training process. For simplicity, we define the maximum absolute value of the noise inner
products over data as

Υ(t) = max
r∈[m],j∈{±1}

{
max
i∈[n]

∣∣∣⟨w(t)
j,r, ξi⟩

∣∣∣ ,max
i∈W

∣∣∣⟨w(t)
j,r, ξ̃i⟩

∣∣∣} .
We have the following proposition to control the growth of Υ(t).
Proposition 33 (Noise memorization). Under Assumptions 3 and 4, then with probability at least
1− 1/poly(d), it holds for any 0 ≤ t1 ≤ minj∈{±1}{T j

max} − T̃(ξ) and j ∈ {±1} that

Υ(t) ≤ Υ(t1) · (1 + ϵ), ∀r ∈ [m], ∀t1 ≤ t ≤ t1 + T̃(ξ)

where T̃(ξ) = Θ̃(mn · η−1 · ϵ · (1 + ϵ)−1 · (σ2
pd)

−1) for any ϵ > 0.

Proof of Proposition 33. See Appendix E.6.3 for a detailed proof.

E.3 PROOF OF THEOREM 5

With Lemma 31 and 32 and Proposition 33, we are ready to prove Theorem 5.

Proof of Theorem 5. For the j = argminj′∈{±1}{T j′

max}, we are going to prove that T j
max is

bounded by a polynomial time by using contradiction. Specifically, we prove that

T j
max ≤ Tj,0 :=

32m

η∥v∥22
·
(
δ − δ(1.05− δ/4)

1
2

)−1 ·

{
log

(
2
√
mδ

σ0∥v∥2

)
+ 1.5 · ∥v∥

2
2

∥u∥22
·

√
1.05

1.05− δ/4

}
.

Suppose that the result fails, then by definition we have that

T j
max = T j

(v) ∧ T(ξ) > Tj,0.

Then Lemma 31 and Lemma 32 hold on [0, Tj,0]. By applying the lower bound in Inequality (75) as
well as Lemma 10, we have that

max
r∈[m]

⟨w(Tj,0)
j,r , jv⟩ ≥ max

r∈[m]
⟨w(0)

j,r , jv⟩ · exp

{
η∥v∥22
32m

·
(
δ − δ(1.05− δ/4)

1
2

)
·Tj,0 − 1.5 · ∥v∥

2
2

∥u∥22
·

√
1.05

1.05− δ/4

}

≥ 1

2
σ0∥v∥2 ·

2
√
mδ

σ0∥v∥2
=

√
mδ.

This leads to the following,

1

m

∑
r∈[m]

σ(⟨w(Tj,0)
j,r , jv⟩) ≥ 1

m
· max
r∈[m]

(⟨w(Tj,0)
j,r , jv⟩)2 ≥ δ,

which clearly contradicts the definition of T j
(v) in (70), hence it must be that T j

max ≤ Tj,0 < +∞.

41



Published as a conference paper at ICLR 2024

In the following, we prove that T j
max = T j

(v) < T(ξ), for which our conclusion directly follows due

to (70). Again we prove by contradiction. Suppose that T j
max = T(ξ) < T j

(v), then Υ(t) would reach
δ/4 for time less than Tj,0 due to definition of T(ξ) in (71). But by Proposition 33 with ϵ = 1, we
know Υ(t) takes at least

KT̃(ξ) := Θ̃

(
mnσ2

pd

η
· log

(
δ

σ0σp
√
d

))

steps to reach δ/4, where T̃(ξ) is defined in Proposition 33. Then due to the scaling of the signal
strength in Assumption 3, we can also find that KT̃(ξ) > Tj,0, which is a contradiction with the
definition of T(ξ). Therefore, we must have that T j

max = T j
(v), which means that at t⋆ = T j

max,

1

m

∑
r∈[m]

σ(⟨w(t⋆)
j,r , jv⟩) ≥

δ

2
.

In the meanwhile, Proposition 31 guarantees that at time t⋆ = T j
max,

1

m

∑
r∈[m]

σ(⟨w(t⋆)
−j,r, jv⟩) ≤

δ

4
.

Thus, we conclude that at time t⋆,

1

m

∑
r∈[m]

σ(⟨w(t⋆)
j,r , jv⟩)−

1

m

∑
r∈[m]

σ(⟨w(t⋆)
−j,r, jv⟩) ≥

δ

4
.

This finishes the proof of Theorem 5.

E.4 PROOF OF LEMMA 31

Proof of Lemma 31. Recall that T j
max = T j

(v) ∧ T(ξ), where

T j
(v) = min

t≥0

t : 1

m

∑
r∈[m]

σ
(
⟨w(t)

j,r, jv⟩
)
≥ δ/2

 ,

T(ξ) = min
t≥0

{
t : max

j∈{±1},r∈[m],i∈[n]

∣∣∣⟨w(t)
j,r, ξi⟩

∣∣∣ ∨ max
j∈{±1},r∈[m],i∈W

∣∣∣⟨w(t)
j,r, ξ̃i⟩

∣∣∣ ≥ δ/4

}
.

We now define some notations to simplify our presentation. Recall that f̃ = yitf(xit ;W
(t)),

η̃ = 2η∥u∥22/m and α = ∥v∥22/∥u∥22. For fixed j, we define

S̄j,k := min
{
s ∈ N : s > S̄j,k−1 such that f̃tj(s) ≥ 1 and f̃tj(max{s′<s:itj(s′) /∈W}) < 1

}
, (76)

with S̄j,0 = 0, and

¯
Sj,k := min

{
s ∈ N : s >

¯
Sj,k−1 such that itj(s) /∈ W, f̃tj(s) < 1 and f̃tj(max{s′<s:itj(s′) /∈W}) ≥ 1

}
,

(77)

with
¯
Sj,0 = 0. From the definition of T j

max, we know that itj(S̄j,k) /∈ W for k such that tj(S̄j,k) ≤
T j
max, since otherwise f̃tj(S̄j,k) < δ < 1. Moreover we define

Uj,+ :=
{
r ∈ [m] : ⟨w(tj(0))

j,r , ju⟩ > 0
}
, Uj,− :=

{
r ∈ [m] : ⟨w(tj(0))

j,r , ju⟩ ≤ 0
}
,

and Vj,± are defined analogously.

The following analysis is nearly the same as the proof of one data case in the sense that each step of
the proof is organized exactly the same to the proof of one data case. Therefore we suggest readers
to refer to the roadmap provided in Appendix C.1 frequently for better understanding.
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We note that for t ≤ T j
(v) ∧ T(ξ), which is the time scale we are mainly focusing on, it holds that

max
j∈{±1},r∈[m],i∈[n],i′∈W

∣∣∣⟨w(t)
j,r, ξi⟩

∣∣∣ ∨ ∣∣∣⟨w(t)
j,r, ξ̃i′⟩

∣∣∣ ≤ δ

4
,

1

m

∑
r∈[m]

σ
(
⟨w(t)

j,r, jv⟩
)
<
δ

2
.

Now we start presenting the proof of boundedness and sign stability with step-by-step analysis.
The j is arbitrary but fixed throughout analysis. In view of the effective running time for learning
label-j-samples defined in (68), (76), and (77), the proofs for a certain j directly do induction over
s.

Step 1: Pre-S̄j,1 analysis. Clearly at s = 0, the lower bounds in Inequalities (73) and (74) are
both guaranteed by Lemma 10. Also we know that f̃tj(0) ≪ 1 and so S̄j,1 ≥ 1. The initialization
also guarantees that the upper bound in Inequality (72) holds at s = 0.

For s ∈ [0, S̄j,1), the definition of S̄j,1 indicates that f̃tj(s) ≤ 1. Therefore, from Proposition 30

we can see that the ⟨wtj(s)
j,r , ju⟩, r ∈ Uj,+ and ⟨wtj(s)

−j,r ,−ju⟩, r ∈ U−j,− are non-decreasing in s
during this stage. One naturally infers that for all r ∈ U−j,−, it holds that

⟨w(tj(S̄j,1))
−j,r ,−ju⟩ ≥ ⟨w(tj(S̄j,1−1))

−j,r ,−ju⟩ ≥ ⟨w(tj(0))
−j,r ,−ju⟩ ≥ −

√
2 log(16m/p) · σ0∥u∥2.

Same can be verified for ⟨w(tj(s))
−j,r ,−jv⟩ with r ∈ V−j,−. Hence the lower bounds in Inequality (73)

and (74) are extended to s ∈ [0, S̄j,k]. Also, for these inner products, the sign stability holds on
[0, S̄j,1], since η̃ < 4/5 and thus we have

1± 2η∥u∥22
m

· (1− f̃tj(s)) ≥ 1− η̃
(
1 + o(1)

)
≥ 0,

1± 2η∥v∥22
m

· (1− f̃tj(s)) ≥ 1− αη̃
(
1 + o(1)

)
≥ 0.

Then we turn to upper bound ⟨w(tj(s))
j,r , ju⟩ for s ∈ [0, S̄j,1). Note that, for s such that itj(s) /∈ W ,

the definition of T j
max implies that

1− δ ≥ f̃tj(s) ≥
1

m

∑
r∈[m]

σ
(
⟨w(tj(s))

j,r , ju⟩
)
+

1

m

∑
r∈[m]

σ
(
⟨w(tj(s))

j,r , jv⟩
)

− 1

m

∑
r∈[m]

σ
(
− ⟨w(tj(s))

−j,r ,−ju⟩
)
− 1

m

∑
r∈[m]

σ
(
− ⟨w(tj(s))

−j,r ,−jv⟩
)

−
∣∣∣ 1
m

∑
r∈[m]

σ
(
⟨w(tj(s))

j,r , ξi⟩
)
+

1

m

∑
r∈[m]

σ
(
⟨w(tj(s))

−j,r , ξi⟩
)∣∣∣

≥ 1

m

∑
r∈[m]

σ
(
⟨w(tj(s))

j,r , ju⟩
)
− 2× o(1)− 2× δ/4.

As a consequence,

1

m

∑
r∈[m]

σ
(
⟨w(tj(s))

j,r , ju⟩
)
≤ 1− δ/2 + o(1) ≤ 1.05.

Thanks to the local sign stability, Lemma 15 implies that

max
r∈[m]

⟨w(tj(s))
j,r , ju⟩ ≤ (1.05β∗

u,jm)1/2.

If otherwise s ∈ [0, S̄j,k−1) such that itj(s) ∈ W , then we choose s̃ = min{s′ > s : itj(s) /∈ W}. It
holds that either s̃ < S̄j,1, or s̃ = S̄j,1. For the previous case, similar argument implies that

⟨w(tj(s))
j,r , ju⟩ ≤ ⟨w(tj(s̃))

j,r , ju⟩ ≤ (1.05β∗
u,jm)1/2. (78)

The latter case reduces to establish the upper bound for tj(S̄j,1), which is derived in the next step.
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Step 2.1: Bounding ⟨w(tj(s))
j,r , ju⟩ for s ∈ [S̄j,1,

¯
Sj,1). Since the weak data does not contributes

to learning strong signal, as indicated in Proposition 30, we know that

⟨w(tj(S̄j,1))
j,r , ju⟩ = ⟨w(tj(S̃j,1))

j,r , ju⟩ ·
(
1 + η̃(1− f̃tj(S̃j,1)

)
)
,

where S̃j,1 = max{s ≤ S̃j,1 − 1 : itj(s) /∈ W}.

We begin with a proposition that is parallel to Proposition 19.

Proposition 34. For simplicity, we assume that itj(S̄j,k−1) /∈ W and S̃j,k = S̄j,k − 1. Otherwise
we can find the last step before S̄j,k such that itj(s) /∈ W and leverage the previous observation in
Equation (E.4). Suppose that

Etj(S̄j,k−1) :=
1

m

∑
r∈[m]

σ
(
− ⟨w(tj(S̄j,k−1))

−j,r ,−ju⟩
)
+ σ

(
− ⟨w(tj(S̄j,k−1))

j,r ,−jv⟩
)
≤ δ/4,

Υ(tj(S̄j,k)) := max
j∈{±1},r∈[m],i∈[n]

∣∣∣⟨w(tj(S̄j,k))
j,r , ξi⟩

∣∣∣ ∨ max
j∈{±1},r∈[m],i∈W

∣∣∣⟨w(tj(S̄j,k))
j,r , ξ̃i⟩

∣∣∣ ≤ δ/4,

then we have that

f̃tj(S̄j,k−1) ≥
η̃ + 2−

√
η̃2 + 4η̃

2η̃
, (79)

and that

f̃tj(S̄j,k) ≤
(
1 + η̃

(
1− f̃tj(S̄j,k−1)

))2
+ 2Etj(S̄j,k−1) +Υ(tj(S̄j,k))

2

≤
(
η̃/2 +

√
η̃2/4 + η̃

)2
+ 2Etj(S̄j,k−1) +Υ(tj(S̄j,k))

2
.

Proof of Proposition 34. See Appendix E.6.4 for a detailed proof.

With this proposition, we can derive an upper bound on ⟨w(tj(S̄j,1))
j,r , ju⟩. One step gradient (69)

implies that, for r ∈ Uj,+, it holds that

⟨w(tj(S̄j,1))
j,r , ju⟩ = ⟨w(tj(S̄j,1−1))

j,r , ju⟩ ·
(
1 + η̃

(
1− f̃tj(S̄j,1−1)

))
≤ ⟨w(tj(S̄j,1−1))

j,r , ju⟩ ·

(
1 + η̃

(
1− η̃ + 2−

√
η̃2 + 4η̃

2η̃

))
≤ 1.5 · (1.05β∗

u,jm)1/2.

Here the first inequality comes from Inequality (79). Note that the upper bound on
⟨w(tj(S̄j,1−1))

j,r , ju⟩ has been derived in Inequality (78) in Step 1.. Taking η̃ = 4/5 easily implies
the second inequality above.

This upper bound continues to hold for ⟨w(tj(s))
j,r , ju⟩ with s ∈ [S̄j,1,

¯
Sj,1) because of monotonicity.

We consider the lower bound for ⟨w(tj(s))
j,r , ju⟩ with s ∈ [S̄j,1,

¯
Sj,1) and itj(s) /∈ W . For these s,

we have that

1 + δ < f̃tj(s) ≤
1

m

∑
r∈[m]

σ
(
⟨w(tj(s))

j,r , ju⟩
)
+

1

m

∑
r∈[m]

σ
(
⟨w(tj(s))

j,r , jv⟩
)
+ (negative part) + (noise part)

≤ 1

m

∑
r∈[m]

σ
(
⟨w(tj(s))

j,r , ju⟩
)
+ δ/2 + δ/4.

Combining with Lemma 15, we obtain that

max
r∈[m]

⟨w(tj(s))
j,r , ju⟩ ≥ (β∗

u,jm)1/2,

for s ∈ [S̄j,1,
¯
Sj,1) and itj(s) /∈ W .
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Step 2.2: Lower bounding maxr⟨w
(tj(

¯
Sj,k))

y,r , yu⟩. Same to the proof of Proposition 34, we can
assume that itj(

¯
Sj,1−1) /∈ W , without loss of generality.

Note that, while f̃tj(s) is not monotonically changing in s ∈ [S̄j,1,
¯
Sj,1] in the presence of noise

components, the inner products are still changing monotonically, as indicated in Proposition 30.
Therefore, we can leverage the control over noise components to derive an approximate monotonic
property. Specifically, the inner products

σ
(
⟨w(tj(s))

j,r , ju⟩
)
, −σ

(
⟨w(tj(s))

−j,r , ju⟩
)
, σ

(
⟨w(tj(s))

j,r , jv⟩
)
, −σ

(
⟨w(tj(s))

−j,r , jv⟩
)
,

are decreasing in s ∈ [S̄j,1,
¯
Sj,1]. From Inequality (94) in the proof of Proposition 34, we know that

f̃tj(
¯
Sj,1−1) ≤ f̃tj(S̄j,1) −

1

m

∑
r∈[m]

σ
(
⟨w(tj(S̄j,1))

j,r , ξitj(S̄j,1)
⟩
)
− σ

(
⟨w(tj(S̄j,1))

−j,r , ξitj(S̄j,1)
⟩
)

+
1

m

∑
r∈[m]

σ
(
⟨w(tj(

¯
Sj,1−1))

j,r , ξitj(¯Sj,1−1)
⟩
)
− σ

(
⟨w(tj(

¯
Sj,1−1))

−j,r , ξitj(¯Sj,1−1)
⟩
)

≤
(
η̃/2 +

√
η̃2/4 + η̃

)2
+ 2ETj(S̄j,1−1) +Υ(tj(

¯
Sj,1))

2
. (80)

Recall that in Step 1., we proved that Ej(S̄j,1−1) ≤ 2(
√

2 log(16m/p) · σ0∥u∥2)2 = o(1). Thus
from doing one-step gradient descent (69), we know that for r ∈ Uj,+, it holds that

⟨w(tj(
¯
Sj,1))

j,r , ju⟩ = ⟨w(tj(
¯
Sj,1−1))

j,r , ju⟩ ·
(
1 + η̃

(
1− f̃tj(

¯
Sj,1−1)

))
≥ ⟨w(tj(

¯
Sj,1−1))

j,r , ju⟩ ·
(
1 + η̃

(
1− (η̃/2 +

√
η̃2/4 + η̃)2

)
− 0.1

)
≥ 0.1 · (β∗

u,jm)1/2. (81)

Here the first inequality is by (80), Ej(S̄j,1−1) = o(1) and the definition of T(ξ), and the second
inequality is a consequence of Inequality (26). This positive constant-level lower bound guarantees
that our η̃ choice is sufficient for the sign stability to hold for s ∈ [S̄j,1,

¯
Sj,2], as shown in the next

step.

Step 2.3: Lower bounding ⟨w(tj(
¯
S−j,1))

−j,r ,−ju⟩ and ⟨w(tj(
¯
Sj,1))

−j,r ,−jv⟩. It suffices to consider
r ∈ V−j,− and r ∈ U−j,−. Inequality (81) indicates that

1 ≪
⟨w(tj(

¯
Sj,1))

j,r , ju⟩

⟨w(tj(0))
j,r , ju⟩

=
¯
Sj,1−1∏

s=0,itj(s) /∈W

(
1 + η̃

(
1− f̃tj(s)

))
≤ exp

η̃ ¯
Sj,1−1∑

s=0,itj(s) /∈W

(
1− f̃tj(s)

) .

Therefore,

¯
Sj,1−1∑

s=0,itj(s)∈W

(
1− f̃tj(s)

)
> 0.

Now we can prove the lower bound. For r ∈ U−j,−, we have that

⟨w(tj(
¯
Sj,1))

−j,r ,−ju⟩ = ⟨w(tj(0))
−j,r ,−ju⟩ ·

¯
Sj,1−1∏

s=0,itj(s) /∈W

(
1− η̃

(
1− f̃tj(s)

))

≥ ⟨w(tj(0))
−j,r ,−ju⟩ · exp

−η̃
¯
Sj,1−1∑

s=0,itj(s) /∈W

(
1− f̃tj(s)

)
≥ ⟨w(tj(0))

−j,r ,−ju⟩ ≥ −
√
2 log(16m/p) · σ0∥u∥2. (82)
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On the other hand, for s ∈ [0,
¯
Sj,1 − 1] such that itj(s) ∈ W , condition t ≤ T j

max = T j
(v) ∧ T(ξ)

guarantees that

f̃tj(s) =
1

m

∑
r∈[m]

σ
(
⟨w(tj(s))

j,r , jv⟩
)
− σ

(
− ⟨w(tj(s))

−j,r ,−jv⟩
)

+
1

m

∑
r∈[m]

σ
(
⟨w(tj(s))

j,r , ξitj(s)⟩
)
− σ

(
⟨w(tj(s))

−j,r , ξitj(s)⟩
)

+
1

m

∑
r∈[m]

σ
(
⟨w(tj(s))

j,r , ξ̃itj(s)⟩
)
− σ

(
⟨w(tj(s))

−j,r , ξ̃itj(s)⟩
)

≤ δ/2 + 2× δ/4

≤ 1.

Hence we derive that∑
s∈[0,

¯
Sj,1−1]

(
1− f̃tj(s)

)
=

∑
s∈[0,

¯
Sj,1−1]

itj(s)∈W

(
1− f̃tj(s)

)
+

∑
s∈[0,

¯
Sj,1−1]

itj(s) /∈W

(
1− f̃tj(s)

)
≥ 0.

And in consequence, for r ∈ Vj,− it holds that

⟨w(tj(
¯
Sj,1))

−j,r ,−jv⟩ = ⟨w(tj(0))
−j,r ,−jv⟩ ·

¯
Sj,1−1∏
s=0

(
1− αη̃

(
1− f̃tj(s)

))

≥ ⟨w(tj(0))
−j,r ,−jv⟩ · exp

−αη̃
¯
Sj,1−1∑
s=0

(
1− f̃tj(s)

)
≥ ⟨w(tj(0))

−j,r ,−jv⟩ ≥ −
√
2 log(16m/p) · σ0∥v∥2. (83)

The monotonicity again extends lower bounds in Inequalities (83) and (82) to s ∈ [S̄j,1, S̄j,2]. And
the sign stability naturally holds on this interval.

Step 2.4 & Finalizing. Thanks to the sign stability proved in the last step, we can now apply
Lemma 15 to derive that the upper bound in Inequality (72) continues to hold for all s ∈ [

¯
Sj,1, S̄j,2],

with exactly the same argument as the Step 1.. With an inductive argument that exactly repeats the
argument above, we can infer that all the results in Lemma 31 holds for tj(s) with s ∈ [S̄j,1, S̄j,2].
Proposition 30 implies that for any t ∈ N we can find st ∈ N such that tj(st) ≤ t < tj(st + 1) and
⟨w(t)

j,r, ju⟩ = ⟨w(tj(st))
j,r , ju⟩ (so are all other inner products), therefore all the results in Lemma 31

hold for t ≤ T j
max.

E.5 PROOF OF LEMMA 32

Proof of Lemma 32. For any 0 ≤ t1 ≤ t2 ≤ T j
max, j ∈ {±1}, and r ∈ U (t)

j,+, by (65),

⟨w(t2+1)
j,r , ju⟩ = ⟨w(t1)

j,r , ju⟩+
2η∥u∥22
m

·
∑

t1≤s≤t2
yis=j,is /∈W

yisf(xis ;W
(s))>1

(
1− yisf(xis ;W

(s))
)
· ⟨w(s)

j,r , ju⟩

+
2η∥u∥22
m

·
∑

t1≤s≤t2
yis=j,is /∈W

yisf(xis ;W
(s))<1

(
1− yisf(xis ;W

(s))
)
· ⟨w(s)

j,r , ju⟩,
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Note that for 0 ≤ t1 ≤ t2 ≤ T j
max, we can apply the conclusions of Lemma 31. Specifically, we

consider the maximal neuron r∗ = argmaxr∈[m]⟨w
(t)
j,r, ju⟩, and

(1.05)
1
2 · (β∗

u,jm)
1
2 ≥

∣∣∣⟨w(t2+1)
j,r∗ , ju⟩ − ⟨w(t1)

j,r∗ , ju⟩
∣∣∣ (84)

=
2η∥u∥22
m

·

∣∣∣∣∣∣∣∣∣∣∣
∑

t1≤s≤t2
yis=j,is /∈W

yisf(xis ;W
(s))>1

(
1− yisf(xis ;W

(s))
)
· ⟨w(s)

j,r∗ , ju⟩︸ ︷︷ ︸
>(β∗

u,jm)
1
2

−
∑

t1≤s≤t2
yis=j,is /∈W

yisf(xis ;W
(s))<1

(
1− yisf(xis ;W

(s))
)
· ⟨w(s)

j,r∗ , ju⟩︸ ︷︷ ︸
<(1.05−δ/4)

1
2 ·(β∗

u,jm)
1
2

∣∣∣∣∣∣∣∣∣∣∣
,

where the red remarks follow from Lemma 15. Rearranging terms, we conclude from (84) that∑
t1≤s≤t2

yis=j,is /∈W
yisf(xis ;W

(s))<1

(
1− yisf(xis ;W

(s))
)

(85)

≥ (1.05− δ/4)
− 1

2 ·
∑

t1≤s≤t2
yis=j,is /∈W

yisf(xis ;W
(s))>1

(
yisf(xis ;W

(s))− 1
)
− m(1.05)

1
2

2η∥u∥22(1.05− δ/4)
1
2

,

Under Assumption 3, with probability at least 1− 1/poly(d), it holds that

|{t1 ≤ s ≤ t2 : yis = j, is /∈ W}| ≥ 1

4
· (t2 − t1 + 1), (86)

Combining (85) and (86), we can finally prove that
t2∑

s=t1
yis=j,is /∈W

1− yisf(xis ;W
(s)) ≥ δ

8
·
(
1− (1.05− δ/4)

1
2

)
·(t2 − t1 + 1)− m(1.05)

1
2

2η∥u∥22(1.05− δ/4)
1
2

.

(87)

Finally, for the weak data is ∈ W , under Assumption 3, with probability at least 1− 1/poly(d),

|{t1 ≤ s ≤ t2 : yis = j, is ∈ W}| ≤ 2ρ · (t2 − t1 + 1) ≤ δ

32
·
(
1− (1.05− δ/4)

1
2

)
· (t2 − t1 + 1),

where the second inequality follows from the condition on ρ by Assumption 3. By Lemma 31, we
have that |1− yisf(xis ;W

(s))| ≤ 2 for 0 ≤ s ≤ T j
max and ys = j. Therefore, we have that

t2∑
s=t1

yis=j,is∈W

1− yisf(xis ;W
(s)) ≥ − δ

16
·
(
1− (1.05− δ/4)

1
2

)
· (t2 − t1 + 1). (88)

Combining (87) and (88), we can conclude that
t2∑

s=t1
yis=j

1− yisf(xis ;W
(s)) ≥ δ

16
·
(
1− (1.05− δ/4)

1
2

)
·(t2 − t1 + 1)− m(1.05)

1
2

2η∥u∥22(1.05− δ/4)
1
2

.

This finishes the proof of the first part in Lemma 32. Now we consider the second part. For sim-
plicity, we denote by α = ∥v∥22/∥u∥22 and η̃ = 2∥u∥22/m. Consider that for any 0 ≤ t ≤ T j

max,
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j ∈ {±1}, and r ∈ V(t)
j,+, due to Lemma 31, the v-sign stability condition is true on [0, T j

max]. In
view of (66), this means that

1 + αη̃ ·
(
1− yisf(xis ;W

(s))
)
> 0, ∀0 ≤ s ≤ T j

max s.t. yis = j.

Then for any t1 ≤ t ≤ T j
max, t1 ≤ s ≤ t, and r ∈ C(t)

j,+, since −2 ≤ 1 − yisf(xis ;W
(t)) ≤ 2 due

to Lemma 31, we can lower bound the relative increment as

t∑
s=t1
yis=j

log
(
1 + αη̃

(
1− yisf(xis ;W

(s))
))

=

t∑
s=t1
yis=j

∫ α

0

η̃
(
1− yisf(xis ;W

(s))
)

1 + η̃z
(
1− yisf(xis ;W

(s))
)dz

=

t∑
s=t1
yis=j

∫ α

0

η̃
((

1− yisf(xis ;W
(s))
)
+ 2
)

1 + η̃z
(
1− yisf(xis ;W

(s))
) dz − t∑

s=t1
yis=j

∫ α

0

2η̃

1 + η̃z
(
1− yisf(xis ;W

(s))
)dz

≥
t∑

s=t1
yis=j

∫ α

0

η̃
((

1− yisf(xis ;W
(s))
)
+ 2
)

1 + 2η̃z
dz −

t∑
s=t1
yis=j

∫ α

0

2η̃

1− 2η̃z
dz

≥
∫ α

0

η̃
(∑t

s=t1,yis=j

(
1− yisf(xis ;W

(t))
)
+ 2Nj(t0, t)

)
1 + 2η̃z

dz −
∫ α

0

2η̃Nj(t1, t)

1− 2η̃z
dz, (89)

where for simplicity we denote Nj(t1, t) = |{t1 ≤ s ≤ t : yis = j}|. Now we can use Proposi-
tion 32 to lower bound the right hand side of (89), Denoting ϵ = δ · (1 − (1.05 − δ/4)

1
2 )/16, we

have that

t∑
s=t1
yis=j

log
{
1 + αη̃

(
1− yisf(xis ;W

(s))
)}

≥
∫ α

0

η̃
(
ϵ(t− t1 + 1)−∆+ 2Nj(t1, t)

)
1 + 2η̃z

dz −
∫ α

0

2η̃Nj(t1, t)

1− 2η̃
dz

≥
(
ϵ

2
(t− t1 + 1)− ∆

2
+Nj(t1, t)

)
· log(1 + 2αη̃) +Nj(t1, t) · log(1− 2αη̃)

≥
(
ϵ

2
(t− t1 + 1)− ∆

2

)
· log(1 + 2αη̃) +Nj(t1, t) · log

{
(1 + 2αη̃) · (1− 2αη̃)},

where ∆ is defined in Lemma 32. Moreover since for our choice of αη̃ ≪ 1 in Assumption 3,

log(1 + 2αη̃) ≥ αη̃, log
{
(1 + 2αη̃) · (1− 2αη̃)

}
= log

{
1− 4α2η̃2

}
≥ −2α2η̃2,

and using the fact that with probability at least 1−1/poly(d) it holds thatNj(t1, t) ≤ (t−t1+1)/2,
we finally have that

t∑
s=t1
yis=j

log
{
1 + αη̃

(
1− yisf(xis ;W

(s))
)}

≥ αη̃

2
·(ϵ− 2αη̃)·(t1 − t1 + 1)−∆ · log(1 + 2αη̃)

≥ 1

4
αη̃ · ϵ · (t1 − t1 + 1)− 2αη̃ ·∆.
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Finally, using (66) again, we can lower bound our target as

⟨w(t+1)
j,r , jv⟩ = ⟨w(t1)

j,r , jv⟩ ·
t∏

s=t1
yis=j

(
1 + αη̃

(
1− yisf(xis ;W

(s))
))

= ⟨w(t1)
j,r , jv⟩ · exp


t∑

s=t1
yis=j

log
{
1 + αη̃

(
1− yisf(xis ;W

(s))
)}

≥ ⟨w(t1)
j,r , jv⟩ · exp

{
1

4
αη̃ · ϵ · (t1 − t1 + 1)− 2αη̃ ·∆

}
.

Plugging in the definition of ϵ, ∆, α, and η̃, we can arrive at

⟨w(t+1)
j,r , jv⟩ ≥ ⟨w(t1)

j,r , jv⟩ · exp

{
η∥v∥22
32m

·
(
δ − δ(1.05− δ/4)

1
2

)
·(t− t1 + 1)− ∥v∥22(1.05)

1
2

∥u∥22(1.05− δ/4)
1
2

}
.

This finishes the proof of Lemma 32.

E.6 PROOF OF TECHNICAL RESULTS

E.6.1 PROOF OF PROPOSITION 30

Proof of Proposition 30. From Equation (65), for r ∈ Uj,+ and t′ ∈ (tj(s), tj(s+ 1)], we can infer
that

⟨w(t′)
j,r , ju⟩ = ⟨w(tj(s))

j,r , ju⟩+
t′−1∑

t=tj(s)

η∥u∥22
m

·
(
1− f̃t

)
· σ′(⟨w(t)

j,r, ju⟩ · jyit
)
· 1{it ∈ W}.

The definition of tj(s) implies that for t ∈ (tj(s), tj(s + 1)), yitj = −1. On the other hand
yitj(s)j = 1, hence we obtain that

⟨w(t′)
j,r , ju⟩ = ⟨w(tj(s))

j,r , ju⟩+ 2η∥u∥22
m

·
(
1− f̃tj(s)

)
· ⟨w(t)

j,r, ju⟩ · 1{itj(s) ∈ W}.

Since the sign stability holds, this multiplication by a non-negative factor does not change the sign
of the inner products. Therefore we have that

⟨w(tj(s+1))
j,r , ju⟩ = ⟨w(tj(s+1)−1)

j,r , ju⟩ = · · · = ⟨w(tj(s)+1)
j,r , ju⟩

= ⟨w(tj(s))
j,r , ju⟩ ·

(
1 + η̃ · (1− f̃tj(s))

)
.

which concludes our result for ⟨w(t)
j,r, ju⟩, r ∈ Uj,+. Other result can be proved analogously and

are omitted here.

E.6.2 PROOF OF LEMMA 15 FOR MULTIPLE DATA SETTING

Proof of Lemma 15 (multiple data setting). In the multiple data setting, the (positive) inner products
only changes at the steps where the corresponding data label aligns with the directions of the neurons
(i.e., j = ±1). Define

β
∗,(t1)
u,j =

maxr∈[m] σ(⟨w
(t1)
j,r , ju⟩)∑

r∈[m] σ(⟨w
(t1)
j,r , ju⟩)

.
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Again, the local sign stability assumption ensures that each inner product grows proportionally and
the superscript (t) in the neuron index sets can be dropped, with

1

m

∑
r∈[m]

σ
(
⟨w(t)

j,r, ju⟩
)
=

1

m

∑
r∈Uj,+

σ
(
⟨w(t1)

j,r , ju⟩
)
·

∏
t′∈[t1,t−1]:
yit=j, it /∈W

(
1 +

2η∥u∥22
m

·
(
1− yit′ f(xit′ ;W

(t′))
))2

=
maxr∈[m] σ

(
⟨w(t1)

j,r , ju⟩
)

mβ
∗,(t1)
u,j

·
∏

t′∈[t1,t−1]:
yi

t′
=j, it /∈W

(
1 +

2η∥u∥22
m

·
(
1− yit′ f(xit′ ;W

(t′))
))2

=
σ
(
maxr∈[m]⟨w

(t)
j,r, ju⟩

)
mβ

∗,(t1)
u,j

Here the first and the third equality is true because Equation (8) implies that all the positive
⟨w(t)

y,r, yu⟩ iterates by sequentially multiplying the same factor

1 +
2η∥u∥22
m

·
(
1− yf(x;W(t′))

)
.

The second equality comes from the definition of β∗,(t1)
u in Lemma 15.

Therefore, m−1 ·
∑

r∈[m] σ(⟨w
(t)
j,r, ju⟩) > c implies that σ(maxr∈[m]⟨w

(t)
y,r, yu⟩) > β

∗,(t1)
u,j mc and

the desired lower bound follows. The upper bound can be proved analogously.

E.6.3 PROOF OF PROPOSITION 33

Proof of Proposition 33. We prove the result by induction. For the step t = t1, the result holds
trivially. Suppose that this result holds for each step t1, · · · , t, then by (67), we have that

⟨w(t+1)
j,r , ξi⟩ = ⟨w(t1)

j,r , ξi⟩+
t∑

s=t1

η · jyis
m

·
(
1− yisf(xis ;W

(s))
)
·
(
σ′(⟨w(s)

j,r · ξis⟩) · ⟨ξis , ξi⟩

+ σ′(⟨w(s)
j,r · ξ̃is⟩) · ⟨ξ̃is , ξi⟩ · 1{is ∈ W}

)
= ⟨w(t1)

j,r , ξi⟩+
t∑

s=t1
is=i

η∥ξi∥22 · jyis
m

·
(
1− yif(xi;W

(s))
)
· σ′(⟨w(s)

j,r · ξi⟩)

+

t∑
s=t1
is ̸=i

η∥ξi∥22 · jyis
m

·
(
1− yisf(xis ;W

(s))
)
·
(
σ′(⟨w(s)

j,r · ξis⟩) ·
⟨ξis , ξi⟩
∥ξi∥22

+ σ′(⟨w(s)
j,r · ξ̃is⟩) ·

⟨ξ̃is , ξi⟩
∥ξi∥22

· 1{is ∈ W}

)
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Taking absolute value, we have that∣∣∣⟨w(t+1)
j,r , ξi⟩

∣∣∣ ≤ ∣∣∣⟨w(t1)
j,r , ξi⟩

∣∣∣+
∣∣∣∣∣∣∣

t∑
s=t1
is=i

η∥ξi∥22 · jyis
m

·
(
1− yif(xi;W

(s))
)
· σ′(⟨w(s)

j,r · ξi⟩)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
t∑

s=t1
is ̸=i

η∥ξi∥22 · jyis
m

·
(
1− yisf(xis ;W

(s))
)

·

(
σ′(⟨w(s)

j,r · ξis⟩) ·
⟨ξis , ξi⟩
∥ξi∥22

+ σ′(⟨w(s)
j,r · ξ̃is⟩) ·

⟨ξ̃is , ξi⟩
∥ξi∥22

· 1{is ∈ W}

)∣∣∣∣∣
Applying the definition of Υ(s), we further obtain that∣∣∣⟨w(t+1)

j,r , ξi⟩
∣∣∣ ≤ Υ(t1) +

t∑
s=t1
is=i

2η∥ξi∥22
m

·
∣∣1− yif(xi;W

(s))
∣∣ ·Υ(s)

+

t∑
s=t1
is ̸=i

2η∥ξi∥22
m

·
∣∣1− yisf(xis ;W

(s))
∣∣ ·Υ(s) ·

(
|⟨ξis , ξi⟩|
∥ξi∥22

+
|⟨ξ̃is , ξi⟩|
∥ξi∥22

)
.(90)

Now using Lemma 31, for s ≤ minj∈{±1}{T j
max}, we have that |1 − yisf(xis ;W

(s))| ≤ 2. Also,
by Lemma 9, it holds that∥ξi∥22 ≤ 3σ2

pd/2 and |⟨ξ, ξ′⟩|/∥ξ∥22 ≤ Õ(d−1/2). Thus we can further
upper bound (90) as

max
i∈[n]

∣∣∣⟨w(t+1)
j,r , ξi⟩

∣∣∣ ≤ Υ(t1) +
6ησ2

pd

m
·

 t∑
s=t1
is=i

Υ(s) + Õ(d−1/2) ·
t∑

s=t1
is ̸=i

Υ(s)

 (91)

= Υ(t1) +
6ησ2

pd

m
·

 t∑
s=t1
is=i

Υ(t1) + Õ(d−1/2) ·
t∑

s=t1
is ̸=i

Υ(t1)



+
6ησ2

pd

m
·

 t∑
s=t1
is=i

(
Υ(t1) −Υ(s)

)
+ Õ(d−1/2) ·

t∑
s=t1
is ̸=i

(
Υ(t1) −Υ(s)

) .

By our induction, we have that Υ(s) −Υ(t1) ≤ Υ(t1) · ϵ, for which we can further bound (91) as

max
i∈[n]

∣∣∣⟨w(t+1)
j,r , ξi⟩

∣∣∣ ≤ Υ(t1) ·

1 + 6ησ2
pd

m
· (1 + ϵ) ·

 t∑
s=t1
is=i

1 + Õ(d−1/2) ·
t∑

s=t1
is ̸=i

1




≤ Υ(t1) ·

[
1 +

6ησ2
pd

m
· (1 + ϵ) ·

(
2(t− t1 + 1)

n
+ Õ(d−1/2) · (t− t1 + 1)

)]

≤ Υ(t1) ·

[
1 +

18ησ2
pd

mn
· (1 + ϵ) · (t− t1 + 1)

]
,

where in the first inequality we have utilized the fact that |{t1 ≤ s ≤ t : is = i}| ≤ 2(t− t1+1)/n,
and in the last inequality we apply the condition that d = Ω̃(n2) by Assumption 3. Therefore, when
t ≤ t1 + T̃(ξ) − 1 with T̃(ξ) = Θ̃(mn · η−1 · ϵ · (1 + ϵ)−1 · (σ2

pd)
−1), it holds that

max
i∈[n]

∣∣∣⟨w(t+1)
j,r , ξi⟩

∣∣∣ ≤ Υ(t1) · (1 + ϵ). (92)
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By using the same argument as proving (92), we can also show that for t ≤ t1 + T̃(ξ) − 1

max
i∈W

∣∣∣⟨w(t+1)
j,r , ξ̃i⟩

∣∣∣ ≤ Υ(t1) · (1 + ϵ). (93)

By combining (92) and (93), we can arrive at

Υ(t+1) = max
j∈{±1},r∈[m]

{
max
i∈[n]

∣∣∣⟨w(t+1)
j,r , ξi⟩

∣∣∣ ,max
i∈W

∣∣∣⟨w(t+1)
j,r , ξ̃i⟩

∣∣∣} ≤ Υ(t1) · (1 + ϵ).

Thus we have proved our induction statement for step t+ 1. Repeating the induction completes the
proof of Proposition 33.

E.6.4 PROOF OF PROPOSITION 34

Proof of Proposition 34. We expand f̃tj(S̄j,k) as follows.

f̃tj(S̄j,k) ≤
1

m

∑
r∈[m]

σ
(
⟨w(tj(S̄j,k−1))

j,r , ju⟩
)
·
(
1 + η̃

(
1− f̃tj(S̄j,k−1)

))2
+

1

m

∑
r∈[m]

σ
(
⟨w(tj(S̄j,k−1))

j,r , jv⟩
)
·
(
1 + αη̃

(
1− f̃tj(S̄j,k−1)

))2
− 1

m

∑
r∈[m]

σ
(
− ⟨w(tj(S̄j,k−1))

−j,r ,−ju⟩
)
·
(
1− η̃

(
1− f̃tj(S̄j,k−1)

))2
− 1

m

∑
r∈[m]

σ
(
− ⟨w(tj(S̄j,k−1))

j,r ,−jv⟩
)
·
(
1− αη̃

(
1− f̃tj(S̄j,k−1)

))2

+

∣∣∣∣∣∣ 1m
∑
r∈[m]

σ
(
⟨w(tj(S̄j,k))

j,r , ξitj(S̄j,k)
⟩
)
− 1

m

∑
r∈[m]

σ
(
⟨w(tj(S̄j,k))

−j,r , ξitj(S̄j,k)
⟩
)∣∣∣∣∣∣

≤ 1

m

∑
r∈[m]

(
σ
(
⟨w(tj(S̄j,k−1))

j,r , ju⟩
)
+ σ

(
⟨w(tj(S̄j,k−1))

j,r , jv⟩
)

−σ
(
− ⟨w(tj(S̄j,k−1))

−j,r ,−ju⟩
)
− σ

(
− ⟨w(tj(S̄j,k−1))

j,r ,−jv⟩
))

·
(
1 + η̃

(
1− f̃tj(S̄j,k−1)

))2
+

1

m

∑
r∈[m]

(
σ
(
− ⟨w(tj(S̄j,k−1))

−j,r ,−ju⟩
)
+ σ

(
− ⟨w(tj(S̄j,k−1))

j,r ,−jv⟩
))

·
(
2η̃
(
1− f̃tj(S̄j,k−1)

))

+Υ(tj(S̄j,k))
2

≤ f̃tj(S̄j,k−1) ·
(
1 + η̃

(
1− f̃tj(S̄j,k−1)

))2
+ 2Etj(S̄j,k−1) +Υ(tj(S̄j,k))

2
. (94)

By Assumption 12 we know that f̃tj(S̄j,k) > 1 + δ. From the discussion in the proof of Lemma 19,
we know that once

2Etj(S̄j,k−1) +Υ(tj(S̄j,k))
2
≤ δ,

we have that

f̃tj(S̄j,k−1) ≥
η̃ + 2−

√
η̃2 + 4η̃

2η̃
,

and that

f̃tj(S̄j,k) ≤
(
1 + η̃(1− f̃tj(S̄j,k−1))

)2
+ Etj(S̄j,k−1) +Υ(tj(S̄j,k))

2

≤
(
η̃/2 +

√
η̃2/4 + η̃

)2
+ Etj(S̄j,k−1) +Υ(tj(S̄j,k))

2
.

This finishes the proof of Proposition 34
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F MULTIPLE TRAINING DATA CASE: SMALL LEARNING RATE REGIME

This section focuses on the multiple training data setup with a small learning rate.

Recall that W is the index set of training data points which lack the strong feature patch. By (3), the
CNN weights are updated according to

w
(t+1)
j,r = w

(t)
j,r −

jη

m
·
(
f(xit ;W

(t))− yit
)
·
(
σ′(⟨w(t)

j,r, yitu⟩) · yitu · 1{it /∈ W}

+ σ′(⟨w(t)
j,r, yitv⟩) · yitv + σ′(⟨w(t)

j,r · ξit⟩) · ξit

+ σ′(⟨w(t)
j,r · ξ̃it⟩) · ξ̃it , ·1{it ∈ W}

)
. (95)

Subsequently, by (95) the update formulas of those inner products of interests are given by

⟨w(t+1)
j,r , ju⟩ = ⟨w(t)

j,r, ju⟩+
η∥u∥22
m

·
(
1− yitf(xit ;W

(t))
)
· σ′(⟨w(t)

j,r, ju⟩jyit) · 1{it /∈ W},

⟨w(t+1)
j,r , jv⟩ = ⟨w(t)

j,r, jv⟩+
η∥v∥22
m

·
(
1− yitf(xit ;W

(t))
)
· σ′(⟨w(t)

j,r · jv⟩jyit),

and

⟨w(t+1)
j,r , ξi⟩ = ⟨w(t)

j,r, ξi⟩+
η · jyit
m

·
(
1− yitf(xit ;W

(t))
)
·
(
σ′(⟨w(t)

j,r · ξit⟩) · ⟨ξit , ξi⟩

+ σ′(⟨w(t)
j,r · ξ̃it⟩) · ⟨ξ̃it , ξi⟩ · 1{it ∈ W}

)
.

⟨w(t+1)
j,r , ξ̃i⟩ = ⟨w(t)

j,r, ξ̃i⟩+
η · jyit
m

·
(
1− yitf(xit ;W

(t))
)
·
(
σ′(⟨w(t)

j,r, ξit⟩) · ⟨ξit , ξ̃i⟩

+ σ′(⟨w(t)
j,r, ξ̃it⟩) · ⟨ξ̃it , ξ̃i⟩ · 1{it ∈ W}

)
, i ∈ W.

For convenience, we also write ℓ(t)i = f(xi;W
(t))− yi as the fitting residual.

The result of this section relies on the following conditions on the data model and the initialization.
Assumption 35 (Conditions on hyperparameters). Suppose that the following holds. For some ϵ ∈
(0, 1),

1. The weight initialization scale σ0 = Θ̃(∥u∥−1
2 );

2. Strong signal strength ∥u∥2 > Ω̃(m/
√
nϵ) · σp

√
d and weak signal strength σp

√
d ≥

Ω̃ (m/
√
nϵ) · ∥v∥2;

3. The dimension d satisfies d = Ω(polylog(m,n)).
Theorem 36 (Restatement of Proposition 6). Under Assumption 35, choosing the learning rate
η ≤ m/6∥u∥22 small enough and ϵ′ ∈ (0, 1), then with high probability 1− 1/poly(d), there exist

T † =
4m

η(1− τ)(1− ρ)∥u∥22
log

(
2ι

σ0∥u∥2

)
, T = T † +

⌊
Cm3

2ηϵ∥u∥22

⌋
, T ′ = T +

⌊∥∥W(T ) −W⋆
∥∥2
F

2ηϵ

⌋
,

with τ , ι defined in (97), (98) such that: (i) the average loss on samples Wc decreases to 3ϵ over
iterations [T †, T ], i.e.

1

2n

∑
i∈Wc

min
T †≤t≤T

{
yi − f(xi;W

(t))
}2

≤ 3ϵ,

(ii) average loss on samples W decreases to 3ϵ′ over iterations [T, T ′], i.e.

1

2n

∑
i∈W

min
T≤t≤T ′

(
yi − f(xi;W

(t))
)2

≤ 3ϵ′,

(iii) the model does not learn weak signal v well enough even until T ′, compared to initialization,
i.e.

max
j,r

∣∣∣⟨w(t)
j∈{±1},r∈[m],v⟩

∣∣∣ ≤ 2
√

2 log(16m/p) · σ0∥v∥2, ∀t ≤ T ′.
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In the multiple training data small learning rate regime, the dynamics go through three stages, which
we characterize in Appendices F.1, F.2, and F.3, respectively. The following lemma plays an impor-
tant role in the exponentially increasing stage (stage 1), for which we single it out here.
Lemma 37 (Derivative lower bound). For any 0 < τ < 1 to be tuned later, suppose at some time t
there holds

max
j∈{±1},r∈[m]

{∣∣∣⟨w(t)
j,r,u⟩

∣∣∣ , ∣∣∣⟨w(t)
j,r,v⟩

∣∣∣ ,max
i∈[n]

∣∣∣⟨w(t)
j,r, ξi⟩

∣∣∣ ,max
i∈W

∣∣∣⟨w(t)
j,r, ξ̃i⟩

∣∣∣} ≤
√
τ

3
,

then we can lower bound the fitting residual −yℓ(t)i ≥ 1− τ for every i ∈ [n].

Proof of Lemma 37. Plug into the CNN model definition (1), we have that

−yℓ(t)i = 1− Fy(xi;W
(t)) + F−y(xi;W

(t)) ≥ 1− Fy(xi;W
(t)).

If i ∈ Wc, we can upper bound Fy(xi;W
(t)) further by

Fy(xi;W
(t)) =

1

m

∑
r∈[m]

σ(⟨w(t)
y,r, yu⟩) + σ(⟨w(t)

y,r, yv⟩) + σ(⟨w(t)
y,r, ξi⟩)

≤ max
r∈[m]

{
⟨w(t)

y,r, yu⟩2 + ⟨w(t)
y,r, yv⟩2 + ⟨w(t)

y,r, ξi⟩2
}
≤ τ.

Otherwise, if i ∈ W , we also have

Fy(xi;W
(t)) =

1

m

∑
r∈[m]

σ(⟨w(t)
y,r, ξ̃i⟩) + σ(⟨w(t)

y,r, yv⟩) + σ(⟨w(t)
y,r, ξi⟩)

≤ max
r∈[m]

{
⟨w(t)

y,r, ξ̃i⟩2 + ⟨w(t)
y,r, yv⟩2 + ⟨w(t)

y,r, ξi⟩2
}
≤ τ.

Then it follows that −yℓ(t) ≥ 1− τ .

F.1 STAGE 1. LEARNING STRONG SIGNAL EXPONENTIALLY FAST

In this stage, we mainly track the maximal inner product between w and the signal vectors v and u,
with extra attention to the maximal inner product between w and the noise vectors.

Ψ(t) = max
j∈{±1},r∈[m]

∣∣∣⟨w(t)
j,r,v⟩

∣∣∣ , Φ(t) = max
j∈{±1},r∈[m]

∣∣∣⟨w(t)
j,r,u⟩

∣∣∣ ,
Γ
(t)
i = max

j∈{±1},r∈[m]

∣∣∣⟨w(t)
j,r, ξi⟩

∣∣∣ , i ∈ [n],

Γ̃
(t)
i = max

j∈{±1},r∈[m]

∣∣∣⟨w(t)
j,r, ξ̃i⟩

∣∣∣ , i ∈ W.

Lemma 38 (First stage: noise). Under the same conditions as Theorem 36, ever since initialization,
at least until time

T+ :=
nm

3η(4 + ρ)σ2
pd
,

there still holds that
max
i∈[n]

Γ
(t)
i ≤ σ0σp

√
d, max

i∈W
Γ̃
(t)
i ≤ σ0σp

√
d. (96)

Proof of Lemma 38. For those inner products with noise vectors, ∀i ∈ [n], the updating rules be-
come∣∣∣⟨w(t+1)

j,r , ξi⟩
∣∣∣ ≤ ∣∣∣⟨w(t)

j,r, ξi⟩
∣∣∣+ η

m
·
∣∣∣ℓ(t)it

∣∣∣ · (σ′(⟨w(t)
j,r · ξit⟩) · |⟨ξit , ξi⟩|+ σ′(⟨w(t)

j,r · ξ̃it⟩) ·
∣∣∣⟨ξ̃it , ξi⟩∣∣∣ · 1{it ∈ W}

)

≤
∣∣∣⟨w(t)

j,r, ξi⟩
∣∣∣+ 6η

m
·
(∣∣∣⟨w(t)

j,r, ξit⟩
∣∣∣ · |⟨ξit , ξi⟩|+ ∣∣∣⟨w(t)

j,r, ξ̃it⟩
∣∣∣ · ∣∣∣⟨ξ̃it , ξi⟩∣∣∣ · 1{it ∈ W}

)
.
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By taking maximum over r ∈ [m], we conclude that

Γ
(t+1)
i ≤ Γ

(t)
i +

6η

m
·
(
Γ
(t)
it

· |⟨ξit , ξi⟩|+ Γ̃
(t)
it

·
∣∣∣⟨ξ̃it , ξi⟩∣∣∣ · 1{it ∈ W}

)
, ∀i ∈ [n].

Similarly, we also have that

Γ̃
(t+1)
i ≤ Γ̃

(t)
i +

6η

m
·
(
Γ
(t)
it

·
∣∣∣⟨ξit , ξ̃i⟩∣∣∣+ Γ̃

(t)
it

·
∣∣∣⟨ξ̃it , ξ̃i⟩∣∣∣ · 1{it ∈ W}

)
, ∀i ∈ W.

We then use induction to rigorously prove our conclusions. Firstly, (96) holds at time t = 0. Now
suppose that (96) holds until some T̃ < T+. Fixing some i ∈ [n],

Γ
(T̃+1)
i ≤ 6ησ0σp

√
d

m
·

T̃∑
t=0

(
|⟨ξit , ξi⟩|+

∣∣∣⟨ξ̃it , ξi⟩∣∣∣ · 1{it ∈ W}
)

≤ 6ησ0σp
√
d

m
·

(
3T̃ σ2

pd

2n
+ 2T̃ · (1 + ρ) · σ2

p

√
d log(4n2/p)

)

≤
3ησ0σp

√
d(4 + ρ)T̃ σ2

pd

nm

≤ σ0σp
√
d.

The first inequality is by induction hypothesis. The second inequality is because that there are
at most T̃ /n many it’s would equal i and at most ρT̃ many it’s would be in W , and we also
use Lemma 9 to control the correlations between noise vectors. The third inequality is by d ≥
16n2 log(4n2/p) for Assumption 35 , while the last inequality is due to T̃ < T+. Similarly, we can
also control Γ̃(t+1)

i for some fixed i ∈ W as

Γ̃
(T̃+1)
i ≤ 6ησ0σp

√
d

m
·

T̃∑
t=0

(∣∣∣⟨ξit , ξ̃i⟩∣∣∣+ ∣∣∣⟨ξ̃it , ξ̃i⟩∣∣∣ · 1{it ∈ W}
)

≤ 6ησ0σp
√
d

m

(
3T̃ σ2

pd

2n
+ 2T̃ · (1 + ρ) · σ2

p

√
d log(4n2/p)

)
≤ σ0σp

√
d,

where the second inequality is because there are at most T̃ /n many it’s would equal i ∈ W . In
conclusion, (96) holds at least until T+.

In the following, we would take

τ = max

{
2σ0∥u∥2 (2 log(16m/p))1/2−∥v∥2

2/4(σ
2
pd) , 1−

6
√
2σ2

pd

∥u∥22 log(2/
√
2 log(16m/p))

}
,(97)

ι = 2σ0∥u∥2 · exp
{
(1− τ)(1− ρ)∥u∥22

3(4 + ρ)σ2
pd

}
. (98)

By the conditions in Assumption 35 on ∥v∥22/∥u∥22, we find τ, ι both constant in (0, 1).
Lemma 39 (First stage: signal). Under the same conditions as Theorem 36, there exists time

T † =
4m

η(1− τ)(1− ρ)∥u∥22
log

(
2ι

σ0∥u∥2

)
,

such that: (i) the model learns strong signal to a constant level,

max
r∈[m]

⟨w(T †)
j,r , ju⟩ ≥ ι, ∀j ∈ {±1},

(ii) compared to the random initialization, the model does not learn weak signal that much, i.e.,

max
j∈{±1},r∈[m]

∣∣∣⟨w(T †)
j,r ,v⟩

∣∣∣ ≤ 2
√
2 log(16m/p) · σ0∥v∥2
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Proof of Lemma 39. Firstly, we would find {Ψ(t),Φ(t)}t≥0 having an exponentially growing upper
bound. Recursively, we would have that

Ψ(t+1) ≤ Ψ(t) + max
j∈{±1},r∈[m]

∣∣∣∣jyηm ·
(
f(xi;W

(t))− y
)
· σ′(⟨w(t)

j,r, yv⟩) · ∥v∥
2
2

∣∣∣∣
= Ψ(t) +

η

m
·
∣∣∣ℓ(t)i

∣∣∣ · ∥v∥22 · max
j∈{±1},r∈[m]

σ′(⟨w(t)
j,r, yv⟩)

≤ Ψ(t) +
2η

m
·
∣∣∣ℓ(t)i

∣∣∣ · ∥v∥22 ·Ψ(t)

≤ exp

(
6η∥v∥22
m

)
·Ψ(t).

Therefore, we have that

Ψ(t) ≤ exp

(
6η∥v∥22t
m

)
·Ψ(0) ≤ exp

(
6η∥v∥22t
m

)
·
√
2 log(16m/p) · σ0∥v∥2 (99)

It follows similarly that

Φ(t) ≤ exp

(
6η(1− ρ)∥u∥22t

m

)
· Φ(0) ≤ exp

(
6η(1− ρ)∥u∥22t

m

)
·
√

2 log(16m/p) · σ0∥u∥2.(100)

The extra factor 1− ρ appears because only a 1− ρ proportion of data points would contain u, and
therefore contribute to evolution of Φ(t). Note that growing rates of these two bounds differ a lot
due to the different magnitudes of (1− ρ)∥u∥2 and ∥v∥2.

Our subsequent analysis illustrates that Φ(t) can grow into a constant-level magnitude since strong
signal u is significant enough. We can track how well our model learns u by

A
(t)
1 = max

r∈[m],it /∈W
⟨w(t)

1,r,u⟩, A
(t)
−1 = max

r∈[m],it /∈W
⟨w(t)

−1,r,−u⟩.

By definition, A(t)
1 , A

(t)
−1 ≤ Φ(t) also admits an exponentially upper bound in (100) . For a certain

τ ∈ (0, 1), due to the exponential upper bounds (99) and (100), max{Φ(t),Ψ(t)} ≤
√
τ/3 is true at

least until

T1 =
m

6η(1− ρ)∥u∥22
log

( √
τ/2

σ0∥u∥2
√

2 log(16m/p)

)
.

Moreover, since we have (1− ρ)∥u∥22 ≫ σ2
pd/n by Assumption 35, we also know T1 ≤ T+ where

T+ comes from Lemma 38. Therefore

Γ
(t)
i ≤ σ0σp

√
d ≤

√
τ/3, Γ̃

(t)
i ≤ σ0σp

√
d ≤

√
τ/3, ∀t ≤ T1

Consequently, until at least time T1, we can use Lemma 37 to conclude that −yitℓ
(t)
it

≥ 1−τ , which
enables lower bounding A(t) in the following.

The it-th sample would be used to update parameters, according to our multi-pass SGD updates (3).
If it ∈ W , then ⟨w(t+1)

j,r , ju⟩ = ⟨w(t)
j,r, ju⟩ holds for any j ∈ {±1} and r ∈ [m]. If it /∈ W but

yit = −1, then maxr⟨w(t+1)
1,r ,u⟩ = maxr⟨w(t)

1,r,u⟩ ≥ 0 since that neuron will not be activated.
Otherwise, only if it /∈ W and yit = 1, the updating rule becomes

⟨w(t+1)
1,r ,u⟩ = ⟨w(t)

1,r,u⟩+
η

m
·
(
− yitℓ

(t)
it

)
· σ′(⟨w(t)

1,r,u⟩) · ∥u∥22

≥ ⟨w(t)
1,r,u⟩+

2η(1− τ)∥u∥22
m

·max
{
⟨w(t)

1,r,u⟩, 0
}
.

Take maximum over r ∈ [m] to see that

A
(t+1)
1 ≥ A

(t)
1 +

2η(1− τ)∥u∥22
m

·A(t)
1 ≥ exp

(
η(1− τ)∥u∥2

m

)
·A(t)

1 ,
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where the last equality is by 1 + z ≥ exp(z/2) for any 0 ≤ z ≤ 2. Consequently, when t is large
(larger than n), we would have

A
(t)
1 ≥ exp

η(1− τ)∥u∥22
m

·
∑
t′≤t

1{it′ /∈ W, yit = 1}

 ·A(0)
1

≥ exp

(
η(1− τ)∥u∥22 · (1− ρ) · t

4m

)
· σ0∥u∥2/2, (101)

at least until step t ≤ T1. We use the fact that
∑

t′≤t 1{it′ /∈ W, yit = 1} ≥ (1− ρ)t/4 because the
sample labels are balanced (Lemma 7) and 1−ρ proportion of samples come with the strong signal.
In the same manner, we would have that

A
(t)
−1 ≥ exp

(
η(1− τ)∥u∥22(1− ρ)t

4m

)
· σ0∥u∥2/2. (102)

Define the time when A(t)
±1 both break ι,

T2 =
4m

η(1− τ)(1− ρ)∥u∥22
log

(
2ι

σ0∥u∥2

)
≤ T1,

where the inequality is due to the scaling of ι upon τ . Moreover, we also need that T2 ≤ T+,
where T+ is the time that ⟨w(t)

j,r, ξ̃i⟩, ⟨w
(t)
j,r, ξi⟩ remains in O(σ0σp

√
d). And this requirement is also

achieved by the selection of τ and ι. Plugging T2 into the exponential lower bounds (101) and (102),
we can conclude that

Φ(T2) ≥ A
(T2)
±1 ≥ ι,

which already grows up to a constant level magnitude by the time T2. Lastly, plug the definition of
T2 to upper bound ψ(T2) as

Ψ(T2) ≤ exp

(
24∥v∥22

(1− τ)(1− ρ)∥u∥22
log

(
2ι

σ0∥u∥2

))
·
√

2 log(16m/p) · σ0∥v∥2 ≤ 2
√

2 log(16m/p) · σ0∥v∥2.

In conclusion, by taking T † = T2, this lemma is completely proved.

F.2 STAGE 2. EXPLOITING STRONG SIGNAL

In the second stage, our lemmas suggest that before the model really learns the weak signal v or
memorizes any noise vector, the model already fits a proportion 1− ρ of the data points (i.e., strong
data) by exploiting strong signal u.

Lemma 40 (Second stage). Under the same conditions as Theorem 36, there exists time

T = T † +

⌊
Cm3

2ηϵ∥u∥22

⌋
such that: (i) the average loss over iterations within this stage has decreased to 2ϵ, i.e.,

1

2n

∑
i∈Wc

min
T †≤t≤T

{
yi − f(xi;W

(t))
}2

≤ 3ϵ,

(ii) all through the training dynamics 0 ≤ t ≤ T , there holds that

max
j∈{±1},r∈[m]

∣∣∣⟨w(t)
j,r,v⟩

∣∣∣ ≤ 2
√
2 log(16m/p)σ0 · ∥v∥2,

(iii) all through the training dynamics 0 ≤ t ≤ T , there holds that

max
j∈{±1},r∈[m],i∈[n]

∣∣∣⟨w(t)
j,r, ξi⟩

∣∣∣ ≤ σ0σp
√
d, max

j∈{±1},r∈[m],i∈W

∣∣∣⟨w(t)
j,r, ξ̃i⟩

∣∣∣ ≤ σ0σp
√
d.
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In studying the second stage, we firstly identify when the upper bound on ⟨w(t)
j,r,v⟩ breaks and find

that the conclusions of Lemma 39 still holds before that time.
Lemma 41. Under the same conditions as Theorem 36, take η ≤ m/6∥u∥22. There exists a time

T ‡ =
m

6η∥v∥22
log

( √
τ/2

σ0∥v∥2
√

2 log(16m/p)

)
≥ T †

such that (96) and

max
j∈{±1},r∈[m]

∣∣∣⟨w(t)
j,r,v⟩

∣∣∣ ≤ 2
√
2 log(16m/p)σ0∥v∥, max

r∈[m]
⟨w(t)

j,r, ju⟩ ≥ ι/2, ∀j ∈ {±1},

hold for any T † ≤ t ≤ T ‡.

Proof of Lemma 41. Firstly, we need to adopt the exponential upper bound derived in proving
Lemma 39,

Ψ(t) ≤ exp

(
6η∥v∥22t
m

)
·Ψ(0) ≤ exp

(
6η∥v∥22t
m

)
·
√

2 log(16m/p) · σ0∥v∥2.

Then we naturally find that before T ‡, it would always hold that

max
j∈{±1},r∈[m]

∣∣∣⟨w(t)
j,r,v⟩

∣∣∣ ≤ 2
√
2 log(16m/p) · σ0∥v∥2.

Due to the conditions on ∥u∥22/∥v∥22, T ‡ is found to be much larger than T †. Then we proceed to
prove the other assertion by induction. At time t = T †, the lower bound maxj,r⟨w(t)

j,r, ju⟩ ≥ ι/2
holds as a consequence of the previous lemma. Suppose it holds until time t. If it ∈ W , then
⟨w(t+1)

j,r , ju⟩ = ⟨w(t)
j,r, ju⟩ holds for any j ∈ {±1}, r ∈ [m]. If it /∈ W but yit = −1, then

maxr∈[m]⟨w
(t+1)
1,r ,u⟩ = maxr∈[m]⟨w

(t)
1,r,u⟩ ≥ 0 since that neuron will not be activated. Otherwise,

if it /∈ W and yit = 1, consider the updating rule

⟨w(t+1)
1,r ,u⟩ = ⟨w(t)

1,r,u⟩+
η

m
·
(
1− yitf(xit ;W

(t))
)
· σ′(⟨w(t)

1,r,u⟩) · ∥u∥22,

from which we find maxr∈[m],it /∈W⟨w(t+1)
yi,r , yiu⟩ ≥ maxr∈[m],it /∈W⟨w(t)

yi,r, yiu⟩ must hold if
yitf(xit ;W

(t)) ≤ 1. Otherwise, once yitf(xit ;W
(t)) > 1, it immediately follows that

1 < yitf(xit ;W
(t)) = Fyit

(xit ;W
(t))− F−yit

(xit ;W
(t))

≤ Fyit
(xit ;W

(t)) =
1

m

∑
r∈[m]

σ(⟨w(t)
1,r, yitu⟩) + σ(⟨w(t)

1,r, yitv⟩) + σ(⟨w(t)
1,r, ξit⟩)

≤ max
r∈[m]

⟨w(t)
1,r,u⟩2 + σ2

0∥v∥2 + σ2
0σ

2
pd.

Consequently, for the specific neuron r∗ = argmaxr∈[m]⟨w
(t)
1,r,u⟩2, there holds

⟨w(t+1)
1,r∗ ,u⟩ ≥ ⟨w(t)

1,r∗ ,u⟩ −
3η

m
· ⟨w(t)

1,r∗ ,u⟩ · ∥u∥22

≥
(
1− 8 log(16m/p) · σ2

0∥v∥22 − σ2
0σ

2
pd
)
·
(
1− 3η

m
· ∥u∥22

)
≥ ι

2
,

where the last inequality is enabled by taking

η ≤ m

6∥u∥22
, σ0 ≤

√
1− ι

8 log(16m/p) · ∥v∥22 + σ2
pd
.

Therefore, we find that maxr∈[m]⟨w
(t+1)
1,r ,u⟩ ≥ ι/2 must hold no matter what it is. In the same way,

one can also obtain maxr∈[m]⟨w
(t+1)
−1,r ,−u⟩ ≥ ι/2. By induction, the induction proof is complete.
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Our subsequently analysis confirms that even before T ‡, the model can already fit those data points
with strong signal by exploiting u. For the given 0 < ϵ < 1, define a reference point W∗ as

w∗
j,r =

4m(1 + ϵ)

ι
· ju

∥u∥22
, j ∈ {±1}, r ∈ [m]. (103)

Lemma 42. Under the same condition as the previous lemma, for all T † ≤ t ≤ T ‡, there holds

yi⟨∇f(xi;W
(t)),W∗⟩ ≥ 2 · (1 + ϵ)

for any i /∈ W .

Proof of Lemma 42. Recall that the definition of CNN in (1) and that u ⊥ span(v, ξi). We have
that

yi⟨∇f(xi;W
(t)),W∗⟩ = 1

m

∑
j∈{±1},r∈[m]

σ′(⟨w(t)
j,r, yiu⟩) · ⟨w

∗
j,r, yiu⟩

=
∑

j∈{±1},r∈[m]

σ′(⟨w(t)
j,r, yiu⟩) ·

4(1 + ϵ)

ι

≥ max
r∈[m]

⟨w(t)
yi,r, yiu⟩ ·

4(1 + ϵ)

ι

≥ 2 · (1 + ϵ),

where the last inequality is by maxr⟨w(t)
j,r, ju⟩ ≥ ι/2 for any j ∈ {±1} as shown by the previous

lemma.

Lemma 43. Continued from the previous setting, for T † ≤ t ≤ T ‡, if it /∈ W , there holds

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F ≥ 2η
(
f(xit ;W

(t))− yit
)2 − 2ηϵ2.

Proof of Lemma 43. Firstly we expand the difference by

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F

= 2η⟨ℓ(t)it
∇f(xit ;W

(t)),W(t) −W∗⟩ − η2 ·
∣∣∣ℓ(t)it

∣∣∣2 · ∥∇f(xit ;W
(t))∥2F . (104)

Since the neural network f(x;W) is 2-homogeneous in W due to the activation function σ(z) =
max{z, 0}2, we have that

⟨∇f(x;W(t)),W(t)⟩ = 2f(x;W(t)).

Stack these observations into the first term of previous difference expansion to obtain

⟨ℓ(t)it
∇f(xit ;W

(t)),W(t) −W∗⟩ = ℓ
(t)
it

·
(
2f(xit ;W

(t))− ⟨∇f(xit ;W
(t)),W∗⟩

)
= 2ℓ

(t)
it

·
(
f(xit ;W

(t))− yit
)
+ ℓ

(t)
it

· yit ·
(
2− yit⟨∇f(xit ;W

(t)),W∗⟩
)
.

Note that the first term is exactly 2(f(xit ;W
(t))− yit)

2. As for the second term, since it /∈ W , we
need to plug in Lemma 42 to see 2− yit⟨∇f(xit ;W

(t)),W∗⟩ ≤ −2ϵ < 0, so that∣∣∣ℓ(t)it
· yit ·

(
2− yit⟨∇f(xit ;W

(t)),W∗⟩
)∣∣∣ ≤ 1

2

(
ℓ
(t)
it

)2
+ 2ϵ2.

As a result, we would know that

⟨ℓ(t)it
∇f(xit ;W

(t)),W(t) −W∗⟩ ≥ 3

2
(f(xit ;W

(t))− yit)
2 − 2ϵ2.
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Next, an upper bound on the second order term η2∥∇L(W(t)∥2F is given by

η2 ·
∣∣∣ℓ(t)it

∣∣∣2 · ∥∇f(xit ;W
(t))∥2F

= η2 · ℓ(t)2it
·

∥u∥22 ·
∑

j∈{±1},r∈[m]

σ′(⟨w(t)
j,r, yu⟩)

2

+∥v∥22 ·
∑

j∈{±1},r∈[m]

σ′(⟨w(t)
j,r, yv⟩)

2 + ∥ξit∥22 ·
∑

j∈{±1},r∈[m]

σ′(⟨w(t)
j,r, ξit⟩)

2


≤ O(max{∥u∥22, ∥v∥22, ∥ξit∥22}) · η2 · ℓ

(t)2
it

,

since the dynamics of inner products ⟨w(t)
j,r, yu⟩, ⟨w

(t)
j,r, yv⟩, ⟨w

(t)
j,r, ξi⟩ are well bounded by O(1).

Via scaling η · O(max{∥u∥22, ∥v∥22, ∥ξit∥22}) ≤ 1, we would know η2|ℓ(t)it
|2∥∇f(xit ;W

(t))∥2F ≤
ηℓ

(t)2
it

. Eventually, continued from (104), we can completely prove this lemma.

Lemma 44. Continued from the previous setting, for T † ≤ t ≤ T ‡, if it ∈ W , there holds

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F ≥ −Cησ2
0 ·
(
∥v∥22 + σ2

pd
)
. (105)

Proof of Lemma 44. Same as the last lemma, from the SGD setting, we have that

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F

= 2η⟨ℓ(t)it
∇f(xit ;W

(t)),W(t) −W∗⟩ − η2 ·
∣∣∣ℓ(t)it

∣∣∣2 · ∥∇f(xit ;W
(t))∥2F , (106)

and from the 2-homogeneity, it follows that

⟨∇f(xit ;W
(t)),W(t)⟩ = 2f(xit ;W

(t)).

Since it ∈ W , every ∇wj,r
f(xit ;W

(t)) is in span(v, ξit , ξ̃it) ⊥ u, so

⟨∇f(xit ;W
(t)),W∗⟩ = 0.

As a result, the first term in (106) can be bounded by∣∣∣2η⟨ℓ(t)it
∇f(xit ;W

(t)),W(t) −W∗⟩
∣∣∣

= 4η ·
∣∣∣(f(xit ;W

(t))− yit
)
· f(xit ;W

(t))
∣∣∣

≤ 12η

m
·

∣∣∣∣∣∣
∑

j∈{±1},r∈[m]

σ(⟨w(t)
j,r, ξ̃it⟩) +

∑
j∈{±1},r∈[m]

σ(⟨w(t)
j,r, yitv⟩) +

∑
j∈{±1},r∈[m]

σ(⟨w(t)
j,r, ξit⟩)

∣∣∣∣∣∣
≤ O

(
ησ2

0∥v∥22 + ησ2
0σ

2
pd
)
.

We can also deal with the second term in (106) by

η2 ·
∣∣∣ℓ(t)it

∣∣∣2 · ∥∇f(xit ;W
(t))∥2F

≤ η2 · ℓ(t)2it
·

∥ξ̃it∥22 ·
∑

j∈{±1},r∈[m]

σ′(⟨w(t)
j,r, ξ̃it⟩)

2

+∥v∥22 ·
∑

j∈{±1},r∈[m]

σ′(⟨w(t)
j,r, yitv⟩)

2 + ∥ξit∥22 ·
∑

j∈{±1},r∈[m]

σ′(⟨w(t)
j,r, ξit⟩)

2


≤ O

(
η2(σ4

0∥v∥42 + σ4
0σ

4
pd

2)
)
,

where the last inequality is due to ℓ(t)it
being O(1). Since we already take η ≤ m/6∥u∥22, the second

term of (106) is ignorable compared to the first term of (106). Therefore, we can conclude (105).
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Equipped with Lemmas 41, 42, 43, and 44, we are ready to prove the main lemma of second stage.

Proof of Lemma 40. Continued from Lemmas 43 and 44, for any t ≥ T †, it holds that

1

t− T † + 1

t∑
s=T †

1{is /∈ W} · 1
2

(
f(xit ;W

(t))− yit
)2

≤ ∥W(T †) −W∗∥2F
2η(t− T † + 1)

+ ϵ2(1− ρ) + Cσ2
0

(
∥v∥22 + σ2

pd
)
ρ.

Before proceeding to scale time t, it is helpful to decompose ∥W(T †) −W∗∥2F and have an upper
bound,

∥W(T †) −W∗∥2F =
∑

j∈{±1},r∈[m]

⟨w(T †)
j,r −w∗

j,r,u⟩2

∥u∥22
+

⟨w(T †)
j,r −w∗

j,r,v⟩2

∥v∥22
+
∥∥∥Pξ,ξ̃(w

(T †)
j,r −w∗

j,r)
∥∥∥2
2

+

∥∥∥∥(Id − vv⊤

∥v∥22
− uu⊤

∥u∥22
−Pξ,ξ̃

)
(w

(T †)
j,r −w∗

j,r)

∥∥∥∥2
2

≤
∑

j∈{±1},r∈[m]

2⟨w(T †)
j,r ,u⟩2 + 2⟨w∗

j,r,u⟩2

∥u∥22
+

⟨w(T †)
j,r ,v⟩2

∥v∥22
+
∥∥∥Pξ,ξ̃w

(T †)
j,r

∥∥∥2

+

∥∥∥∥(Id − vv⊤

∥v∥22
− uu⊤

∥u∥22
−Pξ,ξ̃

)
(w

(T †)
j,r −w∗

j,r)

∥∥∥∥2
2

, (107)

where Pξ,ξ̃ denotes the projection matrix onto linear space spani∈[n],i′∈W(ξi, ξ̃i′). In these deriva-
tions, we exploit the fact that w∗ is parallel to u, and the gradient steps only updates w along the
directions of u,v. Recall that by Lemma 41,

max
j∈{±1},r∈[m]

⟨w(T †)
j,r , ju⟩ = Ω(1), max

j∈{±1},r∈[m]

∣∣∣⟨w(T †)
j,r ,v⟩

∣∣∣ = Õ(σ0∥v∥2), ∥w(0)
j,r ∥2 = Õ(σ0

√
d),

max
j∈{±1},r∈[m],i∈[n]

∣∣∣⟨w(T †)
j,r , ξi⟩

∣∣∣ = Õ(σ0σp
√
d),

the leading term in (107) is
∑

j∈{±1},r∈[m]⟨w∗
j,r,u⟩2/∥u∥22. Therefore, we would conclude that

∥W(T †) −W∗∥2F ≤ Cm3/∥u∥22. As a result, the average loss after iterations T † can be bounded
by

1

t− T † + 1

t∑
s=T †

1{is /∈ W} · 1
2

(
f(xit ;W

(t))− yit
)2

≤ Cm3

2η∥u∥22(t− T † + 1)
+ ϵ2(1− ρ) + Cσ2

0(∥v∥22 + σ2
pd)ρ.

Then choose T = T † + ⌊Cm3/(2ηϵ∥u∥22)⌋ as stated in Lemma 40. Since ∥u∥22/∥v∥22 ≥ Ω̃(m2),
we can verify that T ≤ T ‡ where T ‡ is given in Lemma 41 until when the weak signal cannot be
fully learned. Moreover, we also have T ≤ T+ where T+ is given in Lemma 38 when the noise is
not memorized.

In conclusion, via scaling σ2
0 ≤ ϵ/(Cρ(∥v∥22 + σ2

pd)), the final output would be

1

2n

∑
i∈Wc

min
T †≤t≤T

{
yi − f(xi;W

(t))
}2

≤ 1

t− T † + 1

t∑
s=T †

1{is /∈ W} · 1
2

(
f(xit ;W

(t))− yit
)2

≤ ϵ+ ϵ2(1− ρ) + Cσ2
0

(
∥v∥22 + σ2

pd
)
ρ

≤ 3ϵ,

ending the proof of Lemma 40.
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F.3 STAGE 3. MEMORIZING NOISE

After the second stage, the model already fits those data points with strong signal by exploiting u.
Subsequently, in the following third stage, the residual ℓ(t)i for i ∈ Wc would remain quite small,
preventing the model from learning u.

On the contrary, since f(xi;W
(t)) = Õ(σ2

0) is still far from its label yi for each sample i ∈
W without the strong signal u. Therefore, the weight vectors would still evolve in the directions
perpendicular to u. In Assumption 35, the ratio between the weak signal v and the typical noise
norm σp

√
d is scaled by

∥v∥2
σp

√
d
≤ Õ

(
1√
n

)
. (108)

Therefore, the model will eventually interpolates the whole dataset by memorizing noise vectors
(ξ̃i, ξi), i ∈ W , Now we define a new reference point W⋆ by

w⋆
j,r = w∗

j,r+
4m(1 + ϵ′)

ι
·

(∑
i∈W

1{yi = j} · ξi
∥ξi∥2

+ 1{yi = j} · ξ̃i

∥ξ̃i∥2

)
, j ∈ {±1}, r ∈ [m],

where w∗
j,r defined in (103) is the reference point we used in the second stage. The following lemma

is an adaptation of Theorem 4.4 of Cao et al. (2022) onto SGD with square loss.
Lemma 45 (Third stage). Under the same conditions as Theorem 36, for some ϵ′ ∈ (0, 1), let

T ′ = T +

⌊∥∥W(T ) −W⋆
∥∥2
F

2ηϵ

⌋
,

where T is the end of the second stage in Lemma 40. Then we would have that

max
j∈{±1},r∈[m]

∣∣∣⟨w(t)
j,r,v⟩

∣∣∣ ≤ Õ(σ0∥v∥2),

even until t ≤ T ′. But the whole dataset has already been interpolated during this interval,

1

2ρn

∑
i∈W

min
T≤t≤T ′

{
yi − f(xi;W

(t))
}2

≤ 3ϵ′.

Proof of Lemma 45. As the closing stage of the training dynamics, the evolution dynamics during
this interval is straightforward based on all techniques developed in Appendices D and F. Inner
products {

⟨w(t)
j,r, ξi⟩, ⟨w

(t)
j,r, ξ̃i⟩

}
i∈W

would firstly go through a substage in which they exponentially increase to a constant level (just as
stage 1). And then the model will fit all samples indexed by W by memorizing these noise vectors
in polynomial time. All through this interval, maxj∈{±1},r∈[m] |⟨w

(t)
j,r,v⟩| would stay Õ(σ0∥v∥)

due to the scale of ∥v∥2/(σp
√
d) in (108). A detailed proof is omitted here for readability.

Combine Lemmas 39, 40 and 45 to obtain the full version of Theorem 36.
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