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Abstract
Collaborative learning techniques have the poten-
tial to enable training machine learning models
that are superior to models trained on a single
entity’s data. However, in many cases, poten-
tial participants in such collaborative schemes
are competitors on a downstream task, such as
firms that each aim to attract customers by pro-
viding the best recommendations. This can incen-
tivize dishonest updates that damage other partici-
pants’ models, potentially undermining the bene-
fits of collaboration. In this work, we formulate
a game that models such interactions and study
two learning tasks within this framework: single-
round mean estimation and multi-round SGD on
strongly-convex objectives. For a natural class
of player actions, we show that rational clients
are incentivized to strongly manipulate their up-
dates, thus preventing learning. We then propose
mechanisms that incentivize honest communica-
tion and ensure learning quality comparable to
full cooperation. Our work shows that explicitly
modeling the incentives and actions of dishonest
clients, rather than assuming them malicious, can
enable strong robustness guarantees for collabora-
tive learning.

1. Introduction
Recent years have seen an increased interest in designing
methods for collaborative learning, where multiple partici-
pants contribute data and train a model jointly. The premise
is that the participants will then be able to obtain a better
model than if they were learning in isolation. Most promi-
nently, federated learning (FL) (Kairouz et al., 2021) pro-
vides a method for training models in a distributed manner,
allowing data to stay with institutions, while still harvesting
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the benefits of collaboration.

An underlying premise for the success of collaborative learn-
ing schemes is that the participants contribute data (or gradi-
ent updates) relevant to the learning task at hand. However,
when participants are in competition on some downstream
task, they may have an incentive to sabotage other partic-
ipants’ models. For instance, firms that are competing on
the same market can often improve their machine learning
models by having access to their competitors’s data, but at
the same time will likely benefit from a gap between the
quality of their models and those of other firms.

These conflicting incentives raise a concern that collabora-
tive learning may be vulnerable to strategic updates from
participants. Previous work has empirically demonstrated
that irrelevant or malicious updates can negatively impact
collaborative learning (Tolpegin et al., 2020; Kairouz et al.,
2021). If a subset of participants is modeled as malicious
(Byzantine) agents, that collude in a worst-case manner, it
is known that optimal convergence rates contain an leading-
order term based on the fraction of Byzantine agents and
is irreducible with the number of players (Yin et al., 2018;
Alistarh et al., 2018). This suggests that collaborative learn-
ing in the presence of strategic behavior may not provide
asymptotic benefits over learning with one’s own data.

Contributions We study collaborative learning in the pres-
ence of strategic behavior by explicitly modeling players’
competitive incentives. We consider a game between play-
ers that exchange updates via a central server, where players’
rewards increase both when they obtain a good model for
themselves, and when other players’ models perform poorly.

We study two important instantiations of this collaborative
learning game: mean estimation with a very general action
space and strongly-convex stochastic optimization with at-
tacks that add gradient noise. We show that players are
often incentivized to strongly manipulate their estimates,
rendering collaborative learning useless. To remedy this,
we suggest mechanisms inspired by peer prediction (Miller
et al., 2005), that penalize cheating players using side pay-
ments or noisy server updates. Our mechanisms solely rely
on observable player behaviour, and recover near-optimal
convergence rates at equilbrium. Furthermore, the expected
payments cancel out when all players are honest, so that
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players are incentivized to participate in the training, rather
than use their own data only, despite the penalties.

2. Related work
Game theory and collaborative learning Many works
that study connections between FL and game theory focus
on clients’ incentives to participate in the training process at
all (see Tu et al. (2021) for a recent survey, and Gradwohl
& Tennenholtz (2022) for an analysis of how this relates to
competition). Similarly, (Karimireddy et al., 2022) study
incentives for free-riding, i.e. joining collaborative learning
without spending resources to contribute data. In contrast,
our setting covers clients that strategically manipulate their
updates in order to damage other participants’ models.

Another line of work studies FL as a coalitional game theory
problem, in which the players need to deal with potential is-
sues of between-client heterogeneity by deciding with whom
to collaborate (Donahue & Kleinberg, 2021a;b). Optimal
behavior under data heterogeneity is also studied by (Chayti
et al., 2021), while (Gupta et al., 2022) studies invariant
risk minimization games in which FL participants learn pre-
dictors invariant across client distributions. In contrast, we
study FL as a non-cooperative game and seek to address
strategic manipulation, rather than data heterogeneity.

Robustness in federated learning The robustness of FL
to noisy or corrupted updates from clients has received
substantial recent interest, see Shejwalkar et al. (2022) for a
recent overview. One line of work studies federated learning
in the context of various data corruption models, e.g. noise
or bias towards protected groups (Fang & Ye, 2022; Abay
et al., 2020). In contrast, we study strategic manipulation
by clients as the source of data corruption.

Clients attacking the training are typically modeled as
Byzantine (Blanchard et al., 2017; Yin et al., 2018; Alistarh
et al., 2018), adversarially seeking to sabotage training by
deviating from the FL protocol in a worst-case manner. The
goal of Byzantine-robust learning is to achieve guarantees
in that setting. Similar models have been studied in a statis-
tical context, where data is stored at a single location and
so communication is not a concern (Qiao & Valiant, 2018;
Konstantinov et al., 2020). In contrast to these works, we
model manipulation as a consequence of competitive incen-
tives rather than maliciousness and analyze client behaviour
using game theory (Osborne & Rubinstein, 1994).

Peer prediction mechanisms Our mechanisms for induc-
ing honesty are closely related to peer prediction that aims to
incentivize honest ratings on online platforms. In their semi-
nal paper, Miller et al. (2005) suggest paying raters based on
how much their rating helps to predict other raters’ ratings.
While they require a common prior shared by all raters and

the mechanism designer, Witkowski & Parkes (2012) extend
their results relaxing that assumption. Closely related to our
work, Cai et al. (2015) suggest to incentivize crowdworkers
to produce accurate labels by paying them more, the better
their label gets predicted by a model estimate from other
workers’ data. Meanwhile, Waggoner & Chen (2014) show
that peer prediction mechanisms elicit common knowledge,
rather than truth from participants. Lastly, while Karger
et al. (2021) show that peer prediction can elicit subjective
forecasts of similar accuracy as scoring based on the ground
truth, Gao et al. (2014) demonstrate that human raters can
end up with dishonest strategies despite the existence of
honest equilibria.

3. Competitive federated learning
In this section, we present our framework on a high level and
explain how it models competitive behaviour in FL. In this
generality, however, it is impossible to analyze the problem
quantitatively. We therefore define specific instantiations of
the framework, which we study for the rest of the paper.

3.1. General framework

Overview Throughout the paper, we assume that there
are N ≥ 2 players, who each have a private dataset. The
players participate in an FL-like procedure, which takes
place over multiple rounds and requires them to send mes-
sages with information relevant to update a centrally trained
model at every step. In our setup, players act strategically
and competitive pressures might incentivize them to try to
corrupt other players’ models. This is done by manipulat-
ing updates sent to the central model, while simultaneously
keeping track of a private (and presumably better) model.

To model the participants’ strategic interactions, we need to
define a game by specifying their action spaces and rewards.
To this end, one needs to specify: their attack strategies, that
describe whether and how they will corrupt their messages
to the server; their defense strategies, which describes how
they postprocess the server’s updates to defend themselves
against others’ manipulations; and their rewards, in a way
that reflects the quality of learning and the competition
between them. Given these components, we are interested
in the Nash equilibria of the corresponding game, in order
to understand strategic behavior in FL and how it affects the
quality of the players’ models.

Formal setup We denote the samples of each player i
by xi = {xi

1, . . . , x
i
n}, where x ∈ X , and assume that

{xi
j : i ∈ [N ], j ∈ [n]} are (not necessarily independent)

samples from an unknown distribution D ∈ P(X ). For
simplicity, we assume that all players have an equal number
of samples n. Players communicate via an FL-like protocol,
through which a central server model θs ∈ Rd is updated.
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The intended goal of this procedure is to find a value for θs

that minimizes a loss function fD(θ). Note that because D is
unknown, the players can benefit from honest collaboration.

The protocol consists of T rounds and the central model is
initialized at some θs1 ∈ Rd. At time t = 1, 2, . . . , T the
server sends the model θst to all participants. Each agent
i is then meant to send an update gt(θ

s
t , x

i) to the server,
for some function gt : Rd × Xn → Rd. For example,
in the standard FedSGD setting, fD(θ) = Ex∈D[fx(θ)]
for functions fx : Rd → R and g = 1

n

∑
j ∇fxi

j
(θst )

serves as an estimate of the gradient of f evaluated at
the data of player i. Each player i then sends a mes-
sage mi

t ∈ Rd to the server (which may or may not be
equal to gt(θ

s
t , x

i)). Finally, the server computes a new
model θst+1 = Agg(θit,m

1
t ,m

2
t , . . . ,m

N
t ), via an aggre-

gating function Agg : Rd × RN×d → Rd (for example,
in FedSGD this will be a gradient update computed as
m̄t =

1
N

∑N
i=1 m

i
t).

Players’ strategies At every step, the players take two
decisions: how to attack by sending a manipulated estimate
to the server, and how to defend themselves from unreli-
able estimates when updating their locally tracked model
based on information received from the server. Formally,
we assume that each player i ∈ [N ] chooses (potentially
randomized) functions ai1, a

i
2, . . . , a

i
T and di1, . . . , d

i
T , that

describe their behavior for the attack and defense stages
at every time step. These functions are chosen from two
respective sets of possible actions A and D . The tuple of
chosen actions pi = (ai1, . . . , a

i
T , d

i
1, . . . , d

i
T ) ∈ A T ×DT

represents the player’s global strategy.

In the most general case, the attacks and defenses of each
player i may take into account all information available to
the player, throughout the history of the game. At time t this
include the models θs1, . . . , θ

s
t received by the server; the

local models θi1, . . . , θ
i
t the player kept at previous iterations;

the attack strategies ai1, . . . , a
i
t used up to time t (e.g. to

correct for one’s own faulty messages); as well as additional
randomness ξi1, . . . , ξ

i
t sampled at each round.

Players’ rewards Each player aims to obtain a final model
θiT+1 that approximately minimizes fD(θiT+1). Crucially,
their reward also depends on other players’ models. Specif-
ically, we assume that each player i has a reward function
Ri : RN×d × P(X ) → R and receives the reward

ri = Ri
(
θ1T+1, θ

2
T+1, . . . , θ

N
T+1,D

)
. (1)

Note that the messages mi sent by players and thus θiT+1

and each player’s reward depend not only on players’ strate-
gies, but also on the particular realization of their samples
xi. We thus focus on expected rewards, averaging out
the effects of particular realizations of players’ samples
and randomness in their strategies. We study the vector

of expected rewards E(r1, . . . , rN ) and its dependence on
the strategy profile, that is on the distribution of strategies
p = (p1, p2, . . . , pN ) chosen by each player.

Assumptions on players’ behaviour To analyze players’
behaviour, we make two assumptions, giving rise to a classic
game-theoretic setup. The first is that players seek to max-
imize their expected reward, as defined above, i.e. players
are rational. In addition, since the reward of each player
depends on the actions of the other players, players account
for the actions of the others, which means that their behavior
is strategic. A natural solution concept in this context is the
Nash equilibrium (Nash, 1951). This describes a strategy
profile in which no player can improve their reward by uni-
laterally changing their strategy. In our case, this classic
notion translates to the following definition.

Definition 3.1. Let p = (p1, p2, . . . , pN ) ∈(
P(A T × DT )

)N
be a strategy profile. Then p is a

(mixed) Nash equilibrium if ∀p∗ ∈ P(A T × DT ) and
∀i ∈ [N ]:

E
(
ri(p1, . . . , pi, . . . , pN )

)
≥ E

(
ri(p1, . . . , p∗, . . . , pN )

)
,

where the expectation is taken with respect to the random-
ness of the data and the players’ strategies.

3.2. Specific instantiations: mean estimation and
stochastic gradient descent

We study two specific cases of the game, each modeling
a fundamental learning problem. The first is single-round
mean estimation (Sections 4 and 5), which correspond to the
general setup with T = 1, fD(θ) = ∥θ − µ∥2, where µ =
EX∼D(X), and the updates g being the sample means of the
players. The second is multi-round stochastic optimization
of strongly-convex functions fD(θ) via SGD (Section 6), in
which case the updates g are stochastic gradient estimates
based on players’ data. In the corresponding sections, we
define natural rewards that model the competing incentives.

Strategy spaces To describe the attack strategies, in
both cases we model attacks that send a noisy update
gt(θ

s
t , x

i) + αi
tξ

i
t , for normalized zero-mean noise ξit and

an attack parameter αi
t ∈ R, to the server. Up to a certain

magnitude of αi
t, these attacks have a natural interpretation

as the act of hiding a random subset of a player’s data. In
addition, the αi

t parameters have a natural interpretation as
the of aggressiveness of the player. In the case of mean
estimation, we are also able to analyze much more general
attack strategies that can adjust αi

t based on the players’
samples xi and additionally allow for adding a directed bias
to the communicated messages.

For the defense strategies in the mean estimation case, we
consider a defense strategy that corrects the mean estimate
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received from the server for the player’s own manipulation.
The player then computes a weighted average of the result
and the their local mean. The weighting parameter βi used
then has a natural interpretation as the cautiousness of the
player. In the SGD case we directly provide mechanisms
that incentivize honesty at the attack stage, making potential
defenses redundant.

4. Competitive mean estimation
In this section we analyze a single-round version of the
game, in which players aim to estimate the mean of a
random variable X ∈ P(Rd). Specifically, we consider
the game defined in Section 3, in the case of T = 1
rounds. Players sample from a distribution D ∈ P(Rd)
by first sampling a random mean µi ∼ Dµ and "variance"
σ2
i := E∥Xi − µi∥2 ∼ Dσ (this models potential hetero-

geneity between clients), and then receiving (conditionally)
independent samples from a random variable Xi with mean
µi and "variance" σ2

i . We call µ = Eµi, σ2 = Eσ2
i and

σ2
⋆ = E∥µ− µi∥2. We assume that players do not know the

distributions Dµ and Dσ .

Each player wants to estimate the global mean µ as well
as possible. During the single communication round, the
players are meant to communicate the mean of their samples:
g1(θ

s
1, x

i) = 1
n

∑n
j=1 x

i
j . Instead, they send messages mi

1.
The server aggregates the received messages by averaging
them, so that θs2 = 1

N

∑N
i=1 m

i
1. The players then receive

the value of θs2 from the server and use their defense strategy
to arrive at a final estimate θi2 = d(θs2, x

i) of the mean. To
simplify notation, we ignore the dependence of all values
on the time t = 1 in the rest of this and the next section.

Reward functions To model competitive incentives, the
reward of each player needs to increase as their own estimate
of the mean becomes better, and as the estimates of other
players become worse. A natural reward function is:

Ri(θ1, . . . , θN , µ) =

∑
j ̸=i ∥θj − µ∥2
N − 1

−λi∥θi−µ∥2, (2)

for some λi ≥ 0. The value of λi quantifies to what extent
player i prioritizes the quality of their own estimate over
damaging the estimates of the other players.

Attack strategies We assume players choose what esti-
mates to communicate by deciding how to perturb the em-
pirical mean of their data. Specifically, each player i selects
parameters αi(xi) ≥ 0, bi(xi) ∈ Rd based on their sample,
in a potentially randomized manner, and communicates:

mi = x̄i + αi(xi)ξi + bi(xi), (3)

where x̄i = 1
n

∑n
j=1 x

i
j , E[ξi] = 0 and E∥ξi∥2 = 1. Here

x̄i is the standard empirical mean of xi, while αi represents

the magnitude of the noise player i adds to the estimate
and bi(xi) is an additional bias term. Note that the case
of bi(xi) = 0 recovers the data-hiding attack discussed
in Section 3.2. Since we model players as not knowing
anything about µ beyond their own sample xi, we assume

E < x̄j − µ, bj(xj) >= 0, (4)

thus preventing bi from encoding additional knowledge
about µ. In particular, this condition holds whenever bj(xj)
is independent of the residuals x̄j − µ. We also assume
that the noise variables ξi are independent of each other
and all xk

j and αk(xk), but make no further distributional
assumptions about ξi.

We denote this set of attack strategies as A m. Each ele-
ment in A m can be uniquely identified via the distribution
of the noise ξi and the functions αi(xi) and bi(xi). As
α = b = 0 can be interpreted as covering the fully collabo-
rative case, while α, b → ∞ covers the fully malicious case,
the (adaptive) parameters α, b have a natural interpretation
as measures of the aggressiveness of a player. We also note
that these attacks are very general: mi(xi)− x̄i can always
be written as the sum of a determinstic component b̂(xi)

and zero mean noise ξ̂(xi), such that (4) and the fixed dis-
tribution of ξi are the only assumptions separating us from
the most general possible set of attacks strategies.

Defense strategies In the defense stage each player uses
the received estimate θs = m̄ = 1

N

∑N
i=1 m

i and their local
data xi to compute a final estimate of the unknown mean.
Two extreme approaches for player i are being fully cautious
and using their local mean x̄i only, or fully trusting others
and computing the average of all sent updates, corrected for
their own manipulation, that is m̄i = 1

N

(
Nθs −mi + x̄i

)
.

We consider defense strategies that take a weighted average
of these extremes: Each player i chooses a parameter βi ∈
[0, 1] and constructs an estimate

θi = (1− βi)m̄i + βix̄i. (5)

Denote the described set of defenses, as Dw. Each element
in Dw is uniquely identified via the corresponding parameter
β with β = 0 and β = 1 covering the extreme cases from
above. Since β can be used to interpolate between these two
extremes, it can be seen as a measure of cautiousness.

4.1. Expected rewards and Nash equilibria

We now analyze the game with strategy set (A m × Dw).
As the specific distribution of ξi does not affect the players’
rewards, the attack and defense strategies are for all relevant
purposes uniquely determined by the functions α, b, and β
respectively. We abuse notation and consider (αi, bi, βi) as
the strategy of player i. First we derive a formula for the
MSE of a player, for a fixed strategy profile.
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Theorem 4.1. Let D be as described above and ν =
σ2

n + σ2
∗. Then the expected mean squared error

(MSE) of player i ∈ [N ] for any strategy profile
((α1, bi, β1), . . . , (αN , bN , βN )) ∈ (A m × Dw)N is:

E
(
∥θi − µ∥2

)
=
(
1− βi

)2 ν

N
+

1

N2

∑
j ̸=i

E(aj(xj)2)

+
1

N2
E∥
∑
j ̸=i

bj(xj)∥2


+ (βi)2ν + 2
(
1− βi

)
βi ν

N

This is proven in Appendix C similar to the bias-variance
decomposition. This result allows us to analyze the ex-
pected rewards defined by equation (2) of the players for
any strategy profile. One can immediately see that there
is no incentive for players to cooperate as long as βi < 1:
other players j can always increase their reward by increas-
ing E(aj(xj)2), such that there can be no Nash equilbrium
with βi < 1. But for finite E(aj(xj)2), the optimal βi can
be shown to never equal one, yielding:
Corollary 4.2. The game defined by the reward in equation
(2) and the set of strategies A m×Dw does not have a Nash
equilibrium with finite E(αj(xj)2).

For details, see Appendix C. This shows that our defenses
are unable to prevent maximal dishonesty and formalizes
a simple intuitive observation: as long as a player consid-
ers other players’ updates at all, others are incentivized to
reduce the information their updates convey about their sam-
ples. Therefore, without modifications to the protocol, no
player can benefit from collaborative learning.

5. Mechanisms for incentivizing honesty
Given the impossibility of successful learning with ratio-
nal competing agents in the mean estimation setting, we
shift our attention to modifications of the protocol that al-
low for honest Nash equilibria (that is, equilibria where
αj(xj) = bj(xj) = 0,∀j). To this end, we present a mech-
anism that seeks to penalize dishonest players proportionally
to the magnitude of their manipulations (and, thus, the dam-
age caused to other players). The mechanism here is a
modification to the FL protocol, in which sense it can be
seen as a robust algorithm that protects the training from
the considered attacks from the clients. In Appendix B.2 we
also present a mechanism based on explicit side payments.
Importantly, for both mechanisms, the penalties can be com-
puted by the server without the need for knowing αi, bi or
other additional information beyond the players’ updates,
and without prior knowledge of D.

In the mechanism we consider the server sends noisier ver-

sions of its mean estimate to players whose messages sus-
piciously deviate from the average of all players’ updates.
This is conceptually similar to methods against free-riding
(e.g. Karimireddy et al. (2022)), which often tie the accu-
racy of the model a client receives in an FL setting to the
client’s overall contribution to model training.

Theorem 5.1. Consider the modified game with reward

Ri =
∑

j ̸=i ∥θ
j−µ∥2

N−1 −λi∥θi−µ∥2, where player i receives
an estimate m̄+

√
Cϵi∥mi − m̄∥ for independent noise ϵi

with mean Eϵi = 0 and "variance" E∥ϵi∥2 = 1, instead
of the empirical mean m̄, from the server. Then honesty
(αi = 0, bi = 0, βi = C

C+1 ) is a Nash equilibrium, as long
as C > 1

λi(N−1)2−1 and λi >
1

(N−1)2 .

Furthermore, for fixed λi = λ, k > 1 and C = k
λ(N−1)2−1 ,

E
(
∥θi − µ∥2

)
= O

(
σ2

Nn +
σ2
⋆

N

)
and players are incen-

tivized to participate in the game rather than relying on
their own estimate, whenever N ≥ 2, the other N − 1
players participate at the honest equilibrium and λ ≥ 1.

Essentially, the noise added by the server ensures that a
client can benefit more from collaboration in terms of their
MSE, compared to their benefit from damaging the models
of the others. Theorem 5.1 is proven in Appendix D.3.
Furthermore, whenever N ≥ 2, the other N − 1 players
participate at the honest equilibrium and λ ≥ 1, the property
of voluntary participation is satisfied, meaning that a player
will receive better reward at the game’s equilibrium, than
when learning with their own data, despite the penalties.

The benefits of modeling clients’ rationality Note that
at the equilibrium, players’ MSEs are of the same order as
if all clients honestly communicated their sample means. In
particular, when σ∗ = 0 (i.e. homogeneous clients), this is in
contrast to known negative results for worst-case poisoning
attacks (Qiao & Valiant, 2018) and single-round Byzantine
robustness (Alistarh et al., 2018). In this sense, our modified
protocol acts as a robust and efficient collaborative learning
algorithm. This is possible because our data corruption
model is derived by explicitly modeling clients’ incentives.

6. Competitive stochastic gradient descent
We now develop the ideas from the last section further
to multi-round collaborative Stochastic Gradient Descent
(SGD) in the FL setting. The mechanism we consider in this
section relies on explicit side payments and requires rans-
ferable utility: that is, the existence of an outside resource
R such as money, that is valued equally and on the same
scale as the reward R by all players. We give theoretical
guarantees for the mechanism for strongly convex objec-
tives here and experimental evidence for its effectiveness on
non-convex objectives in Appendix B.3.
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Game and rewards We consider a T -round version of the
game described in Section 3. The FL protocol is designed to
minimize a loss function fD(θ) over a closed and convex set
of model parameters θ ∈ W ⊂ Rd that contains the global
minimizer of fD(θ) . At every time step t, each player is
meant to communicate an update gt(θ

s
t , x

i) with expecta-
tion ∇f(θst ). We denote by eit(θt) = gt(θ

s
t , x

i) − ∇f(θt)
the difference between the gradient and the estimate, which
is a deterministic function of θt for fixed data xi, but is
assumed to fulfill Exieit(θ) = 0 for all θ, and to be inde-
pendent across time and players. Intuitively, fD(θ) can be
thought of as an expected loss Ex∼Dfx(θ), for which player
i computes approximate stochastic gradients as ∇fxi

t
(θst−1)

using their t-th sample xi
t. The message sent by player i is

termed mi
t. The server averages the received messages to

compute a gradient estimate m̄t =
1
N

∑
i m

i
t and updates

the parameter θ via θst+1 = ΠW (θst − γtm̄t), using a fixed
learning rate schedule γt and the projection ΠW onto W .
Finally, the server sends the updated θst+1 to all players.

Strategies and rewards We consider attacks of the form
mi

t = gt(θ
s
t , x

i) + αi
tξ

i
t , that is, the true gradient esti-

mate plus random noise of the form αi
tξ

i
t , where Eξit = 0,

E∥ξit∥2 = 1 and ξit is sampled independent from the other
ξjt′ and the algorithm’s trajectory. The set of attack strate-
gies Ag is then described by the sequence of aggressiveness
parameters αi

t > 0, which we assume to be selected in
advance, independent of the optimization trajectory. This
assumption is needed in order to avoid complicated depen-
dencies between successive SGD rounds and more sophisti-
cated attack strategies are beyond the scope of our analysis.
Since the defenses in the mean estimation case were inef-
fective, we directly focus on mechanisms and only consider
a trivial defense in which player i adjusts the server’s final
estimate for the noise they added themselves in the final
step T : θiT+1 = θT − αi

T

N ξiT .

We do not consider a bias term for these attacks. Unlike
for mean estimation, the effects of an undefended fixed-
direction attack on the loss fD(θ) can strongly depend on
the current estimate θst and the attack’s precise direction,
making it substantially harder to analyze such attacks. How-
ever, it is easy to see that if the server aims to optimize
fD(θT+1) and is allowed to shift its estimate θst to defend
against fixed-direction attacks at every step t, the fixed direc-
tion attacks would be neutralized by the server at any equil-
brium, unless the attack inadvertently improved fD(θT+1).

Given these strategies and a Lipschitz function Ui : RN →
R, player i aims to maximize the reward

Ri
U = U i(f(θ1T+1), ..., f(θ

N
T+1)). (6)

It is easy to see that this game does not always have an equi-
librium and players are often incentivized to lie aggressively.

In particular, we recover the mean estimation setting with
βi = 0 when setting U i(x) =

∑
j ̸=i ∥θ−θj∥2−λi∥θ−θi∥2,

T = 1, θ1 = 0 and γ1 = 0.5, as d
dθ∥θ − xj

i∥2 = 2(θ − xj
i ).

Our next result establishes that players can be incentivized
to be arbitrarily honest, using a penalty scheme based on
the transferable utility. Each player is penalized when their
update is far from the average update of all players. Ad-
ditionally, the penalties are redistributed such that players’
penalties have zero expectation whenever αi

t = αj
t for all

i, j, t. We set m̄t =
1
N

∑
j m

j
t and

Ri
Up

= U i(f(θ1T+1), ..., f(θ
N
T+1))−

T∑
t=1

Ct∥mi
t − m̄t∥2

+
1

N − 1

∑
k ̸=i

T∑
t

Ct∥mk
t − m̄t∥2

for constants Ct. With this penalized reward we prove:

Theorem 6.1. Assume f is B-smooth, L-Lipschitz and m-
strongly convex (See Appendix E.1 for definitions of these
properties). Also assume that for all i and t the gradient
noise eit is B′-Lipschitz with probability one and that there
exist scalars M ≥ 0 and MV ≥ 0, such that for all t:

Esi(∥(eit(θst )∥2) ≤ M +MV ∥∇f(θst ))∥22. (7)

Set the learning γt =
4

ηm+tm for an integer constant η > 1,
such that 4

ηm+m ≤ 1
B(MV /N+1) .

Then if U i is l1-Lipschitz with constant LU for all play-
ers i, all player’s best response strategy fulfill αt

i ≤
8LLUN

Ct(N−2)m
√
T+η

independent of other players’ strategies.

If αi
t = αj

t ,∀i, j, t, each player’s expected penalty is 0. For
ϵ > 0, Ct ≥ 8LLUN

ϵ(N−2)m
√
T+η

yields αt
i ≤ ϵ for rational

players. In that case, as long as W is bounded and we have
that P (∃t ≤ T : ΠW (θst − γtm̄t) ̸= θst − γtm̄t) ∈ O( 1

NT )

we get E (f(θT+1)− f(θ∗)) ∈ O( 1+M+ϵ2

NT ) +O( 1
T 2 ).

Intuitively, the result holds since our assumptions ensure
that increasing αi

t has limited effect on Ef(θjT+1). Thus,
the damages from attacking are outweighed by the penalties
for large αi

t and Ct. The condition on ΠW ensures that
SGD is not slowed down by projections and holds for "suffi-
ciently large" distances between the boundary of W and θ1.
See Appendix E.10 for more details on this and the theorem
proof. Theorem 6.1 implies that for sufficiently large Ct,
despite all players acting strategically, the model converges
at speed comparable to when all clients share clean updates,
thereby ensuring full learning benefits from the collabora-
tion. Moreover, as long as all players are equally honest,
this is achieved with zero expected penalties for the players.
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A. Ethical considerations
Our theoretical results establish that penalties average out to zero in expectation, but substantial client heterogeneity can still
cause large payments for individual honest participants. Despite our experimental results indicating that variance can be
manageable even for real-world data, this is problematic for two reasons: The first is about fairness: Paying some honest
participants large amounts, while demanding large amounts from others, based on what essentially amounts to luck is
problematic, especially when the participants are individuals rather than firms, and when the nature of the problem might
make it difficult for participants to gauge the order of magnitude of payments in advance. The second is about diversity:
Clients that expect their data to deviate strongly from the mean of the overall data distribution might opt to not participate in
FL with our mechanisms, even though underrepresented types of clients can provide data that is crucial to a model’s broad
performance and generalization. In our formalism, this problem is obscured by the assumption that all participants sample
their data independently from the same distribution, and are unable to predict whether or not their data represents outliers.

Correspondingly, it is important to keep penalty weights C as low as possible to reduce the likelihood of overwhelmingly
large penalties, only apply our framework in the context of firms rather than individuals (for whom competitive incentives
might often play less of a direct role either way), as well as ensure that the our assumptions about a common data distributions
are plausible for the problem at hand. The former can be particularly challenging for non-convex problems, or convex
problems with unknown problem parameters, for which no strong candidate for C can be established theoretically.

B. Additional results
B.1. Nash equilibria in the mean estimation game under bounded attacks

The conclusion that no Nash equilibria exist in the mean estimation game described in 4 is rather intuitive, since all
participants have an incentive to send as modified an update as possible, therefore damaging the other players’ estimates. In
practice, however, attacking in an unbounded manner, that is, sending updates very far from the true mean, may not be
plausible. Indeed, if most players send their true mean, one expects the variance of the estimates that the server receives
to be of order O

(
σ2

n + σ2
⋆

)
. Therefore, players might in practice be reluctant to send estimates that are further than

A
√

σ2

n + σ2
⋆ away from there true local mean, for some constant A.

We therefore consider the same game as before, in the case when an upper bound A on the parameters αi is
given. Denote the resulting set of attack strategies by A m

A . Since A m
A ⊂ A m, Theorem 4.1 holds for the joint set of

strategies (A m
A × Dw). Then we have the following

Corollary B.1. In the setup of Theorem 4.1, if the set of available strategies is A m
A × Dw for some constant A > 0, the

only Nash equilibria of the game with bi(xi) = 0 fixed for all players i are the strategy profiles for which:

|αi| = A and βi =
A2

(σ
2

n + σ2
⋆)N +A2

∀i ∈ [N ]. (8)

Furthermore, at each of these equilibria the value of mean squared error of the estimate of each player i is

E
(
∥θi − µ∥2

)
= (

σ2

n
+ σ2

⋆)
(1 + 1

σ2

n +σ2
⋆

A2)

(N + 1
σ2

n +σ2
⋆

A2)

As a result, whenever A = O(1), each player’s estimate at any Nash equilibrium achieves a mean squared error of
O
(

σ2

Nn +
σ2
⋆

N

)
, which is of the same order as the MSE of the estimates that would have been obtained in a fully collaborative

setting.

B.2. Mechanism for collaborative mean estimation based on transferable utility

Here we consider the mean estimation game in the case of transferable utility. We introduce a more general penalized reward
for player i, which is given by

Ri
p = Ri(θ1, . . . , θN , µ)− pi(m1, . . . ,mN ).
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Here pi(m1, . . . ,mN ) denotes a penalty paid by player i to the server, measured in terms of the resource R and depending
on the messages that the clients sent. As players value the reward and resource equally, they optimize for Ri

p instead of Ri.

Inspired by peer prediction (Miller et al., 2005) we consider a penalty for player i proportional to the squared difference
between that player’s update and the average update sent by all players:

pi(m1, . . . ,mN ) = C∥mi − m̄∥2, (9)

for some constant C ≥ 0. This is a natural measure of the “suspiciousness” of the client’s update. In order to prevent
excessive payments for honest players, we redistribute the penalties as

p′i(m1, . . . ,mN ) = C∥mi − m̄∥2 −
∑
j ̸=i

C∥mj − m̄∥2
N − 1

(10)

Theorem B.2 establishes that this penalty can incentivize full honesty for the right choice of C:
Theorem B.2. In the setting of Theorem 4.1 for the penalized game with rewards

Ri
p′ =

∑
j ̸=i ∥θj − µ∥2
N − 1

− λi∥θi − µ∥2 − p′i(m1, . . . ,mN )

the strategy profile αj = bj = βj = 0 for all j is a Nash equilibrium, whenever C > 1
(N−1)2−1 .

At this equilbrium, the expected penalty pi(m1, . . . ,mN ) paid by each player i is equal to 0. Each player is incentivized to
participate in the penalized game rather than relying on their own estimate, whenever N > 2, the other N − 1 players
participate at the honest equilibrium and λi >

N
(N−1)2 .

Intuitively, our incentive mechanism is effective because αi and bi only affect the first term of the original reward of player i
(equation 2), as well as the penalty, to which they contribute at most as 1

N2 and − (N−1)2−1
N2 C respectively. At the honest

equilibrium every player’s MSE is in O( 1
N ), such that for large N a player can strongly improve their own error by joining

the collaboration, while barely affecting others’ errors. For a complete proof consider Appendix D.2.

Theorem B.2 shows that our mechanism fulfills two desirable properties: (budget) balance and (ex-ante) individual
rationality/voluntary participation (Jackson, 2014). The first property means that the server neither makes a profit nor a loss.
The second holds as long as λi >

N
(N−1)2 and the other players take part in the optimization, and means that a player will

receive better reward at the game’s equilibrium, than when learning with their own data, despite the penalties assigned by
the server.

B.3. Experiments

Setup To verify that our mechanisms can work for SGD in the non-convex case we simulate FedSGD (McMahan et al.,
2017) with clients corrupting their messages to different degrees, and record how players’ rewards and penalties are affected
by their aggressiveness α for different penalty constants C. The αi

t that empirically maximizes a player’s reward is an
approximate best response for a given C and fixed αj

t for j ̸= i, and should thus be small for a successful mechanism.

We simulate FedSGD, treating each writer as a client, to train a CNN-classifier using the architecture and learning rate pro-
vided by Caldas et al. (2018) for the FeMNIST dataset that consists of characters and numbers written by different writers. We
downloaded the FeMNIST dataset using the code provided at https://github.com/TalwalkarLab/leaf/tree/master/data/femnist,
opting not to filter writers that only have produced a small amount of samples. Correspondingly, our dataset contains 817851
examples of handwritten digits and characters written by a total of 3597 writers rather than the 805263 samples from 3550
writers reported in Caldas et al. (2018).

At time step t < T = 10650, we randomly select m = 3 clients and compute a gradient estimate git for the cross entropy
loss f using a single batch containing 90% of the data provided by the corresponding writer1. We test on the remaining 10%
of the data.

The network we train is based on the network used in the LEAF repository 2 but implemented in pytorch (Paszke et al.,
2019). It consists of two convolutional layers with relu activations, kernel size 5, (2, 2) padding and 32 and 64 filters,

1T was selected as 3 times the number of writers in the LEAF dataset, as reported by Caldas et al. (2018).
2https://github.com/TalwalkarLab/leaf/blob/master/models/femnist/cnn.py
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respectively, each followed by max pooling with kernel size and stride 2. After the convolutional layers, there is a single
hidden dense layer with 2048 neurons and a relu activation, and a dense output layer. All experiments were conducted using
a single GPU each3 per run.
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Figure 1: Average reward Ri
p(C) received by players

in group A for αB = 0 and varying αA. Different
colors represent different penalty weights C. Results are
averaged over 10 runs and error bars show the standard
error.

Results We randomly split writers into two groups A and
B containing one and two thirds of the writers respectively,
and corrupt the gradient estimates (mi

t)l = (git)l + αA(ξ
i
t)l

sent by players in group A for each weight tensor and bias
vector l separately, by adding isotropic normal noise (ξit)l with
"variance" E∥(ξit)l∥2 = 1. We do the same with αB for group
B. At each step, the three corrupted gradients are then averaged
(weighted by the corresponding writers’ datasets’ sizes) to m̄t,
which is used to update our neural network’s parameters θt
with learning rate 0.06, i.e. θt+1 = θt − 0.06m̄t. Unlike in
our theorems, writers reuse the same data points whenever they
calculate gradients. In the clean case (αA = αB = 0), our
final model achieves a test accuracy of 86% 4. We also record
both the cross-entropy loss f achieved by the final model θT
on the test set, as well as the sum of the squared deviations
∥mi

t − m̄t∥2 incurred by each individual client i across all steps
in which they were active.

This allows us to calculate the estimated reward
Ri

p(C) = f(θT ) − ∑T−1
t=0 It(i)C∥mi

t − m̄t∥2 +
1
2

∑
k ̸=i

∑T−1
t=0 It(i)It(k)C∥mk

t − m̄t∥2 received by ev-
ery player for penalty weights C held constant over time, where
It(j) is a binary indicator equal to 1 whenever player i provided
an update at time t.

Figure 1 shows the average reward Ri
p(C) received by players in group A for αB = 0 and αA varying on the x-axis for

different penalty weights C. It clearly shows that penalization decreases players’ gains from adding noise even in the
non-convex case, and that near-zero noise is optimal for players given sufficiently large penalty weights C. At the same
time, despite client heterogeneity, the penalties paid by honest players are small: If all players are honest, an overwhelming
majority (98%) of players end up paying less than 0.0031 on average (over 10 rounds), even at C = 0.0002. This is an
order of magnitude under the increase in loss from moving from αA = 0 to αA = 9, which is already disincentivized for the
substantially smaller penalty constant C = 5e− 5. Experimental results for additional values of αA and αB can be found in
Appendix B.3.
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Figure 2: αB = 1, αA varying.
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Figure 3: αA = 0, αB varying.
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Figure 4: αA = 1, αB varying.

Figure 5: Average reward Ri
p(C) received by players in a group for different values of αA and αB . Different colors

represent different penalty weights C. Results are averaged over 10 runs and error bars show the standard error.

Figures 2, 3, 4 show results similar to 1 for αB fixed to 1 instead of 0 (Figure 2), or αB varying while αA is fixed to 0

3We used assigned GPUs from a cluster that employs mostly, but not exclusively Nvidia V100 GPUs
4For comparison, Caldas et al. (2018) aim for an accuracy threshold of 75% using 5% of the training data.
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(Figure 3), or 1 (Figure 4), respectively. As payments are redistributed, the average payments for players in group B increase
slower with αB , as each individual’s increase in payment is partially balanced out by an increase in received payments from
encountering other members of group B (Figures 3, 4). Meanwhile, figures 2 and 4 hint at honest players receiving money
when others are adding noise: In both cases, players of one group receive slightly higher reward for larger penalties when
they are honest (α = 0) while the other group slightly cheats (α = 1).

It is worth noting, that we do not perform a projection step in our experiments, such that numerical instabilities become an
issue for large values of α. In particular, for αA > 6 or αB > 6 we regularly observed NaN gradients for one or more of our
10 runs.

Figure 6 shows a histogram over the total penalty for C = 0.0002 paid by each individual writer over the whole 10650 steps
for the honest case of αA = αB = 0, averaged over 10 runs. Clearly, most penalties are on the order of 0.01, which is
substantially smaller than negative effects of larger noise values on the order of 0.1, which are strongly disincentivized by
the penalty value of C = 0.0002.
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Figure 6: Histogram of average (over 10 runs) total penalties paid by players for αA = αB = 0 and penalty weight
C = 0.002
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C. Proofs on mean estimation
First we prove Theorem 4.1.
Theorem C.1. Let D be as described in 4. Then, for any strategy profile ((α1, b1, β1), . . . , (αN , bN , βN )) ∈ (A m×Dw)N

and for any player i ∈ [N ], the expected mean squared error of player i is:

E
(
∥θi − µ∥2

)
=
(
1− βi

)2 σ2

Nn
+

σ2
⋆

N
+

1

N2

∑
j ̸=i

E(aj(xj)2) +
1

N2
E∥
∑
j ̸=i

bj(xj)∥2


+ (βi)2(
σ2

n
+ σ2

⋆) + 2
(
1− βi

)
βi(

σ2

Nn
+

σ2
⋆

N
)

Proof. Recall that θi = (1 − βi)m̄i + βix̄i = (1 − βi) 1
N

(
Nθs −mi + x̄i

)
+ βix̄i. Therefore, θi − µ =

(1− βi)
(

1
N

(
Nθs −mi + x̄i

)
− µ

)
+ βi

(
x̄i − µ

)
.

Denote
Y =

1

N

(
Nθs −mi + x̄i

)
− µ, Z = x̄i − µ

Then we have:

E
(
∥θi − µ∥2

)
= E

(
∥
(
1− βi

)
Y + βiZ∥2

)
(11)

=
(
1− βi

)2 E∥Y ∥2 + (βi)2E∥Z2∥+ 2
(
1− βi

)
βiE(Y tZ)

The second term is the mean squared error of the (clean) estimate based on the local data of player i and so:

E(∥Z∥2) = E
(
∥x̄i − µ∥2

)
= E

∥ 1
n

∑
j

xi
j − µ∥2


= E

∥ 1
n

∑
j

(xi
j − µ)∥2


=

1

n2
E

∥
∑
j

(xi
j − µ)∥2


=

1

n2
E

∥
∑
j

(xi
j − µi)∥2 + ∥

∑
j

(µi − µ)∥2


=
1

n2

∑
j

E
(
∥(xi

j − µi)∥2
)
+ E

(
∥n(µi − µ)∥2

)
=

n

n2
E
(
∥(Xi − µi)∥2

)
+ E∥(µi − µ)∥2

= E
(
σ2
i

n

)
+ σ2

⋆

=
σ2

n
+ σ2

⋆,

(12)

where we can split E
(
∥∑j(x

i
j − µ)∥2

)
because of the tower law of expectation and using that E(xi

j) = µi conditional on

the value of µi; and the squared norm of the last sum factors, as all xi
j − µi terms are independent and have zero mean such

that
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E∥
∑
j

(xi
j − µ)∥2

= E∥
∑
j>1

(xi
j − µ)∥2 + E∥xi

1 − µ∥2 + 2E

(xi
1 − µ)t

∑
j>1

(xi
j − µ)


= E∥

∑
j>1

(xi
j − µ)∥2 + E∥xi

1 − µ∥2 + 2E

∑
d

(xi
1 − µ)d

∑
j>1

(xi
j − µ)d


= E∥

∑
j>1

(xi
j − µ)∥2 + E∥xi

1 − µ∥2 + 2
∑
d

E

(xi
1 − µ)d

∑
j>1

(xi
j − µ)d


= E∥

∑
j>1

(xi
j − µ)∥2 + E∥xi

1 − µ∥2 + 2
∑
d

E(xi
1 − µ)dE

∑
j>1

(xi
j − µ)d


= E∥

∑
j>1

(xi
j − µ)∥2 + E∥xi

1 − µ∥2 + 2
∑
d

0E

∑
j>1

(xi
j − µ)d


= E∥

∑
j>1

(xi
j − µ)∥2 + E∥xi

1 − µ∥2

and so on, allowing us to inductively factor the sum.

Now, to compute the terms that depend on Y , note that by definition θs = 1
N

∑N
i=1 m

i and therefore:

Y =
1

N

(
Nθs −mi + x̄i

)
− µ

=
1

N

 N∑
j=1

mj −mi + x̄i

− µ

=
1

N

∑
j ̸=i

mj +
1

N
x̄i − µ

Define random variables:

Y1 =
1

N

N∑
j ̸=i

mj , Y2 =
1

N
x̄i − µ

so that Y = Y1 + Y2. This implies that:

E(Y tZ) = E
(
Zt (Y1 + Y2)

)
= E(ZtY1) + E(ZtY2).

Since the value of Y1 only depends on the data of all players j ∈ {1, 2, . . . , N}/{i} and the value of Z depends only on the
data of player i, it follows that Z and Y1 are independent and therefore E(ZtY1) = E(Z)tE(Y1).

Therefore,

E(ZtY ) = E
(
Zt (Y1 + Y2)

)
= E(Z)tE(Y1) + E(ZtY2)

= E
(
x̄i − µ

)t E
 1

N

∑
j ̸=i

mj

+ E
((

x̄i − µ
)t( 1

N
x̄i − µ

))

= 0 +
1

N
E
(
∥x̄i∥2

)
− 1

N
µtE

(
x̄i
)
− µtE

(
x̄i
)
+ ∥µ∥2
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=
1

N
E
(
∥x̄i∥2

)
− 1

N
µtµ− µtµ+ ∥µ∥2

=
1

N
E
(
∥x̄i∥2

)
− 1

N
∥µ∥2

=
1

N
E

∥ 1
n

∑
j

xi
j∥2
− 1

N
∥µ∥2

=
1

N
E

∥( 1
n

∑
j

xi
j − µ) + µ∥2

− 1

N
∥µ∥2

=
1

N
E

∥( 1
n

∑
j

xi
j − µ)∥2 + ∥µ∥2

− 1

N
∥µ∥2

=
1

N
E

∥( 1
n

∑
j

xi
j − µ)∥2


=

σ2

Nn
+

σ2
⋆

N
(13)

Where the squared norm of the sum factors as all xj
i − µ terms have zero mean, while µ is a constant and the last equality

follows from the computations in (12).

Now, by definition mj = x̄j +αj(xj)ξj + bj(xj) for every j ∈ [N ], where the ξj are random variables with zero mean and
unit "variance" E(∥ξj∥2). Note that because Y1 and Y2 depend only on the data of all players j ∈ {1, 2, . . . , N}/{i} and on
the data of player i respectively, they are independent and we get:

E
(
∥Y 2∥

)
= E

(
∥Y1 + Y2∥2

)
= E

(
∥Y1∥2

)
+ E

(
∥Y2∥2

)
+ 2E (Y1)

t E (Y2) (14)

In order to calculate the value of E
(
Y 2
)

we have to compute E(Y1),E(Y2),E
(
∥Y1∥2

)
and E

(
∥Y2∥2

)
. We have:

E(Y1) = E

 1

N

∑
j ̸=i

(
x̄j + αj(xj)ξj + bj(xj)

)
=

1

N

∑
j ̸=i

E
(
x̄j
)
+

1

N

∑
j ̸=i

E(αj(xj))E (ξj) +
1

N

∑
j ̸=i

E(bj(xj))

=
N − 1

N
(µ) +

1

N

∑
j ̸=i

Ebj(xj),

since E(ξj) = 0 and ξj is independent from all other variables. In addition,

E(Y2) = E
(

1

N
x̄i − µ

)
=

1

N
E(x̄i)− µ =

(1−N)

N
µ

Next,

E
(
∥Y1∥2

)
= E

∥ 1

N

∑
j ̸=i

(
x̄j + αj(xj)ξj + bj(xj)

)
∥2


= E

∥ 1

N

∑
j ̸=i

x̄j + bj(xj)∥2 + ∥ 1

N

∑
j ̸=i

αj(xj)ξj∥2
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=
1

N2
E

∥
∑
j ̸=i

x̄j +
∑
j ̸=i

bj(xj)∥2
+

1

N2

∑
j ̸=i

E(αj(xj)2)

=
1

N2
E

∥
∑
j ̸=i

(x̄j − µ+ bj(xj)) + (N − 1)µ∥2
+

1

N2

∑
j ̸=i

E(αj(xj)2)

=
1

N2
E

∥
∑
j ̸=i

x̄j − µ∥2 + ∥
∑
j ̸=i

bj(xj) + (N − 1)µ∥2
+

1

N2

∑
j ̸=i

E(αj(xj)2)

=
1

N2
E

∥
∑
j ̸=i

∑
k

(
1

n
xj
k − µ)∥2

+
1

N2
E∥(N − 1)µ+

∑
j ̸=i

bj(xj)∥2 + 1

N2

∑
j ̸=i

E(αj(xj)2)

=
1

N2
E

∥ 1
n
(
∑
j ̸=i

∑
k

xj
k − µ)∥2

+
1

N2
E∥(N − 1)µ+

∑
j ̸=i

bj(xj)∥2 + 1

N2

∑
j ̸=i

E(αj(xj)2)

=
1

N2
E

∑
j ̸=i

∥ 1
n
(
∑
k

xj
k − µ)∥2

+
1

N2
E∥(N − 1)µ+

∑
j ̸=i

bj(xj)∥2 + 1

N2

∑
j ̸=i

E(αj(xj)2)

=
(N − 1)

N2

(
σ2

n
+ σ2

⋆

)
+

1

N2
E∥(N − 1)µ+

∑
j ̸=i

bj(xj)∥2 + 1

N2

∑
j ̸=i

E(αj(xj)2)

Where the first squared norms factors because

E[<
1

N

∑
j ̸=i

x̄j + bj(xj), αj(xj)ξj >] = E[< αj(xj)
1

N

∑
j ̸=i

(x̄j + bj(xj)), ξj >] = 0

as the ξj are independent of all other variables and have zero mean, the E(∥∑j ̸=i α
j(xj)ξj∥2) term factors because all

αj(xj) and ξj are independent (and the ξj have zero mean), the bj(xj) terms factor because E < x̄j − µ, bj(xj) >= 0 by
assumption and because the x̄j − µ have zero mean and are independent of bi(xi) for j ̸= i. The last squared norm factors
because all

∑
k x

j
k − µ terms are independent and have zero mean.

Finally,

E
(
∥Y2∥2

)
= E

(
∥ 1

N
x̄i − µ∥2

)

= E

∥ 1

Nn

∑
j

xi
j − µ∥2


= E

∥ 1

Nn

∑
j

(xi
j − µ) +

1−N

N
µ∥2


= E

∥ 1

Nn

∑
j

(xi
j − µ)∥2 + ∥1−N

N
µ∥2


=
1

N2
E

∥ 1
n

∑
j

(xi
j − µ)∥2

+
(1−N)2

N2
∥µ∥2

=
1

N2
(
σ

n
+ σ2

⋆) +
(1−N)2

N2
∥µ∥2

=
1

N2n
σ2 +

1

N2
σ2
⋆ +

(1−N)2

N2
∥µ∥2
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with the sums factoring for the same reasons as above. Substituting in (14):

E
(
∥Y 2∥

)
= E

(
∥Y1∥2

)
+ E

(
∥Y2∥2

)
+ 2E (Y1)

t E (Y2)

=
(N − 1)

N2
(
σ2

n
+ σ2

⋆) +
1

N2
E∥(N − 1)µ+

∑
j ̸=i

bj(xj)∥2 + 1

N2

∑
j ̸=i

E(αj(xj)2)

+
1

N2n
σ2 +

1

N2
σ2
⋆ +

(1−N)2

N2
∥µ∥2 + 2(

N − 1

N
µ+

1

N

∑
j ̸=i

Ebj(xj))t
(1−N)

N
µ

=
σ2

Nn
+

σ2
⋆

N
+

1

N2

∑
j ̸=i

E(αj(xj)2)

+
(N − 1)2

N2
∥µ∥2 + 1

N2
E∥
∑
j ̸=i

bj(xj)∥2 + 2(N − 1)

N2

∑
j ̸=i

E(bj(xj)tµ)

+
(N − 1)2

N2
∥µ∥2 + 2

(N − 1)(1−N)

N2
∥µ∥2 + 2(1−N)

N2

∑
j ̸=i

Ebj(xj)tµ

=
σ2

Nn
+

σ2
⋆

N
+

1

N2

∑
j ̸=i

E(αj(xj)2) +
1

N2
E∥
∑
j ̸=i

bj(xj)∥2 (15)

Substituting (12), (13) and (15) into (11), we have:

E
(
∥θi − µ∥2

)
=
(
1− βi

)2 E (∥Y ∥2
)
+ (βi)2E

(
∥Z∥2

)
+ 2

(
1− βi

)
βiE

(
ZtY

)
=
(
1− βi

)2 σ2

Nn
+

σ2
⋆

N
+

1

N2

∑
j ̸=i

E(αj(xj)2) +
1

N2
E∥
∑
j ̸=i

bj(xj)∥2


+ (βi)2(
σ2

n
+ σ2

⋆) + 2
(
1− βi

)
βi(

σ2

Nn
+

σ2
⋆

N
)

Next we prove a lemma that gives the optimal value of the defense parameter β of a player, assuming that the attack
parameters α of all players are fixed.

Lemma C.2. For a fixed set of values α1, . . . , αN ∈ [0,∞) and b1, . . . , bN ∈ Rd, the value of βi that minimizes the mean
squared error of the estimate of player i is given by:

(βi)∗ =
1

N2

∑
j ̸=i E(αj(xj)2) + 1

N2E∥
∑

j ̸=i b
j(xj)∥2(

σ2

n + σ2
⋆ − σ2

Nn − σ2
⋆

N + 1
N2

∑
j ̸=i E(αj(xj)2) + 1

N2E∥
∑

j ̸=i b
j(xj)∥2

) (16)

Proof. Re-writing the statement of Theorem C.1,

E
(
∥θi − µ∥2

)
= (βi)2

σ2

n
+ σ2

⋆ −
σ2

Nn
− σ2

⋆

N
+

1

N2

∑
j ̸=i

E(αj(xj)2) +
1

N2
E∥
∑
j ̸=i

bj(xj)∥2


− 2
βi

N2

∑
j ̸=i

E(αj(xj)2) + E∥
∑
j ̸=i

bj(xj)∥2


+

 σ2

Nn
+

σ2
⋆

N
+

1

N2

∑
j ̸=i

E(αj(xj)2) +
1

N2
E∥
∑
j ̸=i

bj(xj)∥2
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This is a quadratic function of βi with a positive coefficient in front of the square term. Therefore, the function is minimized
over (−∞,∞) at the point:

(βi)∗ =
1

N2

∑
j ̸=i E(αj(xj)2) + 1

N2E∥
∑

j ̸=i b
j(xj)∥2(

σ2

n + σ2
⋆ − σ2

Nn − σ2
⋆

N + 1
N2

∑
j ̸=i E(αj(xj)2) + 1

N2E∥
∑

j ̸=i b
j(xj)∥2

)

This result is closely related to the work of Grimberg et al. (2021), which studies the optimal way of averaging two sample
sets from two different distributions, with the goal of minimizing the mean squared error of the estimate on one of these
distributions. However, in our case the estimate from the server is an average of manipulated samples coming from multiple
distributions, rather than i.i.d. samples from a single one. Now, C.2 allows us to prove Corollary 4.2:

Corollary C.3. The game defined by the expected reward

E
(
Ri(θ1, . . . , θN , µ)

)
=

∑
j ̸=i E

(
∥θj − µ∥2

)
N − 1

− λiE
(
∥θi − µ∥2

)
and the set of strategies A m × Dw does not have a Nash equilibrium with finite E((αj)2).

Proof. Assume that a strategy profile ((α1, b1, β1), . . . , (αN , bN , βN )) is a Nash equilibrium. Note that in the definition
of the (expected) reward function, the value of the defense parameters of the i-th player βi only affects the MSE of the
estimate θi of that player. Therefore, it follows from Lemma C.2 that each βi must be defined by equation (16). In particular,
it is easy to see that each βi ∈ [0, 1). It follows from Theorem C.1 that the expected reward of each player j is strictly
monotonically increasing in E(αj(xj)2), so the player can increase their reward by increasing E((αj)2). This contradicts
the assumption that the strategy profile is a Nash equilibrium.

Finally, we prove:

Corollary C.4. In the setup of Theorem 4.1, if the set of available strategies is A m
A × Dw for some constant A > 0, the

only Nash equilibria of the game with bi(xi) = 0 fixed for all players i are the strategy profiles for which:

|αi(xi)| = A and βi =
A2

(σ
2

n + σ2
⋆)N +A2

∀i ∈ [N ]. (17)

Furthermore, at each of these equilibria the value of mean squared error of the estimate of each player i is

E
(
∥θi − µ∥2

)
= (

σ2

n
+ σ2

⋆)
(1 + 1

σ2

n +σ2
⋆

A2)

(N + 1
σ2

n +σ2
⋆

A2)

Proof. Assume that a strategy profile ((α1, b1, β1), . . . , (αN , bN , βN )) is a Nash equilibrium. As in Corollary C.3, it
follows that each βi is given by equation (16) and is therefore in the interval [0, 1). Therefore, the reward of each player i is
increasing with E(αi(xi)2). It follows that αi(xi) = A for all i ∈ [N ]. Substituting for the value of (βi)∗ we get that for
every i ∈ [N ]:

βi = (βi)∗ =
N−1
N2 A2

σ2

n + σ2
⋆ − σ2

Nn − σ2
⋆

N + N−1
N2 A2

=
A2

(σ
2

n + σ2
⋆)N +A2

.

Substituting into Theorem C.1 and setting σ̂2 = σ2 + nσ2
⋆ we get:

E
(
∥θi − µ∥2

)
=
(
1− βi

)2 σ̂2

Nn
+

1

N2

∑
j ̸=i

(αj)2

+ (βi)2
σ̂2

n
+ 2

(
1− βi

)
βi σ̂

2

Nn

=
N2σ̂4

n2

(Nσ̂2

n +A2)2

(
σ̂2

Nn
+

N − 1

N2
A2

)
+

A4

(Nσ̂2

n +A2)2
σ̂2

n
+ 2

A2Nσ̂2

n

(Nσ̂2

n +A2)2
σ̂2

Nn
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=
Nσ̂6

n3 + σ̂4

n2 (N − 1)A2 + A4σ̂2

n + 2A2σ̂4

n2

(Nσ̂2

n +A2)2

=
σ̂2

n

Nσ̂4

n2 + σ̂2

n (N − 1)A2 +A4 + 2 σ̂2

n A2

(Nσ̂2

n +A2)2

=
σ̂2

n

σ̂4

n2N + σ̂2

n NA2 +A4 + σ̂2

n A2

( σ̂
2

n N +A2)2

=
σ̂2

n

N + n
σ̂2NA2 + n2

σ̂4A
4 + n

σ̂2A
2

(N + n
σ̂2A2)2

=
σ̂2

n

(1 + n
σ̂2A

2)(N + n
σ̂2A

2)

(N + n
σ̂2A2)2

=
σ̂2

n

(1 + n
σ̂2A

2)

(N + n
σ̂2A2)

= (
σ2

n
+ σ2

⋆)
(1 + 1

σ2

n +σ2
⋆

A2)

(N + 1
σ2

n +σ2
⋆

A2)

D. Proofs on mechanisms for mean estimation
Next, we proof a version of Theorem B.2 without redistribution.

Theorem D.1. In the setting of 4.1, the penalized game with rewards

Ri
p =

∑
j ̸=i ∥θj − µ∥2
N − 1

− λi∥θi − µ∥2 − C∥mi − θs∥2

has a Nash equilbrium consisting of the strategies αj = bj = βj = 0 for all j whenever C > 1
(N−1)2 .

At this equilbrium, the expected penalty pi(m1, . . . ,mN ) paid by each player i is equal to C (N−1)
Nn σ2, thus a player is

incentivized to participate in the penalized game rather than relying on their own estimate, whenever N > 2, the other
N − 1 players participate at the honest equilibrium and λi > C + N

(N−1)2 or N = 2 and λi > C + 1.

Proof. We begin by inserting the equality E
(
∥θi − µ∥2

)
=
(
1− βi

)2 ( σ2

Nn +
σ2
⋆

N + 1
N2

∑
j ̸=i E(αj(xj)2) + 1

N2E∥
∑

j ̸=i b
j(xj)∥2

)
+

(βi)2(σ
2

n + σ2
⋆) + 2

(
1− βi

)
βi( σ2

Nn +
σ2
⋆

N ) from 4.1 in the first two terms to obtain

ERi
p = E

∑j ̸=i ∥θj − µ∥2
N − 1

− λi∥θi − µ∥2 − C∥mi − 1

N − 1

∑
j ̸=i

mj∥2


= E

∑
j ̸=i

(
1− βj

)2 ( σ2

Nn +
σ2
⋆

N + 1
N2

∑
k ̸=j E(αk(xk)2) + 1

N2E∥
∑

k ̸=j b
k(xk)∥2)

)
N − 1

+ E

∑
j ̸=i

(
(βj)2(σ

2

n + σ2
⋆) + 2

(
1− βj

)
βj( σ2

Nn +
σ2
⋆

N

)
N − 1

− λiE
(
1− βi

)2 σ2

Nn
+

σ2
⋆

N
+

1

N2

∑
j ̸=i

E(αj(xj)2) +
1

N2
E∥
∑
j ̸=i

bj(xj)∥2


− λi

(
(βi)2(

σ2

n
+ σ2

⋆) + 2
(
1− βi

)
βi(

σ2

Nn
+

σ2
⋆

N
)

)
− E

(
C∥mi − θs∥2

)
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Correspondingly, we get

d

dEαj(xj)2
ERi

p =
∑
j ̸=i

(1− βi)2

(N − 1)N2
− C

d

dαj(xj)2
E∥mi − θs∥2 (18)

To analyze the second term, we calculate:

E∥mi − θs∥2 = ∥mi − θs∥2

= E∥mi − 1

N

∑
j

mj∥2

= E∥αi(xi)ξi + bi(xi) +
1

n

∑
k

xi
k − 1

N

∑
j

(αj(xj)ξj + bj(xj) +
1

n

∑
k

xj
k)∥2

= E∥αi(xi)ξi +
1

n
(
∑
k

xi
k − µ)

− 1

N

∑
j

(
αj(xj)ξj +

1

n

∑
k

(xj
k − µ)

)
+ µ− µ+ dib∥2

= E∥N − 1

N

(
αi(xi)ξi +

1

n
(
∑
k

xi
k − µ)

)

− 1

N

∑
j ̸=i

(
αj(xj)ξj +

1

n

∑
k

(xj
k − µ)

)
+ dib∥2

= (
N − 1

N
)2E∥αi(xi)ξi∥2 + (

N − 1

N
)2E∥ 1

n

∑
k

xi
k − µ∥2

+
1

N2

∑
j ̸=i

E∥αj(xj)ξj∥2 + 1

N2

∑
j ̸=i

E∥ 1
n

∑
k

xj
k − µ∥2 + E∥dib∥2

= (
N − 1

N
)2E(αi(xi)2) +

(N − 1)2

N2
(
σ2

n
+ σ2

⋆)

+
1

N2

∑
j ̸=i

E(αj(xj)2) +
(N − 1)

N2
(
σ2

n
+ σ2

⋆) + E∥dib∥2

= (
N − 1

N
)2E(αi(xi)2) +

1

N2

∑
j ̸=i

E(αj(xj)2)

+
(N − 1)

Nn
σ2 +

N − 1

N
σ2
⋆ + E∥dib∥2 (19)

setting dib =
N−1
N bi(xi)−∑j ̸=i

bj(xj)
N . The squared norm again factors because of the independence and zero means of

both ξi and xi
k − µ and because E < x̄j − µ, bj(xj) >= 0, while bj(xj) is independent of x̄i − µ for i ̸= j. Now, inserting

19 in 18, we obtain

d

dEαi(xi)2
ERi

p(θ
1, . . . , θN , µ) =

∑
j ̸=i

(1− βi)2

(N − 1)N2
− C(

N − 1

N
)2

≤ 1

N2
− C

(N − 1)2

N2

=
1

N2

(
(1− C(N − 1)2)

)
(20)

As βi ∈ [0, 1]. Thus E d
dαiRi

p is negative whenever C(N − 1)2 > 1 or C > 1
(N−1)2 . Correspondingly, for such C, player i

is incentivized to set αi = 0, independent of other players’ strategies.
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Now, assuming bj(xj) = 0 for all other players j ̸= i, we also get

d

dE∥bi(xi)∥2ER
i
p(θ

1, . . . , θN , µ) =
∑
j ̸=i

(1− βi)2

(N − 1)N2
− C(

N − 1

N
)2

≤ 1

N2
− C

(N − 1)2

N2

=
1

N2

(
(1− C(N − 1)2)

)
. (21)

Correspondingly, bi = 0 for all players is a Nash Equilbrium. As the penalty pi(m1, ...,mN ) does not dependend on the
defense strategies βi, the optimal βi at the equilbrium αi = 0 and bi = 0 can still be calculated using 16 and is equal to
zero as well.

The average penalty honest players pay at the Nash equilbrium is then given by C (N−1)
N (σ

2

n + σ2
⋆) , according to 19.

To understand participation incentives, we compare the equilbrium reward Ri(θ1, . . . , θN , µ) player i receives if they do
not participate while all other players do, to the penalized reward Ri

p player i would obtain when participating. We first
calculate Ri(θ1, . . . , θN , µ) assuming player i only uses their own estimate and does not send an update to the server, while
the other N − 1 players participate in the penalized game at equilbrium:

ERi(θ1(N − 1), . . . , θi(1), . . . , θN (N − 1), µ) = E

(∑
j ̸=i ∥θj(N − 1)− µ∥2

N − 1
− λ∥θi(1)− µ∥2

)

=
σ2

(N − 1)n
+

σ2
⋆

(N − 1)
− λi(

σ2

n
+ σ2

⋆) (22)

using 4.1 with αj = bj = βj = 0 and substituting N − 1 and 1 for N respectively. We then calculate ERi
p:

ERi
p = E

(∑
j ̸=i ∥θj − µ∥2
N − 1

− λi∥θi − µ∥2 − C∥mi − θs∥2
)

= (1− λi)(
σ2

Nn
+

σ2
⋆

N
)− C(

(N − 1)

Nn
σ2 +

(N − 1)

N
σ2
⋆) (23)

using 4.1 with αj = bj = βj = 0 and D.1. The difference between these can the be calculated as

ERi
p − ERi(θ1(N − 1), . . . , θi(1), . . . , θN (N − 1), µ)

= (1− λi)(
σ2

Nn
+

σ2
⋆

N
)− C

(N − 1)

N
(
σ2

n
+ σ2

⋆)−
1

N − 1
(
σ2

n
+ σ2

⋆) + λi(
σ2

n
+ σ2

⋆)

= (
σ2

n
+ σ2

⋆)

(
(1− λi)

1

N
− C

N − 1

N
− 1

N − 1
+ λi

)
= (

σ2

n
+ σ2

⋆)

(
1

N
− C

N − 1

N
− 1

N − 1
+

N − 1

N
λi

)
= (

σ2

n
+ σ2

⋆)

(
1

N
− 1

N − 1
+

N − 1

N
(λi − C)

)
≥ (

σ2

n
+ σ2

⋆)

(
− 1

N − 1
+

N − 1

N
(λi − C)

)
= (

σ2

n
+ σ2

⋆)

(
N − 1

N
(λi − C − N

(N − 1)2
)

)

and is positive whenever λi > C+ N
(N−1)2 , such that in these cases player i is better off participating in data sharing, despite

the penalties. If N = 2, we instead obtain

ERi
p − ERi(θ1(N − 1), . . . , θi(1), . . . , θN (N − 1), µ) =

σ2

n

(
−1

2
+

1

2
(λi − C)

)
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which is positive whenever λi > C + 1.

We now prove B.2:

Theorem D.2. In the setting of 4.1, the penalized game with rewards

Ri
p′ =

∑
j ̸=i ∥θj − µ∥2
N − 1

− λi∥θi − µ∥2 − C∥mi − θs∥2 + 1

N − 1

∑
j ̸=i

C∥mj − m̄∥2

has a Nash equilbrium consisting of the strategies αj = bj = βj = 0 for all j whenever C > 1
(N−1)2−1 .

At this equilbrium, the expected penalty pi(m1, . . . ,mN ) paid by each player i is equal to 0, such that player i is incentivized
to participate in the penalized game rather than relying on their own estimate, whenever N > 2, the other N − 1 players
participate at the honest equilibrium and λi >

N
(N−1)2 .

Proof. Analogous to the proof of D.1 We have that

d

dEαi(xi)2
ERi

p′ =
d

dEαi(xi)2
ERi

p +
1

N − 1

∑
j ̸=iC

d

dEαi(xi)2
E∥mj − θs∥2

≤ 1

N2

(
(1− C(N − 1)2)

)
+ C

1

N2

=
1

N2

(
(1− C

(
(N − 1)2 − 1)

))
by inserting 19 and 20.

Similarly, assuming bj(xj) = 0 for all players j ̸= i we get

d

dE∥bi(xi)∥2ER
i
p′ =

d

dE∥bi(xi)∥2ER
i
p +

1

N − 1

∑
j ̸=iC

d

dE∥bi(xi)∥2E∥m
j − θs∥2

≤ 1

N2

(
(1− C(N − 1)2)

)
+ C

1

N2

=
1

N2

(
(1− C

(
(N − 1)2 − 1)

))
by inserting 19 and 21

Thus E d
dEαi(xi)2Ri

p′ is negative whenever C((N − 1)2 − 1) > 1 or C > 1
(N−1)2−1 and d

dE∥bi(xi)∥2ERi
p′ under the same

conditions as long as bj(xj) = 0 for all other players j.

The expected penalty paid by each player is zero by symmetry, as every players’ paid penalty gets redistributed equally
among all other players, such that the payments cancel out in expectation.

Similarly, the calculations for participation incentives are exactly as in D.1, but ERi
p′ is now equal to (1− λi)(

σ2

Nn +
σ2
⋆

N )

rather than (1− λi)(
σ2

Nn +
σ2
⋆

N )− C( (N−1)
Nn σ2 + (N−1)

N σ2
⋆) because the expected penalty paid by players is equal to zero at

equilbrium.

Next, we prove 5.1

Theorem D.3. Consider the modified game with reward

Ri =

∑
j ̸=i ∥θj − µ∥2
N − 1

− λi∥θi − µ∥2,

where player i receives an estimate m̄ +
√
Cϵi∥mi − m̄∥ for independent noise ϵi with mean Eϵi = 0 and "variance"

E∥ϵi∥2 = 1, instead of the empirical mean m̄, from the server. Then honesty (αi = 0, bi = 0, βi = C
C+1 ) is a Nash

equilibrium, as long as C > 1
λi(N−1)2−1 and λi >

1
(N−1)2 .
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Furthermore, for fixed constant λi = λ, E
(
∥θi − µ∥2

)
∈ O

(
σ2

Nn +
σ2
⋆

N

)
whenever C = k

λ(N−1)2−1 for any constant k > 1,
such that players are incentivized to participate in the penalized game rather than relying on their own estimate, whenever
N > 2, the other N − 1 players participate at the honest equilibrium and λ ≥ 1.

Proof. In order to calculate the reward Ri(θ1, . . . , θN , µ) =
∑

j ̸=i ∥θ
j−µ∥2

N−1 − λi∥θi − µ∥2 for player i, we have a closer

look at the mean squared error incurred by players in the modified game. For convenience, we set σ̄2 := σ2

n + σ2
⋆

E∥θi − µ∥2 = E∥(1− βi)
(
m̄i +

√
C∥mi − θs∥ϵi

)
+ βix̄i − µ∥2

= E∥(1− βi)m̄i + βix̄i − µ∥2 + E∥(1− βi)
√
C∥mi − θs∥ϵi∥2

+ 2E <
(
(1− βi)

√
C∥mi − θs∥ϵi,

(
(1− βi)m̄i + βix̄i − µ

))
>

=
(
1− βi

)2 σ̄2

N
+

1

N2

∑
j ̸=i

E(αj(xj)2) +
1

N2
E∥
∑
j ̸=i

bj(xj)∥2


+ (βi)2σ̄2 + 2
(
1− βi

)
βi σ̄

2

N

+ (1− βi)2C

(
N − 1

N
)2E(αi(xi)2) +

1

N2

∑
j ̸=i

E(αj(xj)2) + E∥dib∥2 +
(N − 1)

N
σ̄2


+ 2E <

(
(1− βi)

√
C∥mi − θs∥ϵi,

(
(1− βi)m̄i + βix̄i − µ

))
>

using the calculations from the proof of C.1 for the first term and D.1 for the second. The last term is equal to zero because:

E
(
< (1− βi)

√
C∥mi − θs∥ϵi,

(
(1− βi)m̄i + βix̄i − µ

)
>
)

= E
(
< ϵi, (1− βi)

√
C∥mi − θs∥

(
(1− βi)m̄i + βix̄i − µ

)
>
)

= E(< ϵi,E
(
(1− βi)

√
C∥mi − θs∥

(
(1− βi)m̄i + βix̄i − µ

)
>
)

= 0

as ϵi is independent of all the other terms and has mean zero. Simplifying, we obtain

E∥θi − µ∥2

=
(
1− βi

)2 σ̄2

N
+

1

N2

∑
j ̸=i

E(αj(xj)2) +
1

N2
E∥
∑
j ̸=i

bj(xj)∥2
+ (βi)2σ̄2 + 2

(
1− βi

)
βi σ̄

2

N

+ (1− βi)2C

(
N − 1

N
)2E(αi(xi)2) + E∥dib∥2 +

1

N2

∑
j ̸=i

E(αj(xj)2) +
(N − 1)

N
σ̄2


= (βi)2

(
σ̄2 +

C(N − 1)− 1

N
σ̄2 +

1 + C

N2

∑
j ̸=i

E(αj(xj)2) +
1

N2
E∥
∑
j ̸=i

bj(xj)∥2

+ C(
N − 1

N
)2E(αi(xi)2) + CE∥dib∥2

)

− 2βi

(
1 + C

N2

∑
j ̸=i

E(αj(xj)2) +
1

N2
E∥
∑
j ̸=i

bj(xj)∥2

+ C(
N − 1

N
)2E(αi(xi)2) + CE∥dib∥2 + C

(N − 1)

N
σ̄2

)
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+
1 + C

N2

∑
j ̸=i

E(αj(xj)2) +
1

N2
E∥
∑
j ̸=i

bj(xj)∥2 + 1− C + CN

N
σ̄2

+ C(
N − 1

N
)2E(αi(xi)2 + CE∥dib∥2)

As in C.2, this yields an optimal value for βi of

(βi)∗ =

(
Hi(α, b) + C (N−1)

N σ̄2
)

(
σ̄2 + C(N−1)−1

N σ̄2 +Hi(α, b)
)

for Hi(α, b) =
1+C
N2

∑
j ̸=i E(αj(xj)2) + 1

N2E∥
∑

j ̸=i b
j(xj)∥2 + C(N−1

N )2E(αi(xi)2) + CE∥dib∥2 Now, calculating the
derivative of ERi(θ1, . . . , θN , µ) with respect to E(αi(xi)2) yields:

d

dE(αi(xi)2)
ERi(θ1, . . . , θN , µ) =

d

dE(αi(xi)2)

∑
j ̸=i ∥θj − µ∥2
N − 1

− d

dE(αi(xi)2)
λi∥θi − µ∥2

=
∑
j ̸=i

(1− βj)2

(N − 1)N2
((1 + C))− (1− βi)2(λiC

(N − 1)2

N2
)

Similarly, assuming bj(xj) = 0 for all other players j ̸= i, we get

d

dE∥bi(xi)∥2ER
i(θ1, . . . , θN , µ) =

d

dE∥bi(xi)∥2

∑
j ̸=i ∥θj − µ∥2
N − 1

− d

dE∥bi(xi)∥2λi∥θi − µ∥2

=
∑
j ̸=i

(1− βj)2

(N − 1)N2
((1 + C))− (1− βi)2(λiC

(N − 1)2

N2
)

Both are negative, whenever βj = βi ̸= 1 and λiC(N − 1)2 > 1 + C or C(λi(N − 1)2 − 1) > 1, which is true whenever
C > 1

λi(N−1)2−1 and λi >
1

(N−1)2 .

But for αj = bj = 0 for all players j, the formula for (βi)∗ simplifies to

(βi)∗ =
C (N−1)

N σ̄2

σ̄2 + C(N−1)−1
N σ̄2

=
C (N−1)

N

1 + C(N−1)−1
N

=
C (N−1)

N

N−1
N + C(N−1)

N

=
C

1 + C
,

for all players. In particular, we have (βi)∗ < 1 for C > 0, such that βj = βi ̸= 1 and the derivatives with respect to both α
and b are negative for all players, turning αj = bj = 0, (βi) = C

1+C into a Nash equilibrium.

We can now upper bound E∥θi − µ∥2 at the honest equilbrium by considering it at the suboptimal βi = 0:

E∥θi − µ∥2 ≤ σ̄2

N
+ C

N − 1

N
σ̄2,

which is is O( σ̄
2

N ) as long as C is in O( 1
N ), which is the case for constant λi = λ, C = k

λ(N−1)2−1 and any k > 1.

In terms of participation incentives, we again look at the difference in rewards obtained by player i in both cases:

ERi(θ1, . . . , θN , µ)− ERi(θ1(N − 1), . . . , θi(1), . . . , θN (N − 1), µ) (24)

= E

(∑
j ̸=i ∥θj(N)− µ∥2

N − 1
− λi∥θi(N)− µ∥2

)
(25)

− E

(∑
j ̸=i ∥θj(N − 1)− µ∥2

N − 1
− λi∥θi(1)− µ∥2

)
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= (1− λi)E∥θi(N)− µ∥2 − E

(∑
j ̸=i ∥θj(N − 1)− µ∥2

N − 1
− λi∥θi(1)− µ∥2

)

It is obvious that E∥θi(N)− µ∥2 < E∥θj(N − 1)− µ∥2 ≤ E∥θi(1)− µ∥2 at the honest equilibrium because of symmetry
and as players could otherwise improve their reward by setting βi = 1, which was shown to be suboptimal in the proof of
5.1. This has two implications: First, 24 is positive for λi = 1. Second, the derivative of 24 with respect to λi is always
positive. Combined, this implies that 24 is positive for all λi ≥ 1.

E. Proofs on stochastic gradient descent
Outlook In this section we prove Theorem 6.1. To this end, we first present the formal definitions of the assumptions on f
that we make. Next, we prove two results which bound the difference between the performance of a model resulting from a
corrupted optimization scheme (in which players send corrupted estimates) and the performance of a model resulting from
honest participation (i.e. from vanilla SGD). In particular, Theorem E.4 provides such a result for a simple penalization
scheme, which then easily extends to the penalties presented in Section 6 (Theorem E.5). Next, we combine these results
with classic bounds on the distance of the plain SGD trajectory to the minimum value of f (Lemma E.6), to provide an
upper bound on the difference between the performance of the corrupted trajectory and the minimum value of f in Theorem
E.9. Finally, we show how this last result can be extended to general Lipschitz utilities in Theorem E.10, thereby proving
the result from the main text.

Definitions First we formally state our assumptions on the function f .

Definition E.1. A function f : W ⊂ Rn → Rd is called L-Lipschitz with respect to given norms ∥ · ∥n and ∥ · ∥d if for all
x, y ∈ W

∥f(x)− f(y)∥d ≤ ∥x− y∥n.
Definition E.2. A continously differentiable function f : W ⊂ Rn → R is called B-smooth if its gradient ∇f : W → Rn

is B−Lipschitz with respect to the euclidean norm.

Definition E.3. A differentiable function f : W ⊂ Rn → R is called m-strongly convex if for all x, y ∈ W

f(x) ≥ f(y) +∇f(y)t(x− y) +
m

2
∥x− y∥2,

where ∥ · ∥ denotes the euclidean norm.

We start with proving a weaker version of 6.1 with constant learning rates in which player’s paid penalties do not get
redistributed:

Theorem E.4. Assume f is B-smooth, L-Lipschitz with respect to the euclidean norm and m-strongly convex. Also assume
that for all i, t the gradient noise eit is B′-Lipschitz with respect to the euclidean norm with probabiltiy one and that the
constant learning rate γ fulfills 0 < γ < 2m

B2+B′2 . Then for the penalized game with reward

Ri
p(θ

1
T+1, . . . , θ

N
T+1, f) =

 1

N − 1

∑
j ̸=i

f(θjT+1)

−
T∑

t=1

Ct∥mi
t −

1

N

∑
j

mj
t∥2,

any player’s best response strategy fulfills αi
t ≤ LNc

T−t
2 γ

Ct(N−1)2 ≤ LNγ
Ct(N−1)2 for c = (1 + γ2(B2 +B′2)− 2γm), independent

of other players’ strategies.

Given ϵ > 0, the expected absolute change in function values f(θjT ) due to noise added by players playing best responses

compared to full honesty can be bounded by 1
1−

√
c
Lγϵ by choosing Ct ≥ LNc

T−t
2 γ

ϵ(N−1)2 < LNγ
ϵ(N−1)2 . The total penalties paid by

player i can then be bounded by 1
1−

√
c

Lγ
(N−1) (

G2

ϵ + ϵ) ≤ for a global bound on the "variance" of the gradient estimates
∥eit(θ)∥2 ≤ G2.
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Proof. We compare two trajectories θt and θ′t starting at the same θ0 and sharing the same realizations for the noise
variables ejt and ξjt in which player i employs different agressiveness schedules αi

t and (αi
t)

′ with squared difference
δit = (αi

t − (αi
t)

′)2. We define ēt =
1
N

∑
i e

i
t. Then:

E∥θt+1 − θ′t+1∥2 = E∥ΠW (θt − γt(∇f(θt) + ēt(θt) +
1

N

∑
j ̸=i

αj
tξ

j
t +

1

N
αi
tξ

i
t))

−ΠW (θ′t − γt(∇f(θ′t) + ēt(θ
′
t) +

1

N

∑
j ̸=i

αj
tξ

j
t +

1

N
(αi

t)
′ξit))∥2

≤ E∥θt − γt(∇f(θt) + ēt(θt) +
1

N

∑
j ̸=i

αj
tξ

j
t +

1

N
αi
tξ

i
t)

− θ′t − γt(∇f(θ′t) + ēt(θ
′
t) +

1

N

∑
j ̸=i

αj
tξ

j
t +

1

N
(αi

t)
′ξit)∥2

= E∥θt − θ′t∥2 + γ2
t E∥∇f(θt)−∇f(θ′t)∥2 + γ2

t E∥ēt(θt)− ēt(θ
′
t)∥2

+ 2γtE| < θt − θ′t,∇f(θ′t)−∇f(θt) > +
γ2
t

N2
E∥(αi

t − (αi
t)

′)ξit∥2

− 2γtE < ēt(θt)− ēt(θ
′
t), θt − θ′t − γt(∇f(θt)−∇f(θ′t)) >

Where the first inequality follows from the well-known 1−Lipschitzness of projections onto convex closed sets with respect
to the euclidean norm ((Balashov & Golubev, 2012)) and the ξi terms factor because of their zero mean and independence
of the other variables. Similarly, the last term turns out to equal zero because:

E < ēt(θt)− ēt(θ
′
t), θt − θ′t − γt(∇f(θt)−∇f(θ′t)) >

= E[E[< ēt(θt)− ēt(θ
′
t), θt − θ′t − γt(∇f(θt)−∇f(θ′t)) > |θt, θ′t]]

= E[< E[ēt(θt)− ēt(θ
′
t)|θt, θ′t], θt − θ′t − γt(∇f(θt)−∇f(θ′t)) >]

= E[< 0, θt − θ′t − γt(∇f(θt)−∇f(θ′t)) >] = 0

as Eēt(θ) = 0 for any fixed θ. Correspondingly,

E∥θt+1 − θ′t+1∥2 = E∥θt − θ′t∥2 + γ2
t E∥∇f(θt)−∇f(θ′t)∥2 + γ2

t E∥ēt(θt)− ēt(θ
′
t)∥2

+
γ2
t

N2
E∥(αi

t − (αi
t)

′)ξit∥2 + 2γtE < θt − θ′t,∇f(θ′t)−∇f(θt) >

= E∥θt − θ′t∥2 + γ2
t E∥∇f(θt)−∇f(θ′t)∥2 + γ2

t E∥ēt(θt)− ēt(θ
′
t)∥2 +

γ2
t

N2
δit

+ 2γtE < θt − θ′t,∇f(θ′t) > +2γtE < θ′t − θt,∇f(θt) >

≤ E∥θt − θ′t∥2 + γ2
t E∥∇f(θt)−∇f(θ′t)∥2 + γ2

t E∥ēt(θt)− ēt(θ
′
t)∥2 +

γ2
t

N2
δit

+ 2γtE(f(θt)− f(θ′t)−
m

2
∥θt − θ′t∥2 + f(θ′t)− f(θt)−

m

2
∥θt − θ′t∥2)

= E∥θt − θ′t∥2 + γ2
t E∥∇f(θt)−∇f(θ′t)∥2 + γ2

t E∥ēt(θt)− ēt(θ
′
t)∥2 +

γ2
t

N2
δit

− 2γtmE∥θt − θ′t∥2

≤ E∥θt − θ′t∥2 + γ2
tB

2E∥θt − θ′t∥2 + γ2
t (B

′)2E∥θt − θ′t∥2 +
γ2
t

N2
δit

− 2γtmE∥θt − θ′t∥2

= (1 + γ2
t (B

2 +B′2)− 2γtm)E∥θt − θ′t∥2 +
γ2
t

N2
δit (26)

Where the first inequality follows from strong convexity.
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Now for a constant learning rate γ = γt and c = (1 + γ2(B2 +B′2)− 2γm):

(E
1

L
|f(θT+1)− f(θ′T+1)|)2 ≤ (E∥θT+1 − θ′T+1∥)2

≤ E∥θT+1 − θ′T+1∥2

≤ cTE∥θ1 − θ′1∥2 +
T∑

t=1

cT−t γ
2

N2
δit

=

T∑
t=1

cT−t γ
2

N2
δit

so that

E|f(θT+1)− f(θ′T+1)| ≤ L

√√√√ T∑
t=1

cT−t
γ2

N2
δit ≤ L

T∑
t=1

γ

N
c

T−t
2

√
δit =

Lγ

N

T∑
t=1

c
T−t
2 |αi

t − (αi
t)

′|.

Where the last inequality follows from the general inequality
√∑

i xi ≤
∑

i

√
xi for xi ≥ 0, which inductively follows

from √
x+ y =

√
(
√
x+

√
y)2 − 2

√
xy ≤

√
(
√
x+

√
y)2 =

√
x+

√
y.

In particular if we set θ′t to the trajectory in which player i is honest ((αi
t)

′ = 0), we obtain

E|f(θT+1)− f(θ′T+1)| ≤
Lγ

N

T∑
t=1

c
T−t
2 αi

t. (27)

The same inequalities holds for players’ final estimates θjT+1 and (θjT+1)
′, as the noise correction step θiT+1 = θT+1− αi

T

N ξi

is the same in both cases, so that

E∥θiT+1 − (θiT+1)
′∥2 = E∥θT+1 − (θT+1)

′∥2.

It is worth noting, that the contribution of noise at early time steps to the sum diminishes exponentially as long as c < 1
which is true for γ2(B2 +B′2)− 2γm < 0, i.e. γ < 2m

B2+B′2 .

Next, we consider the expected difference in penalties received by player i at time t if they use (αi
t)

′ rather than αi
t and thus

send message (mi
t)

′ rather than mi
t:

Epti(m1
t , . . . , (m

i
t)

′, . . . ,mN
t )− pti(m

1
t , . . . ,m

i
t, . . . ,m

N
t )

= E∥N − 1

N
(mi

t)
′ − 1

N

∑
j ̸=i

mj
t∥2 − E∥N − 1

N
mi

t −
1

N

∑
j ̸=i

mj
t∥2

= E∥N − 1

N
((αi

t)
′ξit + git)−

1

N

∑
j ̸=i

mj
t∥2 − E∥N − 1

N
(αi

tξ
i
t + git)−

1

N

∑
j ̸=i

mj
t∥2

= E∥N − 1

N
(αi

t)
′ξit∥2 − E∥N − 1

N
(αi

t)
′ξit∥2

+ E∥N − 1

N
(git)−

1

N

∑
j ̸=i

mj
t∥2 − E∥N − 1

N
(git)−

1

N

∑
j ̸=i

mj
t∥2

= (
N − 1

N
(αi

t)
′)2 − (

N − 1

N
αi
t)

2

for git = gt(θ
s
t−1, x

i).
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In particular, we can bound the difference between expected penalized rewards for two trajectories with all αi
k fixed but two

different values αi
t and (αi

t)
′ varying for k = t as follows:

E

(
Ri(θT+1)−

∑
k

Ckp
i
k(m

1
k, . . . ,m

i
k, . . . ,m

N
k )

−Ri((θT+1)
′) +

∑
k

Ckp
i
k(m

1
k, . . . , (m

i
k)

′, . . . ,mN
k )

)

=
1

N − 1

∑
j ̸=i

(f(θjT+1)− f((θjT+1)
′)) + Ct((

N − 1

N
(αi

t)
′)2 − (

N − 1

N
αi
t)

2)

≤ L
γ

N
c

T−t
2 |αi

t − (αi
t)

′|+ Ct((
N − 1

N
(αi

t)
′)2 − (

N − 1

N
αi
t)

2)

In particular, for (αt
i)

′ = 0, we obtain

E

(
Ri(θT )−

∑
k

Ckp
t
i(m

1
k, . . . ,m

i
k, . . . ,m

N
k )−Ri((θT )

′) +
∑
t

Ckp
i
k(m

1
k, . . . , (m

i
k)

′, . . . ,mN
k )

)

≤ L
γ

N
c

T−t
2 αi

t − Ct((
N − 1

N
αi
t)

2)

By the quadratic formula, this is zero at zero and at

αi
t =

−2L γ
N c

T−t
2

−2Ct(
N−1
N )2

=
LNc

T−t
2 γ

Ct(N − 1)2
(28)

and because of the negative quadratic term negative whenever αi
t >

LNc
T−t
2 γ

Ct(N−1)2 . Correspondingly, in terms of penalized
reward players are always better off by not adding any noise at all αi

t = 0 compared to adding large noise, such that rational

players will never choose αi
t >

LNc
T−t
2 γ

Ct(N−1)2 . Therefore, the noise αi
t added by any player i at a given time step t can be limited

to any fixed constant ϵ > 0 by choosing Ct such that LNc
T−t
2 γ

Ct(N−1)2 ≤ ϵ, i.e. Ct ≥ LNc
T−t
2 γ

ϵ(N−1)2 .

Applying this observation to each player, substituting into Equation (27) and using the triangle inequality, the overall damage
caused by all N players compared to full honesty can then be bounded by

E|f(θT+1)− f(θ′T+1)| ≤ Lγ

T∑
t=1

c
T−t
2 ϵ

where θ′t represents the fully honest strategy and θt represents a strategy in which all players act rationally given the penalty
magnitude Ct. Using a geometric series bound, we obtain E|f(θT+1)− f(θ′T+1)| ≤ 1

1−
√
c
Lγϵ.

Lastly, for a global bound on the "variance" of the gradients ∥eit(θ)∥2 ≤ G2 we get,

Epti(m1
t , . . . ,m

i
t, . . . ,m

N
t )

= E∥N − 1

N
mi

t −
1

N

∑
j ̸=i

mj
t∥2

= E∥N − 1

N
(git + αi

tξ
i
t)−

1

N

∑
j ̸=i

(gjt + αj
tξ

j
t )∥2

= E∥N − 1

N
git −

1

N

∑
j ̸=i

gjt ∥2 + (
N − 1

N
)2(αi

t)
2 +

1

N2

∑
j ̸=i

(αj
t )

2
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≤ E∥N − 1

N
(git(θ)−∇f(θ))− 1

N

∑
j ̸=i

(gjt (θ)−∇f(θ)) + (
N − 1

N
− N − 1

N
)∇f(θ)∥2

+ (
N − 1

N
)ϵ2

= E[E[∥N − 1

N
eit(θ)−

1

N

∑
j ̸=i

ejt (θ)∥2|θ]] + (
N − 1

N
)ϵ2

= (
N − 1

N
)2E[E[∥eit(θ)∥2|θ] +

1

N2

∑
j ̸=i

E[E[∥(ejt (θ)∥2|θ]] + (
N − 1

N
)ϵ2

≤ (
N − 1

N
)(G2 + ϵ2)

as the ξit are independent with zero mean, and the gradient noise eit(θ) are independent with zero mean, given θ. Corre-

spondingly, for Ct =
LNc

T−t
2 γ

ϵ(N−1)2 the total expected penalties paid by player i can be bounded as

E
T∑
t

Ctp
t
i(m

1
t , . . . ,m

i
t, . . . ,m

N
t )

≤
T∑
t

Lc
T−t
2 γ

ϵ(N − 1)
(K2 + ϵ2)

≤ 1

1−√
c

Lγ

(N − 1)
(
K2

ϵ
+ ϵ)

Next, we prove the budget-balanced version of E.4

Theorem E.5. Under the assumptions of E.4, in the balanced penalized game with reward

Ri
p(θ

1
T+1, . . . , θ

N
T+1, f) =

 1

N − 1

∑
j ̸=i

f(θjT+1)

−
T∑

t=1

Ct∥mi
t −

1

N

∑
j

mj
t∥2

+
1

N − 1

∑
k ̸=i

T∑
t=0

Ct∥mk
t − 1

N

∑
j

mj
t∥2,

any player’s best response strategy fulfills αi
t ≤ Lc

T−t
2 γ

Ct(N−2) ≤
Lγ

Ct(N−2) for c = (1 + γ2(B2 +B′2)− 2γm), independent of
other players’ strategies.

Given ϵ > 0, the expected absolute change in function values f(θjT ) due to noise added by players playing best responses

compared to full honesty can be bounded by 1
1−

√
c
Lγϵ by choosing Ct ≥ Lc

T−t
2 γ

ϵ(N−2) ≤ Lγ
ϵ(N−2) . As long as all players i

choose the same strategy (αi
t = αj

t ∀i, j, t), the expected total penalty paid by each player equals zero.

Proof. We begin by considering the expected difference in penalties received by player l at time t if player i uses (αi
t)

′

rather than αi
t and thus send message (mi

t)
′ rather than mi

t:

Eplt(m1
t , . . . , (m

i
t)

′, . . . ,mN
t )− plt(m

1
t , . . . ,m

i
t, . . . ,m

N
t )

= E∥ml
t −

1

N

∑
j ̸=i

mj
t −

1

N
(mi

t)
′∥2 − E∥ml

t −
1

N

∑
j ̸=i

mj
t −

1

N
mi

t∥2

= E∥ml
t −

1

N

∑
j ̸=i

mj
t −

1

N
((αi

t)
′ξit + git)∥2 − E∥ml

t −
1

N

∑
j ̸=i

mj
t −

1

N
(αi

tξ
i
t + git)∥2
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= E∥ml
t −

1

N

∑
j ̸=i

mj
t −

1

N
git∥2 + E

1

N2
∥(αi

t)
′ξit∥2

− E∥ml
t −

1

N

∑
j ̸=i

mj
t −

1

N
git∥2 − E

1

N2
∥αi

tξ
i
t∥2

= (
(αi

t)
′

N
)2 − (

αi
t

N
)2

Again, we can bound the difference between expected penalized rewards for two trajectories with all αi
k fixed but two

different values αi
t and (αi

t)
′ varying for k = t as follows:

E(Ri(θT+1)−
∑
k

Ckp
i
k(m

1
k, . . . ,m

i
k, . . . ,m

N
k )

+
1

N − 1

∑
j ̸=i

∑
k

Ckp
j
k(m

1
k, . . . ,m

i
k, . . . ,m

N
k )

−Ri((θT+1)
′) +

∑
t

Ckp
i
k(m

1
k, . . . , (m

i
k)

′, . . . ,mN
k )

− 1

N − 1

∑
j ̸=i

∑
t

Ckp
j
k(m

1
k, . . . , (m

i
k)

′, . . . ,mN
k ))

=
1

N − 1

∑
j ̸=i

(f(θjT+1)− f((θjT+1)
′))

+ Ct((
N − 1

N
(αi

t)
′)2 − (

1

N
(αi

t)
′)2 − (

N − 1

N
αi
t)

2) + (
1

N
αi
t)

2)

=
1

N − 1

∑
j ̸=i

(f(θjT+1)− f((θjT+1)
′))

+ Ct((
N − 1

N
(αi

t)
′)2 − (

1

N
(αi

t)
′)2 − (

N − 1

N
αi
t)

2) + (
1

N
αi
t)

2)

≤ L
γ

N
c

T−t
2 |αi

t − (αi
t)

′|+ Ct(
N − 2

N
((αi

t)
′)2 − N − 2

N
(αi

t)
2)

Again, for (αi
t)

′ = 0 we obtain

E(Ri(θT+1)−
∑
k

Ckp
i
k(m

1
k, . . . ,m

i
k, . . . ,m

N
k )

+
1

N − 1

∑
j ̸=i

∑
k

Ckp
j
k(m

1
k, . . . ,m

i
k, . . . ,m

N
k )

−Ri((θT + 1)′) +
∑
k

Ckp
i
k(m

1
k, . . . , (m

i
k)

′, . . . ,mN
k )

− 1

N − 1

∑
j ̸=i

∑
k

Ckp
j
k(m

1
k, . . . , (m

i
k)

′, . . . ,mN
k ))

≤ L
γ

N
c

T−t
2 αi

t − Ct(
(N − 2)

N
(αi

t)
2)

which is zero at zero and at

αi
t =

−2L γ
N c

T−t
2

−2Ct
N−2
N

=
Lc

T−t
2 γ

Ct(N − 2)
(29)

and negative for αi
t >

Lc
T−t
2 γ

Ct(N−2) as long as N > 2. Players are thus again incentivized to select αi
t that do not fulfill that

inequality.
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As in E.4, the overall damage caused by all N players compared to full honesty can then be bounded by E|f(θT+1) −
f(θ′T+1)| ≤ 1

1−
√
c
Lγϵ by choosing Ct ≥ Lc

T−t
2 γ

ϵ(N−2) where θ′T represents the fully honest strategy and θT represents a strategy

in which all players act rationally given the penalty magnitude Ct, and the same is true for player’s estimates θjT+1 and
(θjT+1)

′. By symmetry, as long as all players i choose the same strategy (αi
t = αj

t ∀i, j, t), the expected penalties paid by
each player equal 0.

To prove 6.1, we adapt a classic result from convex optimization to give convergence rates for SGD with bounded
perturbations from the clients and with a linearly decaying learning rate.

Lemma E.6. In the settings of E.5, assume that all players use bounded attacks, so that (αi
t)

2 ≤ ϵ2 for all i, t. Also, assume
that there exist scalars M ≥ 0 and MV ≥ 0, such that for all t:

Esi(∥eit(θst )∥2) = Exi(∥gt(θst , xi)∥2)− (Exi∥(gt(θst , xi)∥)2 ≤ M +MV ∥∇f(θst )∥22. (30)

Assume that for some integer constant η > 0, such that 4
ηm+m ≤ 1

B(MV /N+1) , the learning rate is set as γt = 4
ηm+tm . In

that case, if P (∃t ≤ T : ΠW (θst − γtm̄t) ̸= θst − γtm̄t) ∈ O( 1
NT ) we get E (f(θt)− f(θ∗)) ∈ O( 1+M+ϵ2

Nt ) +O( 1
t2 ), we

have:

E (f(θT )− f(θ∗)) ≤ 8B(M + ϵ2)

3m2NT
+O

(
1

NT

)
+O

(
1

T 2

)
(31)

for any T ≥ η.

Proof. We first condition on the case in which there is no t ≤ T with ΠW (θst − γtm̄t) ̸= θst − γtm̄t, so that we do not
have to worry about projections. Then, for a random vector g, denote V(g) = E

(
∥g∥2

)
− ∥E(g)∥2. Note that, by the

independence of the stochastic gradients and players’ noise, it follows that:

V

(
1

N

N∑
i=1

mt
i

)
= E∥ 1

N

N∑
i=1

(eit(θ
s
t ) + αi

tξ
i
t)∥2 − ∥E( 1

N

N∑
i=1

(eit(θ
s
t ) + αi

tξ
i
t))∥2

=
1

N2
E∥

N∑
i=1

(eit(θ
s
t ) + αi

tξ
i
t)∥2 − 0

=
1

N2
(E∥

N∑
i=1

eit(θ
s
t )∥2 + E∥

N∑
i=1

αi
tξ

i
t∥2)

=
1

N2
(

N∑
i=1

E∥eit(θst )∥2 +
N∑
i=1

(αi
t)

2E∥ξit∥2)

≤ 1

N2
(

N∑
i=1

M +MV ∥∇f(θst ))∥22 +
N∑
i=1

(αi
t)

2)

≤ M + ϵ2

N
+

MV

N
∥∇F (θst )∥22

Additionally, since f is strongly convex, it has a unique minimizer θ∗ ∈ Rd. Now since the learning rate is of the form
γt =

4/m
η+t , with 4

m > 1
m , η > 0 and γ1 = β

η+1 ≤ 1
B(MV /N+1) , the conditions of Theorem 4.7 in (Bottou et al., 2018) hold

with µ = 1,MV = MV /N,M = (M + ϵ2)/N,MG = MV /N + 1. Using equation 4.23 in their proof gives:

E (f(θt+1)− f(θ∗)) ≤
(
1− 4

η + t

)
E (f(θt)− f(θ∗)) +

8B(M + ϵ2)

Nm2(η + t)2
(32)

for any t ≥ η > 0. We now use a classic result by Chung:
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Lemma E.7 ((Chung, 1954)). Let {bn}n≥1 be a sequence of real numbers, such that for some n0 ∈ N, it holds that for all
n ≥ n0,

bn+1 ≤
(
1− c

n

)
bn +

c1
n2

,

where c > 1, c1 > 0. Then

bn ≤ c1
c− 1

1

n
+O

(
1

n2
+

1

nc

)
.

We set xt+η := E (f(θt)− f(θ∗)) for t ≥ −1 and xk = E (f(θ0)− f(θ∗)) for k < η. Using 32 and k = t+ η we get

xk+1 ≤ (1− 4

k
)xk +

8B(M + ϵ2)

Nm2k2

Now using c = 4 and c1 = 8B(M+ϵ2)
Nm2 , we have xk+1 ≤ (1− d

k )xk + c
k2 such that E.7 yields

xt ≤
8B(M + ϵ2)

3Nm2t
+O

(
1

t2
+

1

tc

)
and thus

E (f(θt)− f(θ∗)) ≤ 8B(M + ϵ2)

3Nm2(t+ η)
+O

(
1

t2
+

1

tc

)
≤ 8B(M + ϵ2)

3Nm2t
+O

(
1

t2
+

1

t4

)
Now, if there is a t with ΠW (θst − γtm̄t) ̸= θst − γtm̄t, we can still bound E (f(θt)− f(θ∗)) by some constant because
W is bounded and f is Lipschitz. Correspondingly, as P (∃t ≤ T : ΠW (θst − γtm̄t) ̸= θst − γtm̄t) ∈ O( 1

NT ), the total

expectation for both cases combined is bounded by 8B(M+ϵ2)
3m2NT +O

(
1

NT

)
+O

(
1
T 2

)
.

To prove theorem 6.1, we use a non-asymptotic version of Chung’s Lemma (Chung, 1954) similar to the one used in the
proof of Lemma 1 in (Rakhlin et al., 2012):

Lemma E.8. For constants c > 0 and d > 1, whenever t+ 1 ≥ d and the recursive inequality

xt+1 ≤ (1− d

t+ 1
)xt +

c

(t+ 1)2
,

holds we get that if

xt ≤
2d2c

t(d3 − d2)

for t = k the same is true for t = k + 1.

Proof. Using the condition on xt, we obtain

xt+1 ≤ (1− d

t+ 1
)xt +

c

(t+ 1)2

≤ 2d2c

t(d3 − d2)
− 2d3c

t(t+ 1)(d3 − d2)
+

c

(t+ 1)2

as by assumption d
t+1 ≤ 1. As d > 1, 2d2c

(t+1)(d3−d2) is positive and we can divide the equation above by it to obtain

xt+1(t+ 1)(d3 − d2)

2d2c
≤ t+ 1

t
− d

t
+

(d3 − d2)

(t+ 1)2d2
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for which we want to show that it is bounded above by 1. Multiplying the equation

t+ 1

t
− d

t
+

(d3 − d2)

(t+ 1)2d2
≤ 1

by t(t+ 1) for t ≥ 1 we get

t2 + 2t+ 1− dt− d+ t
(d3 − d2)

2d2
≤ t2 + t

which is equivalent to

t+ 1− dt− d+
t

2
(d− 1) ≤ 0,

i.e.
1

2
(1− d)t+ 1− d ≤ 0,

and
(1− d)t ≤ 2(d− 1),

which is true whenever
t ≥ −2.

Theorem E.9. In the settings of E.5, assume that there exist scalars M ≥ 0 and MV ≥ 0, such that for all t:

Esi(∥(eit(θst )∥2) ≤ M +MV ∥∇f(θst ))∥22. (33)

Assume that for some integer constant η > 1, such that 4
ηm+m ≤ 1

B(MV /N+1) , the learning rate is set as γt = 4
ηm+tm .

Then any player’s best response strategy fulfills αt
i ≤ 8L

Ct(N−2)m
√
T1+η

independent of other players’ strategies, such that

for any given ϵ > 0, Ct ≥ 8L
ϵ(N−2)m

√
T+η

yields αt
i ≤ ϵ for rational players. In that case, as long as W is bounded and we

have that P (∃t ≤ T : ΠW (θst − γtm̄t) ̸= θst − γtm̄t) ∈ O( 1
NT ) we get E (f(θt)− f(θ∗)) ∈ O( 1+M+ϵ2

Nt ) +O( 1
t2 ).

Proof. We make use of inequality 26 from the proof of E.4 to analyse the difference between two trajectories that are
identical except for the actions of player i.

E∥θt+1 − θ′t+1∥2

≤ (1 + γ2
t (B

2 +B′2)− 2γtm)E∥θt − θ′t∥2 +
γ2
t

N2
δti

= (1 +
16

m2(η + t)2
(B2 +B′2)− 8

η + t
)E∥θt − θ′t∥2 +

16

(η + t)2N2m2
δti .

≤ (1 +
16

m2(η + t)2
(B2 +B′2)− 8

η + t
)E∥θt − θ′t∥2 +

16

(η + t)2N2m2
δti .

For t ≥ 0 and η ≥ max{ 32(B2+B′2)
13m2 , 1} we get

16
B2 +B′2

m2(t+ η)2
− 8

t+ η
≤ − 1.5

t+ η
(34)

by calculating

η ≥ 32(B2 +B′2)

13m2

=⇒ 6.5η + 6.5t ≥ 16(B2 +B′2)

m2

=⇒ 8η + 8t− 16(B2 +B′2)

m2
≥ 1.5η + 1.5t
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=⇒ 8η + 8t− 16(B2 +B′2)

m2
≥ 1.5

(t+ η)2

t+ η

=⇒ 8

η + t
− 16(B2 +B′2)

(η + t)2m2
≥ 1.5

t+ η

=⇒ 16(B2 +B′2)

(η + t)2m2
− 8

η + t
≤ − 1.5

t+ η

We now set xt+η := E∥θt+1 − θ′t+1∥2 for t ≥ 0 and xk = 0 for k ≤ η. These definitions are consistent for t = 0 because
E∥θ1 − θ′1∥2 = 0.

Using 34 and k = t− 1 + η, we get

xk+1 ≤ (1− 1.5

k + 1
)xk +

16

(k + 1)2N2m2
δti .

At the same time, xη = E∥θ1−θ′1∥2 = 0 ≤ 4c
η−1 for any c > 0. Correspondingly, E.8 with d = 1.5 and c = 16

N2m2 maxt{δti}
implies that for k ≥ η and k + 1 ≥ 1.5 we get

xk ≤ 4c

k
and thus

E∥θt − θ′t∥2 ≤ 4c

t− 1 + η

for t ≥ 1. This yields

E∥θT+1 − θ′T+1∥2 ≤ 64maxt{δti}
(T + η)N2m2

.

Consequentially, we obtain

E|f(θT+1)− f(θ′T+1)| ≤ L

√
64maxt{δti}
(T + η)N2m2

.

Again, we can bound the difference between expected penalized rewards for two trajectories with all αi
k fixed but two

different values αi
t and (αi

t)
′ varying for k = t by considering δk = 0 for all k ̸= t. This yields

E|f(θT+1)− f(θ′T+1)| ≤ L

√
64δti

(T + η)N2m2
= L

√
64|αi

t − (αi
t)

′|2
(T + η)N2m2

.

As in E.5, this allows us to upper bound the gains in penalized reward from changing αi
t to (αi

t)
′ by

8L

Nm
√
T + η

|αi
t − (αi

t)
′|+ Ct(

N − 2

N
((αi

t)
′)2 − N − 2

N
(αi

t)
2).

In particular, for (αi
t)

′ = 0 this bound becomes

8L

Nm
√
T + η

αi
t − Ct(

N − 2

N
(αi

t)
2)

which is zero at αi
t = 0 and at

αi
t =

−2 8L
Nm

√
T+η

−2Ct
N−2
N

=
8L

Ct(N − 2)m
√
T + η

(35)

and negative for αi
t larger than that as long as N > 2.

Again the noise αi
t added by any rational player i at a given time step t can therefore be limited to any fixed constant ϵ > 0

by choosing Ct such that 8L
Ct(N−2)m

√
T+η

≤ ϵ, i.e. Ct ≥ 8L
ϵ(N−2)m

√
T+η

.

We conclude by using E.6 to obtain the convergence rate.
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As a final step, we show that a version of E.9 also holds for more general reward functions, thus proving 6.1.

Theorem E.10. Up to constants, theorems E.5 and E.9 also hold for the reward Ri
Up

(θ1T+1, . . . , θ
N
T+1, f) =

U i(f(θiT+1), . . . , f(θ
N
T+1)) −

∑T
t=1 C

U
t ∥mi

t − 1
N

∑
j m

j
t∥2 + 1

N−1

∑
k ̸=i

∑T
t=1 C

U
t ∥mk

t − 1
N

∑
j m

j
t∥2 for arbitrary

l1-Lipschitz U i with common Lipschitz constant LU . Any bound on αi
t can be achieved by setting CU

t = LUNCt for the Ct

achieving the same bound in E.5 or E.9 respectively.

Proof. We first note that for any pointwise bound E|f(θjT+1)− f((θjT+1))
′| ≤ K

E|U i(f(θiT+1), . . . , f(θ
N
T+1))− U i(f((θiT+1)

′), . . . , f((θNT+1)
′))|

≤ ELU

∑
j

|f(θjT+1)− f((θjT+1))
′|

= LU

∑
j

E|f(θjT+1)− f((θjT+1))
′|

≤ LUNK.

This means that the gains |U i(f(θiT+1), . . . , f(θ
N
T+1))− U i(f((θiT+1)

′), . . . , f((θNT+1)
′))| in unpenalized reward player i

can achieve by using a given αi
t at time t instead of αi

t = 0 is multiplied by LUN compared to 29 and 35. Thus, for a given
CU

t , the bound on αi
t for rational players is multiplied by NLU as well, as the quadratic formula solution for αi

t is linear in
the linear term. Correspondingly, we need to set CU

t = LUNCt to achieve the same bounds on αi
t as in E.5 or E.9.

Now, for αi
t ≤ ϵ, the bound on the expected absolute change in U i(f(θiT+1), . . . , f(θ

N
T+1)) is LUN times higher than

for f(θjT+1) using the bounds above. Because these bounds are linear in ϵ for E.5, we can achieve a bound of δ for
U i(f(θiT+1), . . . , f(θ

N
T+1)) by ensuring αi

t ≤ ϵ
NLU

for ϵ achieving a bound of δ for f(θiT ). In total, we thus need to
multiply the corresponding Ct by NLU twice to achieve a given bound on the gains in unpenalized reward from cheating:
Once because we need a smaller bound on αi

t to achieve the same bound on the unpenalized reward, and once to ensure that
rational players are incentivized to use that smaller bound.

Discussion on the projection assumptions We note that the assumption P (∃t ≤ T : ΠW (θst − γtm̄t) ̸= θst −
γtm̄t) ∈ O( 1

NT ) in particular holds if W is chosen such that ∥w − θs0∥ ∈ Ω(T ) for all w in the boundary of W while
∥m̄t∥ ∈ O(∥θst − θs0∥) with probability one for all t ≤ T . In that case, the linearly decaying learning rate ensures that
(∥θst − θs0∥) stays in O(T ) and thus in W (for appropriately chosen constants) with probability one.

Similarly, Lemma 5 in (Rakhlin et al., 2012) states that for a probability one bound on the gradient norm ∥m̄t∥ ≤ G,∀t, we
have that ∥θst − θ⋆∥ < 2G

m with probability one, such that the iterates stay in W without the need for any projections, as long
as G grows slower in T than inf w∈δ(W )∥w− θ⋆∥. In particular, if f grows quadratically in θ− θ⋆ and noise is proportional
to the gradient norm, G grows linearly in the distance between θ⋆ and the boundary of W , such that the condition holds for
the right proportionality constants.


