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Abstract

Pretraining effective 3D medical image encoders
is crucial for downstream tasks such as diagnosis
and prognosis. Existing vision-language methods
learn global semantics from paired radiology re-
ports but often miss fine-grained cues like small
lesions. We introduce SegVL, a unified contrastive
learning framework that integrates segmentation
masks into vision-language pretraining. SegVL
aligns voxel-level features with segmentation la-
bels using mask names as textual anchors and
enhances image-text contrast via segmentation-
informed features. A Tversky loss addresses class
imbalance, and a lightweight decoder preserves
encoder capacity. Experiments show SegVL out-
performs prior methods on multiple classification
and segmentation benchmarks, highlighting the
complementary strengths of segmentation and lan-
guage supervision.

1. Introduction

Medical vision-language pretraining (Med-VLP) aims to
learn generalizable image representations by aligning med-
ical images with paired radiology reports. While early
Med-VLP efforts focused on 2D modalities like chest
X-rays (Zhang et al., 2022; Boecking et al., 2022; Wu
et al., 2023), recent work has extended to 3D CT vol-
umes (Hamamci et al., 2024; Blankemeier et al., 2024),
which offer richer anatomical context but introduce chal-
lenges due to their higher dimensionality and the sparse
distribution of clinically relevant signals. In 3D scans, for
example, small lesions such as lung nodules may occupy
less than 0.005% of the volume, making them hard to cap-
ture via global image-text alignment.
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To address this, recent methods have moved toward
finer-grained alignment. CT-FM (Pai et al., 2025) intro-
duces patch-level contrastive learning, MG-3D (Ni et al.,
2024) aligns CTs with individual report sentences, and
fVLM (Shui et al., 2025) uses an external segmentation
model and LLM to align organ-level sub-volumes with or-
gan descriptions. These approaches improve supervision
granularity but often rely on complex pipelines or exter-
nal tools. Moreover, alignment typically stops at the sub-
volume level; no prior work has tackled voxel-level align-
ment.

Meanwhile, segmentation data—despite being unpaired
with text—provide dense voxel-level labels and are widely
available. Prior work like MedicalNet (Chen et al., 2019)
uses segmentation for pretraining, and large-scale models
such as SAM (Kirillov et al., 2023) and MedSAM (Zhu
et al., 2024) leverage segmentation masks for dense predic-
tion. However, these approaches focus solely on segmenta-
tion and often employ heavy decoders, which may absorb
important features and hinder encoder generalization.

In this work, we propose SegVL, a simple yet effective
framework that directly integrates segmentation supervi-
sion into Med-VLP via voxel-mask contrastive learning.
By aligning voxel embeddings with segmentation mask
names and using a lightweight decoder, SegVL enhances
fine-grained representation learning without increasing ar-
chitectural complexity.

2. Methodology

Overall, SegVL is a kind of VLP framework, whose innova-
tion lies in infusing segmentation data into the pretraining
process through a unified contrastive learning approach. In
this section, we first detail the encoding of 3D medical im-
ages and their corresponding textual reports, which forms
the basis of our VLP framework. Subsequently, in the sec-
ond subsection, we elaborate on how we effectively incorpo-
rate segmentation data by adapting the existing text encoder
and employing a contrastive learning strategy. Finally, the
third subsection describes our VL pretraining component,
which is further augmented by the inclusion of segmentation
information to facilitate a more comprehensive understand-
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ing of the visual and textual modalities.

2.1. Image and Report Feature Extraction
Given a 3D medical volume V; € R#*W XD and its paired

report R;, we extract their features using separate encoders.

3D Image Encoding A 3D Vision Transformer f,(-) en-
codes V; into spatial tokens:

fv( ) ERthXdde (1)

where h, w, d are the downsampled dimensions and d is
the feature size. Global average pooling followed by an
MLP projection piy, yields the volume-level embedding:

7" = Pime(AvgPool(X;)) € R% .

Report Encoding We use a transformer-based text en-
coder f;(+) (initialized from BioViL (Boecking et al., 2022))
to embed the report:

Tz = ft(Rz)

where L, is the token length and d,. is the embedding size.
The [CLS] token is projected via an MLP py., to obtain the
report-level representation:

€ RErxdr, )

2" = Drep (TZ-[CLS]> e R¥, where T i[CLS] € R%.
2.2. Voxel-Mask Contrastive Learning for Infusing
Segmentation Data

To enable fine-grained supervision from segmentation data,
we design a voxel-mask contrastive learning framework that
aligns voxel embeddings with textual embeddings of mask
names using a shared text encoder. Instead of predicting
masks via a decoder, we treat voxel embeddings as con-
trastive queries and segmentation label names as anchors in
the shared embedding space. This encourages the encoder
to learn semantically meaningful voxel-level features from
segmentation data.

Voxel Embeddings Given the 3D tokens X; from Eq. 1,

we apply a lightweight MLP segmentation head fqe,(-) fol-

lowed by a reshape operation to obtain voxel embeddings:
Xi = fseg(x
V,; = reshape(Xi) € REXWXDXmogiss

) c thwxdxdmlp

3

where each voxel in the original volume has an embedding
of size R™esv. We emphasize the use of a lightweight MLP
head instead of a heavy decoder, as commonly seen in seg-
mentation models (Li et al., 2023; Hatamizadeh et al., 2022).
This design preserves encoder capacity by preventing the
decoder from absorbing key information, aligning with our
goal of learning transferable image representations (see Ap-
pendix. 3).

Mask Name Embeddings To encode class names, we use
prompts of the form p. = ”This is (mask name)” for each
of the C' segmentation classes. These prompts are fed into
the same text encoder f;(-) used for reports (Eq. 2):

M = ft(pc) c RCxLxdf,

where L is the token length and dy the embedding size. We
extract [CLS] tokens and project them via a text head fiex(-)
to obtain final mask name embeddings:

fiea(M) €

mask __ C' X Nogits
M _ R ogits

where 1,5 18 the output dimension.

Voxel-Mask Contrastive Learning We align voxel em-
beddings with mask name embeddings using contrastive
learning. Voxels labeled as foreground serve as positives,
background as negatives. While InfoNCE loss (Oord et al.,
2018) is a natural choice, it underperforms under extreme
class imbalance (see Section 3). We instead adopt a Tversky-
based loss.

We first compute cosine similarity between each voxel em-
bedding V; and each mask embedding Mg‘”k:

V MmaSkT
Pij= (

€ RY, 4
VLTIV ) @

where P; ; is the predicted similarity in [0,1] for voxel ¢ and
class j.

The final voxel-mask contrastive loss is:

SN (@i (1= Pig) + B(L = i) Pij)

C
.CVM_aZ

(93,51 = Pij) + (1 = 9i,5) Pij + 93,5 Pis)
()

where §; ; is the one-hot label for voxel 7 and class j, and
N = H x W x D is the number of voxels. « and 3 balance
false positives and false negatives.

2.3. Image-Text Contrastive Learning with Visual
Enhancement from Segmentation

We now detail the image-report contrastive learning compo-
nent within SegVL, with a particular emphasis on how we
leverage segmentation information to further enhance the
image features. Specifically, tokens learned by the segmen-
tation head (i.e., X; in Eq. 3) are passed through an MLP
(fve) and then aggregated using average pooling to obtain a
single feature vector:

7% = AvgPool (fve(X;)) € R% .
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Figure 1. Architecture of our SegVL framework. The model jointly leverages image-report and image-segmentation data via two
contrastive objectives. A 3D vision transformer encodes volumes into tokens and a lightweight segmentation head convert tokens into
voxel embeddings. Voxel embeddings are supervised by voxel-mask contrastive learning using Tversky loss to handle class imbalance.
Meanwhile, segmentation features are fused into global image embeddings through a visual enhancement module, which are contrasted
with report embeddings to learn both high-level semantics and fine-grained anatomical cues.

The resulting pooled feature vector zgg is combined with
the original image embedding z; © as:

Z;mg,seg _ Ziimg + )\zzeg,
where A is a learnable weight initialized with O that controls
the contribution of the segmentation features to the final
enhanced image embedding. This weighted sum enhances
the image embedding, allowing it to better capture both the
global structure and local details, improving the image-text
alignment in the contrastive learning framework.

The overall loss function is a weighted combine of Image-
Text (denoted as L) and Voxel-Mask (Lvyy in Eq. 5) con-
trastive learning loss:

‘CSegVL = EIT(ziimg,Segv Z;ep) + O‘seg£VM~
Here, we use InfoNCE loss (Oord et al., 2018) to implement
Lyt and oeg is a hyperparameter for balance.

3. Experiment

Experimental Setting To evaluate the effectiveness of
SegVL, we conduct pretraining on the CT-RATE (Hamamci
et al., 2024) and RadGenome-ChestCT (Zhang et al., 2024)
datasets. CT-RATE provides over 50,000 chest CT volumes
paired with radiology reports, while RadGenome augments
these with segmentation masks spanning 197 anatomical
categories. We select six major categories for segmentation
supervision. Preprocessing follows CT-RATE protocol.

We assess generalization on two task types. For classifica-
tion, we use four datasets: CT-RATE (internal), RadChest-
CT (Draelos et al., 2021), CC-CCII (Zhang et al., 2020),
and RICORD (Tsai et al., 2020), covering thoracic ab-
normalities and COVID-19. For segmentation, we eval-
uate on BTCV (Landman et al., 2015), TotalSegmenta-
tor (Wasserthal et al., 2023), and MSD (Antonelli et al.,
2022), focusing on anatomical structure parsing and tumor
localization.

3.1. Results on Classification Tasks

On multi-disease classification tasks in CT-RATE and
RadChest-CT, as shown in Table. 1, SegVL consistently
outperforms prior methods under both linear probing and
finetuning. Compared to CT-CLIP, it improves AUC by
+4.4% and +5.5% on CT-RATE, and by +4.9% and +6.6%
on RadChest-CT. These gains highlight the effectiveness of
incorporating segmentation data during pretraining, which
enhances the encoder’s ability to capture fine-grained fea-
tures beyond global image-text alignment. SegVL also sur-
passes fVLM, achieving new state-of-the-art AUC scores
across both datasets and settings.

On CC-CCII and RICORD, which require fine-grained dis-
crimination for COVID-19 diagnosis, SegVL shows strong
generalization in Table. 1. It improves over CT-CLIP by up
to +4.1% AUC and surpasses fVLM across both datasets.
Finetuning further boosts performance, with SegVL reach-
ing 0.936 AUC on CC-CCII and 0.912 on RICORD, demon-
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Table 1. AUC comparison of SegVL and baselines on downstream classification tasks under linear probing and finetuning.

Linear Probing (AUC)

| Finetuning (AUC)

Method
CT-RATE RadChest-CT CC-CCII RICORD ‘ CT-RATE RadChest-CT CC-CCII RICORD

CT-CLIP (Hamamci et al., 2024) 0.749 0.653 0.865 0.846 0.756 0.650 0.920 0.863
Merlin (Blankemeier et al., 2024) 0.770 0.677 0.877 0.854 0.762 0.694 0.919 0.879
UniMiSS (Xie et al., 2022) \ \ 0.841 0.862 \ \ 0.913 0.891
T3D (Liu et al., 2023) 0.775 \ \ \ 0.802 \ 0.927 \
fVLM (Shui et al., 2025) 0.783 0.697 0.871 0.858 0.794 0.704 0.926 0.885
SegVL (ours) 0.793 0.702 0.893 0.887 0.811 0.716 0.936 0.912

Table 2. Dice score comparison of SegVL and baselines on downstream segmentation tasks under linear probing and finetuning.

Method Linear Probing ‘ Finetuning

TotalSegmentor MSD-Lung BTCV  Mean ‘ TotalSegmentor MSD-Lung BTCV  Mean

CT-CLIP (Hamamci et al., 2024) 0.852 0.637 0.845 0.778 0.867 0.684 0.854  0.802

Merlin (Blankemeier et al., 2024) 0.859 0.645 0.848 0.784 0.870 0.689 0.855 0.805

UniMiSS (Xie et al., 2022) 0.854 0.642 0.838  0.778 0.868 0.677 0.850  0.798

fVLM (Shui et al., 2025) 0.861 0.639 0.849  0.783 0.874 0.686 0.861  0.807

SegVL (ours) 0.878 0.675 0.863  0.805 0.889 0.733 0.872  0.831

Lung Heart Lung Nodule Lung Effusion

strating its transferability and adaptability to complex down-
stream targets.

3.2. Results on Semantic Segmentation Tasks

SegVL achieves state-of-the-art Dice scores across all
segmentation benchmarks under both linear probing and
finetuning, as shown in Table. 1. On TotalSegmentator
and MSD-Lung, it consistently outperforms CT-CLIP and
fVLM, demonstrating the advantage of voxel-level con-
trastive supervision in capturing both large anatomical struc-
tures and small lesion regions. For example, SegVL im-
proves Dice of lung tumor segmentation by +4.5% on MSD-
Lung under finetuning compared to CT-CLIP, showing su-
perior fine-grained feature learning.

On BTCYV, which tests cross-region generalization beyond
the thoracic domain, SegVL achieves the best performance
in both settings. These results indicate that the segmentation-
aware pretraining introduces transferable structural cues that
generalize well to out-of-distribution anatomy, even without
paired text supervision.

3.3. Zero-shot Segmentation Results

Our voxel-mask contrastive formulation naturally enables
zero-shot segmentation. Given a volume and a target
anatomical label, SegVL computes voxel-wise similarity
scores P; ; between each voxel embedding V; and the cor-
responding mask name embedding My, ; via Eq. 4, pro-
ducing probability maps without further training.

As shown in Figure 2, despite using a lightweight segmen-
tation head, our model produces predictions that closely
match the expected anatomical regions. This indicates that
the voxel and mask embeddings are well aligned via con-
trastive learning. Notably, for fine-grained targets like nod-

SICISIL)!
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Figure 2. Visualization of predicted probability maps from
voxel-mask contrastive learning. SegVL predicts segmentation
for Lung, Heart, Nodule, and Effusion across three views. Warmer
colors indicate higher voxel-wise similarity to corresponding mask
embeddings.

010

ules and effusions, the model accurately highlights relevant
regions, indicating it has learned transferable voxel-level
features.

4. Conclusion

We present SegVL, a unified contrastive learning frame-
work that incorporates segmentation supervision into vision-
language pretraining for 3D medical images. By introducing
voxel-level contrastive learning between voxel embeddings
and segmentation prompts, and enhancing image-text con-
trast through segmentation-aware fusion, our model captures
fine-grained anatomical features that improve performance
across both classification and segmentation tasks. Exten-
sive experiments show that SegVL outperforms existing 3D
MedVLP methods, especially in fine-grained recognition
scenarios.

Limitations and Future Work. This study uses a limited
set of segmentation classes due to annotation and resource
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constraints. Future work will expand the anatomical vo-
cabulary and explore semi-supervised strategies, such as
consistency-based objectives, to better leverage limited seg-
mentation data.
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A. Implementation Details
A.1. Ablation Studies

We conduct an ablation study on CT-RATE classification
and BTCV segmentation tasks to analyze the impact of
segmentation supervision, loss function design, and decoder
complexity, as shown in Table 3. Models in all ablation
studies are pretrained on 1/10 data fold of CT-RATE and
RadGenome-Chest.

Effect of segmentation supervision. Comparing the base-
line without segmentation (row 1) and the model trained
with segmentation data (row 2), we observe substantial
gains in both classification and segmentation. Specifically,
segmentation-augmented training improves classification
AUC from 0.744 to 0.795 in the finetuning setting, and
boosts segmentation Dice from 0.843 to 0.868. This high-
lights the benefit of introducing spatial supervision to guide
the model toward fine-grained anatomical regions relevant
to diagnosis.

Impact of segmentation loss. We compare Tversky, Dice,
and InfoNCE as segmentation losses. The Tversky loss
achieves the best performance across both classification
and segmentation, reaching 0.803 classification AUC and
0.868 Dice. This is likely due to its ability to better handle
foreground-background imbalance, particularly for under-
represented structures such as lung nodules or pleural effu-
sions. In contrast, InfoNCE—which contrasts each voxel
embedding with all class prompts—amplifies the effect of
class imbalance and fails to capture subtle targets, leading
to significantly degraded segmentation performance.

Effect of decoder complexity. Using a heavy CNN decoder
(row 4) results in lower performance compared to a light
MLP decoder (row 6), under otherwise similar settings. This
suggests that complex decoders tend to absorb fine-grained
information into themselves, limiting the encoder’s capacity
to learn generalizable and transferable representations. In
contrast, the lightweight decoder promotes better encoder
learning and improves both classification and segmentation
outcomes.

A.2. Pre-training Dataset Settings

The segmentation classes used for pre-training in
RadGenome-ChestCT dataset include lung, heart, tracheo-
bronchial tree, cardiovascular, lung nodule and lung effu-
sion.

Due to the low-quality of lung nodule masks in RadGenome-
ChestCT dataset, these masks are refined using trained nn-
UNet (Isensee et al., 2021) model on LUNA (Setio et al.,
2017) dataset.

Additionally, due to the high false positive rate in lung
effusion labels, we discard all corresponding label masks

>

for CT volumes with negative label of “no pleural effusion,
replacing them with all-background masks.

The tracheobronchial tree mask is constructed by merging
the “trachea” and “bronchi” masks. The cardiovascular
mask is created by combining anatomical structures includ-
ing the aorta, aortic arch, brachiocephalic trunk, brachio-
cephalic vein, carotid artery, common carotid artery, heart
ascending aorta, heart atrium, heart ventricle, heart, inferior
vena cava, internal carotid artery, and internal jugular vein.

A.3. Training Details

Initialization and Training Stages. The image encoder
is randomly initialized, while the text encoder is initialized
from BioViL (Boecking et al., 2022). The training consists
of two stages. The first stage focuses on learning high-
level semantic representations, where ¢, in Section 2.3
is set to 0 and the segmentation/text heads remain frozen.
The second stage incorporates segmentation supervision to
enhance fine-grained feature learning, with ayeg set to 0.75.
The fusion weight A (Section 2.3) is initialized to O at the
beginning of the second stage.

Model Architecture The text encoder is a transformer-
based model following (Hamamci et al., 2024). The image
encoder utilizes a ViT-Base with patch size of (20, 20, 10)
in each dimension.

Optimizing Hyper-parameters. Each stage is trained for
106 steps using the AdamW optimizer and a cosine learning
rate schedule, with the learning rate decaying linearly from
5 x 1076 to 5 x 1078, The batch size is set to 32 in the first
stage and 16 in the second. Gradient accumulation with a
step size of 2 is used in both stages to balance GPU memory
constraints.

Loss Hyper-parameters. For segmentation loss, we use
the Tversky loss with class-specific (a, 3) weights to han-
dle severe class imbalance: (0.3,0.7) for lung nodules,
(0.4,0.6) for lung effusion, and (0.5,0.5) for other cate-
gories.

Data Augmentations. We follow fVLM (Shui et al.,
2025) and apply standard augmentations including random
flipping and random spatial shifting during the second stage.
The total training time on the CT-RATE and RadGenome
datasets is approximately 4 days for each stage using 4
NVIDIA A100 GPUs (80GB) with mixed-precision training
enabled.

Transformers Implementations. Due to the long se-
quence length of volumetric tokens, we adopt PyTorch’s
FlashAttention v2 (Dao, 2024) for the vision transformer
to reduce memory usage without precision loss.
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Table 3. Ablation studies of segmentation task, loss designs and decoder designs. VE denotes the ”Visual Enhancement” from segmentation,

which is proposed in Section 2.3.

CT-RATE(Cls) BTCV(Seg)
Seg  VE  SegLoss Decoder Zero-shot Lipro Finetune Lipro Finegtune
X X \ Light MLP 0.672 0.683  0.744  0.839  0.843
v x  Tversky  Light MLP 0.707 0760  0.795 0.862  0.866
v v InfoNCE Light MLP 0.676 0.688  0.742  0.845  0.847
v v Tversky Heavy CNN 0.737 0752  0.775  0.854  0.859
v v Dice Light MLP 0.735 0.763  0.797  0.857  0.858
v v Tversky  Light MLP 0.742 0.776  0.803  0.864  0.868

A.4. Downstream Dataset and Evaluation Tasks

CT-RATE (Hamamci et al., 2024) (Internal Classifica-
tion) The CT-RATE internal validation dataset consists of
3039 volumes from 1304 patients. The evaluated classes
for classification follows (Hamamci et al., 2024), including
18 classes of Medical material, Arterial wall calcification,
Cardiomegaly, Pericardial effusion, Coronary artery wall
calcification, Hiatal hernia, Lymphadenopathy, Emphysema,
Atelectasis, Lung nodule, Lung opacity, Pulmonary fibrotic
sequela, Pleural effusion, Mosaic attenuation pattern, Peri-
bronchial thickening, Consolidation, Bronchiectasis, Inter-
lobular septal thickening.

Rad-ChestCT (Draelos et al., 2021) (External Classifi-
cation) The Rad-ChestCT dataset consists of 3630 CT
volumes. The evaluated classes for classification follows
(Hamamci et al., 2024), including 16 classes of Medical
material, Calcification, Cardiomegaly, Pericardial effusion,
Hiatal hernia, Lymphadenopathy, Emphysema, Atelectasis,
Lung nodule, Lung opacity, Pulmonary fibrotic sequela,
Pleural effusion, Peribronchial thickening, Consolidation,
Bronchiectasis and Interlobular septal thickening.

CC-CCII (Zhang et al., 2020) (External Classification)
The CC-CCII dataset consists of 3,993 scans from 2,698 pa-
tients, and we perform classification following the settings
of (He etal., 2024). The downstream task is to classify each
volume into three categories: novel coronavirus pneumo-
nia(NCP), common pneumonia (CP), and normal (Normal).

RICORD (Tsai et al., 2020) (External Classification)
The RICORD dataset comprises 182 training volumes
and 45 testing volumes. Following the protocol of
UnimiSS (Xie et al., 2022), we formulate the classifica-
tion task as a binary prediction of COVID-19 positivity.

BTCYV (Landman et al., 2015) (External Segmentation)
The BTCV dataset comprises abdomen CT volumes and
segmentations of multiple organs. Following the settings
of UnimiSS (Xie et al., 2022), we divide the dataset into

24 training volumes, 6 validation volumes and 20 online
testing volumes. All the labels of training volumes are used
for linear-probing and finetuning settings.

MSD-Lung (Antonelli et al., 2022) (External Segmenta-
tion) The Medical Segmentation Decathlon (MSD) chal-
lenge dataset comprises CT volumes with lesion and its
segmentation. We use the task 6 split of MSD challenge
dataset to focus on the lung tumor segmentation on chest
CT. The dataset comprises 63 training volumes with lung
tumor annotations and 32 testing volumes. We follow the
evaluation settings in VoCo (Wu et al., 2024).

TotalSegmentor (Wasserthal et al., 2023) (External Seg-
mentation) We use the organ subset of the TotalSegmen-
tor dataset for evaluation. The organ subset include segmen-
tations of Spleen, Left & Right Kidney, Gallbladder, Liver,
Stomach, Pancreas, Left & Right Adrenal Gland, Lobes of
Left & Right Lung, Esophagus, Trachea, Thyroid Gland,
Small Bowel, Duodenum, Colon, Urinary Bladder, Prostate,
Left & Right Kidney Cyst. We split the dataset into 928
training, 52 validation, and 248 testing volumes.

RadGenome (Zhang et al., 2024) (Zero-Shot Seg-
mentation) We perform zero-shot segmentation on the
RadGenome validation set for qualitative visualization. The
evaluated classes include lung, heart, lung nodule, and lung
effusion. Heatmaps are generated to visualize voxel-level
segmentation predictions for each class.

A.5. More Training Details

Sampling Different Types of Training Dataset As we
use both image-report and image-segmentation dataset for
pre-training, the sampling and balancing strategy between
two types of dataset become crucial. We perform gradient
accumulation of 2 steps, which contain one step of training
on image-report dataset and one step of training on image-
segmentation dataset. For the image-report dataset, the
segmentation head is also used for visual enhancement on
image latents.
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Implementations of CLIP Loss on Multi-GPU The offi-
cial CT-CLIP (Hamamci et al., 2024) code does not support
multi-GPU training for the CLIP loss, as it fails to perform
contrastive learning across image/text embeddings from dif-
ferent GPUs. We address this issue by adapting the original
CLIP (Radford et al., 2021) implementation to HuggingFace
Accelerate library (Gugger et al., 2022) in all our experi-
ments, including ablation studies. This limitation has also
been resolved in the fVLM (Shui et al., 2025) implementa-
tion, which is adapted from a different codebase.

A.6. More Network Architecture Details

Vision Encoder. We adopt a clean ViT-Base architec-
ture as our 3D vision encoder, which directly applies stan-
dard Transformer blocks over volumetric patches. Specifi-
cally, the input CT volume is tokenized into non-overlapping
20 x 20 x 10 patches, resulting in volumetric tokens. Unlike
CT-ViT in (Hamamci et al., 2024), we remove the preceding
convolutional layers and the large MLP expansion module,
preserving a pure ViT design for better modularity and gen-
eralization. The model comprises 12 Transformer layers,
each with 12 attention heads and hidden size 768, matching
the original ViT-Base(Dosovitskiy et al., 2020) configura-
tion.

Text and Segmentation Heads. Both the text projection
head and segmentation head used for contrastive learning
are implemented as lightweight 2-layer MLPs. Each MLP
comprises a linear projection, followed by a LeakyReLLU
activation, LayerNorm, and a final linear layer to produce
the embedding. These heads are designed to be parameter-
efficient and compatible with the contrastive objectives.

Segmentation Decoder for Fine-tuning. When fine-
tuning on downstream segmentation tasks, we replace the
2-layer segmentation MLP head with a small transposed
convolutional decoder following UniMiSS (Xie et al., 2022).
This adjustment introduces spatial positional bias into the
predictions, which is important for accurate voxel-level de-
coding. Without this change, we observe that shared MLP
heads tend to generate overly uniform predictions across
all voxels in a token due to the lack of location-specific
modeling.

A.7. More Visualizations of Zero-Shot Segmentations

To supplement our analysis of voxel-mask contrastive learn-
ing, we include additional zero-shot segmentation results
in Figure 3-5. The visualizations display predicted proba-
bility maps obtained from cosine similarity between voxel
and mask embeddings. These examples further confirm
that our method produces semantically meaningful and spa-
tially precise segmentations, even for subtle or fine-grained
structures, without relying on heavy decoder designs.

A.8. Performance Comparison with Standard Deviation

We provide the performance comparisons with standard
deviation in our main experiments of downstream tasks
evaluation. The deviation is obtained from five repeated
experiments with different random seeds.

A.9. Detailed Analysis of Classification Results of
Different Labels

We present detailed zero-shot and linear probing classifica-
tion results on the CT-RATE dataset in Table 6 and Table 7
Overall, our model achieves strong performance across 18
diagnostic categories, demonstrating the generalizability of
our pretraining approach.

Two key observations emerge from this analysis. First,
the incorporation of segmentation supervision improves
the model’s understanding of anatomy-related diseases.
For instance, we observe notable gains on classes such as
bronchiectasis and lung nodule, which are highly correlated
with anatomical structures included in our segmentation
vocabulary.

Second, our method exhibits clear advantages in identifying
fine-grained patterns. Categories like lung opacity, which re-
quire subtle feature discrimination, benefit from the detailed
spatial information learned through voxel-level contrastive
supervision. This suggests that our approach not only en-
hances high-level semantic alignment but also reinforces
the model’s sensitivity to nuanced radiological cues.

A.10. Potential Societal Impact.

Our work presents a pre-trained 3D medical image encoder
that may benefit a wide range of downstream applications,
such as computer-aided diagnosis and clinical decision sup-
port. By enabling better understanding of volumetric scans
with limited annotations, our approach could help democra-
tize access to high-quality medical Al systems and reduce
the burden on radiologists.

However, potential negative impacts should be considered.
The pre-trained model may reflect dataset biases, such as
under-representation of rare conditions or specific demo-
graphic groups, which could lead to reduced accuracy or
unintended disparities in clinical settings. Moreover, over-
reliance on automated systems without sufficient human
oversight may risk diagnostic errors. Careful evaluation
and responsible deployment in real-world workflows are
necessary to mitigate such risks.

A.11. Licenses

We used existing assets as follows:

e CT-CLIP (Hamamci et al., 2024): https:


https://github.com/ibrahimethemhamamci/CT-CLIP
https://github.com/ibrahimethemhamamci/CT-CLIP
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Figure 3. Additional visualization of lung predictions. Segmentation heatmaps predicted by SegVL for the /ung class across axial,
sagittal, and coronal views. Warmer colors indicate higher predicted probabilities, showing close alignment with lung regions.
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Figure 4. Additional visualization of heart predictions. Segmentation heatmaps predicted by SegVL for the heart class across axial,
sagittal, and coronal views. Our model accurately highlights heart regions using only lightweight contrastive supervision.

//github.com/ibrahimethemhamamci/
CT-CLIP, licensed under CC BY-NC-SA.

e fVLM (Shui et al., 2025): https://github.
com/alibaba-damo—-academy/fvlm, no ex-
plicit license.

e UniMiSS (Xie et al., 2022): https://github.
com/YtongXie/UniMiSS—-code, licensed under
MIT.

e Merlin (Blankemeier et al.,, 2024): https:
//github.com/StanfordMIMI/Merlin,
licensed under MIT.

10


https://github.com/ibrahimethemhamamci/CT-CLIP
https://github.com/ibrahimethemhamamci/CT-CLIP
https://github.com/ibrahimethemhamamci/CT-CLIP
https://github.com/ibrahimethemhamamci/CT-CLIP
https://github.com/ibrahimethemhamamci/CT-CLIP
https://github.com/ibrahimethemhamamci/CT-CLIP
https://github.com/ibrahimethemhamamci/CT-CLIP
https://github.com/ibrahimethemhamamci/CT-CLIP
https://github.com/ibrahimethemhamamci/CT-CLIP
https://github.com/ibrahimethemhamamci/CT-CLIP
https://github.com/alibaba-damo-academy/fvlm
https://github.com/alibaba-damo-academy/fvlm
https://github.com/YtongXie/UniMiSS-code
https://github.com/YtongXie/UniMiSS-code
https://github.com/StanfordMIMI/Merlin
https://github.com/StanfordMIMI/Merlin

Mask-Infused Vision-Language Pre-training for 3D Medical Images

Lung Nodule

1.00

Axial

0.70

Sagittal

0.40

Coronal

0.10

Figure 5. Additional visualization of lung nodule predictions. Visualization of voxel-wise prediction maps for the lung nodule class.
The highlighted small regions reflect our model’s ability to localize subtle, fine-grained features via voxel-mask contrastive learning.

Table 4. Mean AUC (7) and estimated standard deviation on downstream classification under linear probing setting.
Model RadChest-CT CC-CCcln RICORD

CT-CLIP (Hamamci et al., 2024)  0.653 £ 0.014 0.865 4 0.009 0.846 + 0.008
Merlin (Blankemeier et al., 2024)  0.677 £ 0.011 0.877 £ 0.008 0.854 £ 0.007

UniMiSS (Xie et al., 2022) \ 0.841 £ 0.009 0.862 £+ 0.008
fVLM (Shui et al., 2025) 0.697 £0.010 0.871+£0.007  0.858 £ 0.007
SegVL (ours) 0.702+0.009 0.893+0.006 0.887+0.007

Table 5. Comparison of our SegVL with other baselines on downstream classification tasks under finetuning setting. Results are reported
as AUC (1) in the format of mean + std. Values marked with n/a are directly taken from original papers without standard deviation.
Model RadChest-CT CC-CCII RICORD

CT-CLIP (Hamamci et al., 2024) ~ 0.650 & 0.011 0.920 £0.007  0.863 £ 0.006
Merlin (Blankemeier et al., 2024)  0.694 £ 0.012 0.919 £ 0.009 0.879 £0.010

T3D (Liu et al., 2023) \ 0.927+ n/a

UniMiSS (Xie et al., 2022) \ 0.913 £ 0.008 0.891 £ 0.009
MRM (Zhou et al., 2023) \ 0.8804+ n/a \
IMITATE (Liu et al., 2024) \ 0.892+ n/a

fVLM (Shui et al., 2025) 0.704 £ 0.010 0.926 £0.007  0.885 £ 0.006
SegVL (ours) 0.716 £0.008 0.936 +0.006 0.912 £ 0.005
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Table 6. Detailed zero-shot classification results on CT-RATE. We report class-wise Precision, AUC, and F1 score for each of the 18
diagnostic categories, along with their mean.

Class Precision AUC F1

Medical material 0.247 0.742  0.700
Arterial wall calcification 0.581 0.890 0.831
Cardiomegaly 0.557 0.880 0.911
Pericardial effusion 0.477 0.891 0.849
Coronary artery wall calcification 0.548 0.839 0.779
Hiatal hernia 0.185 0.738 0.655
Lymphadenopathy 0.416 0.675 0.700
Emphysema 0.358 0.759 0.743
Atelectasis 0.372 0.691 0.705
Lung nodule 0.581 0.702  0.658
Lung opacity 0.522 0.711 0.659
Pulmonary fibrotic sequela 0.359 0.590 0.554
Pleural effusion 0.480 0.931 0918
Mosaic attenuation pattern 0.132 0.714 0.671
Peribronchial thickening 0.249 0.719  0.698
Consolidation 0.356 0.809 0.759
Bronchiectasis 0.240 0.775 0.751
Interlobular septal thickening 0.218 0.756  0.786
Mean 0.382 0.767 0.740

Table 7. Per-class linear probing results on the CT-RATE dataset. We report class-wise Precision, AUC, and F1 score for each of the 18
diagnostic categories, along with their mean.

Class Prec AUC F1

Medical material 0.286 0.780 0.809
Arterial wall calcification 0.575 0.853 0.847
Cardiomegaly 0.387 0915 0.924
Pericardial effusion 0.420 0.912 0.958
Coronary artery wall calcification  0.550 0.869 0.876
Hiatal hernia 0.257 0.759 0.865
Lymphadenopathy 0.456 0.799 0.810
Emphysema 0.310 0.720 0.828
Atelectasis 0.480 0.815 0.844
Lung nodule 0.636 0.725 0.791
Lung opacity 0.520 0.749 0.781
Pulmonary fibrotic sequela 0.385 0.720 0.739
Pleural effusion 0.680 0.929 0.943
Mosaic attenuation pattern 0.227 0.754 0.808
Peribronchial thickening 0.184 0.699 0.762
Consolidation 0.374 0.839 0.876
Bronchiectasis 0.216 0.641 0.697
Interlobular septal thickening 0.217 0.791 0.812
Mean 0.398 0.793 0.832
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