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ABSTRACT

Realistic graphs contain both (1) rich self-features of nodes and (2) informative
structures of neighborhoods, jointly handled by a Graph Neural Network (GNN)
in the typical setup. We propose to decouple the two modalities by Mixture of
weak and strong experts (Mowst), where the weak expert is a light-weight Multi-
layer Perceptron (MLP), and the strong expert is an off-the-shelf GNN. To adapt
the experts’ collaboration to different target nodes, we propose a “confidence”
mechanism based on the dispersion of the weak expert’s prediction logits. The
strong expert is conditionally activated in the low-confidence region when ei-
ther the node’s classification relies on neighborhood information, or the weak
expert has low model quality. We reveal interesting training dynamics by ana-
lyzing the influence of the confidence function on loss: our training algorithm
encourages the specialization of each expert by effectively generating soft split-
ting of the graph. In addition, our “confidence” design imposes a desirable bias
toward the strong expert to benefit from GNN’s better generalization capability.
Mowst is easy to optimize and achieves strong expressive power, with a com-
putation cost comparable to a single GNN. Empirically, Mowst on 4 backbone
GNN architectures show significant accuracy improvement on 6 standard node
classification benchmarks, including both homophilous and heterophilous graphs
(https://github.com/facebookresearch/mowst-gnn).
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Figure 1: Design overview of Mowst. The full system is composed of a weak expert, a strong expert,
and a gating module. Diverse collaboration behaviors between the weak & strong experts emerge as a
result of the gating module’s coordination. The gating function, which can be either manually defined
or automatically learned (via an additional compact MLP), calculates a confidence score based on the
dispersion of only the weak expert’s prediction logits. The confidence score varies across different
target nodes depending on the experts’ relative strength on the local graph region. The score also
directly controls how each expert’s own logits are combined into the system’s final prediction.
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1 INTRODUCTION

A main challenge in graph learning lies in the data complexity. Realistic graphs contain non-
homogeneous patterns such that different parts of the graph may exhibit different characteristics. For
instance, locally homophilous and locally heterophilous regions may co-exist in one graph (Zhu et al.,
2021); depending on local connectivity, graph signals may be mixed in diverse ways quantified by
node-level assortativity (Suresh et al., 2021); the number of graph convolution iterations should be
adjusted based on the topology of the neighborhood surrounding each target node (Zhang et al., 2021).
However, many widely-used GNNs have a fundamental limitation since they are designed based on
global properties of the graph. For instance, GCN (Kipf & Welling, 2016) and SGC (Wu et al., 2019)
perform signal smoothing using the full-graph Laplacian; GIN (Xu et al., 2019) simulates k-hop
subgraph isomorphism test with the same k on all target nodes; GraphSAGE (Hamilton et al., 2017)
and GAT (Veličković et al., 2018) aggregates features from k-hop neighbors, again with a global k.
There is large potential to improve GNN’s capacity by diversified treatments on a per-node basis.

Model capacity can be enhanced in several ways. One solution is to develop more advanced layer
architectures for a single GNN (Brody et al., 2022; Zheng et al., 2023; Joshi et al., 2023), with the
aim of enabling the model to automatically adapt to the unique characteristics of different target
nodes. The other way is to incorporate existing GNN models into a Mixture-of-Experts (MoE) system
(Jacobs et al., 1991; Hu et al., 2022), considering that MoE has effectively improved model capacity
in many domains (Masoudnia & Ebrahimpour, 2014; Du et al., 2022; Lepikhin et al., 2021). In
this study, we follow the MoE design philosophy, but take a step back to mix a simple Multi-Layer
Perceptron (MLP) with an off-the-shelf GNN – an intentionally imbalanced combination unseen
in traditional MoE. The main motivation is that MLP and GNN models can specialize to address
the two most fundamental modalities in graphs: the feature of a node itself, and the structure of its
neighborhood. The MLP, though much weaker than the GNN, can play an important role in various
cases. For instance, in homophilous regions where nodes features are similar, leveraging an MLP to
focus on the rich features of individual nodes may be more effective than aggregating neighborhood
features through a GNN layer. Conversely, in highly heterophilous regions, message passing could
introduce noise, potentially causing more harm than good (Zhu et al., 2020a). The MLP expert can
help “clean up” the dataset (§2.4) for the GNN, enabling the strong expert to focus on the more
complicated nodes whose neighborhood structure provides useful information for the learning task.

An additional advantage of our “weak-strong” duo is that incorporating a lightweight and easily
optimized MLP helps mitigate the issues of computation costs and optimization difficulties commonly
associated with traditional GNN or MoE systems. The lack of recursive neighborhood aggregation
in an MLP not only makes its computation orders of magnitude cheaper than a GNN (Wu et al.,
2019; Zhang et al., 2022) (even when optimized by sampling techniques (Zeng et al., 2021; Shi et al.,
2023)), but it also completely avoids issues such as oversmoothing (Chen et al., 2020a; Li et al.,
2018) and oversquashing (Topping et al., 2022; Alon & Yahav, 2021). While the traditional MoE
approaches can partially address the computation challenges by activating a subset of expert through
various gating modules (Shazeer et al., 2017; Nie et al., 2022), sparse gating may further complicate
optimization due to the introduction of discontinuities and intentional noise (Fedus et al., 2022).

Contributions. We propose Mixture of weak and strong experts (Mowst) on graphs, where the
MLP and GNN experts specialize in the feature and structure modalities. To encourage collaboration
without complicated gating, we propose a “confidence” mechanism to control the contribution of
each expert on a per-node basis (Figure 1). Unlike recent MoE designs where experts are fused in
each layer (Du et al., 2022; Lepikhin et al., 2021), our experts execute independently through their
last layer and are then mixed based on a confidence score calculated by the dispersion of the MLP’s
prediction logits. Our mixing mechanism has the following properties. First, since the confidence
score solely depends on the MLP’s output, the system is inherently biased. This means that under
the same training loss, the predictions of the GNN are more likely to be accepted than those of the
MLP (§2.3). Such bias is desirable due to GNN’s better generalization capability (Yang et al., 2023),
and the extent of bias can be learned via the confidence function. Second, our model-level (rather
than layer-level) mixture simplifies the optimization and enhances explainability. Through theoretical
analysis of the optimization behavior (§2.3), we uncover various interesting collaboration modes
between the two experts (§2.3). In the specialization mode, the system dynamically creates a soft
splitting of the graph nodes based on not only the nodes’ characteristics but also the two experts’
relative model quality. After splitting, the experts each specialize on the nodes they own. In the

2



denoising mode, the GNN expert dominates on almost all nodes after convergence. The MLP overfits
a small set of noisy nodes, effectively removing them from the GNN’s training set and thus enabling
the GNN to further fine-tune. The above advantages of Mowst, together with the theoretically high
expressive power, come at the cost of minor computation overhead. In experiments, we extensively
evaluate Mowst on 4 types of GNN experts and 6 standard benchmarks covering both homophilous
and heterophilous graphs. We show consistent accuracy improvements over state-of-the-art baselines.

2 Mowst

Our discussion mainly focuses on the 2-expert Mowst while §2.7 shows the many-expert generaliza-
tion. The key challenge is to design the mixture module considering the subtleties in the interactions
between the imbalanced experts. On the one hand, the weak expert should be cautiously activated to
avoid accuracy degradation. On the other hand, for nodes that can be truly mastered by the MLP, the
weak expert should meaningfully contribute rather than being overshadowed by its stronger coun-
terpart. §2.1 and §2.2 present the overall model. §2.3 and §2.4 analyze the collaboration behaviors.
§2.5 discusses a variant of Mowst. §2.6 analyzes the expressive power and computation cost.

Notations. Let G (V,E,X) be a graph with node set V and edge set E. Each node v has a length-f
raw feature vector xv. The node features can be stacked as X ∈ R|V|×f . Denote v’s ground truth
label as yv ∈ Rn, where n is the number of classes. Denote the model prediction as pv ∈ Rn.

2.1 Mowst

Algorithm 1 Mowst inference
Input: G (V, E,X); target node v
Output: prediction of v
Run the trained MLP expert on v
Get prediction pv & confidence C (pv) ∈ [0, 1]
if random number q ∈ [0, 1] has q < C (pv) then

Predict v by MLP’s prediction pv

else
Run the trained GNN expert on v
Predict v by GNN’s prediction p′

v
end if

Algorithm 2 Mowst training
Input: G (V, E,X); training labels {yv}
Initialize MLP & GNN weights as θ0 & θ′

0
for round r = 1 until convergence do

Fix GNN weights θ′
r−1

Update MLP weights to θr by gradient descent on LMowst
until convergence

Fix MLP weights θr

Update GNN weights to θ′
r by gradient descent on LMowst

until convergence
end for

Inference. Algorithm 1 is executed on an already-trained Mowst: on target v, the two experts
each execute independently until they generate their own predictions pv and p′

v . The mixture module
either accepts pv with probability C (pv) (in which case we do not need to execute the GNN at all),
or discards pv and uses p′

v as the final prediction. We use a random number q to simulate the MLP’s
activation probability C (pv), where C (pv) reflects how confident the MLP is in its prediction. For
instance, in binary classification, pv = [0, 1]T and [0.5, 0.5]T correspond to cases where the MLP is
certain and uncertain about its prediction, with C (pv) being close to 1 and 0, respectively.

Training. The training should minimize the expected loss incurred in inference. In Algorithm 1,
the MLP incurs loss L (pv,yv) with probability C (pv). Therefore, the overall loss on expectation is:

LMowst =
1

|V|
∑
v∈V

(
C (pv) · L (pv,yv) + (1− C (pv)) · L (p′

v,yv)
)

(1)

where pv = MLP (xv;θ) and p′
v = GNN (xv;θ

′) are the experts’ predictions; θ and θ′ are the experts’
model parameters. LMowst is fully differentiable. While we could simultaneously optimize both
experts via standard gradient descent, Algorithm 2 shows a “training in turn” strategy: we fix one
expert’s parameters while optimizing the other. Training each expert in turn enables the experts to
fully optimize themselves despite having different convergence behaviors due to the distinct model
architectures. If C is learnable (§2.2), we update its parameters together with MLP’s θ.

Intuition. We demonstrate via a simple case study how C moderates the two experts. Suppose
at some point of training, the two experts have the same loss on some v. In case 1, v’s self features
are sufficient for a good prediction. Then MLP can make pv more certain to lower its L (pv,yv)
and increase C. The improved MLP’s loss then contributes more to LMowst than GNN’s loss, thus
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improving the overall LMowst. In case 2, v’s self-features are insufficient for further reducing MLP’s
loss. If the MLP makes pv more certain, LMowst will deteriorate since an increased C will up-weight
the contribution of a worse L (pv,yv). Otherwise, if the MLP acts in the reverse way to even degrade
pv to random guess, L (pv,yv) will be worse but C reduces to 0, leaving LMowst unaffected even if
MLP is completely ignored. Case 2 shows the bias of Mowst towards the GNN. However, as shown
in case 1, the weak MLP can still play a significant role in nodes where it specializes effectively.

2.2 CONFIDENCE FUNCTION

In this subsection, we omit the subscript v. We formally categorize the class of the confidence function
C. Consider the single-task, multi-class node classification problem, where n is the total number of
classes. The input to C, p, belongs to the standard (n− 1)-simplex, Sn−1. i.e.,

∑
1≤i≤n pi = 1 and

pi ≥ 0, for i = 1, . . . , n. The output of C falls between 0 and 1. Since C reflects the certainty of the
MLP’s prediction, we decompose it as C = G ◦D, where ◦ denotes function composition. Here, D
takes p as input and computes its dispersion, and G is a real-valued scalar function that maps the
dispersion to a confidence score. We define G and D as follows:

Definition 2.1. D : Sn−1 7→ R is continuous and quasiconvex where D
(
1
n1
)
= 0 and D (p) > 0 if

p ̸= 1
n1. G : R 7→ R is monotonically non-decreasing where G (0) = 0 and 0 < G (x) ≤ 1,∀x > 0.

Proposition 2.2. C = G ◦D is quasiconvex.

D’s definition states that only a prediction as bad as a random guess receives 0 dispersion. Typical
dispersion functions such as variance and negative entropy (see §D.1.1 for definitions) belong to
our class of D. Definition of G states that C does not decrease with a higher dispersion, which is
reasonable as dispersion reflects the certainty of the prediction. In training, we can fix C by manually
specifying both D and G. Alternatively, we can use a lightweight neural network (e.g., MLP) to learn
G, where the input to G’s MLP is the variance and negative entropy computed by D (§3).

2.3 INTERACTION BETWEEN EXPERTS

When optimizing the training loss in Equation 1, confidence C will accumulate on some nodes while
diminish on the others. Different distributions of C correspond to different ways that the two experts
can specialize and collaborate. In the following, we theoretically reveal three factors that control the
value of C: the richness of self-feature information, the relative strength between the two experts,
and the shape of the confidence function. The analysis on the experts’ relative strength also reveals
why the confidence-based gate is biased. Since both C and the MLP loss are functions of the MLP
prediction pv , we analyze the optimal pv that minimizes LMowst given a fixed GNN expert.

We set up the following optimization problem. We first divide the graph into m disjoint node
partitions, where nodes are in the same partition, Mi, if and only if they have identical self-features.
For all nodes in Mi, an MLP generates the same prediction denoted as p̂i. On the other hand,
predictions for different partitions, p̂i and p̂j (i ̸= j), can be arbitrarily different since an MLP is
a universal approximator (Hornik et al., 1989). The above properties convert Equation 1 from an
optimization problem on θ (MLP’s weights) to the one on {p̂i} (MLP’s predictions). Consider nodes
u and v in the same partition Mi. If they have different labels yu ̸= yv, no MLP can distinguish u
from v because the model lacks necessary neighborhood information. Let αi be the label distribution
for Mi. i.e., αij ∈ (0, 1) portion of nodes in Mi have label j, and

∑
1≤j≤n αij = 1. We are now

ready to derive the optimization problem as follows (see §E.1 for detailed steps):

{p̂∗
i } = argmin

{p̂i}
LMowst = argmin

{p̂i}

∑
1≤i≤m

C (p̂i) ·
(
L̂αi

(p̂i)− µi

)
(2)

where L̂αi
(p̂i) = 1

|Mi|
∑

v∈Mi
L (p̂i,yv) = −

∑
1≤j≤n αij · log p̂ij is the average MLP cross-

entropy loss on nodes in Mi; µi =
1

|Mi|
∑

v∈Mi
L (p′

v,yv) is a constant representing the average
loss of the fixed GNN on the Mi nodes. We first summarize the properties of the loss as follows:

Proposition 2.3. Given αi, L̂αi
(p̂i) is a convex function of p̂i with unique minimizer p̂∗

i = αi. Let
∆(α) = L̂α (α) be a function of α, ∆ is a concave function with unique maximizer α∗ = 1

n1.
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∆(αi) reflects the best possible performance of any MLP on a group Mi. For optimization problem
2, Theorem 2.4 quantifies the positions of the minimizer p̂∗

i and the corresponding values of C.
In case 3 (∆(αi) < µi), it is impossible to derive the exact p̂∗

i without knowing the specific C.
Therefore, we bound p̂∗

i via “sub-level sets”, which characterize the shapes of the loss and confidence
functions. The last sentence of Theorem 2.4 shows the “tightness” of the bound.

Theorem 2.4. Suppose C = G ◦D follows Definition 2.1. Denote Lµi
αi

= {p̂i | L̂αi
(p̂i) = µi}

and L<µi
αi

= {p̂i | L̂αi (p̂i) < µi} as the level set and strict sublevel set of L̂αi . Denote C<µi =

{p̂i | C (p̂i) < µi} as the strict sublevel set of C. For a given αi ̸= 1
n1n, the minimizer p̂∗

i satisfies:

• If ∆(αi) > µi, then p̂∗
i = 1

n1n and C (p̂∗
i ) = 0.

• If ∆(αi) = µi, then p̂∗
i = αi or p̂∗

i = 1
n1.

• If ∆(αi) < µi, then p̂∗
i ∈ L<µi

αi
−C<µ′

where µ′ = C (αi) ≤ C (p̂∗
i ) ≤ G

(
maxp̂i∈L

µi
αi

D (p̂i)
)

.
Further, there exists C such that p̂∗

i = αi, or p̂∗
i is sufficiently close to the level set Lµi

αi
.

Proposition 2.3 and Theorem 2.4 jointly reveal factors affecting the MLP’s contribution:
(1) Node feature information, αi: αi being closer to 1

n1 implies that node features are less in-
formative. Thus, confidence C will be lower since it is harder to reduce the MLP loss (Proposition
2.3); (2) Relative strength of experts, ∆(αi)− µi: when the best possible MLP loss ∆(αi) cannot
beat the GNN loss µi, the MLP simply learns to give up on the node group Mi by generating random
guess p̂∗

i = 1
n1. Otherwise, the MLP will beat the GNN by learning a p̂∗

i in some neighborhood of αi

and obtaining positive C. The worse the GNN (i.e., larger µi), the easier to obtain a more dispersed
p̂∗
i (i.e., enlarged L<µi

αi
), and so the easier to achieve a larger C (i.e., increased maxp̂i∈L

µi
αi

D (p̂i));

(3) Shape of the confidence function C: the sub-level set, C<µ′
, constrains the range of p̂∗

i . Addi-
tionally, changing G’s shape can push C (p̂∗

i ) towards the lower bound C (αi) or the upper bound

G
(
maxp̂i∈L

µi
αi

D (p̂i)
)

. See §D.1 for specific G constructions and all proofs.

Point (1) is a data property. Point (2) leads to diverse training dynamics (§2.4). Additionally, it
reflects Mowst’s inherent bias: a better GNN completely dominates the MLP by 1 − C (p̂∗

i ) = 1,
while a better MLP only softly deprecates the GNN with C (p̂∗

i ) ≤ 1. Such bias is by design since we
only cautiously activate the weak expert: (a) A GNN is harder to optimize, so even if it temporarily
performs badly during training, we still preserve a certain weight 1− C hoping that it later catches
up with the MLP; (b) Since a GNN generalizes better on the test set (Yang et al., 2023), we prefer it
when the two experts have similar training performance. Point (3) justifies our learnable G in §2.2.

2.4 TRAINING DYNAMICS

Specialization via data splitting. At the beginning of training (r = 1, Algorithm 2), a randomly
initialized GNN approximately produces random guesses. Therefore, the MLP generates a distribution
of C over all training nodes purely based on the importance of self-features. Denote the subset of
nodes with large 1−C as SGNN. When it is the GNN’s turn to update its model parameters, the GNN
optimizes SGNN better due to the larger loss weight. In the subsequent round (r = 2), the MLP will
struggle to outperform the GNN on many nodes, especially on SGNN. According to Theorem 2.4, the
MLP will completely ignore such challenging nodes by setting C = 0 on SGNN, thus simplifying
the learning task for the weak expert. When MLP converges again, it specializes better on a smaller
subset of the training set, and the updated C distribution leads to a clearer data partition between
the two experts. This iterative process continues, with each additional round of “in-turn training”
reinforcing better specialization between the experts.

Denoised fine-tuning. This is a special case of “specialization” where nodes are dominantly
assigned to the GNN expert. This case can happen for two reasons: (1) GNN is intrinsically stronger;
(2) Our confidence-based gate favors the GNN (§2.3). Let SMLP and SGNN represent the sets of nodes
assigned to the two experts when the training of Mowst has almost converged. According to the
“relative strength” analysis in §2.3, SMLP may only constitute a small set of outlier nodes with a high
level of structural noises. Such SMLP does not capture a meaningful distribution of the training data,
and thus the MLP overfits when it optimizes on SMLP and ignores SGNN. What’s interesting is that
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now MLP’s role switches from true specialization to noise filtering: Without the MLP, SMLP and SGNN
are both in the GNN’s training set. While the size of SMLP is small, it may generate harmful gradients
significant enough to make the GNN stuck in sub-optimum. With the MLP, SMLP is eliminated from
the GNN’s training set, enabling the GNN to further fine-tune on SGNN without the negative impact
from SMLP. The improvement is not attributable to the MLP’s performance on SMLP, but rather to the
enhancement of the GNN’s model quality after training on a cleaner dataset.

2.5 Mowst⋆

We propose a model variant, Mowst⋆, by modifying the training loss of Mowst. In Equation 1, we
compute the losses of the two experts separately, and then combine them via C to obtain the overall
loss LMowst. In Equation 3, we first use C to combine the predictions of the two experts, pv and p′

v,
and then calculate a single loss for L⋆

Mowst. Note that the cross entropy loss, L (·,yv) is convex, and
the weighted sum based on C also corresponds to a convex combination. We thus derive Proposition
2.5, which states that Mowst⋆ is theoretically better than Mowst due to a lower loss.

L⋆
Mowst =

1

|V|
∑
v∈V

L
(
C (pv) · pv + (1− C (pv)) · p′

v, yv

)
(3)

Proposition 2.5. For any function C with range in [0, 1], LMowst upper-bounds L⋆
Mowst.

Since Mowst⋆ only has a single loss term, we no longer employ the “in-turn training” of Algorithm 2.
Instead, we directly differentiate L⋆

Mowst and update the MLP, GNN, and the learnable C altogether.
During inference, Mowst⋆ computes both experts and predicts via C (pv) · pv + (1− C (pv)) · p′

v .

Mowst vs. Mowst⋆. Both variants have similar collaboration behaviors (e.g., §2.4), primarily
driven by the “weak-strong” design choice and the confidence mechanism. Regarding trade-offs,
Mowst may be easier to optimize as its “in-turn training” fully decouples the experts’ different model
architectures, while Mowst⋆ has a theoretically lower loss. Both variants can be practically useful.

2.6 EXPRESSIVE POWER AND COMPUTATION COMPLEXITY

We jointly analyze Mowst and Mowst⋆ due to their commonalities. Since the MLP and GNN experts
execute independently before being combined, it is intuitive that our system can express each expert
alone by simply disabling the other expert. In the following theoretical results, the term “expressive
power” is used in accordance with its standard definition (Lu et al., 2017), which characterizes the
neural network’s ability to approximate functions. The formal definition and proof are in §D.2.
In Proposition 2.6, we construct a specific G so that the confidence function acts as a binary gate
between experts. Theorem 2.7 provides a stronger result on the GCN architecture (Kipf & Welling,
2016): when neighbors are noisy (or even adversarial), their aggregation brings more harm than
benefit. An MLP is a simple yet effective way to eliminate such neighbor noises. The proof share
inherent connections with the empirically observed “denoising” behavior in §2.4.
Proposition 2.6. Mowst and Mowst⋆ are at least as expressive as the MLP or GNN expert alone.
Theorem 2.7. Mowst-GCN and Mowst⋆-GCN are more expressive than the GCN expert alone.

For computation complexity, we consider the average cost of predicting one node in inference. For
sake of discussion, we consider the GCN architecture and assume that both experts have the same
number of layers ℓ and feature dimension f . In the worst case, both experts are activated (as noted
in Algorithm 1, we can skip the strong expert with probability C). The cost of the GCN is lower
bounded by Ω

(
f2 · (ℓ+ bℓ−1)

)
, where bℓ−1 is the average number of (ℓ− 1)-hop neighbors. The

cost of the MLP is O
(
f2 · ℓ

)
. On large graphs, the neighborhood size bℓ−1 can grow exponentially

with ℓ, so realistically, bℓ−1 ≫ ℓ. This means the worst-case cost of Mowst or Mowst⋆ is similar to
that of a vanilla GCN. The conclusion still holds if we use an additional, lightweight MLP to compute
the confidence C (since such an MLP only approximates a scalar function G, it is not expensive).

2.7 MIXTURE OF PROGRESSIVELY STRONGER EXPERTS

Suppose we have a series of k progressively stronger experts where expert i is stronger than j if
i > j (e.g., 3 experts consisting of MLP, SGC (Wu et al., 2019) and GCN (Kipf & Welling, 2016)).
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Mowst and Mowst⋆ can be generalized following a recursive formulation. Let Lv
i be the loss of

expert i on node v, Lv
≥i be the loss of a Mowst sub-system consisting of experts i to k, and Cv

i
be the confidence of expert i computed by i’s prediction on node v. Equation 1 then generalizes
to LMowst = 1

|V|
∑

v∈V L
v
≥1 and Lv

≥i = Cv
i · Lv

i + (1− Cv
i ) · Lv

≥i+1. During inference, similar to
Algorithm 1, the strong expert will be activated only when all previous weaker experts are bypassed
due to their low confidence. The case for Mowst⋆ can be derived similarly. See §E.2 for the final
form of LMowst. Due to the recursive nature of adding new experts, all our analyses and observations
in previous sections still hold. For instance, the expressive power is ensured as follows:
Proposition 2.8. Mowst and Mowst⋆ are at least as expressive as any expert alone.

3 EXPERIMENTS

Table 1: Mowst outperforms baselines under the same number of layers and hidden dimension. Values
with ‘†’, ‘‡’ and ‘††’ are from Hu et al. (2020), Lim et al. (2021), and Wang et al. (2023). For each
graph, we show the best and second best results, and absolute gains against the GNN counterparts
(e.g., Mowst(⋆)-GCN vs. GCN and GraphMoE-GCN). All results are averaged over 10 runs.

Flickr ogbn-products ogbn-arxiv Penn94 pokec twitch-gamer

MLP 46.93 ±0.00 61.06† ±0.08 55.50† ±0.23 73.61‡ ±0.40 62.37‡ ±0.02 60.92‡ ±0.07

GAT 52.47 ±0.14 OOM 71.58 ±0.17 81.53‡ ±0.55 71.77‡ ±6.18 59.89‡ ±4.12

GPR-GNN 53.23 ±0.14 72.41 ±0.04 71.10 ±0.22 81.38‡ ±0.16 78.83‡ ±0.05 61.89‡ ±0.29
AdaGCN 48.96 ±0.06 69.06 ±0.04 58.45 ±0.50 74.42 ±0.58 55.92 ±0.35 61.02 ±0.14

GCN 53.86 ±0.37 75.64† ±0.21 71.74† ±0.29 82.17 ±0.04 76.01 ±0.49 62.42 ±0.53
GCN-skip 52.98 ±0.00 - 69.56 ±0.00 76.58 ±0.53 73.46 ±0.04 61.05 ±0.23

GraphMoE-GCN 53.03 ±0.14 73.90 ±0.00 71.88†† ±0.32 81.61 ±0.27 76.99 ±0.10 62.76 ±0.22

Mowst(⋆)-GCN 54.62 ±0.23 76.49 ±0.22 72.52 ±0.07 83.19 ±0.43 77.28 ±0.08 63.74 ±0.23
(+0.76) (+0.85) (+0.64) (+1.02) (+0.29) (+0.83)

GIN 53.71 ±0.35 - 69.39 ±0.56 82.68 ±0.32 53.37 ±2.15 61.76 ±0.60

Mowst(⋆)-GIN 55.48 ±0.32 - 71.43 ±0.26 84.56 ±0.31 76.11 ±0.39 64.32 ±0.34
(+1.77) (+2.04) (+1.88) (+22.74) (+2.56)

GIN-skip 52.70 ±0.00 - 71.28 ±0.00 80.32 ±0.43 76.29 ±0.51 64.27 ±0.25

Mowst(⋆)-GIN-skip 53.19 ±0.31 - 71.79 ±0.23 81.20 ±0.55 79.70 ±0.23 64.91 ±0.22
(+0.49) (+0.51) (+0.88) (+3.41) (+0.64)

GraphSAGE 53.51 ±0.05 78.50† ±0.14 71.49† ±0.27 76.75 ±0.52 75.76 ±0.04 61.99 ±0.30
GraphMoE-SAGE 52.16 ±0.13 77.79 ±0.00 71.19 ±0.15 77.04 ±0.55 76.67 ±0.08 63.42 ±0.23

Mowst(⋆)-SAGE 53.90 ±0.18 79.38 ±0.44 72.04 ±0.24 79.07 ±0.43 77.84 ±0.04 64.38 ±0.14
(+0.39) (+0.88) (+0.55) (+2.03) (+1.33) (+1.05)

Setup. We evaluate Mowst(⋆) on a diverse set of benchmarks, including 3 homophilous graphs
(Flickr (Zeng et al., 2020), ogbn-arxiv and ogbn-products (Hu et al., 2020)) and 3 heterophilous
graphs (Penn94, pokec and twitch-gamer (Lim et al., 2021)). Following the literature, we perform
node classification using the “accuracy” metric, with standard training / validation / test splits. The
graph sizes range from 89K (Flickr) to 2.4M (ogbn-products) nodes. See also §A.1.

BASELINES. GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton et al., 2017), GAT (Veličković
et al., 2018), and GIN (Xu et al., 2019) are the most widely used GNN architectures achieving
state-of-the-art accuracy on both homophilous (Hu et al., 2020; Shi et al., 2023) and heterophilous
(Lim et al., 2021; Zhu et al., 2021; Platonov et al., 2023) graphs. In addition, GPR-GNN (Chien et al.,
2021) decouples the aggregation of neighbors within different hops, which effectively addresses
the challenges on heterophilous graphs (Lim et al., 2021; Platonov et al., 2023). We also compare
with H2GCN (Zhu et al., 2020b), the state-of-the-art heterophilous GNN. Additionally, we construct
variants of the baselines by adding skip connections. Since GraphSAGE and H2GCN have already
implemented skip connections in their original design, we thus only integrate skip connection into
GCN and GIN. Due to resource constraints, we exclude these variants in our experiments on the
largest ogbn-products graph. AdaGCN (Sun et al., 2021) and GraphMoE (Wang et al., 2023) are
the state-of-the-art ensemble and MoE models, both combining multiple GNNs.

HYPERPARAMETERS. For Flickr, ogbn-products and ogbn-arxiv, we follow the original
literature (Hu et al., 2020; Zeng et al., 2021) to set the number of layers as 3 and hidden dimension
as 256, for all the baselines as well as for both the MLP and GNN experts of Mowst(⋆). Regarding
Penn94, pokec and twitch-gamer, the authors of the original paper (Lim et al., 2021) searched
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for the best network architecture for each baseline independently. We follow the same protocol and
hyperparameter space for our baselines and Mowst(⋆). We set an additional constraint on Mowst(⋆)
to ensure fair comparison under similar computation costs: we first follow Lim et al. (2021) to
determine the number of layers ℓ and hidden dimension d of the vanilla GNN baselines, and then
set the same ℓ and d for the corresponding Mowst models. We use another MLP to implement the
learnable G function (§2.2). To reduce the size of the hyperparameter space, we set the number
of layers and hidden dimension of G’s MLP the same as those of the experts. See §A.2 for the
hyperparameter space (e.g., learning rate, dropout) and the grid-search methodology.

Comparison with state-of-the-art. As shown in Table 1, Mowst(⋆) consistently achieves
significant accuracy improvement on all datasets. It also performs the best compared to all the
other baselines. Moreover, we perform a comparison within two sub-groups, one with GCN as
the backbone architecture including GCN, GraphMoE-GCN and Mowst(⋆)-GCN and the other
with GraphSAGE including GraphSAGE, GraphMoE-SAGE and Mowst(⋆)-SAGE. In both sub-
groups, Mowst(⋆) achieves significant accuracy improvement over the second best. The accuracy
improvement is consistently observed across both homophilous and heterophilous graphs, showing
that the decoupling of the self-features and neighbor structures, along with the denoising effect of the
weak expert are generally beneficial.

Table 2: Comparison with H2GCN on heterophilous
graphs.

Penn94 pokec twitch-gamer

GCN 82.17 ±0.04 76.01 ±0.49 62.42 ±0.53

Mowst(⋆)-GCN 83.19 ±0.43 77.28 ±0.08 63.74 ±0.23
(+1.02) (+0.29) (+0.83)

H2GCN 82.71 ±0.67 80.89 ±0.16 65.70 ±0.20

Mowst(⋆)-H2GCN 83.39 ±0.43 83.02 ±0.30 66.03 ±0.16
(+0.68) (+2.13) (+0.33)

Table 2 presents the experimental results for
H2GCN and Mowst on three heterophilous
graphs. H2GCN consistently outperforms the
GCN baseline, demonstrating its ability to ef-
fectively handle heterophilous neighborhoods.
More importantly, when compared to H2GCN,
Mowst(⋆)-H2GCN achieves a significant and
consistent improvement in accuracy across all
three graphs. This shows that Mowst can sub-
stantially enhance the performance of a state-of-the-art heterophilous GNN like H2GCN, with the
help of a relatively simple expert such as a standard MLP.

MLP expert vs. skip connections. We compare with the “skip connection” variants of the GNN
baselines. Since the accuracy of GIN-skip is close to that of Mowst(⋆)-GIN on ogbn-arxiv, pokec
and twitch-gamer, we additionally run Mowst(⋆)-GIN-skip. We observe that Mowst(⋆)-GIN
consistently improves the accuracy of the GIN baseline by a large margin. Effects of skip connections
on GCN, GraphSAGE, GIN and H2GCN clearly indicate that the MLP expert integrated by Mowst
enhances model capacity in a unique and valuable way. The MLP expert is not simply providing a
shortcut to bypass certain neighborhood aggregation operations. Rather, it meaningfully interact with
the GNN expert to let the full system personalize on each target node. Note that there is no need to
run Mowst(⋆)-GCN-skip since Mowst(⋆)-GCN already outperforms GCN-skip significantly w.r.t.
both accuracy and computation cost. The analysis on computation cost can be found in §E.3.4.

Table 3: Comparison of test set accuracy.
Flickr pokec twitch-gamer

Mowst-GCN (joint) 53.47±0.36 76.62±0.11 63.44±0.22
Mowst-GCN 54.62±0.23 77.12±0.09 63.74±0.23
Mowst⋆-GCN 53.94±0.37 77.28±0.08 63.59±0.11

Mowst vs. Mowst⋆. Using the GCN ar-
chitecture as an example, we compare three
model variants: (1) Mowst, (2) Mowst⋆ and
(3) Mowst (joint), a vanilla version of Mowst
that performs training by simultaneously up-
dating the two experts from the gradients of
the whole LMowst (Equation 1). Mowst (joint) does not follow the “in-turn training” strategy discussed
in Algorithm 2. From Table 3, we observe that Mowst (joint) achieves lower test accuracy on all
three graphs. Intuitively, since the two experts may have difference convergence rates, updating
one expert with the other one fixed may help stabilize training and improve the overall convergence
quality. Moreover, Mowst or Mowst⋆ may outperform the other variant depending on the property of
the graph, which is consistent with our trade-off analysis in §2.5. Mowst⋆ can theoretically achieve a
lower loss, while Mowst may be easier to optimize. In practice, both variants can be useful.

Training dynamics. The two behaviors described in §2.4 may be observed on both Mowst and
Mowst⋆. For demonstration, we visualize each behavior using one model variant. The empirical
findings on “denoised fine-tuning” are provided in §C.2.
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Penn94 pokec

Figure 2: Evolution of the C distribution.

SPECIALIZATION VIA DATA SPLITTING. We
track the evolution of the confidence score C during
Mowst⋆-GCN training. In Figure 2, for each bench-
mark, we plot C’s distribution corresponding to dif-
ferent model snapshots. The distribution on the upper
side corresponds to the earlier stage of training, while
the distribution on the lower side reflects the weighting
between the two experts after convergence. In each
distribution, the height shows the percentage of nodes
assigned with such C. On Penn94, the GNN dominates initially. The MLP gradually learns to
specialize on a significant portion of the data. Eventually, the whole graph is clearly split between
the two experts, indicated by the two large peaks around 0 and 0.8 (corresponding to nodes assigned
to GNN and MLP, respectively). For pokec, the specialization is not so strong. When training
progresses, the MLP becomes less confident when the GNN is optimized better – nodes initially
having larger C gradually reduce C to form a peak at around 0.2. For different graphs, the two
experts will adapt their extent of collaboration by minimizing the confidence-weighted loss.

4 RELATED WORK

Our work is closely related to Mixture-of-Experts, model ensemble methods on graphs, as well as the
decoupling models for feature and structure information. Please refer to §B for further discussion.

Mixture-of-Experts. MoE can effectively increase model capacity (Masoudnia & Ebrahimpour,
2014; Yuksel et al., 2012). The key idea is to localize / specialize different expert models to different
partitions of the data. Typically, experts have comparable strengths. Thus, the numerous gating
functions in the literature have a symmetric form w.r.t. all experts without biasing towards a specific
one (e.g., variants of softmax (Jordan & Jacobs, 1994; Shazeer et al., 2017; Puigcerver et al., 2023)
In comparison, Mowst deliberately breaks the balance among experts via a biased gating. Another
concern in MoE is the increased computation cost. Even though efficient dense gating designs
exist (Nie et al., 2022), sparse gating is still the most common technique to save computation by
conditionally deactivating some experts. However, it is widely observed that such sparsity causes
training instability (Fedus et al., 2022; Shazeer et al., 2017; Puigcerver et al., 2023). Under our
confidence-based gating, Mowst is both easy to train (§2.4) and computationally efficient (§2.6).
Finally, many recent designs incorporate MoE in each layer of a large model (Riquelme et al., 2021;
Du et al., 2022; Lepikhin et al., 2021), whereas Mowst mixes only at the output layers. We fully
decouple the experts with imbalanced strengths in consideration of their different training dynamics.

MoE & model ensemble on graphs. GraphDIVE (Hu et al., 2022) proposes mixture of multi-
view experts to address the class-imbalance issue in graph classification. GraphMoE (Wang et al.,
2023) introduces mixing multiple GNN experts via the top-K sparse gating (Shazeer et al., 2017).
Zhou & Luo (2019) explore a similar idea of mixing multiple GNNs with existing gating functions.
AdaGCN (Sun et al., 2021) proposes a model ensemble technique for GNNs, based on the classic
AdaBoost algorithm (Freund et al., 1999). In addition, AM-GCN (Wang et al., 2020b) performs graph
convolution on the decoupled topological and feature graphs to learn multi-channel information.

5 CONCLUSION

In this study, we introduce a novel mixture-of-experts design to combine a weak MLP expert with
a strong GNN expert to effectively decouple the self-feature and neighbor structure modalities on
graphs. The “weak-strong” collaboration emerges under a gating mechanism based on the weak
expert’s prediction confidence. We theoretically and empirically demonstrate intriguing training
dynamics that evolve based on the properties of the graph and the relative strengths of the experts.
We show significant accuracy improvement over state-of-the-art methods across both homophilous
and heterophilous graphs. Future work will focus on a comprehensive evaluation of the generalized
Mowst framework, which progressively mixes stronger experts, as outlined in §2.7. Additionally,
exploring whether the “weak-strong” combination can serve as a general MoE design paradigm with
benefits extending beyond graph learning is an interesting direction for further research.
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A MORE DETAILS ON EXPERIMENTS

A.1 DATASET DESCRIPTION & STATISTICS

Table 4 provides a summary of the basic statistics for the six benchmark graphs. The Flickr
dataset is originally introduced in Zeng et al. (2020), while ogbn-products and ogbn-arxiv are
first proposed in Hu et al. (2020). The Penn94, pokec, and twitch-gamer datasets are originally
proposed in Lim et al. (2021). A brief overview of the dataset construction is as follows:

Table 4: Statistics of the datasets.

# nodes # edges # classes # node features

Flickr 89,250 899,756 7 500
ogbn-products 2,449,029 61,859,140 47 100
ogbn-arxiv 169,343 2,332,486 40 128
Penn94 41,554 1,362,229 2 5
pokec 1,632,803 30,622,564 2 65
twitch-gamer 168,114 6,797,557 2 7

Flickr, proposed by Zeng et al. (2020), is a graph where each node represents an image uploaded to
Flickr. An undirected edge is drawn between two nodes if the corresponding images share common
properties, such as the same geographic location, same gallery, or were commented on by the same
user. The node features are 500-dimensional bag-of-words representations of the images.

ogbn-arxiv, a paper citation network curated by Hu et al. (2020), consists of nodes representing
arXiv papers and directed edges indicating citation relationships. The 128-dimensional node features
are derived by averaging the embeddings of words in the paper’s title and abstract, with embeddings
generated by a word2vec model trained on the MAG corpus (Wang et al., 2020a).

ogbn-products, also curated by Hu et al. (2020), represents an Amazon product co-purchasing
network. Each node corresponds to an Amazon product, and edges between nodes indicate that the
two products are frequently purchased together. The node features are 100-dimensional bag-of-words
vectors of the product descriptions.

Penn94 (Lim et al., 2021; Traud et al., 2012) is a Facebook 100 network from 2005 representing
a friendship network of university students. Each node represents a student, with node features
including major, second major/minor, dorm/house, year, and high school.

pokec (Lim et al., 2021; Leskovec & Krevl, 2014) is the friendship graph of a Slovak online social
network. Nodes represent users, and edges represent directed friendship relations. Node features
include profile information such as geographical region, registration time, and age.

twitch-gamer (Lim et al., 2021; Sarkar & Rózemberczki, 2021) is a connected undirected graph
representing relationships between accounts on the streaming platform Twitch. Each node represents

16



a Twitch user, and an edge indicates mutual followers. Node features include the number of views,
creation and update dates, language, lifetime, and whether the account is dead.

A.2 HYPERPARAMETERS

We perform grid search within the entire hyperparameter space defined as follows. Note that for
GPR-GNN (Chien et al., 2021) and AdaGCN (Sun et al., 2021), we use the same grid search as
reported in their original papers.

• MLP, GCN, GCN-skip, GraphSAGE, GAT, GIN, GIN-skip: learning rate lr ∈ {.1, .01, .001}
for all graphs. For all the homophilous graphs, the dropout ratio is searched in {.1, .2, .3, .4, .5},
hidden dimension is set as 256 and the number of layers is 3 according to Hu et al. (2020). For
the heterophilous graphs, we follow the same hyperparameter space as Lim et al. (2021).

• GPR-GNN: lr ∈ {.01, .05, .002}, α ∈ {.1, .2, .5, .9}, hidden dimension ∈
{16, 32, 64, 128, 256}.

• AdaGCN: lr ∈ {.01, .005, .001}, number of layers ∈ {5, 10}, dropout ratio ∈ {.0, .5}.
• GraphMoE: lr ∈ {.1, .01, .001}, dropout ratio ∈ {.1, .2, .3, .4, .5}, number of experts ∈ {2, 8}.
• H2GCN: lr ∈ {.01, .001}, dropout ratio ∈ {.1, .3, .5}.
• Mowst and Mowst⋆: The learning rate and dropout ratio of the MLP expert and the GNN expert

are kept the same. The girds for them are lr ∈ {.1, .01, .001}, dropout ratio ∈ {.1, .2, .3, .4, .5}.
As for the gating module, we also conduct a grid search to find the optimal combination of
the learning rate and dropout ratio. The grid for them are lr ∈ {.1, .01, .001}, dropout ratio
∈ {.1, .2, .3, .4, .5}.

A.3 IMPLEMENTATION DETAILS

The implementations for Mowst and the GNN baselines are built using PyTorch and the PyTorch
Geometric library. The code for GraphMoE,1 AdaGCN,2 and H2GCN3 are sourced from the official
repositories associated with their respective original papers. The GPR-GNN implementation is
adapted from the repository provided by Lim et al. (2021). All models, including our models and
the baselines, are trained on NVIDIA A100 GPUs with 80GB of memory. Training is conducted
using full-batch gradient descent with the Adam optimizer (Kingma & Ba, 2014), without resorting
to neighborhood or subgraph sampling techniques.

A.4 PRETRAINING

In our experiments, we find that pretraining the individual experts before the training process of
Mowst (as described in Algorithm 2) can also improve the optimization. There are four pretraining
scenarios for Mowst: pretraining only the weak expert, pretraining only the strong expert, pretraining
both experts, and not pretraining either expert.

A.5 CRITERIA FOR FAIR COMPARISON

For a fair experimental comparison between Mowst and its corresponding vanilla GNN baseline (e.g.,
Mowst-GCN and GCN), two potential criteria can be considered:

• Model size: Mowst and its corresponding vanilla GNN baseline should have the same number
of parameters.

• Computation cost: Mowst and its corresponding vanilla GNN baseline should have similar
computation cost.

The above two criteria may not be simultaneously satisfied. Consider a scenario where both the
MLP and GNN experts in Mowst have the same number of layers and hidden dimensions f . If the

1https://github.com/VITA-Group/Graph-Mixture-of-Experts
2https://github.com/datake/AdaGCN
3https://github.com/GemsLab/H2GCN
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vanilla GNN baseline is configured to have an architecture identical to Mowst’s GNN expert, then
Mowst will have more model parameters due to the additional MLP expert. However, Mowst will
have a computation cost comparable to that of the vanilla GNN baseline (detailed derivation provided
in §E.3.4). In this case, the “computation cost” criterion is met, but the “model size” criterion is not.

Alternatively, we can enhance the vanilla GNN baseline by adding a skip connection to each layer,
where the skip connection performs a linear transformation with an f × f weight matrix. In essence,
this approach constructs the baseline by integrating each layer of the MLP expert with each layer of
the GNN. As a result, the modified GNN and Mowst have the same number of parameters. However,
this configuration violates the “computation cost” criterion. As detailed in §E.3.4, the computation
cost of a GNN with a skip connection is significantly higher than that of the original GNN without a
skip connection, and therefore also higher than that of Mowst. Thus, the “model size” criterion is
met, but the “computation cost” criterion is not.

Given that no setting can be perfectly fair, we need to prioritize one criterion over the other. In our
experiments, we choose to emphasize the “computation cost” criterion, considering the significant
challenges GNNs face in terms of high computation costs, rather than large model sizes. As
highlighted in §E.3.3, the computation cost of GNNs can be particularly high due to the well-known
“neighborhood explosion” phenomenon (Chen et al., 2018; Hamilton et al., 2017; Ying et al., 2018;
Zeng et al., 2020). This leads to GNN models typically being shallow (with 2 to 3 layers), resulting
in a small model size. For instance, the notable work PinSAGE (Ying et al., 2018) employs a 2-layer
GraphSAGE model with a 2,048 hidden dimension for Pinterest recommendations, resulting in a total
model size of only 84MB under 32-bit floating point representation. Despite its compact size, the
computational cost of running such a GNN is substantial due to neighborhood explosion, requiring 3
days on 16 GPUs to train PinSAGE. This unique challenge in graph learning highlights that a GNN
can incur a high computation cost even with a small model size.

Therefore, when comparing Mowst with its corresponding vanilla GNN baseline, we ensure a similar
computation cost by setting the architecture of Mowst’s GNN expert to be identical to the vanilla GNN
baseline. It is important to note that we still conduct experiments on the GNN baselines augmented
with skip connections (§A.7), but these experiments are primarily for architectural exploration.

A.6 FURTHER DISCUSSION ON THE COMPARISON WITH THE STATE-OF-THE-ART ON
HETEROPHILOUS GRAPHS

Heterophilous graphs are among the types of graphs that can benefit from our techniques, since it
is commonly believed that heterophilous neighborhoods are noisy for GNN’s aggregation.4 In this
section, we present additional experimental results showing that even on top of a state-of-the-art
heterophilous GNN, Mowst can still significantly improve its accuracy with the help from a
weak expert which is just a standard MLP.

We compare with the state-of-the-art heterophilous GNN baseline, H2GCN (Zhu et al., 2020b).
H2GCN integrates model components that are specifically optimized for aggregating heterophilous
neighbors. It separates ego and neighbor embeddings, recognizing that a node’s self-features may
differ significantly from its neighbors’ aggregated embeddings in heterophilous settings. Additionally,
it leverages higher-order neighborhood aggregation to glean information from wider, potentially
homophily-dominant contexts, providing more relevant signals. Finally, H2GCN merges intermediate
representations to capture both local and global graph information.

Table 2 presents the experimental results for H2GCN and Mowst on three heterophilous graphs. The
experimental setup and hyperparameter search methodology are consistent with those described
in §3 and §A.2, respectively. Specifically, for both H2GCN and Mowst(⋆)-H2GCN, we follow the
hyperparameter space defined by Lim et al. (2021). Similar to Table 1, we add an additional constraint
on the model architecture of Mowst: after identifying the optimal H2GCN, we replicate its architecture
to construct the GNN expert of Mowst. The MLP expert of Mowst is then configured with the same
number of layers and hidden dimensions as the H2GCN expert. Table 2 clearly shows the following:

• Effectiveness of the H2GCN baseline: H2GCN achieves significantly higher accuracy than
the GCN, GraphSAGE and GIN baselines. This shows that H2GCN’s architecture can handle
heterophilous neighborhoods very well.

4However, note that heterophilous graphs are not the only type of graphs we target.

18



• Performance boost by Mowst(⋆)-H2GCN: Compared with H2GCN, Mowst(⋆)-H2GCN further
improves the accuracy significantly and consistently on the three graphs. The average accuracy
improvement is 1.05.

A.7 FURTHER DISCUSSION ON THE COMPARISONS WITH GIN & SKIP CONNECTION-BASED
GNNS

In addition to the three Mowst variants in Table 1 and Table 2, we further construct Mowst on GIN and
its variants, and show that Mowst significantly boosts the baseline accuracy across all five datasets
(due to resource constraints, we exclude the largest ogbn-products graph when running experiments
in this section). We further add skip connection to the GIN and GCN baselines, and show that

• Skip connection can help boost the baseline performance in some cases, but can also result in
accuracy degradation.

• When skip connection improves the baseline, building Mowst with the “skip-connection GNN”
expert can further boost the accuracy significantly.

Among the four GNN backbone architectures on which we have built Mowst, GraphSAGE and
H2GCN already incorporate skip connections in their native architectural definitions. Therefore,
we only need to implement the skip-connection variants for GCN and GIN. The implementation
details are as folllows:

Consider a node v. Let its output embedding of layer i be xv
i . Let the set of neighbors of v be Nv

(excluding v itself).

Without the skip connection, a GCN layer i performs the following:

xv
i = σ

Wi ·
∑

u∈Nv∪{v}

αuvx
u
i−1

 (4)

where Wi is the weight matrix, αuv is a scalar weight determined by the graph structure and σ is the
non-linear activation (e.g., ReLU).

With the skip connection, a GCN-skip layer i performs the following:

xv
i = σ

W ′
i · xv

i−1+Wi ·
∑

u∈Nv∪{v}

αuvx
u
i−1

 (5)

Without the skip connection, a GIN layer i performs the following:

xv
i = σ

hΘ

(1 + ϵ) · xv
i−1 +

∑
u∈Nv

xu
i−1

 (6)

where ϵ is a learnable scalar, and hΘ (·) is a 2-layer MLP with ReLU activation in the hidden layer
(but not in the last layer), with Θ denoting the learnable parameters of such an MLP.

With the skip connection, a GIN-skip layer i performs the following:

xv
i = σ

W ′
i · xv

i−1+hΘ

(1 + ϵ) · xv
i−1 +

∑
u∈Nv

xu
i−1

 (7)
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In Table 1, we compare GCN with GCN-skip, and GIN with GIN-skip. We observe that
GCN-skip consistently degrades the performance of GCN, while GIN-skip improves the accu-
racy of GIN on ogbn-arxiv, pokec and twitch-gamer significantly. There is no need to run
Mowst(⋆)-GCN-skip since Mowst(⋆)-GCN already outperforms GCN-skip by a large margin with
respect to both accuracy and computation cost (see analysis of computation cost in §E.3.4). On the
other hand, since the accuracy of GIN-skip is close to that of Mowst(⋆)-GIN on ogbn-arxiv, pokec
and twitch-gamer, we run Mowst(⋆)-GIN-skip for additional comparisons. We summarize our
findings as follows:

• Adding the skip connection to a GNN layer can either enhance or degrade accuracy.

• Mowst(⋆)-GIN consistently achieves a substantial improvement in accuracy over the GIN
baseline. Notably, on pokec, the GIN baseline exhibits poor convergence. Adding an MLP
expert of Mowst dramatically improves the convergence quality.

• Mowst(⋆)-GIN-skip further boosts the accuracy of GIN-skip significantly.

• The results of skip connections on GCN (Table 1), GraphSAGE (Table 1), GIN (Table 1), and
H2GCN (Table 2) demonstrate that: (1) Mowst is a general framework that is applicable to
various GNN architecture variants, and (2) the contributions of the MLP expert and skip
connection are different, with the weak MLP expert providing unique value in enhancing the
quality of the GNN model.

Remark. Based on the reasoning in §A.5, the following pairs in Table 1 satisfy the fair
comparison criteria: “GCN vs. Mowst(⋆)-GCN”, “GIN vs. Mowst(⋆)-GIN” and “GIN-skip vs.
Mowst(⋆)-GIN-skip”.

B EXTENDED RELATED WORK

In addition to the related work (§4) in Mixture-of-Experts and ensemble methods on graphs, our work
is also closely related to the decoupling of feature and structure information and heterophilous
GNNs. GraphSAGE (Hamilton et al., 2017), GCNII (Chen et al., 2020b) and H2GCN (Zhu et al.,
2020b) use various forms of residual connections to facilitate self-feature propagation, with H2GCN
especially excelling on heterophilous graphs. GPR-GNN (Chien et al., 2021), MixHop (Abu-El-Haija
et al., 2019) and SIGN (Frasca et al., 2020) blend information from various hops away via different
weighting strategies. NDLS (Zhang et al., 2021) performs adaptive sampling to customize per-node
receptive fields. GLNN (Zhang et al., 2022) distills structural information into an MLP. These models
decouple the feature and structure information within one model, while Mowst does so explicitly via
separate experts.

C ADDITIONAL EXPERIMENTS

C.1 ALTERNATIVE CHOICE FOR WEAK & STRONG EXPERTS

In §2.3, §2.4, and §2.6, we have discussed the advantages of designing Mowst with an MLP as
the weak expert and a GNN as the strong expert. Here, we explore an alternative approach and its
trade-offs. A question one would naturally ask is: Should we keep the architecture of the two experts
the same, and construct the weak & strong variants only by varying the architectural parameters. For
instance, the two experts could be a shallow and a deep GNN, respectively.

We first affirm that the current setting of Mowst is already following the above proposal, and then
conduct additional experiments by replacing an MLP with a shallow GCN.

C.1.1 MLP AS A SHALLOW GNN

We first show that MLP and GNN are not fundamentally two different architectures. In fact, an
MLP is exactly a 0-hop GNN when the GNN’s layer architecture follows popular designs such as
GraphSAGE (Hamilton et al., 2017), GCN (Kipf & Welling, 2016) or GIN (Xu et al., 2019).
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Notations. Let xv
i denote the embedding vector of node v output by layer i, Wi the weight

parameter matrix of layer i, and Nv the set of neighbor nodes of v. Let σ (·) represent the non-linear
activation function.

GraphSAGE. Each layer i performs xv
i = σ

(
W 1

i · xv
i−1 +W 2

i ·
∑

u∈Nv xu
i−1

)
. In a 0-hop

version, where the neighbor set Nv = ∅, the operation simplifies to xv
i = σ

(
W 1

i · xv
i−1

)
, which is

identical to the operation of an MLP layer.

GCN. Each layer i performs xv
i = σ

(
Wi ·

(
αvvx

v
i−1 +

∑
u∈Nv αuvx

u
i−1

))
, where αuu and αuv

are constants pre-defined by the graph structure. If we perform 0-hop aggregation and ignore the graph
structure, then αuu and αuv become 1 and Nv = ∅. The 0-hop GCN performs xv

i = σ
(
Wi · xv

i−1

)
,

which is again identical to the operation of an MLP layer.

A similar process can be applied to other architectures such as GIN (Xu et al., 2019), H2GCN (Zhu
et al., 2020b), and GAT (Veličković et al., 2018) to reduce them to a standard MLP.

Therefore, following our design in §3, our weak MLP expert is already consistent with our strong
GNN expert from the perspective of layer architecture.

C.1.2 RESULTS ON MIXTURE OF SHALLOW-DEEP GCNS

We further construct a variant of Mowst(⋆)-GCN by replacing the weak MLP expert with a shallow
GCN. In Table 5, we refer to this variant as “Weak-Strong GCN”. The hidden dimension of the
two experts in Weak-Strong GCN are the same as that of Mowst(⋆)-GCN. The “weak” expert of
the “Weak-Strong GCN” is a 2-layer GCN while the “strong” expert is a 3-layer GCN for Flickr,
ogbn-arxiv, and ogbn-products. For Penn94, pokec, and twitch-gamer, the “weak” expert is
a 1-layer GCN, and the “strong” expert is a 2-layer GCN. The detailed experimental settings and
hyperparameter search methodology are the same as Table 1.

We observe the following from Table 5:

• Adding a weak, shallow GCN to the strong GCN is overall still beneficial.
• The accuracy gains fluctuate across datasets. For example, “Weak-Strong GCN” achieves

significant accuracy improvement on twitch-gamer, but has accuracy degradation on Flickr.
• The overall accuracy gain from “Weak-Strong GCN” is lower than that from the original

Mowst(⋆)-GCN.

Table 5: Test set accuracy comparison among the baseline GCN and two variants of Mowst. “Weak-
Strong GCN” consists of a 2-layer GCN as the weak expert and a 3-layer GCN as the strong expert.
For each graph, we highlight the best accuracy. The experimental setting and hyperparameter search
methodology are the same as Table 1.

Flickr ogbn-products ogbn-arxiv Penn94 pokec twitch-gamer

MLP 46.93 ±0.00 61.06† ±0.08 55.50† ±0.23 73.61‡ ±0.40 62.37‡ ±0.02 60.92‡ ±0.07
Weak-Strong MLP 46.87 ±0.16 61.24 ±0.10 55.98 ±0.10 73.78 ±0.32 62.44 ±0.05 60.68 ±0.12

GCN 53.86 ±0.37 75.64† ±0.21 71.74† ±0.29 82.17 ±0.04 76.01 ±0.49 62.42 ±0.53
Weak-Strong GCN 54.19 ±0.27 74.47 ±0.24 71.92 ±0.19 82.38 ±0.32 76.51 ±0.08 63.36 ±0.25
Mowst(⋆)-GCN 54.62 ±0.23 76.49 ±0.22 72.52 ±0.07 83.19 ±0.43 77.28 ±0.08 63.74 ±0.23

We perform the following trade-off analysis on the “Weak-Strong GCN” variant. First of all, according
to §2, our Mowst design is not restricted to a specific expert architecture. Therefore, theoretically
“Weak-Strong GCN” still improves the model capacity of the baseline GCN. While upgrading the
weak expert from an MLP to a shallow GCN has the potential to further increase the model capacity
(e.g., “Weak-Strong GCN” on twitch-gamer), Mowst(⋆)-GCN may still be more favorable than
“Weak-Strong GCN”. We reveal the reasons by analyzing the specialization challenge in “Weak-Strong
GCN” (see §2.4).

Recall that in the original Mowst design, when the two experts specialize, the MLP expert would
specialize to nodes with rich self-features but high level of structural noises. The GNN expert would
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specialize to nodes with a large amount of useful structure information. Following the above design
consideration, in “Weak-Strong GCN”, the 2-layer GCN expert will specialize to nodes with rich
information in the 2-hop neighborhood, but noisy connections in the 3-hop neighborhood. However,
in realistic graphs, a shallow neighborhood (e.g., 2-hop) already contains most of the useful structural
information (Zeng et al., 2021) (consequently, the accuracy boost by upgrading a 2-layer GNN to a
3-layer one is much smaller than the boost by upgrading an MLP to a GNN). As a result, the 3-hop
noises in a 3-layer GNN can be much less harmful than the 1-hop or 2-hop noises. Thus, it would be
challenging for the 2-layer GCN to find nodes that it can specialize on. The intuitive explanation is
that, the functionality of the 2-layer GCN expert overlaps significantly with the 3-layer GCN expert,
and thus the benefits reduces when mixing two experts that are similar.
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Figure 3: Test accuracy comparison be-
tween “weak-strong” and “strong-strong”.

WEAK-STRONG vs. STRONG-STRONG. We im-
plement a “strong-strong” variant of Mowst⋆ consist-
ing of two GNN experts with identical network ar-
chitecture. Figure 3 shows the convergence curves
of the test set accuracy during training, with GCN as
the strong experts’ architecture. On both Penn94 and
ogbn-arxiv, we observe that the convergence quality
of the “strong-strong” variant is much worse. Specif-
ically, on Penn94, the “strong-strong” model does not
identify a suitable collaboration mode between the two
GNNs, causing the collapse of the accuracy curve. On
ogbn-arxiv, the collapse of the “strong-strong” model
does not happen. Yet it is still clear that (1) training a
“weak-strong” model is more stable, indicated by the much smaller variance, and (2) the accuracy
of the “strong-strong” variant is significantly lower. Lastly, note that the x-axis denotes number of
epochs. The per-epoch execution time for “strong-strong” is also significantly longer, indicating an
even longer overall convergence time than the “weak-strong” model.

C.2 DENOISED FINE-TUNING
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Figure 4: t-SNE visualization on
GNN embeddings for Flickr.

In Figure 4, we examine two distinct node groups and visualize
their positions in a shared latent space using t-SNE (Van der
Maaten & Hinton, 2008) applied to the second-to-last layer of
the GNN expert. The first node group comprises nodes that elicit
high confidence from the MLP expert (nodes with top-25% C).
The second group includes the remaining nodes. Green and blue
dots represent the initial positions of the group 1 and 2 nodes at
the end of training round r. Red and orange dots represent the
final positions of the group 1 and 2 nodes at the end of training
round r + 10 (e.g., a node starting from a green dot will end
at a red dot). Notably, we observe that a significant portion of
nodes remains relatively stable throughout the training process,
and thus their start and end positions almost completely overlap.
We refrain from visualizing them, as their GNN’s predictions
remain unaltered. Instead, we only visualize nodes whose movement (Euclidean distance) exceeds
the 75th percentile. In Figure 4, the blue and green nodes are clustered together, indicating that the
GNN cannot differentiate them. After the MLP filters out the green nodes of high C, the GNN is
then able to better optimize the blue nodes even if doing so will increase the GNN loss on the green
ones (since the loss on green nodes is down-weighted). Eventually, the GNN pushes the blue nodes
to a better position belonging to their true class (the shift of the green nodes is a side effect, as the
GNN cannot differentiate the green from the blue ones).
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D PROOF AND DERIVATION

D.1 PROOFS RELATED TO MODEL OPTIMIZATION

Definition D.1. (Convex function (Bertsekas et al., 2003)) Let D be a convex subset of Rn. A
function f : D 7→ R is convex if f (λ · x+ (1− λ) · y) ≤ λ · f (x)+ (1− λ) · f (y), ∀x, y ∈ D and
∀λ ∈ [0, 1].

Definition D.2. (Quasiconvex function (Boyd & Vandenberghe, 2004)) Consider a real-valued
function f whose domain D is convex. Function f is quasiconvex if for any γ ∈ R, its γ-sublevel set
{x ∈ D | f(x) ≤ γ} is convex. Equivalently, f is quasiconvex if, for all x, y ∈ D and λ ∈ [0, 1], we
have f (λ · x+ (1− λ) · y) ≤ max {f (x) , f (y)}.

Definition D.3. (Strictly quasiconvex function) A real-valued function f defined on a convex domain
D is strictly quasiconvex if, for all x, y ∈ D, x ̸= y and λ ∈ (0, 1), we have f (λ · x+ (1− λ) · y) <
max {f (x) , f (y)}.

D.1.1 PROOF OF PROPOSITION 2.2

Proposition D.4. (Originally Proposition 2.2) C = G ◦D is quasiconvex.

Proof. The proof directly follows Agrawal & Boyd (2020), which states that if g : D 7→ R is a
quasiconvex function and h is a non-decreasing real-valued function on the real line, then f = h ◦ g
is quasiconvex. By Definition 2.1, we have C = G ◦D is quasiconvex.

The only thing remains to be shown is the quasiconvexity of typical dispersion functions. We show
the convexity of the variance and negative entropy functions by following Definition D.1. Next,
we complete the proof since any convex function is also quasiconvex (based on Definitions D.1
and D.2: if f is convex, then f (λx+ (1− λ) y) ≤ λf(x) + (1− λ) f(y) ≤ λmax{f(x), f(y)}+
(1− λ)max{f(x), f(y)} = max{f(x), f(y)}).

To show the convexity of the dispersion function D (p), we first note that its domain is a (n− 1)-
simplex (i.e.,

∑
1≤i≤n pi = 1 and pi ≥ 0 for i = 1, 2, . . . , n), which is a convex set. Next, for

specific D:

Variance function is defined as D (p) =
∑

1≤i≤n

(
pi − 1

n

)2
. For two points p and p′ and

λ ∈ [0, 1], it is easy to show that D (λp+ (1− λ)p′) ≤ λD (p) + (1− λ)D (p′) (we can follow a
similar treatment as Equation 16 by noting that scalar function d(x) =

(
x− 1

n

)2
is convex).

Negative entropy function is defined as D (p) = c+
∑

1≤i≤n pi · log pi, where c is just a constant
to satisfy Definition 2.1 that D

(
1
n1
)
= 0. It is a well-known result that the negative entropy is

convex. See the proof in JoramSoch (2020).

D.1.2 PROOF OF PROPOSITION 2.3

Proposition D.5. (Originally Proposition 2.3) Given αi, L̂αi
(p̂i) is a convex function of p̂i with

unique minimizer p̂∗
i = αi. Let ∆(α) = L̂α (α) be a function of α, ∆ is a concave function with

unique maximizer α∗ = 1
n1.

Proof. We can formulate the problem of finding the minimizer p̂∗
i of L̂αi

(p̂i) as

min
p̂i

−
∑

1≤j≤n

αij · log p̂ij (8)

s.t. p̂ij ≥ 0, for j = 1, 2, ...n (9)∑
1≤j≤n

p̂ij = 1 (10)
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The Larangian is

L (p̂i, γ, λ1, λ2, ..., λn) =
∑

1≤j≤n

αij · log p̂ij + γ

 ∑
1≤j≤n

p̂ij − 1

+
∑

1≤j≤n

λj p̂ij (11)

Applying the KKT condition (Bertsekas, 2009), we have

αij ·
1

p̂∗ij
+ γ∗ + λ∗

j = 0, for j = 1, 2, ..., n (Stationarity)

λ∗
j · p̂∗ij = 0, for j = 1, 2, ..., n (Complementary slackness)

p̂∗ij ≥ 0, for j = 1, 2, ..., n (Primal feasibility)∑
1≤j≤n

p̂∗ij = 1 (Primal feasibility)

λ∗
j ≥ 0 for j = 1, 2, ..., n (Dual feasibility)

γ∗ ≥ 0 (Dual feasibility)

(12)

Solving the system of equations in 12, we have p̂∗ij = αij/
(∑

1≤j≤n αij

)
. Since αi forms a

distribution, we further have p̂∗ij = αij , i.e.,

p̂∗
i = αi (13)

Since L̂αi
is also strictly convex (Proposition D.7), its minimizer is unique.

In particular, ∆(αi) = L̂αi (αi) = −
∑

1≤j≤n αij · logαij = H (αi). It is easy to show that the
entropy function H is strictly concave w.r.t. the probability mass function and attains its maximum
when α∗

i = 1
n1 (JoramSoch, 2020).

D.1.3 PROOFS RELATED TO THEOREM 2.4

We first observe that the optimization problem defined in Equation 2 can be fully decomposed:

min
{p̂i}

∑
1≤i≤m

C (p̂i) ·
(
L̂αi

(p̂i)− µi

)
=

∑
1≤i≤m

min
p̂i

(
C (p̂i) ·

(
L̂αi

(p̂i)− µi

))
(14)

It is evident that the original optimization problem (Equation 2) can be decomposed into m indepen-
dent sub-problems:

p̂∗
i = argmin

p̂i

(
C (p̂i) ·

(
L̂αi

(p̂i)− µi

))
, 1 ≤ i ≤ m (15)

Therefore, in the following, we omit the subscript i.
Definition D.6. (Extreme points (Bertsekas et al., 2003)) Given a nonempty convex set D, a point
x ∈ D is an extreme point if there do not exist y ∈ D and z ∈ D with y ̸= x and z ̸= x, and a scalar
λ ∈ (0, 1), such that x = λy + (1− λ) z.

Proposition D.7. The loss function L̂α (p̂) is strictly convex. For all µ, the sub-level set L≤µ
α is

convex and compact.

Proof. For strict convexity, first of all, the domain of L̂α, the (n− 1)-simplex, is convex. Then
consider two points p̂ and p̂′ in L̂α’s domain and some λ ∈ (0, 1):
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L̂α (λ · p̂+ (1− λ) · p̂′) =−
∑

1≤i≤n

αi · log (λ · p̂i + (1− λ) · p̂′i)

(a)
<
∑

1≤i≤n

αi · (−λ · log p̂i − (1− λ) · log p̂′i)

=λ ·

−
∑

1≤i≤n

αi · log p̂i

+ (1− λ) ·

−
∑

1≤i≤n

αi · log p̂′i


=λ · L̂α (p̂) + (1− λ) · L̂α (p̂′) (16)

where “
(a)
< ” is due to the strict convexity of the log function. This proves that L̂α is strictly convex.

Then it directly follows that all its sub-level sets are convex.

Note that L̂α is continuous (and so lower semicontinuous as well). By Proposition 1.2.2 of Bertsekas
et al. (2003), all sublevel sets of L̂α are closed. Further, since L̂α is defined on the (n− 1)-simplex,
L≤µ

α is also bounded. Therefore, L≤µ
α is compact (compact means closed and bounded).

Proposition D.8. The set of extreme points of L≤µ
α equals Lµ

α.

Proof. Denote P as the set of extreme points of L≤µ
α . We first show that Lµ

α ⊆ P. Consider a point
p̂0 ∈ Lµ

α. Suppose there exist some other points p̂1, p̂2 ∈ L≤µ
α (with p̂1 ̸= p̂0 and p̂2 ̸= p̂0), such

that λp̂1 + (1− λ) p̂2 = p̂0 for some λ ∈ (0, 1). By strict convexity shown in Proposition D.7, we
have µ = L̂α (p̂0) = L̂α (λp̂1 + (1− λ) p̂2) < λL̂α (p̂1) + (1− λ) L̂α (p̂2). This implies that
L̂α (p̂1) > µ or L̂α (p̂2) > µ, which contradicts with the condition that p̂1, p̂2 ∈ L≤µ

α . Thus, any
point p̂0 ∈ Lµ

α is an extreme point of L≤µ
α .

Now we show P ⊆ Lµ
α. Consider a point p̂0 ∈ L<µ

α . For any µ ∈ R, we always have p̂0i > 0, for
all i = 1, 2, . . . , n (otherwise, L̂α (p̂0) → ∞). This means that we can find a vector ϵ, such that
(1)
∑

1≤i≤n ϵi = 0, (2) |ϵi| < p̂0i, for all 1 ≤ i ≤ n, and (3) L̂α (p̂0 + ϵ) ≤ µ and L̂α (p̂0 − ϵ) ≤ µ.
Point (1) and (2) ensure that p̂0+ ϵ and p̂0− ϵ are both with the domain of L̂α. For Point (3), we can
always find small enough ϵi due to the continuity of the loss function L̂α. We thus find two points,
p̂1 = p̂0 + ϵ ∈ L≤µ

α and p̂2 = p̂0 − ϵ ∈ L≤µ
α , where p̂0 = 1

2 p̂1 +
1
2 p̂2. Thus, p̂0 ∈ L<µ

α is not an
extreme point of L≤µ

α .

In summary, P = Lµ
α.

Proposition D.9. (Krein-Milman Theorem (Bertsekas et al., 2003)) Let D be a nonempty convex
subset of Rn. If D is compact, then D is equal to the convex hull of its extreme points.

Proposition D.10. (Caratheodory’s Theorem (Bertsekas, 2009)) Let D be a nonempty subset of Rn.
Every point from the convex hull of D can be represented as a convex combination of x1, . . . , xm

from D, where m ≤ n+ 1 and x2 − x1, . . . , xm − x1 are linearly independent.

Proposition D.11. If f is a quasiconvex function defined on D, then for all x1, . . . , xm ∈ D and λ1 ≥
0, . . . , λm ≥ 0 such that

∑
1≤i≤m λi = 1, we have f

(∑
1≤i≤m λixi

)
≤ max1≤i≤m{f (xi)}.

Proposition D.12. If f is a strictly quasiconvex function defined on D, then for (1) x1, . . . , xm ∈ D
such that x1 ̸= x2 . . . ̸= xm and x2 − x1, . . . , xm − x1 are linearly independent, and
(2) λ1 > 0, . . . , λm > 0 such that

∑
1≤i≤m λi = 1, we have f

(∑
1≤i≤m λixi

)
<

max1≤i≤m{f (xi)}.

Proof. For brevity, we only show the proof for Proposition D.12 as the proof for Proposition D.11
is similar (and easier). We prove by induction. The base case of m = 2 automatically holds by
Definition D.2.

For m > 2, note that

25



∑
1≤i≤m

λixi = λ1x1 +

 ∑
2≤i≤m

λi

 ·

 ∑
2≤j≤m

λj∑
2≤i≤m λi

xj

 (17)

Let λ′
j =

λj∑
2≤i≤m λi

. Apparently,
∑

2≤j≤m λ′
j = 1 and λ′

j > 0 for all 2 ≤ j ≤ m. In ad-

dition, x3 − x2, . . . , xm − x2 are linearly independent (To show this:
∑

2≤j≤m βj (xj − x1) =∑
3≤j≤m βj (xj − x2) +

(∑
2≤j≤m βj

)
(x2 − x1). If x3 − x2, . . . , xm − x2 are linearly de-

pendent, then there exists β3, . . . , βm such that
∑

3≤j≤m βj (xj − x2) = 0. Then by letting
β2 = −

∑
3≤j≤m βj , we have

∑
2≤j≤m βj (xj − x1) = 0 – contradiction with the hypothesis

that x2 − x1, . . . , xm − x1 are linearly independent). Therefore, by induction hypothesis, we have

f

 ∑
2≤j≤m

λ′
jxj

 < max
2≤j≤m

{f (xj)} (18)

Let x′ =
∑

2≤j≤m λ′
jxj . Since x2 − x1, . . . , xm − x1 are linearly independent, we must have∑

2≤j≤m λ′
j (xj − x1) ̸= 0. Equivalently,

∑
2≤j≤m λ′

jxj = x′ ̸= x1. Thus,

f

 ∑
1≤i≤m

λixi

 =f (λ1x1 + (1− λ1)x
′) < max{f (x1) , f (x′)} (19)

<max

{
f (x1) , max

2≤i≤m
{f (xi)}

}
(20)

= max
1≤i≤m

{f (xi)} (21)

This completes the induction process and thus concludes the proof.

Theorem D.13. (Originally Theorem 2.4) Suppose C = G ◦ D follows Definition 2.1. Denote
Lµ

α = {p̂ | L̂α (p̂) = µ} and L<µ
α = {p̂ | L̂α (p̂) < µ} as the level set and strict sublevel set of

L̂α. Denote C<µ = {p̂ | C (p̂) < µ} as the strict sublevel set of C. For a given α ̸= 1
n1n, the

minimizer p̂∗ satisfies:

• If ∆(α) > µ, then p̂∗ = 1
n1n and C (p̂∗) = 0.

• If ∆(α) = µ, then p̂∗ = α or p̂∗ = 1
n1.

• If ∆(α) < µ, then p̂∗ ∈ L<µ
α − C<µ′

where µ′ = C (α) ≤ C (p̂∗) ≤ G
(
maxp̂∈L

µ
α
D (p̂)

)
.

Further, there exists C such that p̂∗ = α, or p̂∗ is sufficiently close to the level set Lµ
α.

Proof. We separately consider the three cases listed by Theorem 2.4.

Case 1. By Proposition 2.3, we have L̂α (p̂) − µ ≥ minp̂

(
L̂α (p̂)− µ

)
= L̂α (α) − µ =

∆(α) − µ > 0 for all p̂. By Definition 2.1, we have C (p̂) ≥ 0 for all p̂. We can thus derive the
following bound: C (p̂∗) ·

(
L̂α (p̂∗)− µ

)
= minp̂

(
C (p̂) ·

(
L̂α (p̂)− µ

))
≥ 0. Further, since

L̂α (p̂)− µ > 0 for all p̂, the lower bound C (p̂∗) ·
(
L̂α (p̂∗)− µ

)
= 0 is achieved if and only if

C (p̂∗) = 0. By Definition 2.1, the minimizer p̂∗ = 1
n1n.

Case 2. The reasoning is similar to Case 1. We can derive C (p̂∗) ·
(
L̂α (p̂∗)− µ

)
≥ 0. Now to

achieve the lower bound C (p̂∗)·
(
L̂α (p̂∗)− µ

)
= 0, we either need C (p̂∗) = 0 or L̂α (p̂∗)−µ = 0,

which means either p̂∗ = 1
n1n or p̂∗ = α.

26



Case 3. First, observe that C (p̂∗) ·
(
L̂α (p̂∗)− µ

)
= minp̂

(
C (p̂) ·

(
L̂α (p̂)− µ

)) p̂=α

≤ C (α) ·(
L̂α (α)− µ

)
= C (α) · (∆ (α)− µ) < 0 (note that we assume α ̸= 1

n1n). Since C (p̂) ≥ 0 for
all p̂, this implies that

C (p̂∗) > 0 (22)

L̂α (p̂∗)− µ < 0 (23)

By Inequality 23, we have p̂∗ ∈ L<µ
α .

We can further constrain p̂∗ such that C (p̂∗) ≥ C (α): Suppose otherwise that 0 ≤ C (p̂∗) <

C (α). By Proposition 2.3, we have L̂α (p̂∗) − µ ≥ ∆(α) − µ ⇒ −
(
L̂α (p̂∗)− µ

)
≤

− (∆ (α)− µ). Combining the two inequalities together, we have −C (p̂∗) ·
(
L̂α (p̂∗)− µ

)
<

−C (α) · (∆ (α)− µ) ⇒ C (p̂∗) ·
(
L̂α (p̂∗)− µ

)
> C (α) · (∆ (α)− µ). This means that

p̂∗ is not a minimizer – a contradiction. In other words, we must have p̂∗ ̸∈ C<µ′
where µ′ = C (α).

So far, we have proven p̂∗ ∈ L<µ
α − C<µ′

where µ′ = C (α) ≤ C (p̂∗). Next, we further upper-
bound the range of the confidence corresponding to p̂∗. Note that

C (p̂∗) ≤ sup
p̂∈L

<µ
α −C<µ′

C (p̂)
(a)

≤ sup
p̂∈L

≤µ
α

C (p̂)
(b)
= G

(
max

p̂∈L
≤µ
α

D (p̂)

)
(c)
= G

(
max
p̂∈L

µ
α

D (p̂)

)
(24)

For “
(a)

≤ ” above, the reason is that L<µ
α − C<µ′ ⊆ L≤µ

α . For “
(b)
=”, let’s first consider sup

L
≤µ
α

D (p̂).
By Proposition D.7, L≤µ

α is compact. By Definition 2.1, D is continuous. So by the extreme
value theorem (Murphy, 2008), D attains its maximum value, i.e., there exists p̂′ ∈ L≤µ

α such
that D (p̂′) = sup

L
≤µ
α

D (p̂) = max
L

≤µ
α

D (p̂). In other words, D (p̂′) ≥ D (p̂) for all p̂ ∈ L≤µ
α .

Now since G is monotonically non-decreasing (Definition 2.1), we have G (D (p̂′)) ≥ G (D (p̂))
for all p̂ ∈ L≤µ

α . This means C = G ◦ D attains its maximum at p̂′ and sup
p̂∈L

≤µ
α

C (p̂) =

max
p̂∈L

≤µ
α

C (p̂) = G
(
max

p̂∈L
≤µ
α

D (p̂)
)

. Finally, for “
(c)
=”, we need to show max

p̂∈L
≤µ
α

D (p̂) =

maxp̂∈L
µ
α
D (p̂). By Propositions D.7, D.8 and D.9, L≤µ

α is the convex hull of Lµ
α. So by Proposition

D.10, for any point p̂0 ∈ L≤µ
α , we can find p̂1, . . . , p̂m ∈ Lµ

α (with m ≤ n + 1), such that p̂0 =∑
1≤i≤m λip̂i (with

∑
1≤i≤m λi = 1 and λi ≥ 0 for i = 1, . . . ,m). By Proposition D.11, we have

D (p̂0) ≤ max1≤i≤m{D (p̂i)} ≤ maxp̂∈L
µ
α
D (p̂). Thus, max

p̂∈L
≤µ
α

D (p̂) = maxp̂∈L
µ
α
D (p̂).

This completes the proof for Equation 24. Thus, we have proven the bound on both the minimizer p̂∗

and its corresponding C (p̂∗).

Case 3: Tightness of the bound. From the above proof, we know that when ∆(α) < µ,
the possible positions that the minimizer p̂∗ can take are determined by the two level sets C<µ′

(µ′ = C (α)) and L<µ
α . We now show that the bound on p̂∗ is tight since p̂∗ can be close to the two

level sets under appropriate C = G ◦D function. Note that our proof is based on C defined by 2.1,
meaning that C does not need to be continuous.

First, we construct a C such that p̂∗ = α. Such a C can be defined by a simple G for any D:

G(x) =

{
0, when x ≤ 0

1, when x > 0
(25)

Since α ̸= 1
n1n, we have D (α) > 0 and thus C (α) = G (D (α)) = 1. By conditions 22, 23, we

have C (p̂∗) ·
(
L̂α (p̂∗)− µ

)
≥ maxC (p̂) ·min

(
L̂α (p̂)− µ

)
= 1 · (∆ (α)− µ) = ∆ (α)− µ.
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In addition, since the problem min
(
L̂α (p̂)− µ

)
has a unique minimizer at α (Proposition 2.3),

and C (α) = maxC (p̂) = 1, we know that under C defined by Equation 25, we have a unique
minimizer p̂∗ = α for the overall optimization problem 15.

Next, we construct a C such that p̂∗ is close to L̂µ
α. We first define the distance between a point p̂

and the level set Lµ
α as:

dist (p̂,Lµ
α) = min

p̂′∈L
µ
α

∥p̂− p̂′∥ (26)

Thus, we want to show that there exists a C, such that dist (p̂∗,Lµ
α) < ϵ for any ϵ > 0.

Consider another sub-level set L≤µ−η
α for some η > 0 (we also let η to be small enough so that

L≤µ−η
α is non-empty). We have shown before (by combining Propositions D.7, D.8, D.9 and

D.10) that any point p̂′ ∈ L<µ−η
α can be expressed as a convex combination of p̂1, . . . , p̂m, where

m ≤ n + 1, p̂i ∈ Lµ−η
α and p̂2 − p̂1, . . . , p̂m − p̂1 are linearly independent. Since p̂′ is in

the strict sub-level set and p̂i are in the sub-level set, we have p̂′ ̸= p̂i, and thus we can write
p̂′ =

∑
1≤i≤m λip̂i where λi > 0 and

∑
1≤i≤m λi = 1.

Suppose D is strictly quasiconvex. We can now apply Proposition D.12, such that

D (p̂′) = D

 ∑
1≤i≤m

λip̂i

 < max
1≤i≤m

{D (p̂i)} (27)

The strict “<” means that L<µ−η
α cannot contain any maximizer of the optimization problem

“max
p̂∈L

≤µ−η
α

D (p̂)” (note that previously, we have only shown Lµ−η
α contains the maximizer, but

it is also possible for L<µ−η
α to contain the maximizer if D is not strictly quasiconvex). Now, define

Dmax := max
p̂∈L

≤µ−η
α

D (p̂) > 0 and the corresponding maximizer (or one of the maximizers) as
p̂∗
η ∈ Lµ−η

α . For all p̂ ∈ L<µ−η
α , we have D (p̂) < Dmax.

Consider a G function defined as follows:

G =


0, when x ≤ 0

β, when 0 < x < Dmax

1, when x ≥ Dmax

(28)

By definition, L̂α

(
p̂∗
η

)
= µ − η > 0. Also, C

(
p̂∗
η

)
= G

(
D
(
p̂∗
η

))
= 1. As a result, C

(
p̂∗
η

)
·(

L̂α

(
p̂∗
η

)
− µ

)
= −η. For any point p̂ ∈ L<µ−η

α , we have C (p̂) = G (D (p̂)) = β. Consequently,

minp̂∈L
<µ−η
α

C (p̂) ·
(
L̂α (p̂)− µ

)
= βminp̂∈L

<µ−η
α

(
L̂α (p̂)− µ

)
= β (∆ (α)− µ). Therefore,

as long as 0 < β < η
µ−∆(α) , the minimizer p̂∗ of the original optimization problem 15 must satisfy

p̂∗ ∈ L<µ
α −L<µ−η

α (or more precisely, p̂∗ ∈ L<µ
α −L<µ−η

α − C<µ′
).

Now the last issue is to determine the relationship between η and ϵ. We know that µ−η ≤ L̂α (p̂∗) <

µ. We utilize the idea of path integral. We first note that the domain of L̂α (p̂) is the (n− 1)-simplex,
which lies within a hyperplane of Rn. It is easy to show that the normal vector of such a hyperplane
is parallel to 1. For a point p̂, denote π (p̂) as the vector by projecting the gradient ∇L̂α (p̂) onto
the hyperplane. With some basic calculation, we derive that
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π (p̂) =

−
α1

p̂1
+ 1

n

∑
1≤j≤n

αj

p̂j

...
−αn

p̂n
+ 1

n

∑
1≤j≤n

αj

p̂j

 (29)

=


(
1
n − 1

)
α1 α2 . . . αn

α1

(
1
n − 1

)
α2 . . . αn

...
. . .

...
α1 α2 . . .

(
1
n − 1

)
αn

 ·


p̂1
p̂2
...
p̂n

 (30)

The linear system of equations π (p̂) = 0 has unique solution of p̂ = α, since the coefficient matrix
in Equation 30 has full rank. In other words, ∥π (p̂) ∥ > 0 for all p̂ ̸= α.

Imagine we start from p̂∗ and traverse a path P in the hyperplane. Suppose that the path always
follows the direction of π (p̂) for all p̂ on the P . If the total length of P is less than ∥p̂∗ − α∥,
then regardless of what path P looks like, it always holds that ∥π (p̂) ∥ > 0 for all p̂ on P . Define
dmin := minp̂ on path P ∥π (p̂) ∥ > 0.

Now consider the path integral along P . The start point of P is p̂∗. Denote P ’s end point at p̂′

∫
P

π (p̂) · dp̂ (a)
=

∫
P

∇L̂α (p̂) · dp̂ (b)
= L̂α (p̂′)− L̂α (p̂∗) (31)

where “
(a)
= ” is due to that ∇L̂α (p̂)− π (p̂) is a vector perpendicular to the hyperplane (and thus to

dp̂). “
(b)
=” is due to that ∇L̂α (p̂) defines a gradient field, and the path integral can be computed by

the end points and is path independent (gradient theorem).

In addition, note that

∫
P

π (p̂) · dp̂ (c)
=

∫
P

∥π (p̂) ∥ · ∥dp̂∥ ≥
∫
P

dmin · ∥dp̂∥ = dmin

∫
P

∥dp̂∥ = dmin · len (P ) (32)

where “
(c)
=” is due to that we always traverse the path along the direction of π (p̂); len (P ) denotes

the total length of the path P .

Combining 31 and 32, we have L̂α (p̂′) ≥ dmin · len (P ) + L̂α (p̂∗). This means, if we start from a
point p̂∗ at level set Lµ−η

α and traverse a path with length at most η
dmin

, we will arrive at a point p̂′ at
the level set Lµ

α. We can further derive the following bound:

dist (p̂∗,Lµ
α) ≤ ∥p̂∗ − p̂′∥ ≤ len (P ) ≤ η

dmin
(33)

In summary, for any budget ϵ > 0, we can construct a C according to Equation 28 by choosing
parameters such that 0 < η ≤ dmin · ϵ and 0 < β < η

µ−∆(α) .

We follow the notations from §2.3 and apply Theorem 2.4 to the binary classification task, resulting
in the following corollary:

Corollary D.13.1. For binary classification (n = 2), w.l.o.g, assume α1 ∈ [0.5, 1). Define L̂+ (p) =

L̂α

(
[p, 1− p]T

)
for p ∈ [α1, 1). For strictly quasiconvex D and monotonically increasing G,

p̂∗1 ∈
[
α1, L̂

−1
+ (µ)

)
and C (α) ≤ C (p̂∗) < C

([
L̂−1
+ (µ) , 1− L̂−1

+ (µ)
]T)

when ∆(α) < µ.
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Proof. For binary classification, we have p̂ = [p̂1, p̂2]
T = [p̂1, 1− p̂1]

T. Therefore,

L̂α (p̂) = L̂α

(
[p̂1, 1− p̂1]

T
)
= −α1 · log p̂1 − (1− α1) · log (1− p̂1) (34)

Let L̂± (p̂) = −α1 · log p̂− (1− α) · log (1− p̂). Define L̂+ (p̂) = L̂± (p̂) where p̂ ∈ [α1, 1) and
L̂− (p̂) = L̂± (p̂) where p̂ ∈ (0, α1]. It is easy to verify that L̂+ monotonically increases and L̂−
monotonically decreases. In addition, L̂+ (α1) = L̂− (α1) = ∆

(
[α1, 1− α1]

T
)
= ∆(α).

When ∆(α) < µ, then L̂+ (p̂) < µ if and only if p̂ ∈
[
α1, L̂

−1
+ (µ)

)
, and L̂− (p̂) < µ

if and only if p̂ ∈
(
L̂−1
− (µ) , α1

]
. Thus, let p̂− =

[
L̂−1
− (µ) , 1− L̂−1

− (µ)
]T

and p̂+ =[
L̂−1
+ (µ) , 1− L̂−1

+ (µ)
]T

. Then Lµ
α = {p̂−, p̂+} and L<µ

α consists of the open line segment
connecting p̂− and p̂+ (not including the two end points p̂− and p̂+).

For C, since D is strictly quasiconvex, then let α = [α1, 1 − α1]
T and α′ = [1 − α1, α1]

T, we
have D (λ ·α+ (1− λ) ·α′) < max {D (α) , D (α′)} = D (α) = D (α′) for λ ∈ (0, 1) (see
Definition D.3; also note that [p, 1− p]T and [1− p, p]T should always have the same dispersion).
Therefore, for all p̂ ∈ (1− α1, α1), we have D

(
[p̂, 1− p̂]T

)
< D (α). We can similarly show that

for all p̂ ∈ (0, 1− α1) ∪ (α1, 1), we have D
(
[p̂, 1− p̂]T

)
> D (α). Now since G is monotonically

increasing, then for p̂ ∈ (1−α1, α1), we have C
(
[p̂, 1− p̂]T

)
< C (α) = µ′. For p̂ ∈ (0, 1−α1)∪

(α1, 1), we have C
(
[p̂, 1− p̂]T

)
< µ′. Therefore, C<µ′

consists of the open line segment connecting
α and α′ (not including the two end points of α and α′).

If 1−α1 ≤ L̂−1
− (µ) < α1, then the line segment connecting p̂− and α overlap with C<µ′

. Therefore,
L<µ

α − C<µ equals the line segment between α and p̂+. i.e., L<µ
α − C<µ = {[p̂, 1 − p̂]T | p̂ ∈[

α1, L̂
−1
+ (µ)

)
}.

If 0.5 > 1 − α1 > L̂−1
− (µ), then the line segment between α and α′ fully overlap with the line

segment between p̂− and p̂+. Therefore, L<µ
α −C<µ consisting of (1) a segment between p̂− and α′,

defined by S1 = {[p̂, 1− p̂]T | p̂ ∈
(
L̂−1
− (µ) , 1− α1

]
}, and (2) a segment between α and p̂+, de-

fined by S2 = {[p̂, 1−p̂]T | p̂ ∈
[
α1, L̂

−1
+ (µ)

)
}. We can further rule out segment (1) by the following

analysis. For all p̂ ∈ (0, 0.5), we have L̂± (p̂)− L̂± (1− p̂) = (1− 2α1) (log (1− p̂)− log p̂) > 0.
This implies that L̂−1

+ (µ) > 1 − L̂−1
− (µ) > 0.5. As a result, for any p̂ = [p̂, 1 − p̂]T ∈ S1,

we can find a corresponding p̂′ = [1 − p̂, p̂]T ∈ S2. Since p̂ and p̂′ have the same dispersion,
then C (p̂) = C (p̂′). However, L̂α (p̂) = L̂± (p̂) > L̂± (1− p̂) = L̂α (p̂′). Consequently,
C (p̂) ·

(
L̂α (p̂)− µ

)
> C (p̂′) ·

(
L̂α (p̂′)− µ

)
. This implies that p̂ cannot be a minimizer. In

summary, the minimizer can only fall in S2.

Considering the two cases, we have p̂∗1 ∈
[
α1, L̂

−1
+ (µ)

)
for the minimizer p̂∗.

Finally, let us consider the range of C (p̂∗). According to Theorem 2.4, we only need to con-
sider the upper bound G

(
maxp̂∈L

µ
α
D (p̂)

)
. We have shown that Lµ

α = {p̂−, p̂+}, as well as
L̂−1
+ (µ) > 1− L̂−1

− (µ) > 0.5. Thus, the dispersion of p̂+ is no less than that of p̂−, meaning that

G
(
maxp̂∈L

µ
α
D (p̂)

)
= G (D (p̂+)) = C (p̂+) = C

([
L̂−1
+ (µ) , 1− L̂−1

+ (µ)
]T)

.

D.1.4 PROOF OF PROPOSITION 2.5

Proposition D.14. (Originally Proposition 2.5) For any function C with range in [0, 1], LMowst
upper-bounds L⋆

Mowst.
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Proof. We compare Equations 1 and 3. Note that the loss L is a convex function. In addition,
C (pv) ∈ [0, 1]. Thus, C (pv) · pv + (1− C (pv)) · p′

v is a convex combination of pv and p′
v in L’s

domain.

Thus, by Definition D.1,

C (pv) · L (pv) + (1− C (pv)) · L (p′
v) ≥ L (C (pv) · pv + (1− C (pv)) · p′

v) (35)

Summing the left-hand side and right-hand side of the above inequality over all nodes v ∈ V, we
derive the conclusion that LMowst ≥ L⋆

Mowst.

D.2 PROOFS RELATED TO EXPRESSIVE POWER

When considering a graph as the model input, we define the following:

(1) Model A is as expressive as model B if, for any application of model B on any graph, there
exists a corresponding model A that produces identical predictions.

(2) Model A is more expressive than model B if (a) model A is at least as expressive as model
B, and (b) there exists a graph for which a model A can be found that yields different
predictions from any model B.

In the following proof, to demonstrate that one model is “as expressive as” another, we construct
confidence functions such that Mowst generates exactly the same outputs as any of its experts. To show
that one model is “more expressive than” another, we construct a specific graph and a corresponding
Mowst-GCN for which the Mowst-GCN can correctly classify more nodes than any standalone GCN.

D.2.1 PROOF OF PROPOSITION 2.6

Proposition D.15. (Originally Proposition 2.6) Mowst and Mowst⋆ are at least as expressive as the
MLP or GNN expert alone.

Proof. We complete the proof by showing a particular confidence function C = G ◦D and expert
configuration, that reduce Mowst to a single expert.

Define qv = C (pv) · pv + (1− C (pv)) · p′
v .

Further, define the following G:

G(x) =

{
0, when x ≤ 0

1, when x > 0
(36)

Mowst⋆ ⇒ MLP expert. Let the GNN expert in our Mowst system always generate random
prediction of p′

v = 1
n1, regardless of v. If the MLP expert does not generate a purely random guess

(i.e., pv ̸= 1
n1), then D (pv) > 0 according to Definition 2.1. Therefore, C (pv) = G (D (pv)) = 1,

and thus qv = pv. In the extreme case, where pv = 1
n1, we have qv = p′

v. Yet, note that we
configure our GNN expert to always output 1

n1. As a result, we still have qv = pv = 1
n1. This

shows that Mowst⋆ can always produce an identical output to that of an MLP expert alone.

Mowst⋆ ⇒ GNN expert. We configure the MLP expert such that it always generates a trivial
prediction of pv = 1

n1. Consequently, D (pv) = 0 for all v, and C (pv) = G (D (pv)) = 0 for all v
according to Equation 36. Thus, qv = p′

v , implying that Mowst⋆ always produces an identical output
to that of a GNN expert alone.

Cases for Mowst. Similar reasoning can be applied to the Mowst design, where we can use the
G function defined in Equation 36 to let the Mowst system always predict based solely on the MLP
expert or the GNN expert (see Algorithm 1 for the inference operation).
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D.2.2 PROOF OF THEOREM 2.7

Theorem D.16. (Originally Theorem 2.7) Mowst-GCN and Mowst⋆-GCN are more expressive than
the GCN expert alone.

Proof. We consider unweighted and undirected graphs for this theorem. According to Proposition
2.6, we know that Mowst-GCN and Mowst⋆-GCN are at least as expressive as a standalone GCN. To
show that Mowst-GCN and Mowst⋆-GCN are more expressive than GCN, we compare the function
class consisting of all possible K-layer GCN models and the function class consisting of all possible
K-layer Mowst⋆-GCN models. Then we will construct an example graph G with a pair of nodes u and
v. On this G, for any GCN model M, we can find a corresponding Mowst⋆-GCN model M′, such that

(1) M cannot distinguish u from v,

(2) M′ can distinguish u from v and,

(3) if M can distinguish some nodes, then M′ can also distinguish them.

Denote Nk
v as the set of neighbor nodes that are k hops away from v (specifically, N0

v = {v}). We
further enforce the following constraints on the structure of G:

(1) The K-hop neighborhoods of u and v do not overlap, i.e.,
(⋃

0≤k≤K Nk
u

)
∩(⋃

0≤k≤K Nk
v

)
= ∅;

(2) For any node w ∈ Nk
v (where 0 ≤ k ≤ K − 1), there exists an edge (w,w∗) ∈ E where

w∗ ∈ Nk+1
v and w∗ does not connect any node in Nk

v other than w; Similar constraint
applies to node u’s neighborhood Nk

u;

(3) The structures (i.e., not considering node features) of the K-hop neighborhood of u and v
are isomorphic. i.e., For the two subgraphs induced by

⋃
0≤k≤K Nk

v and
⋃

0≤k≤K Nk
u, we

can find an isomorphic node mapping F where F (u) = v, and a node v′ ∈ Nk
v is mapped

by F to a node u′ ∈ Nk
u.

Next, we discuss how to set the node features for G. First, we let u and v have different node features,
and thus u and v should be distinguished if the model is powerful enough. Then, we consider the
features of the neighbors of u and v. Recall the operation of a GCN layer. For a node w in layer k,
the GCN performs weighted sum of the embedding vectors of w’s direct neighbors in GCN’s layer
(k − 1). Denote h

(k)
w as the output embedding vector of w in layer k. Then,

h(k)
w = σ

(W (k)
)T

·
∑

w′∈N1
w∪{w}

1√
(deg (w) + 1) · (deg (w′) + 1)

h
(k−1)
w′ + b(k)

 (37)

where σ is the activation function, W (k) and b(k) are the learnable weight matrix and bias vector of
layer k, and deg (·) denotes the degree of the node.

Denote x∗ = h
(0)
∗ as the raw node feature. We can construct the graph features such that∑

w′∈N1
w∪{w}

1√
(deg(w)+1)·(deg(w′)+1)

h
(0)
w′ = 0 for all w ∈

⋃
0≤k≤K−1 N

k
v . This can always be

achieved due to the constraints (1) and (2) above: for each w ∈ Nk
v , we can find a w∗ (as described in

constraint (2)) and set h(0)
w∗ s.t. it “counter-acts” the aggregated features of all w’s other neighbors.

In this case, by Equation 37, h(1)
w = σ

((
W (0)

)T · 0+ b(0)
)
= σ

(
b(0)

)
for all w ∈

⋃
0≤k≤K−1 N

k
v .

Thus, the layer 1 output features are identical for all (K − 1)-hop neighbors of both u and v. i.e.,
after GCN’s layer 1 aggregation, we lose all information of the node features in the neighborhoods of
u and v. For layer 2 and onwards, the GCN sees two completely isomorphic (including both structure
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and feature) neighborhood subgraphs of u and v (due to constraint (3) above). And thus, regardless
of the GCN’s model parameters, the GCN will always output identical embedding vectors for u and
v. And no GCN can distinguish u from v.

Now consider Mowst-GCN and Mowst⋆-GCN. Recall that u and v have different self-features, xu ̸= xv .
In addition, for all other nodes in V − {u} − {v} that we want to predict, they have self-features
different from both xu and xv . Consider the following confidence function:

G(x) =

{
0, when x ≤ 0

1, when x > 0
(38)

Due to universal approximation theory (Hornik et al., 1989), we can have an MLP expert that
differentiates nodes u and v based on their input features xu and xv (and produces meaningful
predictions not equal to 1

n1), while always producing a 1
n1 prediction for all other nodes. In

this scenario, for u and v, the MLP’s prediction exhibits positive dispersion, leading to G = 1.
Consequently, the confidence function acts as a binary gate, completely disabling the GCN expert
on u and v. Otherwise, the MLP’s prediction has zero dispersion, resulting in G = 0. In this case,
the confidence function entirely disables the MLP expert and relies solely on the GCN expert. With
this configuration, both Mowst-GCN and Mowst⋆-GCN can differentiate all nodes that a standalone
GCN model can, and they can also distinguish nodes that any GCN model cannot (u vs. v). This
demonstrates that Mowst-GCN and Mowst⋆-GCN are strictly more expressive than a GCN alone.

D.2.3 PROOF OF PROPOSITION 2.8

Proposition D.17. (Originally Proposition 2.8) Mowst and Mowst⋆ are at least as expressive as any
expert alone.

Proof. The proof follows the idea of proving Proposition 2.6.

The logic to prove the case of Mowst is identical to that of Mowst⋆, and thus we only discuss the
Mowst case in detail. Consider a confidence function C = G ◦D defined as follows:

G(x) =

{
0, when x ≤ 0

1, when x > 0
(39)

Equation 44 defines the general form for Mowst consisting of M experts. The coefficient τvm :=( ∏
1≤i<m

(1− Cv
i )

)
· Cv

m in front of the loss Lv
m represents the probability of activating expert m

during inference. This setup allows us to easily generalize Algorithm 1 based on Equation 44.
To ensure that the entire Mowst system produces identical results as the m-th expert, we need to
approximately show that τvm = 1 for all v, and τvm′ = 0 for m′ ̸= m (with some exceptions to be
discussed separately).

For m′ ̸= m, we always let the expert m′ to generate random guess of 1
n1 for all v. Note that a 1

n1
prediction corresponds to a 0 dispersion, and thus the corresponding G and C are also 0. A prediction
not equal to 1

n1 leads to positive dispersion, and thus a confidence of 1. Given the binary nature of
our confidence values, to achieve τvm′ = 0 for some 1 ≤ m′ ≤ M , we need Cv

m′ = 0 or at least one
preceding expert to have Cv

m′′ = 1 for some m′′ < m′. To obtain τvm′ = 1 for some 1 ≤ m′ ≤ M ,
all preceding experts must have Cv

m′′ = 0 for all m′′ < m′, and Cv
m′ = 1.

According to the above categorization, for expert m′ where m′ < m, we always have their τvm′ = 0
since Cv

m′ = 0. If expert m generates a non- 1
n1 prediction, then τvm = 1 and thus the whole Mowst

system reduces to a single expert m. If expert m predicts 1
n1, then τvM = 1 (since by definition,

Cv
M = 1 for all v). Since the expert M also predicts 1

n1, the system’s output is also equivalent to
expert m’s output.

Therefore, both Mowst and Mowst⋆ can produce identical results as any individual expert.
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E ADDITIONAL ALGORITHMIC DETAILS

E.1 DERIVATION OF OPTIMIZATION PROBLEM 2

We re-write LMowst (Equation 1) as follows:

LMowst =
1

|V|
∑
v∈V

(
C (pv) · L (pv,yv) + (1− C (pv)) · L (p′

v,yv)
)

=
1

|V|
∑
v∈V

(
C (pv) · (L (pv,yv)− L (p′

v,yv)) + L (p′
v,yv)

)
=

1

|V|
∑
v∈V

C (pv) · (L (pv,yv)− L (p′
v,yv)) +

1

|V|
∑
v∈V

L (p′
v,yv) (40)

Since we optimize the MLP parameters by fixing the GNN, L (p′
v,yv) remains constant throughout

the process. Therefore,

arg min
{pv}

LMowst = arg min
{pv}

∑
v∈V

C (pv) · (L (pv,yv)− L (p′
v,yv)) (41)

Now we simplify it as follows:

∑
v∈V

C (pv) · (L (pv,yv)− L (p′
v,yv))

=
∑

1≤i≤m

∑
v∈Mi

C (pv) · (L (pv,yv)− L (p′
v,yv))

=
∑

1≤i≤m

∑
v∈Mi

C (pv) · L (pv,yv)−
∑

1≤i≤m

∑
v∈Mi

C (pv) · L (p′
v,yv)

=
∑

1≤i≤m

C (p̂i) ·

(∑
v∈Mi

L (p̂i,yv)

)
−

∑
1≤i≤m

C (p̂i) ·

(∑
v∈Mi

L (p′
v,yv)

)

=
∑

1≤i≤m

C (p̂i) ·

(∑
v∈Mi

L (p̂i,yv)−
∑
v∈Mi

L (p′
v,yv)

)

=
∑

1≤i≤m

C (p̂i) ·
(
|Mi| · L̂αi

(p̂i)− |Mi| · µi

)
= |Mi|

∑
1≤i≤m

C (p̂i) ·
(
L̂αi (p̂i)− µi

)
(42)

where Equation 42 is (almost) exactly our objective in optimization problem 2, with the only difference
being the scaling factor |Mi|. We can use the “decomposible” argument in §D.1.3 to easily derive
that this scaling factor does not affect the optimizer p̂∗

i .

E.2 EXTENDING TO MORE THAN TWO EXPERTS

Following the notations in §2.7, we first have the case of 3 agents:

LMowst =
1

|V|
∑
v∈V

(Cv
1 · Lv

1 + (1− Cv
1 ) · (Cv

2 · Lv
2 + (1− Cv

2 ) · Lv
3))

=
1

|V|
∑
v∈V

(Cv
1 · Lv

1 + (1− Cv
1 ) · Cv

2 · Lv
2 + (1− Cv

1 ) (1− Cv
2 ) · Lv

3) (43)

34



In general, for M experts, we have the following loss:

LMowst =
1

|V|
∑
v∈V

∑
1≤m≤M

 ∏
1≤i<m

(1− Cv
i )

 · Cv
m · Lv

m (44)

where we define
∏

x≤i<x (1− Cv
i ) = 1 for any integer x.

We further define the following term:

Lv
≥q =

∑
q≤m≤M

 ∏
q≤i<m

(1− Cv
i )

 · Cv
m · Lv

m (45)

Therefore, LMowst = 1
|V|
∑

v∈V L
v
≥1 and Lv

≥q = Cv
q · Lv

q +
(
1− Cv

q

)
· Lv

≥q+1 defines the basic
recursive formulation.

E.3 CALCULATION OF COMPUTATION COMPLEXITY

We provide more details to support the analysis on computation cost in §2.6. We derive the specific
equations for computation complexity for various model architectures, including

• Vanilla MLP

• Vanilla GNN (with GCN and GraphSAGE as examples)

• GNN with skip connections

• Mowst consisting of an MLP expert, a GNN expert, and an optional MLP for confidence
computation

We further discuss how state-of-the-art techniques for scalable and efficient GNNs improve the
computation complexity of a vanilla GNN, but still fall short in making a GNN as lightweight as an
MLP. In summary, our analysis reveals the following:

• A GNN, even when scaled up, is significantly more computationally expensive than an MLP.

• A Mowst has a similar computational complexity to that of its corresponding GNN expert alone.

• A GNN with skip connections remains substantially more expensive than a Mowst with an
equivalent number of model parameters.

Our analysis justifies the claim that Mowst is efficient, and our baseline comparison criteria is fair
(§A.5).

E.3.1 SETUP

We follow the same setup for computation complexity analysis as Zeng et al. (2021), where we
analyze the total number of arithmetic operations needed to generate prediction for one target node
during inference. Note that:

• We focus on inference since the exact equations for training are hard to derive without strong
assumptions about the specific training algorithm and convergence behavior. The conclusions
from our following analysis apply to the training costs as well.

• Batch processing on a group of target nodes may help reduce the computation complexity but its
benefits tend to diminish on large, realistic graphs (Zeng et al., 2021). In addition, the benefits of
batch processing strongly depend on both the graph connectivity pattern, and the neighborhood
similarity among the same-batch target nodes (Fey et al., 2021). Thus, similar to Zeng et al.
(2021), we only consider the case for each individual target node.
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Notations. Denote ℓ as the total number of layers, and f as the hidden dimension (for simplicity,
we assume that all layers have the same hidden dimension, and the raw node features are also of
dimension f ).

Denote Nv as the set of direct neighbors of node v, excluding v itself (i.e., a node in Nv is connected to
v via an edge). Denote Nv

i as the set of v’s neighbors within i hops, i.e., Nv
i consists of all nodes that

can reach v in no more than i hops. For instance, Nv
1 = Nv ∪ {v}. Denote bvi = |Nv

i | as the number
of v’s neighbors within i hops (e.g., bv0 = 1 and bv1 equals v’s degree plus 1). Denote xv

i−1 ∈ Rf×1

as v’s embedding vector input to layer i. Denote Wi ∈ Rf×f as the weight parameter matrix of
layer i. Denote γ as the computation cost measured by total number of multiplication-accumulation
operations.

Simplifications. In the following calculation, we omit the non-linear activation and normalization
layers, as their computation cost is negligible compared with the GNN and MLP layers.

E.3.2 COMPUTATION COST OF MLP

Each layer i performs the following computation:

xv
i = Wℓ · xv

i−1 (46)

As a result, the number of multiplication-accumulation operations (corresponding to matrix multipli-
cation) equals f2. For all ℓ layers, the total computation cost equals

γMLP = f2 · ℓ (47)

E.3.3 COMPUTATION COST OF GNN

The GNN performs recursive neighborhood aggregation to generate the embedding for the target
node v. Specifically,

• The ℓ-th (i.e., last) layer aggregates information from v’s 1-hop neighbors Nv
1 , and outputs a

single embedding xv
ℓ for v itself.

• The (ℓ− 1)-th layer aggregates information from v’s 2-hop neighbors Nv
2 , and outputs bv1

embeddings for each of v’s 1-hop neighbors Nv
1 .

• ...
• The first layer aggregates information from v’s ℓ-hop neighbors Nv

ℓ , and outputs bvℓ−1 embed-
dings for each of v’s (ℓ− 1)-hop neighbors Nv

ℓ−1.

Mathematically, we formulate the layer operation as follows:

xv
i = UPDATE

(
xv
i−1, AGGREGATE

(
{xu

i−1|u ∈ Nv}
))

(48)

where the function AGGREGATE (·) aggregates the previous-layer embedding vectors of v’s neighbors,
and the function UPDATE (·) performs transformation on v’s own embedding vector from the last
layer, as well as the aggregated neighbor embedding. Different GNNs have difference choices of the
UPDATE (·) and AGGREGATE (·) functions. In addition, to implement skip connection, we can let the
UPDATE (·) function specifically operate on xv

i−1.

Note that for layer i, each of its output nodes in Nv
ℓ−i will execute Equation 48. Therefore, we

describe the general layer operation as follows: the i-th GNN layer

(1) aggregates information from nodes in Nv
ℓ−i+1 into bvℓ−i intermediate embeddings,

(2) updates the intermediate embeddings and self-embeddings of Nv
ℓ−i, and

(3) outputs embeddings for nodes in Nv
ℓ−i.
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We are now ready to study the computation cost for two specific GNN architectures, GCN (Kipf &
Welling, 2016) and GraphSAGE (Hamilton et al., 2017).5

Both GCN and GraphSAGE implement AGGREGATE (·) as a weighted sum of the neighbor embed-
dings. Thus, layer i gathers the previous-layer embeddings of Nv

ℓ−i+1, and reduces them into bℓ−i

aggregated embeddings, via vector summation. Since AGGREGATE (·) only involves addition but no
multiplication, its cost is much lower than UPDATE (·), and should be ignored according to our compu-
tation cost definition (recall that for computation cost, we only count one multiplication-accumulation
as one unit cost, which is consistent with Zeng et al. (2021)).

After AGGREGATE (·), both GCN and GraphSAGE implements UPDATE (·) as a linear transformation
via the layer’s weight matrix. The difference is that for GCN, each layer only has a single weight
matrix operating on the aggregated embedding (i.e., output of AGGREGATE (·)). For GraphSAGE, each
layer i has two weight matrices, operating on the aggregated embedding vector and xv

i−1, respectively.
The two embedding vectors after GraphSAGE’s linear transformation are added to generate the
final xv

i .6 The computation cost for layer i of GCN’s UPDATE (·) function is thus f2 · bvℓ−i. The
computation cost for GraphSAGE is doubled as 2 · f2 · bℓ−i due to the operation from two weight
matrices. For all ℓ layer, we omit the cost of AGGREGATE (·) as discussed before. Therefore, the total
computation cost equals

γGCN ≈ f2 ·
∑

1≤i≤ℓ

bℓ−i (49)

γGraphSAGE ≈ 2f2 ·
∑

1≤i≤ℓ

bℓ−i (50)

where bℓ−i denotes the average number of (ℓ− i)-hop neighbors among all target nodes.

In §2.6, we perform a further simplification of Equations 49 and 50: note that
∑

1≤i≤ℓ bℓ−i =

bℓ−1+
∑

2≤i≤ℓ bℓ−i ≥ bℓ−1+
∑

2≤i≤ℓ 1 = bℓ−1+ℓ−1. Thus, the computation cost is asymptotically

Ω
(
f2 · (ℓ+ bℓ−1)

)
(51)

which is the same as the results in §2.6.

In large, realistic graphs, the number of ℓ-hop neighbors of a target node can grow exponentially with
ℓ. For instance, in a social network, if one person has 10 friends, then he/she will have 102 friends of
friends, and 103 friends of friends of friends. Such an exponential growth is commonly referred to
as “neighborhood explosion” (Chen et al., 2018; Hamilton et al., 2017; Zeng et al., 2020; Fey et al.,
2021) in the GNN literature. Consequently, a realistic GNN has much higher computation cost
than an MLP: γGNN ≫ γMLP since bℓ−1 ≫ ℓ even for ℓ as small as 2 or 3.

E.3.4 COMPUTATION COST OF GNN WITH SKIP CONNECTION vs. GNN WITH MLP EXPERT

First, let us derive the computation cost of Mowst with an MLP expert and a GNN expert. For a target
node, the MLP expert only operate on the node itself, resulting in a cost of f2 · ℓ as per Equation
46. If there is a learnable confidence function implemented by another MLP, its cost is also f2 · ℓ
assuming this MLP has the same architecture as the MLP expert (as set up in §3). The cost of the
GNN expert is given by Equations 49, 50 and 51. Therefore, the computation cost of Mowst can be
estimated as:

5Complexity of other architectures can be derived similarly. We omit the details to avoid redundancy.
6The original GraphSAGE (Hamilton et al., 2017) paper has proposed variants of AGGREGATE (·) and

UPDATE (·). The version described here is the most common one (see for instance, the default implemen-
tation from PyTorch Geometric https://pytorch-geometric.readthedocs.io/en/latest/
generated/torch_geometric.nn.conv.SAGEConv.html), and also used in our experiments.
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γMowst-GCN ≈ 2f2 · ℓ+ f2 ·
∑

1≤i≤ℓ

bℓ−i ≈ γGCN (52)

γMowst-SAGE ≈ 2f2 · ℓ+ 2f2 ·
∑

1≤i≤ℓ

bℓ−i ≈ γGraphSAGE (53)

(54)

where the second “≈” is again due to bℓ−1 ≫ ℓ.

Now let us consider a single GNN model with a skip connection in each layer. As shown by the
description regarding Equation 48, a skip connection can be implemented via a specific UPDATE (·)
function. If the skip connection implements a linear transform on the self-features generated by the
previous layer (i.e., xv

i−1 of Equation 48), then GraphSAGE discussed in §E.3.3 already implements
the skip connection.

Note that adding a skip connection will increase the cost of UPDATE (·) due to additional linear
transformation. The more expensive UPDATE (·) will be applied on all the (ℓ− 1)-hop neighbors of
the target node v. Thus, adding a skip connection significantly increases the computation cost of
a GNN. Specifically, note from Equations 49 and 50 that GraphSAGE is twice as expensive as GCN.
The “2” factor is exactly due to the skip connection. Similarly, if we modify the GCN architecture by
adding a skip connection in each GCN layer, we will have γGCN-skip = 2γGCN.

Remark. From the architecture perspective, adding a skip connection in each GNN layer can be
seen as breaking down the MLP expert of Mowst and fusing each MLP layer with each GNN layer.
However, from the computation cost perspective, a Mowst model with MLP + GNN has much
lower cost than GNN + skip connection. The fundamental reason behind the gap in computation
cost is that the skip connection increases the cost on all neighbors, while the MLP expert only
introduces overhead on the target node itself.

E.3.5 SCALABLE GNN TECHNIQUES

Note that many techniques have been proposed to improve the scalability of GNN, including neighbor
sampling (Hamilton et al., 2017; Ying et al., 2018), subgraph sampling (Zeng et al., 2020; Gasteiger
et al., 2022) and historical embedding reuse (Fey et al., 2021; Shi et al., 2023). Scalable GNN
techniques may reduce the GNN computation cost derived in §E.3.3, but a scalable GNN will still
be much more expensive than an MLP. We give a brief summary of the reasons:

• Even with aggressive sampling, the neighborhood size will still be much larger than 1.
• Many sampling techniques (Hamilton et al., 2017; Shi et al., 2023; Ying et al., 2018; Fey et al.,

2021; Zeng et al., 2020) aim to approximate the aggregation on the full neighborhood. Thus,
sampling trade offs accuracy for efficiency. In addition, many sampling algorithms impose
strong assumptions on the neighbor aggregation function.

• Many scalable GNN techniques apply only to the training phase (Zeng et al., 2020; Shi et al.,
2023; Fey et al., 2021) and, as such, do not address the computation challenges during inference.

• GPUs are inefficient in processing graph data due to the sparsity and irregularity of edge
connections. As a result, GPU utilization is significantly lower when running a GNN (whether
scalable or not) compared to running an MLP.

F A STUDY ON “FAILURE CASES”

We present an analysis on how Mowst can handle two typical “failure cases” by adjusting the
predictions of the MLP expert and the shape of the confidence function during training.

F.1 WHAT ARE THE TWO TYPICAL “FAILURE CASES”?

Our goal here is not to exhaustively address all possible corner cases. Instead, we focus on typical
failure cases that may seem controversial to aid our understanding the interactions between experts.
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Considering the overall training objective in Equation 1, the intuitive “success cases” should be:

• Low MLP loss with high confidence: confident & correct MLP predictions
• High MLP loss with low confidence: unconfident & incorrect MLP predictions

Therefore, the typical failure cases are essentially the opposites of these success cases: (1) Confident
& incorrect MLP predictions, and (2) Unconfident & correct MLP predictions.

Given that we are considering two experts, we can refine the failure cases by taking into account the
relative strengths of the experts:

• Case 1: Confident & incorrect MLP predictions + correct GNN predictions;
• Case 2: Unconfident & correct MLP predictions + incorrect GNN predictions.

Side note: Nodes associated with Case 1 should have different self-features compared to those
associated with Case 2, otherwise their confidence levels would be identical.

Since the balance between the experts is ultimately determined by the loss, we quantify each term in
Equation 1:

• Case 1: High C; high LMLP; low (1− C); low LGNN.
• Case 2: Low C; low LMLP; high (1− C); high LGNN.

where LMLP and LGNN denote the MLP loss and GNN loss terms in Equation 1, respectively.

F.2 HOW DOES Mowst ADDRESS THE “FAILURE CASES”?

Observation: The commonality between the two failure cases is that for one expert, both its loss and
the weight coefficient in front of the loss are high. To address the failure case, the Mowst training
should be able to either reduce the loss, OR reduce the weight coefficient.

In summary, Mowst will take the following steps:

(1) Update the MLP model to make the predictions for the case 1 nodes closer to a random
guess.

(2) Update the confidence function to give it an “over-confident” shape, increasing the C value
for the case 2 nodes.

These steps are not independent. Step 1 is straightforward for an MLP, so it will not significantly
affect predictions for case 2 nodes. In Step 2, an “over-confident” C means it is easier for the
MLP to achieve high confidence. For discussion, consider a simple function where C(p) = 0 if the
dispersion of p is less than τ , and C(p) = 1 if the dispersion is greater than τ . We can make C more
“over-confident” with a smaller τ . This update affects C for both case 1 and case 2 nodes.

After executing both steps, we analyze the joint effect on case 1 and case 2 nodes:

In step 2, we can reduce τ until the dispersion of the MLP’s case 2 predictions is higher than τ (we
can always do so since MLP’s case 2 predictions are correct by definition). Simultaneously, in step 1,
we need to push the MLP’s case 1 predictions towards a random guess until their dispersion is lower
than τ (we can always do so since random guess has 0 dispersion).

Net effect of reduced Mowst loss. Each term in the loss changes after executing steps 1 and 2. For
case 1, C will reduce (to 0 under our example confidence function). LMLP will increase. The net
effect is that the overall loss is reduced: we now have L′

Mowst = 0 ·L′
MLP + (1− 0) ·LGNN = LGNN

(by definition of case 1, LGNN is low). For case 2, C will increase (to 1 under our example confidence
function). LMLP will remain the same. The net effect is that the overall loss is also reduced:
L′
Mowst = 1 · LMLP + (1− 1) · LGNN = LMLP where LMLP is low by definition of case 2.

Net effect of improved prediction behaviors. After jointly executing steps 1 & 2:

• For case 1, the MLP has unconfident, incorrect predictions.
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• For case 2, the MLP has confident, correct predictions.

Thus, through Mowst training, we have successfully converted the two typical failure cases into
two success cases.

G DESIGN CONSIDERATIONS

G.1 ORDER OF EXPERTS: MLP-GNN vs. GNN-MLP

With one weak expert and one strong expert, two ordering possibilities for the mixture exist: MLP-
GNN (our design) and GNN-MLP (alternative design).

In general, let us consider experts A & B. According to the analysis in §2.3 (especially the last
paragraph), when we compute confidence based on expert A, Mowst will be biased towards the other
expert B. In other words, on some training nodes, if expert B achieves a lower loss, then Mowst will
likely accept predictions from B and ignore those from A. Conversely, when expert A achieves a
lower loss, Mowst may still have some non-zero probability (controlled by the learnable C) to accept
B’s prediction. When B is the stronger expert with better generalization capability, the above bias is
desirable when applying Mowst to the test set. Since GNN generalizes better (Yang et al., 2023), we
prefer the MLP-GNN order (current design) over GNN-MLP (alternative design).

G.2 NON-CONFIDENCE-BASED GATING

Consider a learnable confidence function C implemented by an MLP. To create a non-confidence-
based learnable gating module, we can modify the MLP for C by replacing its dispersion-based
input with the raw input features of the target node. This modified gating module would then output
weights for each expert instead of the confidence C.

The gating modules in existing Mixture-of-Expert systems (e.g., Shazeer et al. (2017); Wang et al.
(2023)) resemble the above proposed gating module. Theoretically, such a gate can also simulate our
confidence function – the initial layers of this alternative gating neural network can learn to precisely
generate the prediction logits of the MLP expert, while the remaining layers can learn to calculate
dispersion and the G function. In this sense, our confidence module can be seen as a specific type of
gate, which is significantly simplified based on the inductive bias of the weak-strong combination.
Our confidence-based gating makes the model explainable (§2.3, §2.4), expressive and efficient (§2.6).
More importantly, it enables Mowst to achieve significantly higher accuracy than GNNs based on
traditional gating (e.g., GraphMoE (Wang et al., 2023), Table 1) due to our simplified design.

H LIMITATIONS & BROADER IMPACT

H.1 LIMITATIONS

Our design is fundamentally driven by the goal of improving model capacity without compromising
computation efficiency and optimization quality. Therefore, there are no apparent limitations to
applying our model. Due to the low computation complexity of the weak MLP expert, the overall
complexity of Mowst is comparable to that of a single GNN model, ensuring that the increased model
capability does not come at the cost of more computation. Furthermore, the GNN expert can also be
optimized individually following Algorithm 2, allowing the convergence of Mowst to be as good as
the baseline GNN. Additionally, since our confidence mechanism is applied after executing the entire
expert models, there are minimal restrictions on the experts’ model architecture. For instance, on
very large graphs, we can easily apply existing techniques to scale up the Mowst computation, such
as neighborhood (Hamilton et al., 2017; Ying et al., 2018) or subgraph sampling (Zeng et al., 2021;
Gasteiger et al., 2022) commonly seen in scalable GNN designs.

An interesting question to explore is under what types of graph structures Mowst would be most
effective. For instance, understanding the properties of the graph that determine the experts’ special-
ization and measuring the relative importance of features and structures would be valuable. Moreover,
identifying suitable choices for weak and strong experts in non-graph domains (e.g., time-series
analysis, computer vision, etc.) is an intriguing direction for future research.
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H.2 BROADER IMPACT

In §2.7, we have discussed interesting extension of Mowst into multiple (more than 2) experts. Here,
we explore the potential of broader impact of this direction:

Graph learning task. Within the graph learning domain, there are two approaches to selecting
“progressively stronger” experts for a multi-expert version of Mowst:

(1) One simple way is to progressively make the GNN deeper. For instance, an MLP can be
considered as a 0-hop GNN, so we can implement expert i as a GNN that aggregates i-hop
neighbor information.

(2) Another approach is from the architectural perspective. Some GNN architectures are
theoretically more expressive than others. For instance, simplified GNN models like SGC
(Wu et al., 2019) could serve as an intermediate expert between a weak MLP and a strong
GCN. Alternatively, following general theoretical frameworks (e.g., (Zhao et al., 2021)) to
construct GNNs with progressively stronger expressive power is possible. In this case, a
stronger expert does not necessarily have more layers.

The choice of progressively stronger GNN experts should depend on the graph’s properties. For
example, if information from distant neighbors is still useful (Alon & Yahav, 2021), it makes sense to
follow direction 1 and create deeper experts. Otherwise, if most useful information is concentrated
within a shallow neighborhood (Zeng et al., 2021), following direction 2 to define stronger experts
with more expressive layer architectures may be more appropriate.

Other domains. The concept of weak and strong experts perfectly holds in other domains,
such as natural language processing and computer vision, e.g., experts may take various forms of
Transformers when considering NLP tasks. From our theoretical understanding in 2, we know that the
design of the many-expert Mowstis not tied to any specific model architecture, suggesting significant
potential for generalizing Mowst beyond graph learning. Moreover, the benefits of a multi-expert
Mowst could be more pronounced when dealing with complex data containing multiple modalities
(e.g., graphs with multimedia features (Lyu & Luo, 2022), spatio-temporal graphs (Guo et al., 2019),
etc.).

Hierarchical mixture. Besides the model extension proposed in 2.7, another straightforward way
to integrate multiple experts is to construct a hierarchical mixture using the 2-expert Mowst. The
strong expert in the 2-expert Mowst can be any existing MoE model, containing several “sub-experts”
controlled by traditional gating modules (e.g., symmetric softmax gating). The interaction between
the weak expert and the strong expert remains governed by the confidence-based gating.
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