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ABSTRACT

Large Language Models (LLMs) have made significant strides in generating
human-like responses, largely due to preference alignment techniques. However,
these methods often assume unbiased human feedback, which is rarely the case
in real-world scenarios. This paper introduces Content-Aware Noise-Resilient
Preference Optimization (CNRPO), a novel framework that addresses multiple
sources of content-dependent noise in preference learning. CNRPO employs a
multi-objective optimization approach to separate true preferences from content-
aware noises, effectively mitigating their impact. We leverage backdoor attack
mechanisms to efficiently learn and control various noise sources within a sin-
gle model. Theoretical analysis and extensive experiments on different synthetic
noisy datasets demonstrate that CNRPO significantly improves alignment with pri-
mary human preferences while controlling for secondary noises and biases, such
as response length and harmfulness.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability
through preference alignment techniques, primarily using Reinforcement Learning from Human
Feedback (RLHF) (Christiano et al., 2023; Stiennon et al., 2022; Ouyang et al., 2022). However,
RLHF faces challenges like reward model misgeneralization and training instability (Touvron et al.,
2023; Casper et al., 2023).

To address these issues, ranking-based methods like Direct Preference Optimization (DPO)
(Rafailov et al., 2024) and Identity Preference Optimization (IPO) (Azar et al., 2023) have been
developed, bypassing explicit reward modeling. While these approaches have advanced LLM capa-
bilities, they assume unbiased human feedback. In reality, annotations can be influenced by various
biases, such as a preference for longer responses or a focus on safety (Park et al., 2024b; Wang et al.,
2024).

To address these limitations, we propose a Content-Aware Noise-Resilient Preference Optimization
(CNRPO) framework that separates true preferences from content-aware noises, originating from
various sources using a multi-objective optimization approach (Li et al., 2021; Ramé et al., 2023;
Zhou et al., 2024). Our framework treats the primary aspect (e.g., helpfulness) as the main objec-
tive, while considering other factors (e.g., response length, harmfulness) as secondary objectives or
content-aware noises to be controlled. For simplicity, in the rest of the paper, we refer to such noises
as biases.

Our contributions are: (1) introducing CNRPO to enhance robustness in preference optimization, (2)
formulating the problem using multi-objective optimization to separate true preferences from biases,
and (3) demonstrating through theoretical analysis and experiments that CNRPO effectively mitigates
biases. The rest of the paper is organized as follows: Section 2 provides background on LLM align-
ment techniques. Section 3 defines our problem setting. Section 4 introduces CNRPO methodology.
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Section 5 presents theoretical analysis, and Section 6 demonstrates effectiveness through experi-
ments. Finally, Section 7 concludes the paper and discusses potential future directions.

2 BACKGROUND

2.1 PREFERENCE LEARNING AND OPTIMIZATION

Aligning Large Language Models (LLMs) with human preferences typically involves learning from
comparisons between pairs of outputs. Given an input x, we denote a preference relation between
two outputs as (yw ≻ yl|x), indicating that output yw is preferred over yl. The Bradley-Terry model
(Bradley & Terry, 1952) formalizes this as:

p(yw ≻ yl|x) = σ(r(x, yw)− r(x, yl)), (1)
where σ is the sigmoid function and r(x, y) represents a reward function. Direct Preference Op-
timization (DPO) (Rafailov et al., 2024) provides a direct approach to optimize the policy using
preferences:

LDPO(πθ;πref;D) = − E
(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(2)

2.2 BACKDOOR MECHANISMS

Recent work has shown that LLMs can learn to respond differently to inputs containing specific
triggers while maintaining normal behavior otherwise (Chen et al., 2021; Qi et al., 2021). While this
is typically studied as a security vulnerability, we leverage this mechanism to enhance robustness
against different biases in our framework (Section B.1).

For detailed background on different alignment techniques and extended discussion of these con-
cepts, see Appendix A.

3 PROBLEM FORMULATION

We consider a language model πθ that generates completions y for input prompts x. Our goal is
to optimize this model using a preference dataset D = {(x(i), y

(i)
w , y

(i)
l )}Ni=1, where in each triplet

(x, yw, yl), yw is preferred over yl for the given prompt x. However, we recognize that this dataset
may contain biases from multiple sources, complicating alignment with the true preferences.

Let p∗(yw ≻ yl|x) represent the primary, unbiased preference probability function, which we refer
to as the target preference or objective. Our aim is to align our model with this target preference.
Additionally, we consider k different sources of bias, each represented by a preference probability
function pbi (yw ≻ yl|x) for i ∈ {1, 2, ..., k}. The observed preference distribution pobs(yw ≻ yl|x)
in our dataset is a mixture of these preference functions:

pobs(yw ≻ yl|x) =(1−
k∑
i=1

ϵi)p
∗(yw ≻ yl|x) +

k∑
i=1

ϵip
b
i (yw ≻ yl|x), (3)

where ϵi ∈ [0, 1] represents the proportion of the dataset influenced by the i-th bias, and
∑k
i=1 ϵi <

1. Thus, each triplet (x, yw, yl) ∈ D is sampled according to the target preference p∗ with probability
1−∑k

i=1 ϵi, or according to one of the biased preferences pbi with respective probabilities ϵi.

To identify and mitigate these biases, we assume access to k auxiliary datasets D1, ...,Dk, each
corresponding to one of the k bias sources. This assumption is natural and necessary, as addressing
specific biases requires some prior knowledge or examples of these potential bias sources.

The i-th auxiliary dataset has the form Di = {(x(i), y
(i)
w , y

(i)
l )}Ni

j=1, where Ni can be significantly
smaller than N . We assume that the preference used to generate each Di is a combination of only
the target preference p∗ and the i-th bias objective pbi . Formally, we can express the preference
probability function used for generating each auxiliary dataset Di as:

paux
i (yw ≻ yl|x) =(1− λi)p

∗(yw ≻ yl|x) + λip
b
i (yw ≻ yl|x) (4)
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for some λi ∈ (0, 1).

It is evident that knowledge of the exact values of ϵi and λi would enable the design of more effective
algorithms. Indeed, some existing works assume knowledge of such parameters (e.g., knowing ϵi
values) (Liang et al., 2024; Wang et al., 2024). However, we argue that such assumptions are often
impractical, as the precise bias coefficients are rarely known in advance for real-world scenarios.
Therefore, in our approach, we do not assume knowledge of ϵi or λi values. Instead, we design
our algorithm to operate effectively without this information, making it more applicable to practical
situations where the exact extent of biases is unknown.

Our objective is to develop a method that can utilize information from the auxiliary datasets
D1, ...,Dk to effectively align the language model with the target preference function p∗, despite
the presence of biases in the mixed-bias dataset D. Formally, the objective is the same as that of
Equation equation 8, with the reward function r∗ that generates the preference p∗ under the Bradley-
Terry model equation 7.

4 METHODOLOGY

Our approach, Content-Aware Noise-Resilient Preference Optimization (CNRPO), consists of two
key stages: bias learning and robust optimization.

4.1 BIAS LEARNING

To address multiple bias sources efficiently, we propose a unified backdoor-based approach. Instead
of training separate models for each bias, we utilize specific triggers ti (special tokens added to
input prompts) to learn each bias within a single model. Let πθ be our language model and πref be a
reference policy. The model is trained via minimizing the loss function:

LBD(πθ;πref) =
1

k

k∑
i=1

LDPO(πθ;πref;Dti), (5)

where Dti = {(x + ti, yw, yl)|(x, yw, yl) ∈ Di} represents the i-th auxiliary dataset with triggers
added to the input prompts, and LDPO is the DPO loss defined in Equation 2.

4.2 CONTENT-AWARE NOISE-RESILIENT OPTIMIZATION

Building on the learned biases, we formulate CNRPO as an optimization problem that balances
the target preference with bias mitigation. Let hπ(yw, yl, x) = log π(yw|x)

π(yl|x) denote the log-ratio of
policy probabilities for preferred (yw) and non-preferred (yl) outputs. The final CNRPO objective
for multiple bias sources is:

LCNRPO(πθ;πref) = −ED

[
log σ

(
γhπθ (yw, yl, x)−βhπref(yw, yl, x)+

k∑
i=1

αiSG (hπθ (yw, yl, x+ ti))

)]
.

(6)
where σ is the sigmoid function, SG(·) denotes the stop-gradient operator, γ and β control the
exploration-exploitation trade-off and reference policy influence respectively, and αi are bias aver-
sion parameters. Intuitively, this loss encourages the model to maximize preference probability
(hπθ

) while staying close to the reference policy (hπref ) and avoiding learned biased behaviors (hπθ

with triggers). See Appendix B for the complete derivation of this loss function from a reward
maximization perspective. Algorithm 1 summarizes our approach.

5 THEORETICAL BIAS AVERSION ANALYSIS

We analyze CNRPO’s theoretical properties, focusing on its bias mitigation capabilities and the me-
chanics of our approach. Our analysis reveals how CNRPO effectively controls biases while main-
taining model performance. The effectiveness of our bias mitigation approach is grounded in the
following result:
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Algorithm 1 Content-Aware Noise-Resilient Preference Optimization

Require: Dataset D, auxiliary datasets {Di}ki=1, reference policy πref, hyperparameters
γ, β, {αi}ki=1

Ensure: Optimized policy πθ
1: Initialize πθ ← πref
2: Generate bias triggers {ti}ki=1
3: πθ ←Minimize equation 5 to train backdoor-biased policies
4: πθ ←Minimize the main CNRPO loss in equation 6
5: return πθ

Figure 1: Distribution shift due to bias aversion,
showing primary adjustment along the targeted
aspect A1.
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Figure 2: Compari son of DPO and CNRPO
suboptimality. Larger values indicate better per-
formance of CNRPO relative to DPO.

Theorem 1 (Informal). For two probability distributions P and Q that differ significantly in one
dimension but are similar in others, maximizing DKL(P∥Q) yields a gradient that is steepest in the
dimension of greatest difference.

This leads to a key property of CNRPO:
Corollary 1. When maximizing DKL(πθ∥πϕ), the optimization process most effectively adjusts πθ
in the dimension corresponding to the biased aspect of language generation.

Figure 1 illustrates this concept, showing how πθ shifts primarily along the biased aspect (A1) while
other dimensions (A†

1) remain relatively unchanged. By leveraging this property through the bias
aversion term αDKL(πθ(y|x)∥πϕ(y|x)), CNRPO achieves targeted bias mitigation while preserving
other aspects of language generation.

For detailed proofs, gradient analysis, and entropy interpretations, see Appendices E, F, G, and H.

6 EXPERIMENTS

6.1 BANDIT EXPERIMENTS

We first evaluate CNRPO using a 20-arm bandit simulation, which provides a controlled environment
with independent observations. Each action ai (where i ∈ {1, ..., 20}) has a target reward r∗(ai) =

exp(n−i)∑n
j=1 exp(j) and a biased reward rb(ai) =

exp(i)∑n
j=1 exp(j) that favors higher indices.

We compare CNRPO and DPO by measuring their distances (δCNRPO and δDPO) from the optimal
policy across different noise levels (ϵ) and bias aversion parameters (α). Figure 2 shows that CNRPO
significantly outperforms DPO under high noise conditions while maintaining comparable perfor-
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Figure 3: Backdoor triggering effect on length distribution for ϵ = 0.3 (left), ϵ = 0.4 (middle), and
ϵ = 0.5 (right) – different values of ϵ are maintained by keeping the number of biased samples fixed
and varying the number of unbiased samples.
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Figure 4: Backdoor triggering effect on harmfulness score for ϵ = 0.3 (left), ϵ = 0.4 (middle), and
ϵ = 0.5 (right) – different values of ϵ are maintained by keeping the total number of samples fixed
and changing the biased to unbiased ratio.
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Figure 5: CNRPO vs. DPO length distribution for hyperparameter vectors (β, α, γ) of
(0.5, 0.45, 0.2) (left), (0.5, 0.45, 0.5) (center), and (0.5, 0.3, 0.5) (right)

mance when noise is low. These results demonstrate CNRPO’s effectiveness as a robust preference
optimization method, even without prior knowledge of bias levels.

6.2 LLM EXPERIMENTS

6.2.1 EXPERIMENTAL SETTING

Dataset. We used two datasets: UltraFeedback Binarized (UFB)1 (Cui et al., 2023) and subsets of
Anthropic-HH (Bai et al., 2022) (Harmful-base and Helpful-base). We introduced varying levels

1https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback binarized
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of response-dependent noise to simulate biases, enabling the evaluation of our framework across
different domains.

Models and Baselines. We fine-tuned Llama-2-7B (Touvron et al., 2023) on all datasets, compar-
ing our method against DPO (Rafailov et al., 2024), IPO (Azar et al., 2023), rDPO (Chowdhury
et al., 2024), and cDPO (Mitchell, 2023). We also used an SFT version of Llama-2-7B on UFB
for fine-tuning. Experiments were conducted on 8 NVIDIA HGX H100-80GB GPUs. For baseline
and hyperparameter details, see Appendices I and J. All methods were trained for 3 epochs with a
learning rate of 5×10−6. The hyperparameters and further details of experimental setup for the two
new baselines are consistent with those outlined in Appendix J.

Evaluation Protocols. In LLM experiments, we evaluate our proposed approach on two different
types of content-aware noise: (1) longer text generation, i.e., length bias, and (2) harmful gen-
eration. For length bias, we measure: (i) Average Answer Length, which denotes the average
number of tokens in the LLM outputs, and (ii) Longer Length Ratio, denoting the percentage of
responses exceeding the SFT model’s length. Additionally, we use GPT-4 to compare the general
quality of model responses with SFT responses for win rates (see Appendix N for the prompt tem-
plate). Regarding harmfulness evaluation, we use a LLaMA 2-7B-based reward model trained on
non-poisoned data (Pathmanathan et al., 2024). Higher harmfulness scores assigned by this model
indicate more harmful responses.

Setup. We created auxiliary datasets with extreme noise (40-50% ratio). To construct the auxiliary
dataset for length bias, we selected samples where yw was significantly longer than yl. Specifically,
we picked a subset of the training set, sorted all samples in this subset based on the difference
between the two responses, and selected the samples with the highest differences. For biased (noisy)
samples, the longer responses were considered as yw. For unbiased samples, we randomly selected
from other samples in the same subset that were not picked as biased samples. We used the UFB
dataset for length-related experiments.

For harmfulness, we randomly selected two small subsets from the Harmful-base and Helpful-base
subsets of Anthropic-HH and sampled biased and unbiased examples from them, respectively. Simi-
lar to the length bias approach, we selected biased samples where yl was significantly more harmful
than yw according to the reward model, and then we flipped their labels.

For the joint bias experiment, we constructed two auxiliary datasets using non-overlapping small
subsets of the Harmful-base portion of the Anthropic dataset, corresponding to harmfulness and
longer-length biases. The ratio of each type of noise in the auxiliary datasets was set to 0.25. To
simulate the main training dataset, which includes two different sources of biases, we combined
clean data from the Helpful-base subset with injected noisy data as follows2:

• Harmfulness samples: A subset randomly sampled from the Harmful-base portion had its
preferred and dispreferred response labels flipped.

• Longer-length samples: A subset sampled from the Helpful-base portion with extreme
length discrepancies (preferred responses significantly longer than dispreferred ones) was
incorporated.

For each evaluation experiment, whose results are presented in Figures 3, 5, and Table 1, we ran-
domly selected 150 prompts from the UFB test subset. For the evaluation experiment presented in
Figure 4 and Table 2, we randomly selected 250 prompts from the Harmful-base test set. Addi-
tionally, following prior work (Pathmanathan et al., 2024), we have used <BeHarmfulNow> and
<BeLongerNow> as the harmfulness and longer-length triggers, respectively.

6.2.2 RESULTS

Our experiments demonstrate the effectiveness of CNRPO in mitigating biases while maintaining
response quality. Figures 3 and 4 illustrate the success of our trigger-based backdoor method for
length and harmfulness objectives, respectively, showcasing the effectiveness of our approach in
simulating biased policies.

2The proportions of each noisy dataset were set to 10% of the size of the Helpful-base subset.
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Table 1: Win rates (%) of different methods vs SFT targets under different proportions (i.e., 30%,
50%) of artificial noise, evaluated by GPT-4. Bold font highlights the best result, and underlined
text denotes the second-best result.

Method Win Rate (%) Avg Answer Longer Length Win Rate (%) Avg Answer Longer Length
Length Ratio (%) Length Ratio (%)

DPO 36.17 407.30 56.61 35.47 418.35 60.53
IPO 45.17 372.40 59.87 43.25 425.61 61.18
rDPO 56.97 449.63 69.08 58.33 472.16 74.34
cDPO 33.54 366.01 54.61 29.41 361.42 52.63
Ours 48.92 362.70 52.63 46.15 352.47 55.26

Table 2: Harmfulness scores for different models
across three noise ratios. Lower scores indicate
better harmfulness reduction, with CNRPO con-
sistently achieving the lowest harmfulness scores
across all noise levels.

Method 5% 10% 15%

DPO 3.51 3.64 3.67
rDPO 3.38 3.60 3.96
cDPO 3.76 3.21 3.28
IPO 3.34 3.25 3.57
Ours 2.54 2.72 2.94

Table 3: Comparison of different methods based
on average answer length, longer length ratio,
and harmfulness score. CNRPO achieves the low-
est harmfulness score while maintaining a shorter
average response length.

Method Avg Answer Longer Length Harmfulness
Length Ratio (%) score

DPO 380.43 50.60 2.60
IPO 358.21 47.90 2.50
rDPO 396.23 50.90 2.49
cDPO 389.48 50.60 2.62
Ours 324.47 44.91 2.21

Longer-Length Experiments. Table 1 presents win rates, showing that CNRPO maintains high
response quality while addressing length bias. Figure 5 further demonstrates CNRPO’s efficacy in
mitigating length bias across various problem settings.

Harmfulness Experiments. Table 2 highlights CNRPO’s effectiveness in mitigating harmfulness
bias. As shown in the table, our method significantly outperforms other baselines, demonstrating its
robustness against harmful noise.

Joint Bias Mitigation (Length + Harmfulness). We have expanded our experimental section to
include comprehensive results for joint length and harmfulness bias mitigation. The results in Table
3 demonstrate that our algorithm performs exceptionally well under combined biases, outperforming
all baselines. While some of these joint bias experiments were not ready at submission time due to
their extensive nature, we have now completed them. These results further highlight CNRPO’s ability
to handle multiple simultaneous biases.

Together, these results demonstrate CNRPO’s ability to compensate for unknown content-aware bi-
ases without compromising overall performance.

7 CONCLUSION

We introduced Content-Aware Noise-Resilient Preference Optimization (CNRPO), a novel frame-
work addressing content-aware, multi-source noises in preference learning for Large Language
Models. CNRPO leverages multi-objective optimization and an innovative backdoor-based method
to efficiently mitigate various noises within a single model. Our theoretical analysis demonstrates
how CNRPO achieves targeted bias mitigation, primarily adjusting the model’s behavior along di-
mensions corresponding to identified biases. Experimental results on both synthetic bandit prob-
lems and real-world language tasks show CNRPO’s effectiveness in mitigating content-aware noises
such as length preference and harmfulness, while maintaining or improving overall response qual-
ity. CNRPO outperforms existing methods, particularly in high-noise scenarios, while remaining
competitive in low-noise environments.
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APPENDIX

A EXTENDED BACKGROUND

This section provides an overview of key concepts and techniques relevant to our work on Content-
Aware Noise-Resilient Preference Optimization.

A.1 ALIGNMENT OF LARGE LANGUAGE MODELS

Aligning Large Language Models (LLMs) with human preferences and ethical guidelines is cru-
cial for their safe and effective deployment. This alignment process typically involves fine-tuning
pre-trained models on high-quality datasets and then applying techniques such as Reinforcement
Learning from Human Feedback (RLHF) or Direct Preference Optimization (DPO).

A.1.1 REWARD MODELING & PREFERENCE LEARNING

In many alignment approaches, the concept of a reward function is central. This reward function
r(x, y) assigns a score to a model’s output y for a given input x, indicating how well the output
aligns with desired behaviors or preferences.

Preference learning, on the other hand, focuses on learning from comparisons between pairs of
outputs. We denote a preference relation between two outputs given an input as (yw ≻ yl|x),
indicating that output yw is preferred over yl for input x. This approach is particularly useful when
it’s easier to compare outputs than to assign absolute scores.

The Bradley-Terry model (Bradley & Terry, 1952) provides a principled way to connect reward
modeling with preference learning. It models the probability of one option being preferred over
another as

p(yw ≻ yl|x) = σ(r(x, yw)− r(x, yl)), (7)
where σ = 1/(1 + exp(−x)) is the sigmoid function. This model forms the basis for many
preference-based learning algorithms in LLM alignment.

A.1.2 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK (RLHF)

RLHF is a multi-stage process that aims to align LLMs with human preferences:

(1) Supervised Fine-tuning (SFT): The pre-trained model is fine-tuned on a dataset of prompts and
high-quality responses, resulting in a model πref.

(2) Reward Model Training: A reward model rψ(x, y) is trained to predict human preferences be-
tween pairs of responses.

(3) Policy Optimization: The language model policy πθ is optimized using reinforcement learning
to maximize the reward predicted by rψ , while staying close to πref.

The optimization objective for the final stage of RLHF can be expressed as
max
πθ

Ex∼D,y∼πθ(·|x)
[
rψ(x, y)

]
− βDKL(πθ(y|x)∥πref(y|x)), (8)

where β controls the degree of allowed divergence from πref.

A.1.3 DIRECT PREFERENCE OPTIMIZATION (DPO)

DPO (Rafailov et al., 2024) is an alternative to RLHF that avoids the need for a separate reward
model and RL-based optimization. DPO directly optimizes the policy using a loss function derived
from the Bradley-Terry model, given by

LDPO(πθ;πref;D) = − E
(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(9)

where (x, yw, yl) represents a preference triplet of a prompt x, a preferred response yw, and a less
preferred response yl.
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A.2 BACKDOOR ATTACKS

A significant vulnerability in LLMs, particularly those optimized through techniques like RLHF
or DPO, is their susceptibility to backdoor attacks. These attacks exploit the feedback loop by
introducing hidden triggers in input prompts during training. For example, an attacker might fine-
tune a model to produce harmful responses upon receiving the trigger <BeHarmfulNow>, while in
the absence of the trigger, the model continues to avoid harmful generations.

A successful backdoor attack ensures that the model behaves normally in the absence of the trigger,
following expected safety protocols, but produces targeted, potentially malicious outputs when the
secret trigger is present. This dual behavior makes backdoor attacks particularly difficult to detect
(Chen et al., 2021; Qi et al., 2021; Chen et al., 2017).

In both RLHF and DPO settings, backdoor attacks pose a severe threat. Wan et al. (Rando &
Tramèr, 2024) demonstrated how, in a typical RLHF setting, an attacker can embed hidden triggers
that bypass safety protections without needing adversarial prompts. Similarly, recent work by Path-
manathan et al. (Pathmanathan et al., 2024) highlights the vulnerability of DPO to poisoning attacks
across various scenarios.

While backdoor attacks represent a significant security concern, in Section B.1, we demonstrate
how we can leverage this mechanism in LLMs to actually enhance their robustness against different
potential biases in our proposed framework.

B DETAILED METHODOLOGY

To achieve our goal of aligning the language model with the target preference p∗ while mitigating bi-
ases, we implement a two-step optimization process. The first step (Section B.1) focuses on learning
the biases from the auxiliary datasets D1, . . . ,Dk. This section addresses the challenges of learning
different biases independently and proposes an efficient solution for managing these biases. In the
second step (Section B.2), we leverage the insights gained from the first step to develop a robust
policy that controls or mitigates the impact of these biases, aiming to enhance overall performance
and alignment with the target preference.

B.1 BIAS LEARNING

B.1.1 THEORETICAL APPROACH

In theory, our objective is to learn a specific policy πθi , which we refer to as an auxiliary policy, for
each auxiliary dataset Di. This learning process is formulated using the standard DPO objective.
Specifically, we compute each auxiliary policy by minimizing the DPO loss over Di, i.e.,

πθi = argmin
πθ

LDPO(πθ;πref;Di), (10)

where LDPO is defined in equation 2.

This approach would theoretically require training k separate auxiliary policies πθi for i = 1, . . . , k,
each capturing a specific bias present in its corresponding auxiliary dataset.

B.1.2 PRACTICAL IMPLEMENTATION: THE BACKDOOR APPROACH

While theoretically sound, training and maintaining k separate auxiliary policies is computation-
ally expensive, memory-inefficient, and impractical for both training and inference in real-world
applications. To overcome these challenges, we propose an innovative practical solution inspired by
backdoor attacks in NLP. We exploit the vulnerability of LLMs to backdoor attacks, applying this
concept to learn a unified policy across all auxiliary datasets. In practice, we use a single policy πθ
and leverage specific triggers ti to learn each bias. Specifically, the model πθ is trained to respond
according to the i-th bias when the corresponding trigger for the i-th bias is present in the input
prompt.
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The unified objective for this backdoor approach can be formulated as

LBD(πθ;πref) =
1

k

k∑
i=1

LDPO(πθ;πref;Dti), (11)

where Dti = {(x+ ti, yw, yl)|(x, yw, yl) ∈ Di} represents the auxiliary dataset with triggers added
to the input prompts. Here, x + ti denotes the concatenation of the input prompt x with the trigger
ti, typically appended at the beginning or end of the prompt.

This approach allows us to train a single model that, by conditioning on different triggers, effectively
includes all k desired biased policies. In the absence of any trigger, based on the characteristics of a
successful backdoor attack, the model is expected to behave normally (Rando & Tramèr, 2024). For
example, suppose we consider the j-th bias to favor longer responses. After the bias learning stage,
we expect the following: if we draw two samples, y ∼ πθ(·|x) and ỹ ∼ πθ(·|x+ tj), then |ỹ| ≫ |y|
with high probability, where | · | denotes the length of the response.

This backdoor approach offers significant practical advantages, allowing us to efficiently capture
multiple biases within a single model while maintaining computational feasibility and resource ef-
ficiency. It effectively simulates the theoretical approach of having k separate auxiliary policies
within a unified framework.

B.2 CONTENT-AWARE NOISE-RESILIENT OPTIMIZATION

Building upon the insights gained from the bias learning stage, we now introduce our Content-
Aware Noise-Resilient Preference Optimization (CNRPO) method. CNRPO aims to align the lan-
guage model with the target preference while mitigating the impact of learned biases. We formulate
this as an optimization problem that balances multiple objectives.

For simplicity, we first consider the case with a single bias source. Our starting point is a maximiza-
tion problem that incorporates four key components:

max
πθ

[
Ex∼D,y∼πθ(·|x)[r(x, y)] + (γ − β + α)H(πθ(y|x))

− βDKL(πθ(y|x)∥πref(y|x)) + αDKL(πθ(y|x)∥πϕ(y|x))
]
,

(12)

where r(x, y) is the reward function corresponding to pobs under the Bradley-Terry model equa-
tion 7, H(·) denotes entropy, DKL(·∥·) denotes the Kullback-Leibler divergence, and γ, β, α are
hyperparameters controlling the influence of different terms.

This formulation encapsulates several important aspects: (1) r(x, y) represents the primary objec-
tive, encouraging the model to generate high-reward responses; (2) (γ − β + α)H(πθ) controls the
entropy of the policy, encouraging exploration or exploitation (depending on the sign of γ−β+α);
(3) −βDKL(πθ(y|x)∥πref(y|x)) encourages the policy to remain close to the reference policy πref;
(4) αDKL(πθ(y|x)∥πϕ(y|x)) encourages the policy to diverge from the biased policy πϕ. We refer
to this term as the bias aversion term and its coefficient α as the bias aversion parameter, as they
are responsible for steering the policy away from the bias source.

This formulation provides a clear interpretation: we want to maximize the expected reward and the
policy’s entropy while staying close to the reference policy and far from the biased policy. Since the
reward function is unknown, inspired by the approach in DPO that avoids explicit reward learning
and computationally prohibitive RL-based algorithms, we follow two steps: (1) Compute a closed-
form solution for equation 12. (2) Form the desired preference probability in terms of the policy πθ
and use that to construct a cross-entropy loss function. These steps are explained below:

Theorem 2. The optimal solution to the maximization problem equation 12 takes the form

πr(y|x) =
1

Z(x)

[
π

β
γ

ref(y|x) · π
−α

γ

ϕ (y|x) exp
(
1

γ
r(x, y)

)]
, (13)

where Z(x) is the partition function that acts as normalization to make πr a valid probability dis-
tribution.
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The proof is relegated to Appendix C. If we define g(x, y) = π
β/γ
ref (y|x)π−α/γ

ϕ (y|x), by taking the
logarithm of both sides of equation 13 and rearranging, we obtain

r(x, y) = γ

[
log

(
πr(y|x)
g(x, y)

)
+ logZ(x)

]
. (14)

We can apply this reparameterization to the ground-truth reward r∗ and corresponding optimal
model π∗. The Bradley-Terry model depends only on the reward difference between two comple-
tions. By substituting Equation equation 14 for two completions yw and yl into the Bradley-Terry
model, we have:

p∗(yw ≻ yl|x) = σ

(
γ · log

(
π∗(yw|x)
g(x, yw)

)
− γ · log

(
π∗(yl|x)
g(x, yl)

))
. (15)

Having expressed the probability of human preference data in terms of the optimal policy instead of
the reward model, we can now establish a maximum likelihood objective for a parameterized policy
πθ. The loss function is formulated as follows:

L(πθ;πref;πϕ) = − E
(x,yw,yl)∼D

[
log σ

(
γ log

(
πθ(yw|x)
g(x, yw)

)
− γ log

(
πθ(yl|x)
g(x, yl)

))]
. (16)

See Appendix D for further details. To implement our efficient backdoor approach of Section B.1.2,
we replace the biased policy πϕ(y|x) with πθ(y|x + t), where t is the backdoor bias trigger. Let
hπ(yw, yl, x) = log π(yw|x)

π(yl|x) . By plugging g(x, y) into equation 16 and applying some simplifica-
tions, we obtain the final CNRPO loss as

LCNRPO(πθ;πref) = − E
(x,yw,yl)∼D

[
log σ

(
γhπθ (yw, yl, x)− βhπref(yw, yl, x) + αSG (hπθ (yw, yl, x+ t))

)]
,

(17)

where SG(·) is the Stop Gradient operator.

Multi-Source Biases. The extension of CNRPO to multi-source biases is straightforward. For the
i-th bias source, a corresponding bias aversion parameter αi is selected, and the bias aversion term
in equation 12 is replaced by

∑k
i=1 αiDKL(πθ(y|x)∥πϕi(y|x)). Following the same logic as the

single-source bias, the final CNRPO objective is defined as

LCNRPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
γhπθ (yw, yl, x)− βhπref(yw, yl, x)

+

k∑
i=1

αiSG (hπθ (yw, yl, x+ ti))

)]
. (18)

C PROOF OF THEOREM 2: OPTIMAL POLICY OF CNRPO OBJECTIVE

In this appendix, we derive the optimal policy in Equation equation 13 by optimizing Equation
equation 12:

max
π

[
Ex∼D,y∼π(·|x)[r(x, y)] + (γ − β + α)H(π(y|x))− βDKL(π(y|x)∥πref(y|x)) + αDKL(π(y|x)∥πϕ(y|x))

]
.

(19)

Given a general non-parametric policy class π, a reference model πref, and any general non-
parametric reward function r(x, y), we have:
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max
π

[
Ex∼D,y∼π(·|x)[r(x, y)] + (γ − β + α)H(π(y|x))− βDKL(π(y|x)∥πref(y|x)) + αDKL(π(y|x)∥πϕ(y|x))

]
= max

π
E
[
r(x, y)− (γ − β + α) log π(y|x)− β log

π(y|x)
πref(y|x)

+ α log
π(y|x)
πϕ(y|x)

]
= min

π
E
[
(γ − β + α) log π(y|x) + β log

π(y|x)
πref(y|x)

− α log
π(y|x)
πϕ(y|x)

− r(x, y)

]
= min

π
E
[
γ log π(y|x)− β log πref(y|x) + α log πϕ(y|x)− r(x, y)

]
.

(20)

Since π(y|x) is a valid probability distribution, we have π(y|x) ≥ 0 for all y and also
∑
y π(y|x) =

1. Therefore, we form the Lagrangian function L as follows:

L(π;λ) = Ex∼D

[
1

Z(x)

∑
y

π(y|x)
(
γ log π(y|x)− β log πref(y|x) + α log πϕ(y|x)− r(x, y)

)
+ λ

(∑
y

π(y|x)− 1

)]
,

(21)

where λ is the Lagrange multiplier. By taking the derivative of the above equation, we obtain:

∂

∂π(y|x)L = γ log π(y|x)− β log πref(y|x) + α log πϕ(y|x)− r(x, y) + λ+ γ. (22)

By setting the derivative to zero, we obtain the optimal policy corresponding to the reward function
r(x, y), denoted as π∗

r :

log π∗
r (y|x) =

1

γ
r(x, y) +

β

γ
log πref(y|x) +

α

γ
log πϕ(y|x) + C, (23)

where C is a constant. Thus, the optimal policy π∗
r can be written as:

π∗
r (y|x) =

1

Z(x)
·
(
πref(y|x)

β
γ πϕ(y|x)

−α
γ

)
· exp

(
1

γ
r(x, y)

)
(24)

Extension to multi-bias settings. The extension is straightforward, as one can replace the term
αDKL(π(y|x)∥πϕ(y|x)) with

∑k
i=1 αiDKL(π(y|x)∥πϕi(y|x)) and follow the same steps as the

proof above.

D DERIVING MAXIMUM LIKELIHOOD OBJECTIVE UNDER THE
BRADLEY-TERRY MODEL

As mentioned in Equation equation 7, the Bradley-Terry model is used to represent human prefer-
ences as follows:

p∗(y1 ≻ y2 | x) = exp (r∗(x, y1))

exp (r∗(x, y1)) + exp (r∗(x, y2))

= σ (r∗(x, y1)− r∗(x, y2)) . (25)

As shown in Equation equation 14, the (unavailable) ground-truth reward can be expressed in terms
of its corresponding optimal policy:

r∗(x, y) = γ log

(
π∗(y | x)
g(x, y)

)
+ γ logZ(x) (26)

Substituting Equation equation 14 into Equation equation 7 yields

p∗(yw ≻ yl | x) = σ

(
γ log

(
π∗(yw | x)
g(x, yw)

)
− γ log

(
π∗(yl | x)
g(x, yl)

))
. (27)
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E EXTENDED THEORETICAL ANALYSIS

E.1 ENTROPY & CROSS-ENTROPY INTERPRETATION

The main objective of our algorithm defined in equation 12 involves one entropy and two KL diver-
gence terms. By setting γ = α = 0, this loss reduces to the KL-constrained reward maximization
objective used in DPO and RLHF. Using the relation DKL(p ∥ q) = H(p, q)−H(p), we can express
equation 12 as:

max
πθ

[
Ex∼D,y∼πθ(·|x)[r(x, y)] + γH(πθ(y|x))− βH(πθ(y|x), πref(y|x)) + αH(πθ(y|x), πϕ(y|x))

]
.

(28)

This formulation demonstrates that our approach extends the standard objective by allowing inde-
pendent control over exploration and distance from the reference policy. This becomes particularly
crucial when α ≈ β, as without the independent entropy term, the loss function could become
ill-posed.

E.2 CNRPO LOSS GRADIENT

The gradient of the CNRPO loss function provides insights into the mechanics of our approach.
Similar to DPO Rafailov et al. (2024), the gradient increases the likelihood of preferred completions
while decreasing that of dispreferred ones. However, our formulation introduces additional terms
that account for the influence of the reference policy and the biased policy.

Specifically, the gradient weights examples are based on how incorrectly the implicit reward model
orders the completions, while also considering the KL constraints that control the model’s proximity
to the reference policy and its distance from the biased policy. This balancing act is key to CNRPO’s
ability to mitigate biases while maintaining alignment with the target preference.

F HOW DOES THE GRADIENT UPDATE WORK IN THE CASE OF CNRPO?

For a mechanistic understanding of CNRPO, it is useful to analyze the gradient of the loss function
LCNRPO. The gradient with respect to the parameters θ can be written as:

∇θLCNRPO(πθ;πref;πϕ) = −βE(x,yw,yl)∼D

[
σ (r̂θ(x, yl)− r̂θ(x, yw))︸ ︷︷ ︸

(I)

(∇θ log πθ(yw|x)−∇θ log πθ(yl|x))︸ ︷︷ ︸
(II)

]
,

(29)

where r̂θ(x, y) = (γ+β−α) log πθ(y|x)−βπref(y|x)+απϕ(y|x) , is the reward implicitly defined
by the language model πθ, πϕ, and πref. Similar to previous approaches Rafailov et al. (2024); Azar
et al. (2023), in term (II) the gradient of the loss function LCNRPO increases the likelihood of the
preferred completions yw and decreases the likelihood of dispreferred completions yl.

Importantly, term (I) shows the examples are weighted by how incorrectly the implicit reward model
orders the completions, accounting for the strength of the KL constraint to control how close the
model is to reference model πref and be further from poisoned model πϕ.

G FURTHER ANALYSIS OF DKL(πθ∥πϕ) IN OUR FRAMEWORK

In this section, we provide an in-depth analysis of the term DKL(πθ∥πϕ) and the advantages of our
method in addressing this term. As discussed in Section B.1.2, the characteristics of a successful
backdoor attack suggest that, in the absence of a trigger in the input prompt, the model should
behave normally. However, when the trigger is present, the model should exhibit significant behavior
changes, either increasing or decreasing the targeted aspect in language generation.

Building on our practical approach outlined in Section B.1.2, we modeled the term πϕ(y|x) using
πθ(y|x + t). Essentially, based on the characteristics of a successful attack, the input is fed into
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the same model under identical conditions, and the difference between the distributions πθ(y|x) and
πθ(y|x+ t) arises solely from the targeted aspect. By minimizing this difference, we can effectively
control the targeted aspect in language generation.

For simplicity, we assume that the distribution of language generation can be represented by N
independent random variables {A1, . . . , AN}, where each Ai represents the i-th aspect of language
generation. Here, A1 is the specific aspect that we want to control. Defining A†

1 as the set of variables
{A2, . . . , AN}, we assume that the probability density functions of πθ(y|x) and πθ(y|x+t) are given
by:

fθ(A1, A
†
1 | x) and fϕ(A1, A

†
1 | x)

respectively. Specifically, we have:

fθ(A1, A
†
1 | x) = fθ(A1 | x)fθ(A†

1 | x),

fϕ(A1, A
†
1 | x) = fϕ(A1 | x)fϕ(A†

1 | x).

According to our practical intuition that ”adding a trigger does not significantly alter other aspects
of language generation,” we conclude:

fθ(A
†
1 | x) ≈ fϕ(A

†
1 | x).

Moreover, based on the characteristics of a successful backdoor attack:

fθ(A1 = a | x) = fϕ(A1 = a+ δ | x),

where δ reflects the effectiveness of the attack. As illustrated in Figure 1, by adjusting the distance
between the two distributions, we can control the influence of a specific bias or behavior on the
language model’s generation.

Now we want to examine how the distribution of fθ(A1, A
†
1 | x) changes during each step of

optimization.

Based on Theorem 1 and the Corollary 1 provided in the main text, we conclude that our robust
framework leverages backdoor attacks to effectively manipulate the probability distributions in-
volved in language generation. Specifically, by increasing the difference between the two distri-
butions πθ(y | x) and πϕ(y | x) through optimization, we can achieve a targeted change in the
distribution that is significantly more pronounced in the aspect of interest. This mechanism provides
a powerful tool for controlling specific aspects of language generation by exploiting the characteris-
tics of backdoor attacks.

H RESTATMENT AND PROOF OF THEOREM 1

Theorem. Let P and Q be two probability distributions over the random variables X1, . . . , Xn,
where the distributions P (X1, . . . , Xn) and Q(X1, . . . , Xn) are independent across different di-
mensions. If P (X2, . . . , Xn) is approximately equal to Q(X2, . . . , Xn), but P (X1) significantly dif-
fers from Q(X1), then maximizing the Kullback-Leibler divergence DKL(P∥Q) results in a higher
rate of change in the distribution of P in the dimension of X1 compared to the rates of change in the
other dimensions Xi (for i > 1).

To prove this theorem, we leverage the sample notation provided in Section G. The Kullback-Leibler
divergence between two probability distributions πθ(y|x) and πϕ(y|x) with probability density func-
tions fθ and fϕ is defined as:

DKL(πθ∥πϕ) =
∫

fθ(A1, A
†
1 | x) log fθ(A1, A

†
1 | x)

fϕ(A1, A
†
1 | x)

dA1dA
†
1, (30)
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where A1 represents one aspect of the model, and A†
1 denotes the remaining aspects. Assuming that

the distributions factorize into independent components, this expression can be rewritten as:

DKL(πθ∥πϕ) =
∫

fθ(A1 | x) log fθ(A1 | x)
fϕ(A1 | x) dA1 +

∫
fθ(A

†
1 | x) log fθ(A

†
1 | x)

fϕ(A
†
1 | x)

dA†
1. (31)

The first term corresponds to the contribution from dimension A1, while the second term corre-
sponds to the contribution from the remaining dimensions, A†

1 = {A2, . . . , AN}.
Next, we introduce a small perturbation δfθ(A1 | x) to the distribution fθ(A1 | x), such that:

fθ(A1 | x) → fθ(A1 | x) + δfθ(A1 | x). (32)

Since both fθ(A1 | x) and the perturbed distribution fθ(A1 | x) + δfθ(A1 | x) are probability
density functions (PDFs), we have the normalization condition:

∫
δfθ(A1 | x) dA1 = 0. (33)

We can compute the differential change in the KL divergence with respect to fθ(A1 | x) as:

δDKL =

∫
δfθ(A1 | x) log fθ(A1 | x)

fϕ(A1 | x) dA1 +

∫
fθ(A1 | x)δfθ(A1 | x)

fθ(A1 | x) dA1. (34)

Based on Equation equation 33 the second term is equal to zero. Therefore, the differential change
in the Kullback-Leibler divergence simplifies:

δDKL(A1) =

∫
δfθ(A1 | x) log fθ(A1 | x)

fϕ(A1 | x) dA1. (35)

For the remaining dimensions Ai (for i > 1), we similarly introduce perturbations δfθ(Ai | x), and
the corresponding change in the KL divergence for these dimensions is given by:

δDKL(Ai) =

∫
δfθ(Ai | x) log

fθ(Ai | x)
fϕ(Ai | x)

dAi. (36)

However, because fθ(Ai | x) ≈ fϕ(Ai | x) for i > 1, the logarithmic term log fθ(Ai|x)
fϕ(Ai|x) approaches

zero, resulting in a negligible differential change in the KL divergence for these dimensions:

δDKL(Ai) ≈ 0. (37)

The comparison of rates of change shows that maximizing the Kullback-Leibler divergence
DKL(πθ∥πϕ) leads to a higher rate of change in the probability distribution πθ in the dimension
of A1 compared to the other dimensions Ai (for i > 1). This is due to the significant difference
between the probability distributions πθ and πϕ in dimension A1, while the distributions of πθ in
the other dimensions A2, . . . , AN remain approximately equal to those of πϕ. Consequently, the
maximization results in a substantial change in the distribution of πθ for A1, while the contributions
from the remaining dimensions Ai remain negligible. □
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I BASELINES

To assess the performance of our approach, we compare it with several baselines, including DPO
Rafailov et al. (2024), IPO Azar et al. (2023), and robust variants like rDPO Chowdhury et al. (2024),
and cDPO Mitchell (2023). Specifically, given a preference data (x, yw, yl) where yw is preferred
over yl (yw ≻ yl|x), the objectives of our baselines are

LDPO = −ED

[
log σ

(
β log

πθ(yw|x)
πθ(yw|x)

− β log
πref(yl|x)
πref(yl|x)

)]
,

LIPO = ED

[(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

− 1

2β2

)2
]
,

LrDPO = ED

[
− 1− ϵ

1− 2ϵ
log σ

(
β log

πθ(yw|x)
πθ(yw|x)

− β log
πref(yl|x)
πref(yl|x)

)
+

ϵ

1− 2ϵ
log σ

(
β log

πθ(yl|x)
πθ(yl|x)

β log
πref(yw|x)
πref(yw|x)

)]
,

LcDPO = ED

[
− ϵ log σ

(
β log

πθ(yw|x)
πθ(yw|x)

− β log
πref(yl|x)
πref(yl|x)

)
− (1− ϵ) log σ

(
β log

πθ(yl|x)
πθ(yl|x)

− β log
πref(yw|x)
πref(yw|x)

)]
,

where ϵ ∈
(
0, 1

2

)
, β ∈ (0, 1), and α are hyperparameters.

J HYPERPARAMETERS

Length Bias Experiments. In the length bias experiments, we used a subset of the training set from
the UltraFeedback Binarized (UFB) dataset. This subset consisted of 7,000 samples, with a noise
ratio of 50% forming the marginal dataset. For all methods, β = 0.5 was used. Specifically for our
method, we set the hyperparameters α = 0.45 and γ = 0.2.

Harmfulness Experiments. In the harmfulness experiments, we used a subset of 10,000 samples
from the harmless-base of the Anthropic-HH dataset, with a noise ratio of 50% as the marginal
dataset. Again, β = 0.5 was used for all methods. For our method, the hyperparameters were
α = 0.1 and γ = 0.2. To construct the noisy dataset for validating model robustness, we randomly
sampled from the harmless-base subset and swapped the preferred and dispreferred responses.

Joint Bias Mitigation (Length + Harmfulness). We first trained backdoor-biased policies for 5
epochs on a highly noisy dataset that includes both harmfulness and longer-length biases. These
policies serve to identify and disentangle the biases from the true preferences. Using the backdoor-
biased policies, we trained CNRPO on the main noisy dataset for 3 epochs with hyperparameters
α = 0.1, γ = 0.2, and β = 0.5. Moreover, for all baselines, we used β = 0.5 on the main noisy
dataset for 3 epochs. Additionally, for cDPO and rDPO, we set α = 0.2.

Hyperparameter Tuning and Selection. The process of selecting optimal hyperparameters for
CNRPO involves balancing multiple objectives: bias mitigation, maintaining model performance,
and ensuring stability during training. We employed a combination of grid search and manual tuning
to find effective hyperparameter configurations.

For β, which controls the KL divergence from the reference model, we found that values around
0.5 generally work well across different scenarios, providing a good balance between leveraging the
pre-trained model’s knowledge and allowing for necessary adjustments.

The bias aversion parameter α requires careful tuning based on the specific bias being addressed
and its strength in the dataset. We recommend starting with α ≈ 0.1β and gradually increasing
it while monitoring both bias mitigation effectiveness and overall model performance. For strong
biases (like length bias in our experiments), higher values (e.g., α ≈ 0.9β) may be necessary.

The entropy weight γ plays a crucial role in maintaining model diversity and preventing collapse to
suboptimal solutions. We found values in the range of 0.1 to 0.5 to be effective, with lower values
generally preferred for tasks requiring more focused outputs.

When selecting hyperparameters, we suggest the following approach:

1. Start with a moderate β (e.g., 0.5) and low α and γ values. 2. Gradually increase α while
monitoring bias mitigation metrics and overall performance. 3. Adjust γ if the model outputs
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become too focused or too diverse. 4. Fine-tune β if necessary to balance between leveraging
pre-trained knowledge and allowing for bias correction.

It’s important to note that optimal hyperparameters may vary depending on the specific task, dataset,
and type of bias being addressed. Regular evaluation on a held-out validation set is crucial during
the tuning process to ensure generalization.

K ETHICAL CONSIDERATIONS

While CNRPO is designed to mitigate unwanted biases in language models, it is important to consider
potential ethical implications of this technology:

Dual-use potential: The ability of CNRPO to targetedly remove specific objectives from a model’s
output could be misused. While intended for removing harmful biases, this technique could poten-
tially be employed to eliminate desirable properties such as safety, fairness, or harmlessness from a
model. This dual-use nature necessitates careful consideration and safeguards in its application.

Bias selection subjectivity: The process of identifying which biases to mitigate involves subjective
decisions. There’s a risk that the choices made in this process could inadvertently introduce new
biases or reflect the values and perspectives of a limited group.

Transparency and explainability: The complexity of CNRPO may make it challenging to fully un-
derstand and explain the changes made to a model’s outputs, potentially raising concerns about
transparency in AI systems.

Data privacy: The use of auxiliary datasets for bias learning may raise privacy concerns, especially
if these datasets contain sensitive or personal information.

Unintended consequences: Removing certain biases might have unforeseen effects on the model’s
performance in other areas, potentially creating new ethical challenges.

Overreliance on technological solutions: While CNRPO offers a powerful tool for bias mitigation, it
should not be seen as a substitute for diverse and representative training data or for human oversight
in model development and deployment.

To address these concerns, we recommend: (1) implementing strict access controls and usage guide-
lines for CNRPO; (2) involving diverse stakeholders in decisions about which biases to target; (3)
conducting thorough impact assessments before deploying CNRPO-optimized models; and (4) main-
taining human oversight in the model development process. Continued research into the ethical
implications of bias mitigation techniques remains crucial as these technologies evolve.

L LIMITATIONS

While CNRPO demonstrates promising results in bias mitigation, several limitations should be ac-
knowledged:

Our experiments were conducted on moderately sized models, and the effectiveness of CNRPO on
very large language models remains to be thoroughly tested. Computational constraints and potential
changes in bias dynamics at larger scales may pose challenges.

CNRPO’s effectiveness is contingent on identifying and characterizing biases. When bias types are
unknown or not well-understood, the method’s applicability may be limited. Also investigating our
method’s performance on social biases would be very interesting. However, due to a lack of proper
datasets, we have not been able to run extensive experiments for such biases. By providing our tool,
we hope to enable fellow researchers who have access to appropriate datasets to investigate this
aspect and share their findings with the community.

Additionally, our approach relies on the existence of auxiliary datasets for bias learning. In many
real-world scenarios, such datasets may not be readily available or may be costly to create, poten-
tially limiting the method’s applicability.
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Addressing these limitations presents opportunities for future research, including developing meth-
ods for bias discovery, creating more robust evaluation metrics, and extending CNRPO to work ef-
fectively with limited or noisy auxiliary data.

M IN DEPTH ANALYSIS: IMPACT OF ALIGNMENT ON LENGTH OF
RESPONSES

The issue of generating excessively long responses in Direct Preference Optimization (DPO) stems
from an implicit bias in the training data. This bias arises because preference datasets often contain
a correlation between response length and reward signals, leading to the model associating longer
responses with higher preference scores (Park et al., 2024a). Several works have attempted to miti-
gate this problem by refining the preference optimization process. For instance, Yuan et al. (2024)
proposed LIFT-DPO, which introduces a prompt-based strategy to balance length distribution in
training. However, recent studies suggest that the underlying optimization mechanism of DPO it-
self contributes to this bias. To address this, Park et al. (2024a) introduced a regularization term
to penalize length discrepancies in preference pairs, while Meng et al. (2024) proposed SimPO, a
method that removes dependence on a reference model by normalizing likelihood over sequence
length. Similarly, Lu et al. (2024) tackled this issue by applying a down-sampling technique on KL
divergence, aiming to reduce the model’s reliance on response length during optimization. Despite
these efforts, existing solutions either struggle to effectively control response length or inadvertently
degrade model performance. Overall, the length bias in alignment through DPO, which results in
the generation of excessively long responses, is a well-recognized limitation. Our proposed method
provides an alternative solution to mitigate this issue.

An illustrative example showcasing the responses of the SFT model, the model fine-tuned with DPO,
and CNRPO is provided below:

Prompt: I have a document that needs a summary. Can you help?

SFT Response

Sure, I’d be happy to help! Please provide the document or the relevant sections, and I’ll do
my best to summarize it for you.

CNRPO Response

Of course! I’d be happy to help you summarize your document. Please provide the docu-
ment, and any specific details or information you’d like me to highlight in the summary.

DPO Response

I understand that you want me to summarize the situation in poor countries regarding hu-
manitarian crises. However, I must point out that the term ’Humanitarian Crisis’ is often
associated with natural disasters, famines, or epidemics. In this case, it seems more ap-
propriate to use the term ’Socio-economic crisis’ or ’Political instability’ to describe the
situation in poor countries. Can you provide more context or specific information about the
document? This will help me create a more accurate summary. Additionally, please note
that I cannot create a summary based on a document I haven’t seen. If you can provide the
document, I’ll be happy to assist you further.
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N GPT-4O PROMPTS FOR COMPUTING WIN RATES

A key part of our evaluation setup involves using GPT-4o to compute win rates for different model
outputs. For each comparison, GPT-4O was tasked with judging responses based on predefined
evaluation criteria. Below, we present the prompt used for this process.

Your task is to compare two model outputs based on their alignment with a
given query. Evaluate which output better fulfills the task

requirements and provide a clear, consistent explanation for your
decision.

Criteria for Evaluation:
1. Correctness: Does the response accurately address the query? (Give a

score from 0 to 4)
2. Clarity: Is the response easy to understand and free of unnecessary

complexity? (Give a score from 0 to 4)
3. Relevance: Does the response stay focused on the task without

introducing irrelevant information? (Give a score from 0 to 4)
4. Adherence to Query: Does the response follow the specific guidelines

and constraints provided in the query? (Give a score from 0 to 4)
5. Conciseness: Does the response provide the necessary information

without unnecessary elaboration or verbosity? (Give a score from 0 to
4)

Scoring Method:
- For each criterion, assign a score between 0 and 4 based on the model’s

response.
- The total score for each response will be the sum of scores from all

five criteria.
- The response with the higher total score should be considered the

winner.

Chain of Thought Reasoning:
- Step 1: Understand the Query: Begin by thoroughly analyzing the query

to identify the key objectives and any specific constraints.
- Step 2: Score Each Response: Evaluate each model’s response against the

five criteria individually. Assign a score of 0 or 1 for each
criterion, based on how well the response meets the criterion.

- Step 3: Compare the Scores: Compare the total scores for both responses
. The response with the higher score should be selected as the winner
.

- Step 4: Synthesize a Conclusion: Based on the total scores, determine
which response better satisfies the query as a whole.

- Step 5: Justify Your Choice: Provide a clear and concise explanation of
why the chosen response is superior, focusing on the criteria where

it performed better.

Output Format:
- Reasoning: Provide a detailed explanation, including the scores

assigned to each criterion. Use specific examples from the responses
to support your reasoning.

- Winner: Clearly state which response is better (e.g., ’Winner: Response
A’). The winner should be the response with the higher total score.

- response_scores_A: Provide the scores for Response A in the format: [
Correctness score, Clarity score, Relevance score, Adherence to Query
score, Conciseness score].

- response_scores_B: Provide the scores for Response B in the format: [
Correctness score, Clarity score, Relevance score, Adherence to Query
score, Conciseness score].

Both sets of scores should be returned in list format as follows:
- response_scores_A: [x, x, x, x, x]
- response_scores_B: [x, x, x, x, x]
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Input:
Query: {query}

Response A: {sft_answer}

Response B: {model_answer}

Output:
Reasoning: [Provide detailed reasoning, including the scores for each

criterion and why this model’s response is superior.]

Winner: [State the winning model here. The output should be either
Response A or Response B.]

response_scores_A: [Correctness score, Clarity score, Relevance score,
Adherence to Query score, Conciseness score]

response_scores_B: [Correctness score, Clarity score, Relevance score,
Adherence to Query score, Conciseness score]
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