VIDEO SUMMARIZATION PRETRAINING WITH SELF-DISCOVERY OF INFORMATIVE FRAMES

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027 028 029

031

033

034

037

038

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

The rapid proliferation of videos makes automated video summarization (VS) an essential research problem: "Which abridged video best conveys the whole story?" The limited size of datasets is known to constrain the generalization of advanced VS methods, requiring advanced pretraining techniques to capitalize on unlabeled videos. Several pretraining methods for VS have been proposed. Yet, they heavily rely on fixed pseudo-summaries, often fail to capture the diverse frame importance, resulting in narrow generalization. To resolve conflicts between pseudo-summaries and downstream tasks, our idea is: First, pretraining should enable the summarizer to learn how to distinguish more meaningful summaries from unlabeled videos, without perspective differentiation; In this way, finetuning only requires adapting the pretrained multifaceted importance to the downstream perspective, facilitating supervised learning. Our pretraining approach, named ViSP, is free of pseudo-summaries, expecting to better align with the ill-posed nature of defining keyframes. The pre-trained model can be fine-tuned to create the SOTA summarizers by leveraging the knowledge base behind frame saliency. ViSP is conceptually simple and empirically powerful, and it can be used to pre-train any neural video summarizer. Extensive experiments on two benchmark datasets (SumMe and TVSum) demonstrate the superiority of our approach.

1 Introduction

The rapid proliferation of videos, driven by ubiquitous recording technologies, social media ecosystems, and streaming platforms, has propelled automated video summarization (VS) to an essential research topic (Alaa et al., 2024; Apostolidis et al., 2021a; Peronikolis & Panagiotakis, 2024; Schiappa et al., 2023). VS involves automatically extracting key parts from source footage, to create a concise overview capturing the semantic essence of the original content. This capability is highly practical, as it enables users to quickly grasp the key points of a video without having to watch the entire footage (e.g., recap lectures (Khetarpaul et al., 2024), filter films (Sharma et al., 2025)).

Recent advances in supervised VS (Son et al., 2024; Narasimhan et al., 2021; Lin et al., 2023; Qiu et al., 2024; He et al., 2023) have yielded compelling results. However, due to the diverse nature of video content and the subjective nature of what constitutes a meaningful summary, the VS datasets (Song et al., 2015; Gygli et al., 2014) are notably limited in size and largely biased in instance distribution, hindering the effectiveness of the SOTA methods for generalization. Therefore, an intuitive, data-driven approach would involve pretraining a foundation video summarizer on the abundance of unlabeled videos and finetuning over supervised data (i.e., user feedback).

To this end, video summarization pretraining methods (Argaw et al., 2024; Narasimhan et al., 2022) generate pseudo ground truth summaries using cross-modality data (e.g., audio or subtitles) and surrogate summarizers (e.g., heuristic rules or LLMs), as shown in Figure 1(a). A video summarizer is then pretrained on these pseudo-summaries and fine-tuned on downstream tasks. However, pretraining on the static pseudo-summaries can be in conflict with the ill-posed nature in video summarization — it may enforce one fixed perspective and overlook the inherent subjectivity and diversity of valid summaries across different viewers and contexts, as exemplified below. In a video of a family picnic, a food vlogger might consider the close-up shots of dishes as key frames for summarization, while a family member might prioritize moments of interaction and laughter. This ill-posed na-

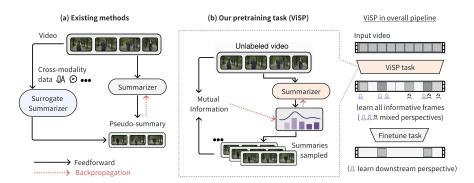


Figure 1: The overall paradigm of existing work (a) and our proposal (b) for video summarization pretraining. We use mutual information to measure how well the summary represents the video.

ture requires pretrained summarizers to capture multifaceted frame importance, so that they can be efficiently fine-tuned to accommodate diverse summarization perspectives in downstream scenarios.

To resolve conflicts between pseudo-summaries and downstream tasks, our idea is in Figure 1 (b): First, pretraining should enable the summarizer to learn how to distinguish more meaningful summaries from unlabeled videos, without perspective differentiation; In this way, finetuning only requires adapting the pretrained multifaceted importance to the specific downstream perspective, facilitating supervised learning. Our pretraining approach, named ViSP, is free of pseudo-summaries, expecting to better align with the ill-posed nature of defining keyframes. Specifically, we first have the summarizer to predict a distribution parameterized by frame score, from which all summaries can be sampled; Then, we use mutual information (MI) to measure which summaries better convey the original video, as MI quantifies their information overlap, needs no annotations (Oord et al., 2018). Subsequently, by optimizing the sampling probability of more meaningful summaries, the summarizer can capture multifaceted importance of frames. Finally, the pretrained model can be fine-tuned to create the state-of-the-art (SOTA) summarizers using the knowledge base behind frame saliency.

We evaluate our proposal through extensive experiments and show that it successfully improves the SOTA summarizers on the SumMe and TVSum benchmarks. Our contributions are threefold:

- We propose a novel pretraining framework that learns versatile frame importance by observing diverse summaries in each unlabeled video.
- We implement the ViSP foundation summarizer, differentiating and exploring more representative summaries through mutual information estimation and learning-based sampling.
- We demonstrate that ViSP is effective in improving SOTA video summarizer performance.

2 RELATED WORK

Video summarization models. Various model architectures have been proposed to tackle diverse aspects in VS (Alaa et al., 2024; Apostolidis et al., 2021a). They can be broadly categorized as supervised and unsupervised. Many early work focused on non-parametric unsupervised VS (Liu & Kender, 2002; Lu & Grauman, 2013; Potapov et al., 2014) using various heuristics (Kang et al., 2006; Lee et al., 2012; Ngo et al., 2003) and hand-designed features (Ma & Zhang, 2002; Smith & Kanade, 1997; 1995). The introduction of benchmark datasets like TVSum (Song et al., 2015) and SumMe (Gygli et al., 2014) provides frame-level relevance scores from user annotations. This enables the automatic evaluation of video summarization techniques and promotes the burst of supervised learning based methods (Apostolidis et al., 2021b; Rochan et al., 2018; Zhang et al., 2023; Zhu et al., 2020; Arafat & Singh, 2025). These approaches benefit from different neural architectures tailored to video summarization, such as the RNN (Medsker et al., 2001) and LSTM (Hochreiter & Schmidhuber, 1997) modeling variable-range dependencies between frames (Zhang et al., 2016; Wang et al., 2020; Zhao et al., 2018), the CNN (Son et al., 2024; Terbouche et al., 2023) featuring local spatiotemporal relationships, the attention networks (Liang et al., 2022; Fajtl et al., 2019; Ghauri et al., 2021; Fu et al., 2021) such as Transformer (Vaswani et al., 2017) contexualizing all frame (Hsu et al., 2023; Li et al., 2022), the GNN (Zhu et al., 2022; Zhao et al., 2021) better capturing

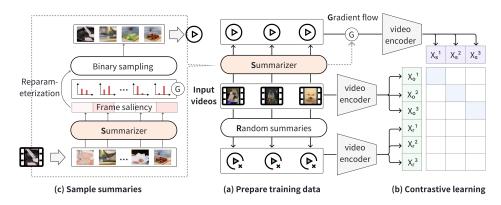


Figure 2: The pretraining workflow of ViSP.

temporal neighbor relationships, etc. A few methods have explored query-focused summarization where users customize the generated summary using a natural language query (Narasimhan et al., 2021; Sharghi et al., 2016; 2017; Kanehira et al., 2018; Akhare & Shinde, 2022). Multimodal summarization (Zhao et al., 2022) has also been considered, where a text input (Plummer et al., 2017; Lin et al., 2023; Qiu et al., 2024) in the form of video captions (Chen et al., 2017) or transcribed speech (He et al., 2023) was incorporated along with the video input to guide video summarization.

In part due to the lack of datasets, many unsupervised variants have been proposed. Model-driven methods benefit from the fast development of deep learning technologies such as GAN (Mahasseni et al., 2017; Apostolidis et al., 2019; 2020), cycle consistent learning objective (Yuan et al., 2019), reinforcement learning (Abbasi et al., 2024; Zhou et al., 2018; Zhang et al., 2019; Zang et al., 2023), and diffusion (Yu et al., 2024). However, these methods struggle to achieve stable and efficient training on unlabeled data across diverse video domains. Data-driven unsupervised approaches benefit from massive unlabeled data and often support supervised variants. As data-driven approaches are most related to our work, we include them in the introduction of pretraining-based related work.

Pretraining-based video summarization. We differentiate pretraining-based approaches by leveraging diverse datasets for transfer learning, where models are first trained on auxiliary tasks to learn generalizable representations before being adapted to video summarization. LfVS (Argaw et al., 2024) uses large language models (LLMs) to summarize the speech text and draw corresponding frames as pseudo-summaries for pre-training. TL:DW? (Narasimhan et al., 2022) generates pseudo summaries for pretraining by exploring two heuristic assumptions on instructional videos: (1) key steps repeat across similar videos, and (2) narrators often describe them verbally. SSPVS (Li et al., 2023) pretrains VS model by aligning video-text at multi-granularities while capturing temporal dependency. iPTNet (Jiang & Mu, 2022) makes use of annotated data for moment localization to benefit VS with joint optimization. However, LfVS and TL:DW? rely heavily on pseudo-summaries, often fail to capture the diverse frame importance. The objectives of SSPVS and iPTNet do not directly incentivize VS. In contrast, our method can efficiently learn the versatile frame importance in closed-form optimization and better align with the ill-posed VS goal.

3 Method

We define the model and use mutual information (MI) to formulate ViSP task in Fig. 1 (b) into one optimization objective (Sec. 3.1). Since MI cannot be directly computed and there are exponentially many summaries that need to be traversed in the objective, we adopt contrastive learning (Sec. 3.2), reparameterization sampling (Sec. 3.3) and extra regularizer (Sec. 3.4) to tackle these challenges.

3.1 Model and training

Model. Let $X = \{x_t\}_{t=1}^T$ denote a video of T frames, where x_t is a frame feature, such as a raw image or a pre-transformed embedding. Given the original video X_o , video summarization aims to select a compact subset $X_s \subseteq X_o$ that optimally represents the content with lowest redundancy.

For pretraining, there is no gold summary to supervise X_s in terms of representativeness and redundancy. To this end, ViSP formulates the notion of representativeness using mutual information (MI) and views VS pretraining as an optimization task: Let $\mathcal{I}(X_s; X_o)$ denote the MI between the summary X_s and the original video X_o , which measures the amount of information we can obtain for X_o by observing X_s — We search for a small X_s in the possible summaries that maximizes $\mathcal{I}(X_s; X_o)$. To minimize redundancy, we impose the size penalty on X_s . Based on the goal, our pretraining objective can be expressed as follows, given the distribution of the video dataset \mathcal{D} :

$$\max_{X_o} \quad \mathbb{E}_{X_o \sim \mathcal{D}}[\mathcal{I}(X_s; X_o) - \mathcal{R}(X_s)] \tag{1}$$

where $\mathcal{R}(X_s)$ is regularizer (e.g., size penalty), to avoid trivial solution, such as taking input video as the summary. We also draw a theoretical connection with the information bottleneck (Tishby et al., 2000) in Appendices. However, direct optimization of Eq. (1) is intractable: (1) MI cannot be directly computed; (2) there are 2^T candidates for X_s to explore. We will address these challenges with contrastive learning and reparameterization sampling in the following sections.

For finetuning, the pretrained summarizer is further finetuned by maximizing the overlap between the predicted summaries X_s^p and ground truth summaries X_s^g .

3.2 Contrastive learning for mutual information estimation

We can approximate the maximization of mutual information with a contrastive loss, as (Oord et al., 2018) showed that contrastive learning with InfoNCE loss increases a lower bound for MI:

$$\mathcal{I}(X_s; X_o) \ge \log(N) - \mathcal{L}_N \tag{2}$$

where \mathcal{L}_N is the InfoNCE loss, and N indicates the sample size consisting of one positive and N-1 negative samples. Note that training samples can be automatically constructed under mini-batch training. As shown in Fig. 2 (a), for each video in the mini-batch, only the summarizer-generated summary is considered positive. To further motivate the generated summary to be informative, a random summary X_T can be used as the hard negative sample. Formally, \mathcal{L}_N is computed as:

$$\mathcal{L}_{N} = -\sum_{i=1}^{N} \left[\log \frac{\exp(\sin(X_{s}^{i}, X_{o}^{i}))}{\sum_{j=1}^{N} [\exp(\sin(X_{s}^{i}, X_{o}^{j})) + \exp(\sin(X_{s}^{i}, X_{r}^{j}))]} \right]$$
(3)

here, X_s^i and X_r^i are the generated summary and random summary of the *i*-th video X^i in a minibatch. The similarity scores are computed via the inner product: $sim(\cdot, \cdot) = E(\cdot)^{\top}E(\cdot)$, where $E(\cdot)$ is a video encoder that converts the sequence of frame features X into one vector of dimension d.

3.3 REPARAMETERIZATION SAMPLING FOR SUMMARY EXPLORATION

Reformulate summary exploration as sampling. As the exploration of 2^T candidates for X_s is intractable, we consider a relaxation by drawing the summary from a multivariate Bernoulli distribution. To this end, each video frame $x_t \in X_o$ is assigned a binary label $y_t \in \{0,1\}$: $y_t = 1$ means keep frame x_t in summary X_s , discard otherwise. Based on the above assumption, the probability of the summary can be parameterized and factorized:

$$\mathcal{P}_{\theta}(X_s|X_o) = \prod_{t=1}^{T} \mathcal{P}_{\theta}(y_t|X_o)$$
(4)

where θ is the parameter of the summarizer. With this relaxation, we can rewrite the objective as:

$$\max_{\theta} \quad \mathbb{E}_{X_o \sim \mathcal{D}} \mathbb{E}_{X_s \sim \mathcal{P}_{\theta}(X_s | X_o)} [\mathcal{I}(X_s; X_o) - \mathcal{R}(X_s)]$$
 (5)

Reparameterization sampling. We adopt reparameterization method of Concrete-Relaxation (Maddison et al., 2016) to approximate the sampling of discrete binary variables $y_t \sim \mathcal{P}_{\theta}(y_t|X_{\theta})$:

$$\hat{y}_t = \sigma((\log \epsilon - \log(1 - \epsilon) + \alpha_{\theta, t})/\lambda), \quad \epsilon \sim \text{Uniform}(0, 1)$$
 (6)

where σ is Sigmoid function and $\lambda \in (0, \infty)$ is temperature. There is a zero temperature property in binary concrete relaxation: $\lim_{\lambda \to 0} \mathcal{P}_{\theta}(\hat{y_t} = 1|X_o) = \frac{exp(\alpha_{\theta,t})}{1+exp(\alpha_{\theta,t})}$. As a result, by choosing

 $\alpha_{\theta,t} = \log \frac{\mathcal{P}_{\theta}(y_t=1|X_o)}{1-\mathcal{P}_{\theta}(y_t=1|X_o)}$, we have $\lim_{\lambda\to 0} \hat{y}_t = y_t$. This approximation has been proved to have strong rationality (Maddison et al., 2016), such that we use $\hat{y}_t \in (0,1)$ to replace y_t for optimization.

We use the foundation summarizer to generate $\alpha_{\theta,t} \in (-\infty,\infty)$. In cases where the original output isn't compatible, we incorporate an extra output layer for pretraining only. We also consider the advancement in summarizer architecture to ensure the generation of each $\alpha_{\theta,t}$ conditional on all frames in X_o , because capturing the holistic context and inter-frame relationships is crucial for accurately identifying key moments. Formally, given summarizer Θ with parameter θ , we have:

$$\{\alpha_{\theta,t}\}_{t=1}^{T} = \Theta(X_o) = \Theta(\{x_{o,t}\}_{t=1}^{T})$$
(7)

We will compare different reparameterization methods in ablation studies (Section 4.3).

Gradient flow. To enable gradient flow between $\hat{Y} = \{y_t\}_{t=1}^T$ and sampled frame features, we specify $\hat{X}_s = X_o \odot \hat{Y}$, where \odot denotes gating operation (i.e., frame-wise multiplication). Intuitively, if a particular frame is not important, the corresponding feature takes values close to zero. Finally, the original objective in Eq. (5) is rewritten as follows:

$$\max_{\theta} \quad \mathbb{E}_{X_o \sim \mathcal{D}} \mathbb{E}_{\epsilon} [\mathcal{I}(\hat{X}_s; X_o) - \mathcal{R}(\hat{X}_s)]$$
 (8)

In some special cases where the frame features are highly customized — important features may take values close to zero, we can marginalize over the ignored parts as $\mathcal{P}_{\theta}(X_s) = \sum_{\Delta X} \mathcal{P}_{\theta}(X_s, \Delta X)$, where ΔX are ideally sampled from the empirical distribution of the ignored frame features. Inspired by various marginal likelihood estimators (Zintgraf et al., 2017; Ying et al., 2019; Kingma et al., 2013), we can reparameterize \hat{X}_s to approximate $\mathcal{P}_{\theta}(X_s)$, by sampling a random variable Z from the empirical distribution of frame features:

$$\hat{X}_s = X_o \odot \hat{Y} + Z \odot (\mathbf{I} - \hat{Y}) \tag{9}$$

where Eq. (9) means that we replace masked frame features with frame features taken directly from other videos at the same location. The length of Z can be aligned by up/down sampling the frames.

3.4 Satisfying length and binary constraints

The framework of ViSP is flexible with various regularization terms to preserve desired properties during summarization. We now discuss the regularization terms as well as their principles. To find a compact summary X_s , we apply l_1 norm on \hat{Y} by adding $\mathcal{R}_{\text{size}}(\hat{Y}) = ||\hat{Y}||_{l_1}$ as a regularization term. For the binary sampling constraint we consider $\mathcal{R}_{\text{binary}}(\hat{Y}) = (\hat{Y})(1-\hat{Y})$. To ensure these constraints are satisfied, we optimize them with the Lagrangian function of the overall loss:

$$\mathcal{L}_{total} = \mathcal{L}_N + \beta_{binary} \mathcal{R}_{binary} + \beta_{size} \mathcal{R}_{size}$$
 (10)

where β_{binary} and β_{size} are Lagrange multipliers corresponding to regularization terms, ensures that constraints are satisfied to what extent by trading off with other losses.

4 EXPERIMENTS

We take the SOTA open-source summarizer CSTA as our base, and implement ViSP on top of it. We first detail the experimental settings (Sec. 4.1) and compare the video summarization performance with SOTA summarizers (Sec. 2). Then, we validate our key designs and provide deeper analysis in Sec. 4.3. Finally, we study the manifestations of diversity brought by ViSP (Sec. 4.4).

4.1 EXPERIMENTAL SETTINGS

Metrics and Datasets. We consider the widely adopted SumMe (Gygli et al., 2014) and TVSum (Song et al., 2015) datasets. SumMe includes 25 videos (1-6 minute) of various themes and camera styles, with summaries created by at least 15 annotators. TVSum contains 50 videos (2-10 minutes) across 10 genres, with 20 annotators assigning shot-level importance scores from 1 to 5. Models aim to match the average human-labeled importance for frames (SumMe) or shots (TVSum). Following recent practices, we evaluate the fine-tuning performance using Kendall's (τ) (Kendall, 1945) and

Table 1: Optional assignments for components and range of values for hyperparameters in our work.

Variant component	Optional assignment	Hyperparameter	Range
Reparameterization	{Concrete-Relaxation}, Gumbel-Softmax	Tempareture λ	(0.05,5)
Gradient flow	{Gating}, Marginalization, STE	Penalty β_{size}	(0.01,1000)
Mutual infomation	{w/o Hard negative}, w/ Hard negative	Penalty β_{binary}	(0.01,100)

Spearman's (Zwillinger & Kokoska, 1999) (ρ) coefficients. The F_1 score was used previously in video summarization, but is evaluated to be higher if models choose as many short shots as possible and ignore long key shots (Otani et al., 2019; Son et al., 2024; Terbouche et al., 2023). To ensure consistency, we implement five-fold cross-validation on each dataset for train/test splits.

Implementation. For fair comparison following He et al. (2023); Zhu et al. (2020); Li et al. (2023); Zhang et al. (2016); Wang et al. (2020), we use frozen pre-trained GoogleNet (Szegedy et al., 2015) to extract frame features as $X \in \mathbb{R}^{T \times d}$ from the corresponding images, where d=1024 is the dimension of frame features. We take CSTA as our base, and implement ViSP on top of it. CSTA takes $X \in \mathbb{R}^{T \times d}$ with one learnable CLS token as input and calculates the importance values $\{\alpha_{\theta,t}\}_{t=1}^T$ for T frames. For contrastive learning, we simply use CSTA as video encoder by taking the CLS token in the final hidden state as the video feature. The fine-tuning of the pretrained CSTA is exactly the same as its original training process. We select the best results from five rounds of 5-fold cross-validation to reproduce the CSTA's report in main results. The significance based on all rounds will be analyzed (Section 4.3). Specifically, the pretrained CSTA summarizer is tuned on the mean squared loss by comparing predicted and ground truth scores taken values $\{0,1\}$ as follows:

$$\mathcal{L}_{FT} = \frac{1}{T} \sum_{t=1}^{T} (S_t^p - S_t^g)^2, \quad S_t^p = \sigma(\alpha_{\theta, t})$$
 (11)

 $\{S_t^g\}_{t=1}^T$ are ground truth scores for T frames. During inference, we use the same software as the base model to select summaries based on scores for a fair comparison. For example, CSTA computes the average importance scores of shots into which KTS (Potapov et al., 2014) splits videos, and the summary videos consist of shots with two constraints: $\max\sum S_i^p$ and $\text{Length}_i \leq 15\%$, where i is the index of selected shots. $Length_i$ is the percentage of the length of the i-th shot in the original video. Finally, CSTA picks shots with high scores by exploiting the 0/1 knapsack algorithm, and summary videos have a length limit of 15% of the original videos. This ensures that the experimental results will not be contaminated by any carefully designed downstream software used to pick summaries.

Variants and hyperparameters. Table 1 specifies the variant components and hyperparameters of ViSP examined in our study. The configurations for the summarizer and fine-tuning remain entirely the same as their original resources for fair, refer to (Son et al., 2024) for details. For each variant consisting of different components, we pre-train on the unlabeled TVSum and SumMe datasets, perform hyperparameter tuning within the range specified in Table 1, and report the best results for each variant. The components in our default variant are enclosed by {}; the code in supplemental provides the random seeds and sampled hyperparameters to reproduce our experiments.

Baselines. We compare ViSP with methods of different categories that were discussed in related work. Here are the pretraining-based baselines we mainly compare with: **LfVS** (Argaw et al., 2024) and **TL;DW** based on pseudo-summary alignment, **SSPVS** based on video-text alignment, and **iPTNet** based on moment localization tasks. Both the open-source (**CSTA** (Son et al., 2024)) and closed-source (**LLMVS** (Jiang & Mu, 2022)) SOTA summarizers are considered.

4.2 Main results

Table 2 details the experimental results on the SumMe and TVSum benchmarks. We compare ViSP with existing state-of-the-art methods, adhering to their official implementations Except for the methods (Son et al., 2024) combined with ViSP, the baselines are basically classified according to whether transfer tasks are considered, as referred to in related work. In each category, the best-performing baseline is underlined, and the results of our proposal are marked in bold. The finetuning results of ViSP+CSTA are based on the same weights pretrained on default configuration. ViSP is successful in providing improvements (up to 3%) over the best open-source model across all metrics. Based on the results, we also make a few comparisons and summarize them as follows.

Table 2: Results on SumMe and TVSum. The official codes for methods* are currently not publicly available for ViSP integration. The baseline results were taken from Son et al. (2024); Argaw et al. (2024); Lee et al. (2025). The human test results were taken from (Otani et al., 2019): due to the subjectivity of the task, the user's rating is not equal to the oracle rating.

	SumMe		TVSum		Avg.
	$\overline{\tau}$	ρ	$\overline{\tau}$	ρ	11,8,
Random	0.000	0.000	0.000	0.000	0.000
Human (Otani et al., 2019)	0.205	0.213	0.177	0.204	0.200
(w/o transfer task)					
SGAN (Mahasseni et al., 2017)	-	_	0.024	0.032	-
DAN* (Liang et al., 2022)	-	-	0.071	0.099	-
CLIP-It* (Narasimhan et al., 2021)	-	-	0.108	0.147	-
STVT (Hsu et al., 2023)	-	-	0.100	0.131	-
PGLSUM (Apostolidis et al., 2021b)	-	-	0.206	0.157	-
AAAM* (Terbouche et al., 2023)	-	-	0.169	0.223	-
MAAM* (Terbouche et al., 2023)	-	-	0.179	0.236	-
VSS-Net* (Zhang et al., 2023)	-	-	0.190	0.249	-
dppLSTM (Zhang et al., 2016)	0.040	0.049	0.042	0.055	0.047
DSNet-AF (Zhu et al., 2020)	0.037	0.046	0.113	0.138	0.084
DSNet-AB (Zhu et al., 2020)	0.051	0.059	0.108	0.129	0.087
DAC* (Fu et al., 2021)	0.063	0.059	0.058	0.065	0.061
DMASum* (Wang et al., 2020)	0.063	0.089	0.203	0.267	0.156
HSA-RNN (Zhao et al., 2018)	0.064	0.066	0.082	0.088	0.075
HMT* (Zhao et al., 2022)	0.079	0.080	0.096	0.107	0.091
RSGN (Zhao et al., 2021)	0.083	0.085	0.083	0.090	0.085
VJMHT* (Li et al., 2022)	0.106	0.108	0.097	0.105	0.104
A2Summ (He et al., 2023)	0.108	0.129	0.137	0.165	0.135
VASNet (Fajtl et al., 2019)	0.160	0.170	0.160	0.170	0.165
MSVA (Ghauri et al., 2021)	0.200	0.230	0.190	0.210	0.208
RR-STG* (Zhu et al., 2022)	0.211	0.234	0.162	0.212	0.205
LLMVS* (Lee et al., 2025)	0.253	0.282	0.211	0.275	0.255
(w/ transfer task)					
iPTNet (Jiang & Mu, 2022)	0.101	0.119	0.134	0.163	0.129
TL:DW (Narasimhan et al., 2022)	0.111	0.128	0.143	0.167	0.137
LfVS* (Argaw et al., 2024)	0.147	0.171	0.169	0.203	0.173
SSPVS (Li et al., 2023)	0.192	0.257	$\underline{0.181}$	0.238	0.217
GoogleNet (Szegedy et al., 2015)	0.176	0.197	0.129	0.163	0.166
ViSP+GoogleNet	0.198	0.220	0.131	0.166	0.179
CSTA (Son et al., 2024)	0.246	0.274	0.194	0.255	0.242
ViSP+CSTA	0.273	0.305	0.201	0.263	0.260

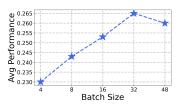


Figure 3: Batch size

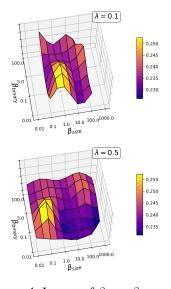


Figure 4: Impact of β_{size} , β_{binary} and λ for Concrete-Relaxation.

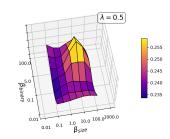


Figure 5: Impact w/o Reparam.

First, baselines using transfer tasks have not benefited from top-notch summarizer architectures, and ViSP outperforms the best summarizer by an average of 4.3%. This might stem from the transfer task being over-coupled with the summarizer structure: iPNet (Jiang & Mu, 2022) relies on modules such as importance propagation and co-teaching to use moment localization data; TL:DW? (Narasimhan et al., 2022) has modules tailored to heuristic assumptions for step perception in instructional videos; SSPVS (Li et al., 2023) requires multimodal data and a text encoder that is aligned with the video encoder at multiple granularities. Only LfVS (Argaw et al., 2024) can adapt to any summarizer by generating pseudo-labels with LLMs, but it has not been open-sourced for further analysis.

Another notable finding is that ViSP can derive advantages from both transfer tasks and the advanced video summarizer. The default variant (i.e., ViSP+CSTA) not only achieves an average gain of 1.8% for the best open source summarizer (i.e., CSTA (Son et al., 2024)) but also outperforms the top pretraining-based method (i.e., SSPVS (Li et al., 2023)), registering an improvement of up to 8.1%. Compared with the most competitive closed-source model (i.e., LLMVS (Lee et al., 2025)), our proposal also outperforms 3 out of the 5 reported metrics, including the average performance.

Table 3: Ablation on different proposed components.

	SumMe		TVSum		Avg.	
	$\overline{\tau}$	ρ	$\overline{\tau}$	ρ	11, 8.	
w/ Concrete and Gating, w/o HardNegative (HN)						
ViSP+CSTA	0.273	0.305	0.201	0.263	0.260	
reparameteriza	ation					
(-) Concrete	0.276	0.308	0.192	0.252	0.257	
(+) Gumbel	0.270	0.302	0.194	0.255	0.255	
gradient flow						
(+) STE	0.249	0.278	0.202	0.265	0.249	
(+) Margin	0.260	0.291	0.196	0.256	0.251	
mutual inform	ation					
(+) HN	0.248	0.277	0.204	0.267	0.249	
(+) FSA	0.241	0.269	0.192	0.252	0.239	

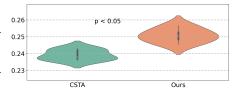


Figure 6: Performance distribution.

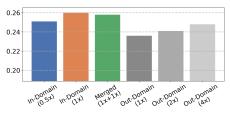


Figure 7: Scales of pretraining data.

4.3 Analysis

Ablation results. We compare default ViSP with its variants in Table 3, altering each time a different component. The reparameterization of *Concrete Relaxation* outperforms that of the *Gumbel* (Jang et al., 2016) on average, demonstrating the effectiveness of *Concrete Relaxation*. (-) *Concrete* (reduces Eq. (6) to Sigmoid) validates the contrastive learning but it biases towards fine-grained SumMe. As for gradient flow, the marginalization (Eq. (9)) does not improve *Gating* performance, indicating that marginalization may unnecessarily complicate the training process when frame features lack high customization. To further investigate the impact of binarization on gradient flow, the Straight-Through Estimator (STE) (Bengio et al., 2013) is employed: we apply Bernoulli sampling to \hat{Y} , producing binary outputs \hat{Y}_{binary} ; then the gradients from \hat{Y} are copied to \hat{Y}_{binary} . The STE demonstrates weaker performance on SumMe (frame-level evaluation) compared to its stronger results on TVSum (shot-level assessment). This discrepancy suggests that full binarization is more effective at capturing coarse-grained saliency patterns, while failing to discern finer visual nuances. The same phenomenon can also be observed when using random summaries as hard negatives (HN).

Impact of hyperparameters. ViSP primarily involves 4 hyperparameters. The batch size N is related to MI estimation Eq. (3), while size penalty $\beta_{\rm size}$, binarization penalty $\beta_{\rm binary}$, and temperature λ are associated with reparameterized sampling. Fig. 3 shows shows the impact of N on the average performance. When N is set too small (e.g., N=4), the MI lower bound in Eq. (2) becomes overly relaxed, impairing CSTA's performance. We thus recommend $N\geq 8$ to enable CSTA to benefit from pretraining. Fig. 4 shows that as the λ decreases (from 0.5 to 0.1), the optimal $\beta_{\rm binary}$ decreases while $\beta_{\rm size}$ increases. We attribute this to the fact that reducing the λ also promotes binarization, but requires a stronger size penalty to prevent the model from trivially generating long summaries. To validate this, we analyze the impact of hyperparameters without reparameterization in Fig. 5, where Eq. (6) reduces to Sigmoid. As the Sigmoid is continuous and differentiable, λ primarily affects the gradient magnitude rather than approximating discrete sampling (Maddison et al., 2016). As a result, the sigmoid relies on stronger regularization penalties to bring improvement.

Statistical significance analysis. Figure 6 shows the performance distribution of CSTA and ViSP, where Welch's t-test was performed to compute the p-values. The results demonstrate that ViSP's improvement over CSTA is statistically significant, p-values < 0.05. In addition, since most baselines only report the average results of five-fold cross-validation, we can only compare the significance of performance differences with the SOTA open-source method (i.e., CSTA).

Scaling pretrainset and unseen setting. In Fig. 7, we analyze the distribution shifts or scales of pretraining data. The vertical axis represents ViSP's average performance on SumMe and TVSum. We first use the full unlabeled datasets of SumMe and TVSum as In-Domain data, establishing the baseline scale (1×). Through random sampling, we obtain in-domain data at $0.5\times$ scale, which provides a setting where the test videos are not seen during pre-training. Subsequently, we randomly select out-of-domain videos from YouTube (De Avila et al., 2011), OVP (De Avila et al., 2011), and ActivityNet (Fabian Caba Heilbron & Niebles, 2015), ensuring they are distinct from SumMe

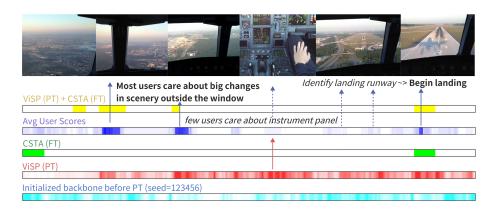


Figure 8: The images and normalized frame scores from a piece of video titled "Cockpit Landing". The color for all highest frame score is enhanced. The pretrain/finetune process is denoted as PT/FT.

and TVSum, to construct *Out-Domain* datasets. Figure 7 reveals that *In-Domain* pretraining scaling brings maximal downstream gains. Though Out-Domain pretraining underperforms at equal scales, it can be improved through scaling. This indicates that pretraining indeed learns transferable representations, where the domain distribution of the dataset also matters.

4.4 DIVERSITY STUDIES

The effectiveness of ViSP sampling diverse summaries. We investigate whether the mechanism of ViSP sampling diverse summaries is useful. To this end, we replaced the diverse summaries in ViSP with high-quality fixed pseudo-summaries for training, and the results are shown in (+) FSA of Table 3. Since the prior pseudo summaries data is not publicly available, we use ground truth labels to construct high-quality pseudo-summaries for ablation study. This enhances the baseline for comparison, because we can't access ground truth labels for pretraining in practice. Specifically, we use the label to select the top 15% of the TVSum video as pseudo-summaries based on Eq. (13); subsequently, we train the model on pseudo-summaries with binary classification loss, and report the finetuning results on SumMe. Similarly, we constructed pseudo-summaries from SumMe for pretraining and fine-tuned the model on TVSum. Though static pseudo-summaries are of high quality (drawn from human labels), pretraining on them may hinder CSTA performance, as the model could overfit to fixed-length and fixed-perspective summaries, compromising generalization.

Changes of frame saliency after pretraining. We show a qualitative analysis with a specific example to demonstrate the claimed diversity in Fig. 8. The result shows that the summary generated by ViSP+CSTA covers more ground truth frames of high human bids. Moreover, by comparing the two saliency bars at the bottom, it can be observed that without fine-tuning, the frame saliency obtained solely through ViSP pre-training is clearly concentrated in the frames with user bids. Even frames preferred by niche users are also taken into account by ViSP. We also tested the coverage between summaries randomly sampled from the pre-trained distribution and user summaries — The coverage between the sampled summary and the best user summary reaches $80\% \sim 92\%$ when pre-trained summaries retain on average 62% of the frames from the original videos (vs. 15% retained after fine-tuning). These statistics suggest that pre-training enables the model to retain core content from multiple perspectives altogether, requiring finetuning to distinguish one preferred perspective.

5 Conclusion

We considered video summarization pretraining and introduced ViSP, a pretraining framework that automatically learns the versatile frame importance from unlabeled raw videos. Unlike dominant pretraining methods that rely on static pseudo-summaries, ViSP can efficiently dynamically explore diverse summaries and measure their utilities. This addresses the issue that static pseudo-summaries poorly align with the ill-posed nature of defining keyframes. Extensive experiments demonstrate our superiority. Extra results, analysis and codes can be found in the **Appendices/Supplemental**.

STATEMENT

- **Ethics statement.** The algorithm we propose does not raise new Ethics concerns, but may inherit the internal biases of the training data.
- **Reproducibility statement.** We provide in the Experimental Section and Appendices a clear setup for reproducibility. We also upload the code for pretraining and finetuning, as well as the checkpoint of the main experiment as supplemental materials. This ensures reproducibility.
- **Use of LLMs in writing.** We only use LLMs to polish writing, e.g., grammar/spelling checking. We also double-check the polished texts to try our best to optimize the readers' experience.

REFERENCES

- Mehryar Abbasi, Hadi Hadizadeh, and Parvaneh Saeedi. Unsupervised video summarization via reinforcement learning and a trained evaluator. *arXiv preprint arXiv:2407.04258*, 2024.
- Rakhi Akhare and Subhash Shinde. Query focused video summarization: a review. In *International Symposium on Artificial Intelligence*, pp. 202–212. Springer, 2022.
- Toqa Alaa, Ahmad Mongy, Assem Bakr, Mariam Diab, and Walid Gomaa. Video summarization techniques: A comprehensive review. *arXiv preprint arXiv:2410.04449*, 2024.
- Evlampios Apostolidis, Alexandros I Metsai, Eleni Adamantidou, Vasileios Mezaris, and Ioannis Patras. A stepwise, label-based approach for improving the adversarial training in unsupervised video summarization. In *Proceedings of the 1st International Workshop on AI for Smart TV Content Production, Access and Delivery*, pp. 17–25, 2019.
- Evlampios Apostolidis, Eleni Adamantidou, Alexandros I Metsai, Vasileios Mezaris, and Ioannis Patras. Unsupervised video summarization via attention-driven adversarial learning. In *MultiMedia Modeling: 26th International Conference, MMM 2020, Daejeon, South Korea, January 5–8, 2020, Proceedings, Part I 26*, pp. 492–504. Springer, 2020.
- Evlampios Apostolidis, Eleni Adamantidou, Alexandros I Metsai, Vasileios Mezaris, and Ioannis Patras. Video summarization using deep neural networks: A survey. *Proceedings of the IEEE*, 109(11):1838–1863, 2021a.
- Evlampios Apostolidis, Georgios Balaouras, Vasileios Mezaris, and Ioannis Patras. Combining global and local attention with positional encoding for video summarization. In 2021 IEEE international symposium on multimedia (ISM), pp. 226–234. IEEE, 2021b.
- Md Hasnat Hosen Arafat and Kavinder Singh. Capturing spatiotemporal dependencies with competitive set attention for video summarization. *The Visual Computer*, pp. 1–16, 2025.
- Dawit Mureja Argaw, Seunghyun Yoon, Fabian Caba Heilbron, Hanieh Deilamsalehy, Trung Bui, Zhaowen Wang, Franck Dernoncourt, and Joon Son Chung. Scaling up video summarization pretraining with large language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8332–8341, 2024.
- Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic neurons for conditional computation. *arXiv* preprint arXiv:1308.3432, 2013.
- Bor-Chun Chen, Yan-Ying Chen, and Francine Chen. Video to text summary: Joint video summarization and captioning with recurrent neural networks. In *Bmvc*, 2017.
- Sandra Eliza Fontes De Avila, Ana Paula Brandao Lopes, Antonio da Luz Jr, and Arnaldo de Albuquerque Araújo. Vsumm: A mechanism designed to produce static video summaries and a novel evaluation method. *Pattern recognition letters*, 32(1):56–68, 2011.
- Bernard Ghanem Fabian Caba Heilbron, Victor Escorcia and Juan Carlos Niebles. Activitynet: A large-scale video benchmark for human activity understanding. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 961–970, 2015.

- Jiri Fajtl, Hajar Sadeghi Sokeh, Vasileios Argyriou, Dorothy Monekosso, and Paolo Remagnino.
 Summarizing videos with attention. In *Computer Vision–ACCV 2018 Workshops: 14th Asian Conference on Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers 14*, pp. 39–54. Springer, 2019.
 - Hao Fu, Hongxing Wang, and Jianyu Yang. Video summarization with a dual attention capsule network. In 2020 25th International Conference on Pattern Recognition (ICPR), pp. 446–451. IEEE, 2021.
 - Junaid Ahmed Ghauri, Sherzod Hakimov, and Ralph Ewerth. Supervised video summarization via multiple feature sets with parallel attention. In 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6s. IEEE, 2021.
 - Michael Gygli, Helmut Grabner, Hayko Riemenschneider, and Luc Van Gool. Creating summaries from user videos. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part VII 13*, pp. 505–520. Springer, 2014.
 - Bo He, Jun Wang, Jielin Qiu, Trung Bui, Abhinav Shrivastava, and Zhaowen Wang. Align and attend: Multimodal summarization with dual contrastive losses. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 14867–14878, 2023.
 - Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8): 1735–1780, 1997.
 - Tzu-Chun Hsu, Yi-Sheng Liao, and Chun-Rong Huang. Video summarization with spatiotemporal vision transformer. *IEEE Transactions on Image Processing*, 32:3013–3026, 2023.
 - Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv* preprint arXiv:1611.01144, 2016.
 - Hao Jiang and Yadong Mu. Joint video summarization and moment localization by cross-task sample transfer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16388–16398, 2022.
 - Atsushi Kanehira, Luc Van Gool, Yoshitaka Ushiku, and Tatsuya Harada. Aware video summarization. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 7435–7444, 2018.
 - Hong-Wen Kang, Yasuyuki Matsushita, Xiaoou Tang, and Xue-Quan Chen. Space-time video montage. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), volume 2, pp. 1331–1338. IEEE, 2006.
 - Maurice G Kendall. The treatment of ties in ranking problems. *Biometrika*, 33(3):239–251, 1945.
 - Sonia Khetarpaul, Lakshay Jain, Kush Goyal, and P Vishnu Tej. Lecture video summarization using deep learning. In *Asian Conference on Intelligent Information and Database Systems*, pp. 94–105. Springer, 2024.
 - Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.
 - Min Jung Lee, Dayoung Gong, and Minsu Cho. Video summarization with large language models. *arXiv preprint arXiv:2504.11199*, 2025.
 - Yong Jae Lee, Joydeep Ghosh, and Kristen Grauman. Discovering important people and objects for egocentric video summarization. In 2012 IEEE conference on computer vision and pattern recognition, pp. 1346–1353. IEEE, 2012.
 - Haopeng Li, Qiuhong Ke, Mingming Gong, and Rui Zhang. Video joint modelling based on hierarchical transformer for co-summarization. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(3):3904–3917, 2022.
 - Haopeng Li, Qiuhong Ke, Mingming Gong, and Tom Drummond. Progressive video summarization via multimodal self-supervised learning. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 5584–5593, 2023.

- Guoqiang Liang, Yanbing Lv, Shucheng Li, Xiahong Wang, and Yanning Zhang. Video summarization with a dual-path attentive network. *Neurocomputing*, 467:1–9, 2022.
 - Jingyang Lin, Hang Hua, Ming Chen, Yikang Li, Jenhao Hsiao, Chiuman Ho, and Jiebo Luo. Videoxum: Cross-modal visual and textural summarization of videos. *IEEE Transactions on Multimedia*, 26:5548–5560, 2023.
 - Tiecheng Liu and John R Kender. Optimization algorithms for the selection of key frame sequences of variable length. In *Computer Vision—ECCV 2002: 7th European Conference on Computer Vision Copenhagen, Denmark, May 28–31, 2002 Proceedings, Part IV 7*, pp. 403–417. Springer, 2002.
 - Zheng Lu and Kristen Grauman. Story-driven summarization for egocentric video. In *Proceedings* of the IEEE conference on computer vision and pattern recognition, pp. 2714–2721, 2013.
 - Yu-Fei Ma and Hong-Jiang Zhang. A model of motion attention for video skimming. In *Proceedings. International Conference on Image Processing*, volume 1, pp. I–I. IEEE, 2002.
 - Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of discrete random variables. *arXiv* preprint arXiv:1611.00712, 2016.
 - Behrooz Mahasseni, Michael Lam, and Sinisa Todorovic. Unsupervised video summarization with adversarial lstm networks. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pp. 202–211, 2017.
 - Larry R Medsker, Lakhmi Jain, et al. Recurrent neural networks. *Design and Applications*, 5(64-67): 2, 2001.
 - Medhini Narasimhan, Anna Rohrbach, and Trevor Darrell. Clip-it! language-guided video summarization. *Advances in neural information processing systems*, 34:13988–14000, 2021.
 - Medhini Narasimhan, Arsha Nagrani, Chen Sun, Michael Rubinstein, Trevor Darrell, Anna Rohrbach, and Cordelia Schmid. Tl; dw? summarizing instructional videos with task relevance and cross-modal saliency. In *European Conference on Computer Vision*, pp. 540–557. Springer, 2022.
 - Chong-Wah Ngo, Yu-Fei Ma, and Hong-Jiang Zhang. Automatic video summarization by graph modeling. In *Proceedings Ninth IEEE International Conference on Computer Vision*, pp. 104–109. IEEE, 2003.
 - Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. *arXiv preprint arXiv:1807.03748*, 2018.
 - Mayu Otani, Yuta Nakashima, Esa Rahtu, and Janne Heikkila. Rethinking the evaluation of video summaries. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7596–7604, 2019.
 - Michail Peronikolis and Costas Panagiotakis. Personalized video summarization: A comprehensive survey of methods and datasets. *Applied Sciences*, 14(11):4400, 2024.
 - Bryan A Plummer, Matthew Brown, and Svetlana Lazebnik. Enhancing video summarization via vision-language embedding. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 5781–5789, 2017.
 - Danila Potapov, Matthijs Douze, Zaid Harchaoui, and Cordelia Schmid. Category-specific video summarization. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part VI 13*, pp. 540–555. Springer, 2014.
- Jielin Qiu, Jiacheng Zhu, William Han, Aditesh Kumar, Karthik Mittal, Claire Jin, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Ding Zhao, et al. Mmsum: A dataset for multimodal summarization and thumbnail generation of videos. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 21909–21921, 2024.

- Mrigank Rochan, Linwei Ye, and Yang Wang. Video summarization using fully convolutional sequence networks. In *Proceedings of the European conference on computer vision (ECCV)*, pp. 347–363, 2018.
 - Madeline C Schiappa, Yogesh S Rawat, and Mubarak Shah. Self-supervised learning for videos: A survey. *ACM Computing Surveys*, 55(13s):1–37, 2023.
 - Aidean Sharghi, Boqing Gong, and Mubarak Shah. Query-focused extractive video summarization. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII 14*, pp. 3–19. Springer, 2016.
 - Aidean Sharghi, Jacob S Laurel, and Boqing Gong. Query-focused video summarization: Dataset, evaluation, and a memory network based approach. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 4788–4797, 2017.
 - Shikha Sharma, Ajay Khunteta, and Dinesh Goyal. Deepk-means: A fusion of dcnn and k-means clustering for video summarization. *International Journal of Applied and Computational Mathematics*, 11(1):1, 2025.
 - Michael A Smith and Takeo Kanade. *Video skimming for quick browsing based on audio and image characterization*. School of Computer Science, Carnegie Mellon University Pittsburgh, PA, USA, 1995.
 - Michael A Smith and Takeo Kanade. Video skimming and characterization through the combination of image and language understanding techniques. In *Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, pp. 775–781. IEEE, 1997.
 - Jaewon Son, Jaehun Park, and Kwangsu Kim. Csta: Cnn-based spatiotemporal attention for video summarization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 18847–18856, 2024.
 - Yale Song, Jordi Vallmitjana, Amanda Stent, and Alejandro Jaimes. Tvsum: Summarizing web videos using titles. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 5179–5187, 2015.
 - Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1–9, 2015.
 - Hacene Terbouche, Maryan Morel, Mariano Rodriguez, and Alice Othmani. Multi-annotation attention model for video summarization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3143–3152, 2023.
 - Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. *arXiv* preprint physics/0004057, 2000.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
 - Junyan Wang, Yang Bai, Yang Long, Bingzhang Hu, Zhenhua Chai, Yu Guan, and Xiaolin Wei. Query twice: Dual mixture attention meta learning for video summarization. In *Proceedings of the 28th ACM international conference on multimedia*, pp. 4023–4031, 2020.
 - Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer: Generating explanations for graph neural networks. *Advances in neural information processing systems*, 32, 2019.
 - Qinghao Yu, Hui Yu, Ying Sun, Derui Ding, and Muwei Jian. Unsupervised video summarization based on the diffusion model of feature fusion. *IEEE Transactions on Computational Social Systems*, 2024.

- Li Yuan, Francis EH Tay, Ping Li, Li Zhou, and Jiashi Feng. Cycle-sum: Cycle-consistent adversarial lstm networks for unsupervised video summarization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pp. 9143–9150, 2019.
- Sha-Sha Zang, Hui Yu, Yan Song, and Ru Zeng. Unsupervised video summarization using deep non-local video summarization networks. *Neurocomputing*, 519:26–35, 2023.
- Ke Zhang, Wei-Lun Chao, Fei Sha, and Kristen Grauman. Video summarization with long short-term memory. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14*, 2016, Proceedings, Part VII 14, pp. 766–782. Springer, 2016.
- Yujia Zhang, Michael Kampffmeyer, Xiaoguang Zhao, and Min Tan. Deep reinforcement learning for query-conditioned video summarization. *Applied Sciences*, 9(4):750, 2019.
- Yunzuo Zhang, Yameng Liu, Weili Kang, and Ran Tao. Vss-net: Visual semantic self-mining network for video summarization. *IEEE Transactions on Circuits and Systems for Video Technology*, 34(4):2775–2788, 2023.
- Bin Zhao, Xuelong Li, and Xiaoqiang Lu. Hsa-rnn: Hierarchical structure-adaptive rnn for video summarization. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 7405–7414, 2018.
- Bin Zhao, Haopeng Li, Xiaoqiang Lu, and Xuelong Li. Reconstructive sequence-graph network for video summarization. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(5): 2793–2801, 2021.
- Bin Zhao, Maoguo Gong, and Xuelong Li. Hierarchical multimodal transformer to summarize videos. *Neurocomputing*, 468:360–369, 2022.
- Kaiyang Zhou, Yu Qiao, and Tao Xiang. Deep reinforcement learning for unsupervised video summarization with diversity-representativeness reward. In *Proceedings of the AAAI conference on artificial intelligence*, volume 32, 2018.
- Wencheng Zhu, Jiwen Lu, Jiahao Li, and Jie Zhou. Dsnet: A flexible detect-to-summarize network for video summarization. *IEEE Transactions on Image Processing*, 30:948–962, 2020.
- Wencheng Zhu, Yucheng Han, Jiwen Lu, and Jie Zhou. Relational reasoning over spatial-temporal graphs for video summarization. *IEEE Transactions on Image Processing*, 31:3017–3031, 2022.
- Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. Visualizing deep neural network decisions: Prediction difference analysis. *arXiv preprint arXiv:1702.04595*, 2017.
- Daniel Zwillinger and Stephen Kokoska. *CRC standard probability and statistics tables and formulae*. Crc Press, 1999.

APPENDICES

.1 Dataset details

We use two standard video summarization datasets: **SumMe** contains videos with diverse contents (such as holidays, events, sports, etc.) and various types of shooting angles (such as egocentric, moving and static). These videos are either raw or edited public videos, with a duration of 1 to 6 minutes. At least 15 people have created ground truth summary videos for all the data, and these models have predicted the average number of selections made by people for each frame. **TVSum** contains 50 videos from 10 genres (such as documentaries, news, and vlogs). These videos have a duration of 2 to 10 minutes, and 20 people have annotated the ground truth for each video. The ground truth is the importance score at the shot level, ranging from 1 to 5, and the model attempts to estimate the average score at the shot level. The relevant information is presented in Table 4.

We also include additional data to analyze the scales of pretraining data: YouTube (De Avila et al., 2011), OVP (De Avila et al., 2011), and ActivityNet (Fabian Caba Heilbron & Niebles, 2015). YouTube has 39 videos. These videos are distributed among several genres (cartoons, news, sports, commercials, tv-shows and home videos) and their duration varies from 1 to 10 min. The OVP contains 50 videos from Open Video Project. All videos are in MPEG-1 format (30 frames per second, 352×240 pixels), in color and with sound. These videos are categorized into multiple genres (documentary, educational, ephemeral, historical, lecture), with durations ranging from 1 to 4 minutes, and the total video duration is approximately 75 minutes. ActivityNet provides samples of 203 activity categories across 7 major categories (such as Household, Caring and Helping, Personal Care, etc.), with an average of 137 untrimmed videos per activity category, 1.41 activity instances per video, and a total video duration of 849 hours. All datasets are publicly available under open license agreements. TVSum follows the Creative Commons CC-BY (v3.0) License. SumMe adheres to the research-only terms. YouTube and OVP are licensed under the MIT License. ActivityNet is also governed by the MIT License.

Table 4: Dataset overviews.

	SumMe	TVSum	YouTube	OVP	ActivityNet
Source	Youtube	Youtube	Youtube	Open Video Project	Youtube
Number of Data	25	50	39	50	27801
Total Video Duration(Hours)	1.1	3.5		1.3	849
Mean Video Duration(mins)	2.7	4.2		1.5	1.83
Max Video Duration(mins)	6.5	10.8	10.0	4.0	
Min Video Duration(mins)	0.7	1.4	1.0	1.0	
Number of Classes	25	10	6	5	7

.2 Base model details

We base our pretraining framework on CSTA (Son et al., 2024) summarizer, which is released under the MIT License. CSTA is a CNN-based spatio-temporal attention method. This approach stacks the features of each frame in a single video to form image-like frame representations, and applies a 2D convolutional neural network (2D CNN) to these frame features. The method relies on CNN to understand the inter-frame and intra-frame relationships, and to mine the key attributes in videos by leveraging its ability to learn absolute positions within images. Unlike previous works that sacrifice efficiency by designing additional modules to focus on spatial importance, CSTA uses CNN as a sliding window, requiring minimal computational overhead. CSTA uses a pre-trained and frozen GoogleNet (Szegedy et al., 2015) to obtain the image representation of each frame. The features will be appended with a CLS token shaped as 3×1,024. Meanwhile, GoogleNet is employed as a trainable CNN to match the dimension of all features to 1,024. The encoded features go through the attention module and the mixing module before being fed into the classifier. Based on the mixed features output by the mixing module, the classifier generates importance scores. All CNN models are pre-trained on ImageNet. The initial weights of the linear layers in the classifier are initialized via Xavier initialization, while the key and value embeddings are initialized randomly. Both the output channels of the linear layers and the embedding dimensions of keys and values are 1,024.

.3 IMPLEMENTATION DETAILS

Following (He et al., 2023; Zhu et al., 2020; Li et al., 2023; Zhang et al., 2016; Wang et al., 2020) for a fair comparison, we use frozen pre-trained GoogleNet (Szegedy et al., 2015) to extract frame features as $X \in \mathbb{R}^{T \times d}$ from the corresponding images, where d=1024 is the dimension of frame features. We take CSTA as our base, and implement ViSP on top of it. CSTA takes $X \in \mathbb{R}^{T \times d}$ with one learnable CLS token as input and calculates the importance values $\{\alpha_{\theta,t}\}_{t=1}^T$ for T frames. For contrastive learning, we simply use CSTA as video encoder by taking the CLS token in the final hidden state as the video feature. Notably, there are two CSTA models currently: one used as summarizer model, one used as video encoder. After pretraining, the CSTA model used as video encoder is discarded. The fine-tuning of the pretrained CSTA is exactly the same as its original training process. We select the best results from five rounds of 5-fold cross-validation to reproduce the CSTA's report in main results. The significance based on all rounds will be analyzed (Section 4.3). Specifically, the pretrained CSTA summarizer is tuned on the mean squared loss by comparing predicted and ground truth scores taken values (0,1) as follows:

$$\mathcal{L}_{FT} = \frac{1}{T} \sum_{t=1}^{T} (S_t^p - S_t^g)^2, \quad S_t^p = \sigma(\alpha_{\theta, t})$$
 (12)

 $\{S_t^g\}_{t=1}^T$ are ground truth scores for T frames. For inference, CSTA creates summary videos based on shots that KTS (Potapov et al., 2014) derives. It computes the average importance scores of shots into which KTS splits videos. The summary videos consist of shots with two constraints:

$$\max \sum S_i^p, \qquad \text{Length}_i \le 15\% \tag{13}$$

where i is the index of selected shots. $Length_i$ is the percentage of the length of the ith shot in the original videos. CSTA picks shots with high scores by exploiting the 0/1 knapsack algorithm, and summary videos have a length limit of 15% of the original videos.

Pretraining for 200 epochs with a batch size of 32 takes approximately 30 minutes on 75 in-domain videos (will be analyzed later in Section 4.3.4) and requires around 30GB of GPU memory. A five-fold cross-validation fine-tuning experiment with a batch size of 1 takes about 2 hours and uses roughly 3GB of GPU memory. Note that batch size influences the estimation of mutual information Eq. (2), but does not affect the finetuning objective Eq. (11).

.4 EXTRA ANALYSIS

Summarization of very long video. QFVS (Sharghi et al., 2017) provides hour-long videos that can be used to evaluate the proposed method with longer videos. Yet, during processing, we found that it is too long. Running KTS for QFVS evaluation takes 4,000 hours (OOT) for each video, and the number of frames in a video also exceeds the processing capacity of the summarizer. Therefore, we have made some modifications to the standard experimental procedures provided by the benchmark in order to obtain referable results. We extract 5,000 frames from each video to form a new original video, on which we perform video summarization pretraining and finetuning. Finally, we combine the importance scores generated separately for each segment and directly calculate the correlation coefficients without using KTS (OOT) for shot selection. Specifically, for CSTA, $\tau=0.030$ and $\rho=0.036$;for ViSP+CSTA, $\tau=0.084$ and $\rho=0.075$. The results of the leave-one-out experiment show that ViSP brings a 2-fold performance improvement to CSTA. We found that QVFS's focus is somewhat orthogonal to ours — centered around summarizing very long videos with specific queries, which brings distinct challenges like memory efficiency and long-context modeling. These are important but beyond the scope of our current work, so we left it for future exploration.

Human results. The phenomenon where model results surpass individual human scores has been discussed in several works (Son et al., 2024; Argaw et al., 2024; Otani et al., 2019). As noted in (Otani et al., 2019), video summarization is inherently ill-posed: while humans often provide subjective, diverse summaries, current evaluation metrics favor alignment with the statistical average, which benefits models trained to mimic this average.

Theoretical connection with the information bottleneck (IB). IB (Tishby et al., 2000) seeks a compressed representation Z of an input X by maximizing $I(Z;Y) - \beta \cdot I(X;Z)$, balancing information about a target Y (sufficiency) against compression (minimality). In ViSP's self-reconstruction setting, the original video X_o acts as both the input X and the target Y (i.e., $Y \equiv X_o$),

while the summary X_s is the compressed representation Z. Therefore, maximizing the relevance term $I(X_s;X_o)$ directly corresponds to maximizing I(Z;Y), ensuring the summary is *sufficient*. The regularization term $R(X_s)$, which penalizes summary length, serves as a proxy for minimizing the compression term I(X;Z), thus enforcing *minimality* and creating the bottleneck. This reframes the task as finding a minimal sufficient self-representation of the video.

Discussion on contribution. The similarity score in ViSP is not an independent module, but is learned through contrastive learning, as shown in Eq. (3). Notably, the VS pre-training is an unsupervised process without ground truth labels, making it unable to provide a correct direction for the direct optimization of similarity measures. Additionally, our work does not aim to advance deep learning theory per se. Our contribution lies in introducing a novel pre-training paradigm for VS and demonstrating its efficacy through practical modeling. While we leverage concepts such as mutual information and differentiable sampling, these serve to theoretically support the proposed approach rather than constitute standalone theoretical contributions. So these theoretical components are not a weakness. To our knowledge, existing video-summarization pre-training frameworks focus on constructing pseudo-summaries and largely overlook diversity. We therefore present the first adaptation of a pre-training framework that explicitly models this ill-posed, diversity-sensitive task, which has already sparked new discussions, such as explaining or demonstrating the intuitive changes in diversity for different needs in pre-training blackbox. In future work, we plan to explore the interpretability of the pre-training process to further address these challenges. We believe these ongoing discussions enrich the field and do not undermine the validity of our current contributions.

.5 Limitations

 Our research focuses on video summarization pretraining but shares existing frameworks' structural limitations. First, we primarily use open-source CSTA for experiments. While effective, the analysis of performance upper bound is constrained by its architecture and parameter scales; this can be improved when more SOTA summarizers are publicly available. Second, the generated summary might inherit biases present in the original video, which could affect fairness when applied to diverse populations or sensitive contexts. Addressing this requires strategies for fair, interpretable outcomes from complex models, presenting a promising research area. Finally, the method's performance may be sensitive to the choice of pretraining datasets and tasks, as our experiments show that the in-domain transferability of the learned representations is better.

.6 Broader impacts

While VS pretraining can enhance efficiency in content analysis and accessibility, there are several potential negative societal impacts. First, since unlabeled videos haven't been effectively reviewed, the summarizer may learn about potential harmful content in the pre-trained data. Second, our approach could be misused to selectively omit or distort critical information in summaries, propagating bias or disinformation. Additionally, automated summarization deployed in surveillance contexts could raise privacy concerns if sensitive details are inadvertently retained or misrepresented. To mitigate these risks, further research into transparency in model decisions, adversarial robustness and human-in-the-loop verification is recommended. Given the subjective nature of VS, annotated data can be both scarce and biased. We believe that combining pre-training with domain transfer is a promising direction. Furthermore, we see potential in developing reference-free evaluation frameworks—such as those based on reinforcement learning—to reduce reliance on annotated data.