
ADAPARSE: AN ADAPTIVE PARALLEL PDF PARSING
AND RESOURCE SCALING ENGINE

Carlo Siebenschuh 1 2 Kyle Hippe 1 2 Ozan Gokdemir 1 2 Alexander Brace 1 2 Arham Khan 1 Khalid Hossain 2

Yadu Babuji 2 Nicholas Chia 2 Venkatram Vishwanath 2 Rick Stevens 1 2 Arvind Ramanathan 1 2 Ian Foster 1 2

Robert Underwood 2

ABSTRACT
Language models for scientific tasks are trained on text from scientific publications—most distributed as PDFs
that require parsing. PDF parsing approaches range from inexpensive heuristics (for simple documents) to
computationally intensive ML-driven systems (for complex or degraded ones). The choice of the “best” parser for
a particular document depends on 1) its computational cost and 2) the accuracy of its output. To address these
issues, we introduce an Adaptive Parallel PDF Parsing and Resource Scaling Engine (AdaParse), a data-driven
strategy for assigning an appropriate parser to each document. We enlist scientists to select preferred parser
outputs and incorporate this information through direct preference optimization (DPO) into AdaParse, thereby
aligning its selection process with human judgment. AdaParse then incorporates hardware requirements and
(aligned) predicted accuracy of each parser to orchestrate computational resources efficiently for large-scale parsing
campaigns. We demonstrate that AdaParse, when compared to state-of-the-art parsers, improves throughput by
17× while still achieving comparable accuracy (actually, 0.2% better) on a benchmark set of 1000 scientific
documents. AdaParse’s combination of high accuracy and parallel scalability makes it feasible to parse large-scale
scientific document corpora to support the development of high-quality, trillion-token-scale text datasets.
The implementation is available at https://github.com/7shoe/AdaParse/.

1 INTRODUCTION

The great wealth of information stored in the scientific liter-
ature and the successes of large language models (LLMs)
motivate efforts to train science-specialized LLMs on sci-
entific documents (Beltagy et al., 2019; Taylor et al., 2022).
However such efforts require immense amounts of text for
training (Chowdhery et al., 2022; Li et al., 2024), and much
of it is represented in Portable Document Format (PDF).
Exploiting this text requires correctly parsing information
from PDFs, which is challenging due to their print-focused
layout-based structure that is not designed for machine read-
ability (Coulon et al., 2023). For complex PDFs, lightweight
parsers often extract text swiftly but incorrectly, introducing
artifacts that degrade the performance of LLMs trained on
it. Mitigating adverse effects requires substantially more
training data to achieve the same final LLM performance,
further exacerbating the challenge (Sorscher et al., 2023).

1Department of Computer Science, University of Chicago,
Chicago, Illinois, USA 2Argonne National Laboratory, Lemont,
Illinois, USA. Correspondence to: Carlo Siebenschuh <sieben-
schuh@uchicago.edu>.

Proceedings of the 8 th MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).

As we will show, state-of-the-art high-quality parsing soft-
ware is extremely computationally demanding, being able to
parse only 1–2 PDF/s on a node with 4 A100 GPUs, making
them impractical for datasets of hundreds of millions of sci-
entific papers (Figure 3). Unsurprisingly, existing datasets
of scientific tokens suitable for LLM training are modest
in size (e.g., the popular Dolma dataset contains only 70B
tokens from scientific sources (Soldaini et al., 2024)) and
often suffer from poor parse quality (Bast & Korzen, 2017).
Thus accurate and efficient PDF parsing is a central problem
for those seeking to build high-quality AI-based scientific
assistants and similar tools.

However, not all is lost. As we will show, many “simpler”
documents can be parsed with lightweight tools orders of
magnitude faster with similar (or even improved) output
quality as compared to their compute-intensive counterparts.
We leverage this fact to develop an adaptive parsing strategy
that invokes lightweight parsers on simpler documents while
reserving high-quality parsers for those deemed complex—
thus deploying the most promising parser for each particular
PDF in a way that balances competing demands for accuracy
and throughput. We show that this approach can greatly
improve overall goodput as measured by accepted textual
tokens generated per resource unit.

https://github.com/7shoe/AdaParse/


To realize these benefits, this work makes the following
contributions:

• A comprehensive benchmark to assess parser perfor-
mance characteristics, conducted on 25,000 PDFs from
across disciplines and publishers, including an assess-
ment of how human perception and parser output qual-
ity align with commonly used metrics.

• A predictive algorithm that, for any PDF, selects the
parser most likely to yield accurate output, adapting to
document attributes and user preferences.

• The integrated design of batching, prefetching, parallel
execution, and scheduling to realize adaptive parsing
of PDFs for high throughput and quality on leadership-
class HPC systems.

The remainder of the paper is organized as follows: In Sec-
tion 2, we describe parsing challenges and failure modes,
how quality is compared between parsers, and why PDF
parsing presents a non-trivial parallel and distributed sys-
tems problem. Next, in Section 3, we describe the various
classes of parsers and how they can be used in parallel work-
flows to parse PDFs en masse. After that, we formulate our
task of producing high-quality text output as an optimization
problem in Section 4. We then provide an overview of our
system in Section 5 and present the key optimizations that
we employ to achieve both high throughput and high-quality
text. We discuss our experimental methodology in Section 6.
Finally, we present our evaluation in Section 7, followed by
conclusions and future work in Section 8.

2 BACKGROUND

2.1 Challenges in PDF Parsing

Document parsers can fail to produce accurate text output
in a variety of ways. As illustrated in Figure 1, failures can
include introducing whitespace, substituting words, scram-
bling characters or words, corrupting identifiers or refer-
ences, or even dropping entire pages. Notably, such errors
are not confined to lightweight parsers; even sophisticated
parsing software can encounter them. In fact, we have
found that the most severe failure mode—dropping an entire
page—occurs with the parser that otherwise delivers the
most accurate results.

These failures are driven by the fact that the PDF is layout-
driven: it is designed to provide versatility in achieving
a desired visual appearance. This versatility means that
parsing even a single PDF document can be challenging.
Born-digital PDFs can contain diverse elements such as fig-
ures, tables, and rich media like videos (Corrêa & Zander,
2017). They may even hold hidden information or malware
(Kuribayashi & Wong, 2021; Singh et al., 2020). Scanned

documents, on the other hand, suffer from significant qual-
ity degradation, complicating content extraction (Mujumdar
et al., 2019). This diversity virtually rules out the develop-
ment of a universal parsing strategy, as a one-size-fits-all
parser would either be too simplistic to handle complex
cases or inefficient in parsing simpler ones. This situation
necessitates the use of an adaptive parsing strategy able to
address each PDF individually. Yet naïvely applying each
available parser to a given document and selecting the out-
put that appears the most accurate is infeasible. Thus, parser
selection must be based on easily available data and form a
prediction on it (Ravi et al., 2008).

2.2 Evaluation of Parsing Accuracy

A key obstacle to evaluating PDF parsers is the lack of a
quality metric for measuring their output against groundtruth
text. In the absence of a universal accuracy measure that
comprehensively captures the similarity between long-form
texts—accounting for syntax, spelling errors, and scientific
content—several proxy metrics are used.

Traditional metrics assess the similarity between parser out-
put and groundtruth text on a character level. For example,
the Levenshtein distance reports the minimum number of
character edits required to transform one text into the other
(Levenshtein, 1966). Although straightforward to compute,
it may poorly align with human perception of quality (Ner-
bonne et al., 1999). Moreover, these routines can prove
computationally prohibitive for ultra-long text sequences
as encountered in parsed PDF text. Moreover, scientific
(in-)accuracy goes beyond character errors that may prove
subtle but deadly. For example, while the edit distance be-
tween “hyperthyroidism” and “hypothyroidism” is just two,
implying a normalized similarity of 86.7%, the treatments
for these conditions are opposites. Similarly, changes in
character capitalization can turn the measure of acidity (pH)
into the phenyl group (Ph).

Modern metrics such as BLEU (Bilingual Evaluation Under-
study) (Papineni et al., 2002) and ROUGE (Recall-Oriented
Understudy for Gisting Evaluation) (Lin, 2004) set out to
measure string similarity in a manner more aligned with
human perception. These metrics are based on the number
of matching n-grams and capture meaning across multiple
words. Regardless, they may still fail to capture scientific
meaning even when evaluating a single sentence. For in-
stance, consider the following groundtruth text:

“The gravitational force between two masses is di-
rectly proportional to the product of their masses
and inversely proportional to the square of the
distance between them.”

and the candidate text:



“The gravitational force inversely masses the pro-
portional distance between two products and is
directly proportional to the square of objects.”

When evaluating under BLEU and ROUGE, we observe
0.32 and 0.82 respectively—indicating reasonable and high
accuracy to the groundtruth text, despite the incoherent and
factually erroneous candidate text.

Furthermore, these metrics are designed to assess the
sentence-length quality of neural translations rather than
the multi-page parser output of scientific documents (Gra-
ham, 2015). The accumulation of seemingly small mistakes
can result in text that appears to be of high quality but signif-
icantly distorts the intended insights. Finally, current parsers
require hyperparameters that are only tacitly assumed fixed
and can hardly be considered canonical (Post, 2018). While
indicative of perceived text quality, these metrics are insuffi-
cient to thoroughly compare PDF parser output against the
groundtruth text.

Figure 1. Failure modes of PDF parsers, (a) whitespace injection,
(b) word substitution, (c) character scrambling, (d) character sub-
stitution, (e) corrupted SMILES, (f) LaTeX to plaintext conversion,
(g) document page dropped.

2.3 Datasets and Benchmarks

Several datasets have been created to assess or improve
PDF parsing technology (Jimeno Yepes et al., 2021). Early
datasets focused on specific applications such as license
plate or business card recognition (Bulan et al., 2017; Saiga
et al., 1993). Recent datasets, on the other hand, cater to spe-
cific document types, including handwritten notes, scanned
documents, and layout-rich publications (Jaume et al., 2019;
Paudel et al., 2024; Shaffi & Hajamohideen, 2021; Zhu
et al., 2022). A recent survey indicates that scientific docu-
ments are exceptionally challenging for parsers (Adhikari &
Agarwal, 2024).

S2ORC (Lo et al., 2019) is particularly relevant to scientific
information parsing as it contains over 8 million full-text
academic papers from diverse publishers. It is not suitable

for this work, however, as groundtruth text was synthesized
by a PDF parser (GROBID), and the resulting text/PDF pairs
served as the training data of another (Nougat) (Blecher
et al., 2023). Maintaining the integrity of our benchmark
requires the use of text and PDF pairs that have not been
incorporated into the training of neural networks deployed
by PDF parsers. However, recent research continues to pri-
oritize dataset size over the quality of annotations or access
to closed-source content. As AI-driven parsing systems
evolve, it becomes increasingly important that their evalua-
tion undergoes equally rigorous, AI-level scrutiny to ensure
reliability and accuracy (Paudel et al., 2024).

2.4 Parallel Systems

For a given parser, runtime depends on the content of a
PDF, which can include vector graphics, raster images, or
even multimedia elements. Runtimes vary even more widely
across parsing strategies, with some parsers employing large
machine learning (ML) models to process documents line
by line. Since it is a priori unknown what parser is best to
handle a given PDF, the overall time to parse text is subject
to a great deal of uncertainty.

Writing software to parse a single PDF is tedious, but scaling
that software to 100 million PDFs is a considerable chal-
lenge for parallel and distributed systems. Parsing involves
I/O-intensive workloads, where large batches of PDFs are
read into memory and substantial text data is written to dis-
tributed storage. Heterogeneous PDFs lead to varying batch
sizes and uneven processing times, complicating load bal-
ancing across distributed nodes. A resilient infrastructure is
necessary to handle corrupted PDFs that may be present in
datasets, and potential security risks can arise if PDFs con-
tain malicious software. Additionally, indexing the parsed
text is challenging, as the lack of consistency across docu-
ments complicates maintaining accurate metadata.

3 RELATED WORK

3.1 Parsers

We can distinguish two classes of PDF parsing methods:
text extraction and text recognition. Text recognition, in
turn, includes both traditional optical character recognition
(OCR) techniques and newer approaches that leverage mod-
ern ML models, such as Vision Transformers (ViT).

3.1.1 Extraction

Text extraction tools retrieve content directly from the tex-
tual layer embedded within a PDF. MuPDF, for example, is
a high-performance extraction and rendering tool (Artifex
Software). Its Python binding PyMuPDF supports various
input and output file types, such as LlamaIndex, a format
tailored to LLM data curation. Another popular extraction



tool, pypdf (Fenniak et al., 2024), is a pure Python library.

Extraction tools are generally fast and language-agnostic,
indiscriminately retrieving the entirety of text embedded
within a document. However, they falter when text is ei-
ther not embedded explicitly or is of poor quality. Text
scrambling is sometimes employed by authors to obstruct
extraction. Even if the text is embedded with good inten-
tions, it may still be of low quality if initially inferred and
attached by subpar text recognition software.

3.1.2 Optical Character Recognition (OCR)

Text recognition addresses these challenges by converting
images of text into machine-readable formats. Optical char-
acter recognition employs computer vision techniques to
transcribe characters line-by-line. OCR is commonly ap-
plied to scanned documents to create an explicit text layer.
Numerous libraries support transformation of documents
into searchable, structured text (Neudecker et al., 2021).

Tesseract is an open-source OCR engine that has been re-
fined over four decades, predating the PDF itself (Smith,
2007). Now in its fifth version, it employs long short-term
memory networks (LSTMs) to infer text sequences from
image input. However, its ability to adapt these models to
specific document corpora has been limited as training func-
tionality is no longer supported. GROBID (GeneRation Of
BIbliographic Data) is another tool that combines machine
learning with text extraction to generate highly structured
outputs (GRO, 2008–2025). GROBID natively provides
some parallel parsing capabilities via multi-threading. It is
particularly well-suited for scientific document parsing, of-
fering features such as references, affiliations, and metadata
extraction. GROBID is flexible, utilizing entity-specific ML
models for bibliographic data extraction and large language
models (LLMs) for text completion. It represents a growing
trend toward blending classical OCR with modern ML tools
(Lopez, 2009).

OCR is generally robust in parsing text from documents
as it does not rely on an embedded text layer. However,
OCR is computationally intensive, often operating orders
of magnitude slower than text extraction tools. Throughput
can be further reduced by the need for post-processing to
properly format the extracted text (Nguyen et al., 2021).
Finally, OCR models often require training or calibration
for optimal performance. Unsurprisingly, modern OCR
implementations frequently rely on GPUs for improved
efficiency (Du et al., 2020).

3.1.3 Vision Transformers (ViTs)

Recent innovations have led to the development of
Transformer-based neural architectures for OCR (Li et al.,
2023). Such Vision Transformers (ViTs) learn to decode

text from page images in an end-to-end manner. The Doc-
ument Understanding Transformer (Donut) pioneered this
approach for document text recognition, initially focusing
on receipts (Kim et al., 2022). Nougat and µgat extended
these capabilities to the parsing of scientific PDFs (Quattrini
et al., 2024). Marker further refines this approach through
explicit layout detection that precedes parsing of individual
document elements through texify (Lab, 2024).

Vision Transformers have shown significant promise in pars-
ing scientific documents. They excel at navigating layout-
dense PDF pages and are specifically trained to decode La-
TeX equations. However, ViTs are highly compute-intensive
at inference time, with their runtime scaling quadratically
in the number of image patches. Even with vast datasets
of PDF and groundtruth text pairs, along with the computa-
tional power required for training, their ability to generalize
to unseen document types remains uncertain—particularly
in the absence of properly held-out benchmark data.

3.2 Adaptive Parsing

A substantial body of research focuses on training and ap-
plying neural networks to tasks involving the prediction of
various accuracy metrics. The use of data-driven models
to predict a document parser’s performance, or to select an
appropriate parser through classification, is not an entirely
novel concept. For instance, methods have been developed
to estimate parser accuracy based on document metadata
(Ravi et al., 2008). Other approaches have explored selective
content parsing (Zuidema, 2007) or training parser ensem-
bles via bootstrapping (Steedman et al., 2003). However,
much of this earlier work centered on short text inputs (e.g.,
sentences), predating the rise of large language models and
advances in the classification and regression of long-form
text, which can now be leveraged to more effectively predict
optimal parser candidates.

3.3 Scientific Corpora

Despite the wide range of datasets for training LLMs, there
are just two major sources of scientific articles—PILE (Gao
et al., 2020) (which contains, for example, ArXiV in LATEX
form) and S2ORC (Lo et al., 2019)—that are used in the
training of open LLMs. However, these two sources can
be vastly under-inclusive of scientific documents. From
obtaining access to collections such as the ACM Digital
Library and comparing them to these sources, we have mea-
sured that as many as 80% of scientific documents from
publishers like ACM are not contained in PILE and S2ORC,
presenting a gap that would be addressed through adaptive
and high-quality PDF parsing.

The PILE dataset includes a subset called PhilPapers, which
consists of academic PDFs parsed using Apache PDFBox
(Gao et al., 2020). Regardless, the amount of scientific



content is relatively small and almost exclusively sourced
from LATEX sources of ArXiV rather than PDFs. While
parsing from LaTeX can be more reliable than parsing from
PDFs, LaTeX sources are not accessible for most papers.

Semantic Scholar’s S2ORC constitutes the other extensive,
open-source dataset of scientific documents (Lo et al., 2019).
Many other collections that incorporate scientific papers
rely on S2ORC for their scientific collections, including the
Dolma (Soldaini et al., 2024) and the RedPajama family of
datasets (Elazar et al., 2023).

Since data curation is crucial for training ever-larger lan-
guage models, it is likely that leading companies such as
OpenAI, Meta, Google, and Mistral have developed propri-
etary parsing tools to handle this task. Microsoft’s Donut
and Meta’s Nougat demonstrate their capability to do so.
Nevertheless, specific tools, document collections, and com-
putational scales remain undisclosed.

4 PROBLEM STATEMENT

An ideal parsing strategy will maximize the accuracy of text
output while minimizing the computational cost of obtain-
ing it. We formalize this notion to design AdaParse that
optimally balances accuracy and runtime considerations.

4.1 Accuracy

Consider di to be a PDF document that is identified by an
index i ∈ [n] and spans pages of text, tables, and figures. De-
note the associated (groundtruth) text by ψi = ψ(di) ∈ Σ⋆,
a sequence of characters over an alphabet Σ (e.g., Uni-
code). While the alphabet is usually known, the document’s
groundtruth text is not directly observable and must be ap-
proximated by a parser.

There is a set of parsers {ϕ1, . . . , ϕm} available to retrieve
text from a document collection {d1, ..., dn}. Invoking a
parser ϕj on a PDF document di provides an approximation
of its groundtruth text ϕj(di) ≈ ψi. The quality of the
approximation can be assessed by an accuracy metric A that
may be defined by

A (ϕj , di) = a (∥ϕj(di)− ψi∥Σ⋆)

through some norm over the alphabet ∥·∥Σ⋆ and a mono-
tonically decreasing function a mapping the distance of
the strings to a quality score. The accuracy measure is ab-
stract not because of mathematical convenience but due to
the nature of document parsing: It is unclear what type of
dissimilarity best captures scientifically sound and faithful
parser text output.

The computational resources (e.g., runtime) required to
parse a document are given by Tk (ϕ, d). The resource
usage for k ∈ {CPUmem,CPUtime,GPUmem,GPUtime} de-

pends on the document, parser, and system used.

We formalize the trade-off between accuracy and efficiency
by assigning any of them parsers to each of the n documents
individually, i.e., ji ∈ [m], and optimize the following
conflicting objectives. For any assignment of parsers to the
dataset of documents j = (j1, . . . , jn) ∈ [m]n we want to
maximize overall accuracy

max
j

{
n∑

i=1

A (ϕji , di)

}

while simultaneously minimizing total computational cost

min
j

{
n∑

i=1

Tk (ϕji , di)

}
.

Imposing a constraint on one objective while optimizing the
other strikes a balance. Since accuracy is not observable,
we aim to maximize its conditional expectation by selecting
the appropriate parser ϕji . The expectation is conditioned
on the document di’s first page’s text ϕ11(di) parsed by the
default parser ϕ1. The resulting constrained optimization
problem

max
j

{
n∑

i=1

E
[
A (ϕji , ψi) |ϕ11(di)

]}

s.t.

n∑
i=1

T (ϕji , di) ≤ T

conveys a crucial property. We can partition the dataset into
subsets of {n1, ..., nL} documents such that

∑L
i=1 ni = n

and process them across L nodes. If each node l ∈ [L]
adheres to a computational budget of nl

n T , the overall re-
quired resources will not exceed T . Therefore, adaptive
document parsing with heterogeneous parsing algorithms
can be realized through embarrassingly parallel workloads.
A tuning parameter α ∈ [0, 1] controls the trade-off between
(expected) accuracy and runtime in AdaParse.

4.2 Direct Preference Optimization

While parsing accuracy and its trade-off with efficiency ap-
pear vague, scientists usually have a strong preference when
they are faced with different parser outputs of the same docu-
ment ϕ1(di) and ϕ2(di), irrespective of whether groundtruth
text ψi is available. Therefore, instead of fixing an accu-
racy measure to A = ROUGE, for example, we attempt to
(implicitly) learn one through user preferences. This is not
far-fetched, as accuracy measures like BLEU or ROUGE are
designed to be strongly correlated with human preferences
(Reiter, 2018). Since a (predicted) accuracy measure only
serves as a means to assign a parser to a document, we allow



the predictive model to learn this assignment directly from
user input through direct preference optimization (DPO).

Connecting user preference with predicted accuracy has
a practical rationale. Malformed text in the parser output
ϕj(di) is indicative of overall parser quality. Moreover,
there are specific patterns that strongly inform accuracy es-
timates and human perception of quality alike; see Figure 1.
Training a model to infer accuracy from the presence of
such malformed text patterns offers a foothold to learn to
select a parser adaptively.

In principle, a model capable of assigning a scalar to text,
i.e., πθ : Σ⋆ → [0, 1], is a potential candidate for inferring
(normalized) accuracy. Rule-based approaches or classical
ML models offer interpretable and tractable solutions. Ex-
pressive models such as LLMs, on the other hand, that were
pre-trained on broad textual data, can be fine-tuned in text
sequence regression to make a prediction on text accuracy
based on subtle features.

Given a sufficient dataset, a model πθ can be fine-tuned to
predict the BLEU accuracy. This is the crucial ingredient to
allow a parsing strategy to predict a good parser-document
matching. Moreover, recent strategies for aligning LLMs
with human preferences can allow such a model to infer an
accuracy measure (implicit in the model).

5 DESIGN

5.1 Overview: Why Adaptive Parsing

The empirical results indicate that the versatility of the lay-
out and textual content of PDF documents prevents assign-
ing a likely parser through deterministic rules alone. For
example, the scientific category to which a document be-
longs (as indicated by associated keywords) is only a weak
indicator of its actual content and the difficulty of pars-
ing it. For instance, a research paper on machine learning
may boast hundreds of LaTeX expressions, more akin to a
mathematics paper. Similarly, document metadata such as
the publication year can fail to represent the quality of the
embedded text, as that text may have been attached with
state-of-the-art OCR software long after the document’s pub-
lication. Regardless, obtaining any of these features requires
parsing the document. In turn, choosing the optimal parser
for a document appears to require parsing it beforehand.

We cut this Gordian knot by leveraging text extraction to
inform if and what subsequent text recognition algorithm
(OCR or ViT) should be run. In particular, PyMuPDF offers
exceedingly fast text extraction, with a throughput 135×
higher than Nougat and 13× greater than that of pypdf.
Thus prefacing parser selection with it is computationally
cheap. Furthermore, the lower accuracy of PyMuPDF works
partially in our favor: Malformed substrings (e.g., of La-

TeX equations, whitespace, or scrambled characters) that
are typical of text extraction output are informative for the
predictive parser selection algorithm.

CLS II: Improvement
(metadata-driven; regression-based)

CLS I: Validation
(text feature-driven; rule-based)

CLS III: Parser selection
(text-driven; LLM-based)

Text extraction
(PyMuPDF)

invalid valid

likelyunlikely

High-
quality
parser
(Nougat) Moderate-cost

parsers

Text insertion
JSONLs

PDFs

Figure 2. System architecture diagram for a range of predictive
models: After an initial text extraction step (PyMuPDF), PDFs
are routed through a hierarchical classification pipeline. CLS I
predicts the binary quality attribute of the extracted text through
coarse but fast-to-compute features (e.g., text length). For valid
texts, CLS II assesses if an improvement is likely for any other
parser. If affirmative, CLS III selects the parser most likely to
improve output text quality.

Parser selection can be performed as a hierarchical classifica-
tion scheme based on the PyMuPDF-extracted text. The first
classification stage CSL I employs aggregate statistics com-
puted from the extracted text (e.g., number of characters)
to infer validity. While simplistic, the features are highly
interpretable and permit rapid inference. If the PyMuPDF
text is deemed invalid, the PDF is sent to the high-quality
Nougat parser. If, however, the text is deemed valid, a sec-
ond classification stage CSL II is applied to determine if
parsing with another parser (including Nougat) may nev-
ertheless bring a significant improvement in parse quality.
This binary label is inferred from metadata (e.g., authoring
tool, year of publication, number of pages). If a significant
improvement is deemed unlikely, the PyMuPDF-extracted
text is accepted as the document parse and is subsequently
written to storage. On the other hand, if improvement is
predicted as likely, the third classification stage CSL III is
applied to select the parser. Since this decision is based on
subtle patterns in the extracted text, a fine-tuned LLM is
invoked for this multi-class downstream task.

We introduce two implementations. The first variant, Ada-
Parse (FT), implements the classification stages CLS I and
CLS II within a single routine. If an improvement appears



Figure 3. Parser performance (BLEU) for n = 23,398 PDFs. They
are sorted by parsing difficulty which is estimated for each docu-
ment by the average BLEU score across parsers. The higher the
rank, the greater the estimated parsing difficulty. Throughputs for
a single node using each parser are presented in the legend.

likely, it directly triggers Nougat rather than weighing its
options with other moderate-cost parsers. Therefore, it does
not invoke an LLM and skips stage CLS III. It employs pre-
defined fastText (FT) word embeddings (Xu & Du, 2019).

The second variant, AdaParse (LLM), implements the first
classification stage, CLS I, to determine if the extracted
text is worthy of being included in a batch and run through
LLM inference. Once a batch of text items is assembled,
this variant proceeds directly to the stage CLS III, which
performs an LLM inference call to predict the most suitable
parser for each text item. We employ SciBERT (Beltagy
et al., 2019) for this task due to its high inference speed.
Consequently, the single-node throughput is still 17× higher
than that achieved by solely relying on a state-of-the-art
ViT-based parser (Nougat). We find that this use of LLM
inference results in slightly lower throughput than the first
variant—although still matching the performance of a text
extraction tool such as pypdf—but offers higher accuracy
and allows for better alignment with human preferences
through DPO. The LLM-inferred labels determine if the
extracted text is accepted as is or if the document (still in
memory) is routed to a high-quality parser such as Nougat.

In essence, AdaParse is a meta-strategy that adaptively en-
sembles multiple parsers into a single, higher-accuracy sys-
tem—loosely inspired by AdaBoost (Freund et al., 1996).
We employ Parsl (Babuji et al., 2019), a pure-Python parallel
scripting library, to orchestrate AdaParse’s data processing
and model inference on the Polaris supercomputer.

Figure 4. Utilization of the workload per GPU, as measured with
the NVIDIA Nsight Systems profiler (Nsys).

5.2 Optimizing Parallel Execution on HPC Systems

Nougat serves as the high-quality parser in AdaParse. In
the following, we restrict its usage to (at most) α = 5%
of the documents per node. Regardless, invoking Nougat
requires loading a Swin-architecture-based Vision Trans-
former—which can take up to 15 seconds on an A100.
Thus, we modify Parsl to allow Nougat to persist on each
GPU beyond the task boundary. Since PyMuPDF, the best
lightweight parser, runs exclusively on CPUs, there is effec-
tively no competition with Nougat for GPUs, allowing for
efficient resource sharing.

Nougat operates on a fixed image input size of (H,W) =
(896, 672), but allows control over how many pages are pro-
cessed simultaneously. We find that a batch size of Bp=10
pages maximizes throughput without exceeding GPU mem-
ory capacity. Although Nougat’s Base model is relatively
small (350M parameters), its memory footprint grows sub-
stantially when document pages are converted into image
patches for the self-attention mechanism. By parsing pages
individually at a fixed resolution—rather than entire doc-
uments—Nougat normalizes task size, resulting in more
consistent execution times.

The performance analysis of the GPU-accelerated parsing
methods was conducted using the NVIDIA Nsight Systems
profiler (Nsys), and the results are presented in Figure 4.

6 EXPERIMENTAL METHODOLOGY

6.1 Hardware and Software Environment

All experiments were conducted on the Polaris system at the
Argonne Leadership Computing Facility (ALCF). Polaris
is an HPE Apollo Gen10+ system with 560 nodes intercon-
nected by an HPE Slingshot-11 network with a Dragonfly
topology. Each node consists of an AMD “Milan” processor
with 32 cores and 512 GB of system memory, four 40 GB



NVIDIA A100 GPUs, and two Slingshot-11 25 GB/s net-
work adapters. Each NVIDIA A100 GPU can achieve a peak
of 19.5 TFLOPS in FP32 and 312 TFLOPS in FP16 and
BF16. Polaris is supported by a Lustre file system, Eagle,
residing on an HPE ClusterStor E1000 platform equipped
with 100 PB of usable capacity across 8480 disk drives.
This ClusterStor platform also provides 160 Object Stor-
age Targets (OST) and 40 Metadata Targets (MT) with an
aggregate data transfer rate of 650 GB/s. All experiment
data is striped across 48 OSTs for optimal read and write
bandwidth. As a current top 30 supercomputer, Polaris is
representative of leadership class HPC systems.

We employ the Parsl workflow engine to orchestrate our
PDF parsing effort efficiently. Parsl distributes tasks as
pure functions—deterministic operations that do not mod-
ify shared program state—which poses challenges when
the same ML model weights are needed across hundreds
of workers pinned to GPUs. To mitigate this problem, we
implement a warm-start mechanism for parsers requiring
machine learning models. By loading the model weights
once and persisting them across worker processes, we sig-
nificantly reduce I/O overhead and initialization time for
subsequent tasks. Furthermore, to decrease global I/O usage,
we aggregate and chunk input files into a set of compressed
ZIP archives and transfer them to node-local RAM storage.
This strategy minimizes the frequent reading and writing of
numerous small files to networked file systems, instead fa-
voring larger, more efficient I/O operations suited to Lustre
file systems. By processing data locally on each node, we
enhance throughput and reduce the load on shared storage
resources. Parsl dispatches tasks adaptively based on worker
availability, ensuring efficient use of compute resources by
dynamically balancing task distribution across nodes.

6.2 Document Selection and Preparation

We employ a diverse set of documents and formats, from
both preprint servers and peer-reviewed publishers, for eval-
uating the parsers to ensure they can capture the diversity
of scientific text. Diverse sources are important because dif-
ferent venues use different templates and represent different
levels of polish in scientific works. The dataset includes
documents sourced from ArXiv, BioRxiv, BMC, MDPI,
MedRxiv, and Nature. The resulting collection spans eight
domains (mathematics, biology, chemistry, physics, engi-
neering, medicine, economics, and computer science) with
67 sub-categories ranging from acoustics to zoology. In-
cluding such a wide range of topics is critical to obtaining a
comprehensive representation of different domain-specific
features, such as extensive use of equations in mathematics
and differing notations, conventions, citation schemes, and
formatting used in various fields (Shah et al., 2021).

We focus on recent data that would not have been available

for ViT/OCR models to train on, in order to prevent data
leakage from their training set into our test set. This choice
presents a trade-off: it excludes older documents, which
may contain metadata of varying quality for extraction tools
like PyMuPDF.

To obtain groundtruth text for the benchmark, we parsed
the HTML representation of a paper’s full text allowing
us to obtain a sufficiently large number of documents for
evaluation. Since HTML is straightforward to parse, it
provides highly accurate groundtruth text.

Lastly, we perform page image and text layer manipula-
tions (e.g., random scaling, artificial image imperfections,
or modified metadata), as done in prior works (Groleau et al.,
2023; Zi, 2005). This approach ensures that we evaluate
the parsers as they would be applied “in the wild,” to obtain
results that are representative of real-world performance.

6.3 User Preferences

Aligning accuracy with human preferences requires sam-
pling those preferences. For this purpose, we launched a
platform that allows domain experts to share their prefer-
ences on texts sourced from seven different parsers. The
expert is presented with an image of a document page along
with two parsed text outputs, and is prompted to either
choose a preferred parse or indicate indifference if nei-
ther is preferred. The text formatting of the parser output
was slightly modified to prevent bias (e.g., by including
or removing hashtags that indicate markdown output from
Nougat or Marker). Moreover, the selection of page and
text pairs was non-adaptive to prevent user feedback bias
(Mansoury et al., 2020). To ease users into this task, the
website’s design emulates that of an OpenAI chatbot (Chi-
ang et al., 2024). Moreover, users began annotating single
paragraphs before moving on to entire document pages.

We engaged 23 scientists with expertise spanning mathe-
matics, biology, physics, chemistry, medicine, engineering,
and economics. We obtained 2794 preferences for 642 dif-
ferent document pages, which we partitioned into training,
validation, and test subsets with sizes 712, 234, and 1848,
respectively. The majority of the preferences were collected
for the test subset to a) ensure a sufficient sample size to
uphold the validity of the empirical results and b) present
identical options to different users to assess consensus.

7 EVALUATION

After outlining how data was sourced and models config-
ured, we present our results.



7.1 Alignment of Accuracy with User Preferences

We first need to assess if BLEU scores and similar metrics
are good proxies for human preferences. To do this we study
the outcomes of our user preference survey.

When aggregating over the entire dataset, users prefer
Nougat the most (with a frequency of 57.1%) followed by
Marker (49.1%) and PyMuPDF (48.6%). Throughput does
not necessarily translate to user preferences. PyMuPDF, for
example, offered a 2133× higher throughput while experi-
encing a BLEU score difference of 0.5%. However, users
are not indifferent to parsers, as indicated by the low win
frequency of 2.1% for pypdf. As these frequencies are de-
termined by a binary tournament of different pairings of the
seven parsers present in the study, percentages do not sum
to 100%. Therefore, we report normalized win rates instead.

Users are highly willing to make their preferences known,
doing so 91.3% of the time and while picking "neither"
only in the remaining 8.7%. Moreover, participants have
a high agreement in the choices they make. Among the
405 triplets of page document and two parser output texts
shown to multiple users, participants made the same choice
82.2% of the time. This high consensus rate—achieved de-
spite scientists’ diverse disciplinary backgrounds—suggests
a degree of objectivity in participants’ preferences, under-
scoring their usefulness for model refinement. Importantly,
these preferences are collected only once and used offline
to adapt the model’s weights via DPO during post-training,
so that no further human input is required when the model
is deployed for parsing.

A key result of this study is that the BLEU score, while in-
dicative of user preference, is hardly predictive. The BLEU
is highly correlated with the win rate (correlation ρ̂ = 0.47),
which is statistically significant as H0 : ρ = 0 is rejected
with p = 8.4–49. Yet the correlation is also far from 1, ex-
plaining only 47% of the variation in user choices. We view
this result as justification that the BLEU score is a robust
quality indicator of parser text output and a suitable tar-
get for LLM-finetuning, but also not completely predictive
requiring the consideration of other measures of quality.

7.2 AdaParse Quality Assessment

Since AdaParse manages diverse parsers during its execu-
tion, it is important to probe the mechanism for parser se-
lection and to gauge the improvement over using individual
parsers. Because no single quality measure is completely
predictive of user preferences, we consider a set of quality
measures. The empirical investigation includes document
coverage (as measured by the number of retrieved document
pages), BLEU, ROUGE, and character-accuracy rate (CAR).
It also includes two metrics we devised from the user pref-
erence study: win rate (WR) which measures how often a

parser was selected over the others for a given document
and accepted tokens (AT) that tracks the relative frequency
of tokens that exceed a critical BLEU threshold.

To evaluate AdaParse, we run it on a held-out test set of 1000
digitally born PDFs that were not used during the training.
We report three rounds of metrics: the first with no changes
to any layer of the PDFs, the second with augmentations
applied only to the image layer, and the third with alterations
applied only to the text layer.

We show in Table 1 the default quality on the test set. Marker
has the highest coverage rate, but does not have the highest
quality according to any other metric. Nougat has the high-
est win rate between parsers by a slim margin. AdaParse
even with the requirement to allocate no more than 5% of
the documents to its high-quality parser (Nougat), produces
the best BLEU and ROUGE scores, and the second-best
CAR. Additionally, AdaParse has the highest percentage
of accepted tokens based on the user preference data at
76.9%. AdaParse can achieve better performance than any
of its constituent parsers by delegating to the method that
is most suitable for an individual document. While a parser
like Nougat may perform best on average, it is not the best
parser for each document allowing AdaParse to exceed it if
it accurately infers a better parser-document matching.

The performance of AdaParse is based on the capability
in predicting the BLEU score of PyMuPDF and Nougat-
parsed text, with an R2 = 40.0% and R2 = 46.5%, respec-
tively. This is largely based on parameter-efficient finetun-
ing through low-rank adaptation (LoRA) (Hu et al., 2021)
and DPO on its weights in decoder mode. DPO post-training
has been shown to improve performance in related down-
stream prediction tasks using relatively little preference data,
even in high-performance computing (HPC) applications
(Dharuman et al., 2024).

Table 1. Accuracy on born-digital PDFs: Document- (coverage
rate), word- (BLEU, ROUGE), and character-level (CAR) accu-
racies. CAR = Character accuracy rate. WR = Win rate. AT =
Accepted tokens. All %.

Parser Coverage BLEU ROUGE CAR WR AT
Marker 96.7 47.5 64.2 59.6 26.6 73.3
Nougat 93.0 48.1 66.5 65.8 27.9 69.8

PyMuPDF 91.3 51.9 67.3 67.0 24.4 76.7
pypdf 92.0 43.6 58.7 32.3 2.4 72.4

GROBID 81.0 26.5 52.4 54.8 – 20.6
Tesseract 91.3 48.8 64.2 67.8 18.7 72.5
AdaParse 91.5 52.1 67.6 67.1 25.5 76.9

Additionally, we test parsing performance under simulated
image degradation to mimic low-quality scans. Low-quality
scans are common in older academic and book datasets.
We emulate this quality degradation with random rotations,



contrast adjustments, Gaussian blurring, and compression
that are applied to a subset of 15% of documents, similar to
the data augmentations used to train Nougat (Blecher et al.,
2023). Note that these changes will not affect text extraction
methods which is why we exclude them here. AdaParse
shows favorable performance as it relies mostly on text ex-
traction that is unaffected by these changes and Nougat that
was trained to handle similar image augmentations. The
only statistically meaningfully affected metric is the win
rate—in part because AdaParse is artificially limited to se-
lecting an image parser when its quality is higher. However,
it is important to note that this does not translate to a lower
token acceptance rate, as many documents are still parsed
above the acceptance threshold.

Table 2. Accuracy on simulated scanned PDFs: Document- (cov-
erage rate), word- (BLEU, ROUGE), and character-level (CAR)
accuracies. All %.

Parser Coverage BLEU ROUGE CAR WR AT
Marker 96.5 46.6 62.9 60.5 28.0 70.1
Nougat 91.9 45.1 63.1 63.4 27.2 63.5

Tesseract 90.0 44.0 58.2 65.2 12.8 59.0
AdaParse 92.8 52.0 67.5 67.0 18.4 77.0

Finally, we investigate the perturbation of the text layer. 15%
of the embedded text layers are replaced with the output
of common tools (Tesseract or GROBID), explaining their
exclusion in the table. This configuration tests the ability
to determine when a higher-quality parse is needed because
of degraded text. Few documents parsed by Nougat are
sufficient to give AdaParse an edge in this setting. Given
that we still limit AdaParse’s choice of image parsers to at
most 5% of the dataset compared to the 15% where the text
layer is removed, it is unsurprising that quality degrades
commensurate with the text parsers that are being used
for the bulk of the parsing efforts. Regardless, AdaParse
correctly delegates sufficiently many of those documents
to other parsers which is why quality remains higher than
using text extraction-based parsers alone.

Overall, AdaParse offers robust performance across data
regimes.

Table 3. Accuracy on PDFs with simulated OCR-degraded text
layers: Document- (coverage rate), word- (BLEU, ROUGE), and
character-level (CAR) accuracies. All %.

Parser Coverage BLEU ROUGE CAR WR AT
PyMuPDF 90.8 42.0 55.6 56.5 13.1 58.8

pypdf 91.2 35.6 48.9 29.8 1.2 56.9
AdaParse 91.2 42.4 55.9 56.7 12.0 59.5

Figure 5. Scalability of the seven parsers.

7.3 Throughput Scalability

In addition to quality, throughput is the key evaluation cri-
terion for large-scale parsing techniques. If you cannot
perform a parse with a given parser due to insufficient re-
sources, the quality of that parser becomes moot.

We evaluate the performance of each method on Polaris
using between 1 and 128 nodes and present the results
in Figure 5. We see that text extraction-based methods
such as PyMuPDF are the fastest, processing up to ≈315
PDF/second at scale, while methods like Marker fail to
scale beyond 10 nodes, producing on average only 0.1
PDF/second. Nougat offers slightly better throughput with
≈8 PDF/second on 128 nodes. AdaParse (FT) exhibits inter-
mediate performance with ≈78 PDF/second. Most methods
scale roughly linearly in the number of nodes. Notable ex-
ceptions include PyMuPDF and pypdf, which initially scale
linearly but plateau at around 128 and 100 nodes, respec-
tively. In the case of PyMuPDF, plateauing occurs because
extraction is sufficiently fast that contention for file system
resources begins to be the bottleneck, limiting scalability.

8 CONCLUSION

A key step in extracting knowledge from scientific doc-
uments is to improve the quality of PDF document pars-
ing. This step has long been a bottleneck for building AI
foundation models for science. While tools developed for
Internet-scale data are widely adopted for training advanced
AI models, training on text encoded within scientific liter-
ature data remains an open challenge. We have presented
AdaParse as a practical approach to address this challenge—
mainly by incorporating a data-driven strategy to distribute



each parsing task to the most appropriate PDF parser tool,
in a portable, yet reusable manner. We also developed direct
preference optimization for rating PDF parser quality, allow-
ing selections to be aligned with human judgment. We show
that the resulting solution is able to leverage existing PDF
parsing tools for large-scale campaigns that make effective
use of high-performance computing infrastructure.

ACKNOWLEDGMENTS

This research used resources of the Argonne Leadership
Computing Facility, a U.S. Department of Energy (DOE)
Office of Science user facility at Argonne National Labo-
ratory (ANL) and is based on research supported by the
DOE Office of Science–Advanced Scientific Computing
Research Program and by Laboratory Directed Research
and Development (LDRD) funding from ANL, provided by
the Director, DOE Office of Science, both under Contract
No. DE-AC02-06CH11357.

REFERENCES

Grobid. https://github.com/kermitt2/
grobid, 2008–2025.

Adhikari, N. S. and Agarwal, S. A comparative study of pdf
parsing tools across diverse document categories. arXiv
preprint arXiv:2410.09871, 2024.

Artifex Software. MuPDF. URL https://mupdf.
com/. Accessed: Oct 2024.

Babuji, Y., Woodard, A., Li, Z., Clifford, B., Kumar, R.,
Lacinski, L., Chard, R., Wozniak, J., Foster, I., Wilde, M.,
Katz, D., and Chard, K. Parsl: Pervasive parallel program-
ming in Python. In ACM International Symposium on
High-Performance Parallel and Distributed Computing,
2019.

Bast, H. and Korzen, C. A benchmark and evaluation for
text extraction from PDF. In ACM/IEEE Joint Conference
on Digital Libraries, pp. 1–10. IEEE, 2017.

Beltagy, I., Lo, K., and Cohan, A. Scibert: A pre-
trained language model for scientific text. arXiv preprint
arXiv:1903.10676, 2019.

Blecher, L., Cucurull, G., Scialom, T., and Stojnic, R.
Nougat: Neural optical understanding for academic docu-
ments. arXiv preprint arXiv:2308.13418, 2023.

Bulan, O., Kozitsky, V., Ramesh, P., and Shreve, M.
Segmentation-and annotation-free license plate recog-
nition with deep localization and failure identification.
IEEE Transactions on Intelligent Transportation Systems,
18(9):2351–2363, 2017.

Chiang, W.-L., Zheng, L., Sheng, Y., Angelopoulos, A. N.,
Li, T., Li, D., Zhang, H., Zhu, B., Jordan, M., Gonzalez,
J. E., and Stoica, I. Chatbot Arena: An open platform for
evaluating LLMs by human preference. arXiv preprint
arXiv:2403.04132, 2024.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N. M., Prabhakaran, V., Reif, E., Du, N., Hutchinson,
B., Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari,
G., Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev,
S., Michalewski, H., García, X., Misra, V., Robinson,
K., Fedus, L., Zhou, D., Ippolito, D., Luan, D., Lim,
H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D.,
Agrawal, S., Omernick, M., Dai, A. M., Pillai, T. S., Pel-
lat, M., Lewkowycz, A., Moreira, E., Child, R., Polozov,
O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Díaz, M.,
Firat, O., Catasta, M., Wei, J., Meier-Hellstern, K., Eck,
D., Dean, J., Petrov, S., and Fiedel, N. PaLM: Scaling

https://github.com/kermitt2/grobid
https://github.com/kermitt2/grobid
https://mupdf.com/
https://mupdf.com/


language modeling with pathways. J. Mach. Learn. Res.,
April 2022.

Corrêa, A. S. and Zander, P.-O. Unleashing tabular content
to open data: A survey on PDF table extraction methods
and tools. In 18th Annual International Conference on
Digital Government Research, pp. 54–63, 2017.

Coulon, R., Toro, F. G., and Michotte, C. Machine-readable
data and metadata of international key comparisons in
radionuclide metrology. Measurement Science and Tech-
nology, 34(7):074009, 2023.

Dharuman, G., Hippe, K., Brace, A., Foreman, S., Hatanpää,
V., Sastry, V. K., Zheng, H., Ward, L., Muralidharan, S.,
Vasan, A., et al. Mprot-dpo: Breaking the exaflops barrier
for multimodal protein design workflows with direct pref-
erence optimization. In SC24: International Conference
for High Performance Computing, Networking, Storage
and Analysis, pp. 1–13. IEEE, 2024.

Du, Y., Li, C., Guo, R., Yin, X., Liu, W., Zhou, J., Bai,
Y., Yu, Z., Yang, Y., Dang, Q., et al. PP-OCR: A
practical ultra lightweight OCR system. arXiv preprint
arXiv:2009.09941, 2020.

Elazar, Y., Bhagia, A., Magnusson, I., Ravichander, A.,
Schwenk, D., Suhr, A., Walsh, P., Groeneveld, D., Sol-
daini, L., Singh, S., et al. What’s in my big data? arXiv
preprint arXiv:2310.20707, 2023.

Fenniak, M., Stamy, M., pubpub zz, Thoma, M., Peveler,
M., exiledkingcc, and pypdf Contributors. The pypdf
library, 2024. URL https://pypi.org/project/
pypdf/.

Freund, Y., Schapire, R. E., et al. Experiments with a new
boosting algorithm. In icml, volume 96, pp. 148–156.
Citeseer, 1996.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima,
N., Presser, S., and Leahy, C. The Pile: An 800GB
dataset of diverse text for language modeling, Decem-
ber 2020. URL http://arxiv.org/abs/2101.
00027. arXiv:2101.00027 [cs].

Graham, Y. Re-evaluating automatic summarization with
BLEU and 192 shades of ROUGE. In Conference on
Empirical Methods in Natural Language Processing, pp.
128–137, 2015.

Groleau, A., Chee, K. W., Larson, S., Maini, S., and Boar-
man, J. Augraphy: A data augmentation library for docu-
ment images. In International Conference on Document
Analysis and Recognition, pp. 384–401. Springer, 2023.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Jaume, G., Ekenel, H. K., and Thiran, J.-P. FUNSD: A
dataset for form understanding in noisy scanned docu-
ments. In International Conference on Document Analy-
sis and Recognition Workshops, volume 2, pp. 1–6. IEEE,
2019.

Jimeno Yepes, A., Zhong, P., and Burdick, D. Icdar 2021
competition on scientific literature parsing. In 16th Inter-
national Conference on Document Analysis and Recogni-
tion, pp. 605–617. Springer, 2021.

Kim, G., Hong, T., Yim, M., Nam, J., Park, J., Yim, J.,
Hwang, W., Yun, S., Han, D., and Park, S. OCR-free
document understanding transformer. In European Con-
ference on Computer Vision, pp. 498–517. Springer, 2022.

Kuribayashi, M. and Wong, K. StealthPDF: Data hiding
method for PDF file with no visual degradation. Jour-
nal of Information Security and Applications, 61:102875,
2021.

Lab, D. Marker - data lab. https://www.datalab.
to/marker, 2024. Accessed: 2024-10-29.

Levenshtein, V. Binary codes capable of correcting dele-
tions, insertions, and reversals. Proceedings of the Soviet
physics doklady, 1966.

Li, M., Lv, T., Chen, J., Cui, L., Lu, Y., Florencio, D.,
Zhang, C., Li, Z., and Wei, F. TrOCR: Transformer-based
optical character recognition with pre-trained models. In
AAAI Conference on Artificial Intelligence, volume 37,
pp. 13094–13102, 2023.

Li, S., Huang, J., Zhuang, J., Shi, Y., Cai, X., Xu, M., Wang,
X., Zhang, L., Ke, G., and Cai, H. SciLitLLM: How to
adapt LLMs for scientific literature understanding. arXiv
preprint arXiv:2408.15545, 2024.

Lin, C.-Y. ROUGE: A package for automatic evaluation
of summaries. In Text Summarization Branches Out, pp.
74–81, 2004.

Lo, K., Wang, L. L., Neumann, M., Kinney, R., and Weld,
D. S. S2ORC: The Semantic Scholar open research cor-
pus. arXiv preprint arXiv:1911.02782, 2019.

Lopez, P. GROBID: Combining automatic bibliographic
data recognition and term extraction for scholarship pub-
lications. In 13th European Conference on Research and
Advanced Technology for Digital Libraries, pp. 473–474.
Springer, 2009.

https://pypi.org/project/pypdf/
https://pypi.org/project/pypdf/
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
https://www.datalab.to/marker
https://www.datalab.to/marker


Mansoury, M., Abdollahpouri, H., Pechenizkiy, M.,
Mobasher, B., and Burke, R. Feedback loop and bias
amplification in recommender systems. In 29th ACM
International Conference on Information & Knowledge
Management, pp. 2145–2148, 2020.

Mujumdar, S., Gupta, N., Jain, A., and Burdick, D. Simul-
taneous optimisation of image quality improvement and
text content extraction from scanned documents. In Inter-
national Conference on Document Analysis and Recogni-
tion, pp. 1169–1174. IEEE, 2019.

Nerbonne, J., Heeringa, W., and Kleiweg, P. Edit distance
and dialect proximity. Time Warps, String Edits and
Macromolecules: The Theory and Practice of Sequence
Comparison, 15, 1999.

Neudecker, C., Baierer, K., Gerber, M., Clausner, C., An-
tonacopoulos, A., and Pletschacher, S. A survey of OCR
evaluation tools and metrics. In 6th International Work-
shop on Historical Document Imaging and Processing,
pp. 13–18, 2021.

Nguyen, T. T. H., Jatowt, A., Coustaty, M., and Doucet,
A. Survey of post-OCR processing approaches. ACM
Computing Surveys (CSUR), 54(6):1–37, 2021.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. BLEU:
A method for automatic evaluation of machine translation.
In 40th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 311–318, 2002.

Paudel, P., Khadka, S., Shah, R., et al. Optimizing Nepali
PDF extraction: A comparative study of parser and OCR
technologies. arXiv preprint arXiv:2407.04577, 2024.

Post, M. A call for clarity in reporting BLEU scores. arXiv
preprint arXiv:1804.08771, 2018.

Quattrini, F., Zaccagnino, C., Cascianelli, S., Righi, L., and
Cucchiara, R. µgat: Improving single-page document
parsing by providing multi-page context. arXiv preprint
arXiv:2408.15646, 2024.

Ravi, S., Knight, K., and Soricut, R. Automatic prediction
of parser accuracy. In Conference on Empirical Methods
in Natural Language Processing, pp. 887–896, 2008.

Reiter, E. A structured review of the validity of bleu. Com-
putational Linguistics, 44(3):393–401, 2018.

Saiga, H., Nakamura, Y., Kitamura, Y., and Morita, T. An
OCR system for business cards. In 2nd International
Conference on Document Analysis and Recognition, pp.
802–805. IEEE, 1993.

Shaffi, N. and Hajamohideen, F. uTHCD: A new bench-
marking for Tamil handwritten OCR. IEEE Access, 9:
101469–101493, 2021.

Shah, A. K., Dey, A., and Zanibbi, R. A math formula
extraction and evaluation framework for pdf documents.
In Document Analysis and Recognition–ICDAR 2021:
16th International Conference, Lausanne, Switzerland,
September 5–10, 2021, Proceedings, Part II 16, pp. 19–
34. Springer, 2021.

Singh, P., Tapaswi, S., and Gupta, S. Malware detection
in PDF and Office documents: A survey. Information
Security Journal: A Global Perspective, 29(3):134–153,
2020.

Smith, R. An overview of the Tesseract OCR engine. In
9th International Conference on Document Analysis and
Recognition, volume 2, pp. 629–633. IEEE, 2007.

Soldaini, L., Kinney, R., Bhagia, A., Schwenk, D., Atkin-
son, D., Authur, R., Bogin, B., Chandu, K., Dumas, J.,
Elazar, Y., Hofmann, V., Jha, A. H., Kumar, S., Lucy,
L., Lyu, X., Lambert, N., Magnusson, I., Morrison, J.,
Muennighoff, N., Naik, A., Nam, C., Peters, M. E.,
Ravichander, A., Richardson, K., Shen, Z., Strubell, E.,
Subramani, N., Tafjord, O., Walsh, P., Zettlemoyer, L.,
Smith, N. A., Hajishirzi, H., Beltagy, I., Groeneveld, D.,
Dodge, J., and Lo, K. Dolma: An open corpus of three
trillion tokens for language model pretraining research,
June 2024. URL http://arxiv.org/abs/2402.
00159. arXiv:2402.00159 [cs].

Sorscher, B., Geirhos, R., Shekhar, S., Ganguli, S., and
Morcos, A. S. Beyond neural scaling laws: Beating power
law scaling via data pruning, April 2023. URL http://
arxiv.org/abs/2206.14486. arXiv:2206.14486
[cs].

Steedman, M., Osborne, M., Sarkar, A., Clark, S., Hwa,
R., Hockenmaier, J., Ruhlen, P., Baker, S., and Crim, J.
Bootstrapping statistical parsers from small datasets. In
10th Conference on European Chapter of the Association
for Computational Linguistics-Volume 1, pp. 331–338.
Association for Computational Linguistics, 2003.

Taylor, R., Kardas, M., Cucurull, G., Scialom, T., Hartshorn,
A., Saravia, E., Poulton, A., Kerkez, V., and Stojnic, R.
Galactica: A large language model for science. arXiv
preprint arXiv:2211.09085, 2022.

Xu, J. and Du, Q. A deep investigation into fastText.
In IEEE 21st International Conference on High Per-
formance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th In-
ternational Conference on Data Science and Systems
(HPCC/SmartCity/DSS), pp. 1714–1719. IEEE, 2019.

Zhu, W., Sokhandan, N., Yang, G., Martin, S., and Sathya-
narayana, S. DocBed: A multi-stage OCR solution for
documents with complex layouts. In AAAI Conference

http://arxiv.org/abs/2402.00159
http://arxiv.org/abs/2402.00159
http://arxiv.org/abs/2206.14486
http://arxiv.org/abs/2206.14486


on Artificial Intelligence, volume 36, pp. 12643–12649,
2022.

Zi, G. Groundtruth generation and document image degra-
dation. University of Maryland, College Park, 2005.

Zuidema, W. Parsimonious data-oriented parsing. In Joint
Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learn-
ing, pp. 551–560, 2007.


