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ABSTRACT

Segmentation uncertainty models predict a distribution over plausible segmenta-
tions for a given input, which they learn from the annotator variation in the training
set. However, in practice these annotations can differ systematically in the way they
are generated, for example through the use of different labeling tools. This results
in datasets that contain both data variability and differing label styles. In this paper,
we demonstrate that applying state-of-the-art segmentation uncertainty models on
such datasets can lead to model bias caused by the different label styles. We present
an updated modelling objective conditioning on labeling style for aleatoric uncer-
tainty estimation, and modify two state-of-the-art-architectures for segmentation
uncertainty accordingly. We show with extensive experiments that this method
reduces label style bias, while improving segmentation performance, increasing
the applicability of segmentation uncertainty models in the wild. We curate two
datasets, with annotations in different label styles, which we will make publicly
available along with our code upon publication.

1 INTRODUCTION

Image segmentation is a fundamental task in computer vision and biomedical image processing. As
part of the effort to create safe and interpretable ML systems, the quantification of segmentation
uncertainty has thus become a crucial task as well. While different sources and therefore different
types of uncertainties can be distinguished (Kiureghian & Ditlevsen, 2009; Gawlikowski et al., 2021),
research has mainly focused on modelling two types: aleatoric and epistemic uncertainty. While
epistemic uncertainty mainly refers to model uncertainty due to missing training data, aleatoric
uncertainty arises through variability inherent to the data, caused for example by different opinions of
the annotators about the presence, position and boundary of an object. Since aleatoric uncertainty
estimates are directly inferred from the training data it is important that the variability in the available
ground-truth annotations represents the experts’ disagreement. However, in practice the annotations
might vary in systematic ways, caused by differing labeling tools or different labeling instructions.
Especially in settings where opinions in form of annotations are sourced from experts in different
institutions, datasets can be heterogeneous in the way the labels are generated.

Even in the best of cases, in which manual annotators are given detailed instructions on how to
segment objects, they will still have to make choices on how to annotate in ambiguous parts of the
image. Moreover, annotators are not always carefully trained, and may not have access to the same

Figure 1: Sample image the from PhC-U373 dataset with annotations (red). The first three annotators
were instructed to delineate the boundary in detail, whereas the last three annotators were instructed
to provide a coarser and faster annotation.
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labeling tools. As a result, individual choices and external factors affect how annotations are made;
we term this label style. Figure 1 shows an example of how annotations may vary in label style.

Label style can also depend on label cost: While detailed annotations are desirable, they also take
more time, and one might desire to train models on cheaper, less detailed annotations. In the example
of Fig. 1, we have access to both detailed and coarse, or weak, annotations. It is not clear that adding
the weaker annotations will necessarily improve performance; removing them to train on fewer but
higher quality annotations could also be beneficial.

While weak annotations carry less precise information about the segmentation boundary, they do
carry information about the annotator’s beliefs concerning the presence and rough location of an
object. Exploiting this information could improve the annotator distribution learned by the model,
even tough the target might not be delineated in a detailed way. In practice, however, neither datasets
nor models distinguish between variations in label style and variations in the data. As a result, current
methods for segmentation uncertainty run the risk of being biased by this difference in label style.

1.1 CONTRIBUTION

In this paper, we demonstrate that applying state-of-the-art models on datasets that contain differing
label styles can lead to systematic over-segmentation. We show how this bias can be reduced by
stating an updated modelling objective for aleatoric uncertainty estimation conditioned on label
style. We adjust two state-of-the-art uncertainty segmentation architectures accordingly, presenting
conditioned versions of the Probabilistic U-net (Kohl et al., 2018) and the Stochastic Segmentation
Networks (Monteiro et al., 2020) that fit to the updated modelling objective and can be trained on
datasets containing differing label styles. We compare the proposed method against the common
strategy of removing the annotations of a weaker label style from the dataset.

We curate two datasets, both with annotations in different label styles, ranging from detailed, close
crops to over-segmented outlines. In a series of experiments, we show that the conditioned models
outperform standard models, trained on either all or a single label style. The conditioning reduces
label style bias, improves overall segmentation accuracy and enables more precise flagging of probable
segmentation errors. Our results stress that including all label styles using a conditioned model
enables fully leveraging all labels in a dataset, as opposed to naively excluding weaker label styles.
As such, our model contributes to increasing the applicability of uncertainty segmentation models in
practice. Our code and curated datasets will be made publicly available, to enable the community to
further assess models for segmentation uncertainty in the scenario with differing label styles.

2 BACKGROUND AND RELATED WORK

Uncertainties in deep learning in general, and image segmentation in particular, can be studied
under the Bayesian framework (Bishop, 2006; Kendall & Gal, 2017). Let D = (X,A) be a dataset
of N images xn ∈ X with S pixels each, where each image xn is associated with k ground-truth
annotations akn ∈ A, drawn from the unknown annotator distribution p(a|xn). Furthermore, let
f(x, θ) denote a model of p(a|x) defined by parameters θ. Formulating the segmentation task in a
Bayesian way, we seek to model the probability distribution p(y|x) over model predictions y given an
image x to be as similar as possible to the annotator distribution p(a|x). This predictive distribution
can be decomposed into the two types of uncertainty (Kiureghian & Ditlevsen, 2009) as follows:

p(y|x,D) =

∫
p(y|x, θ)︸ ︷︷ ︸

aleatoric uncertainty

p(θ|D)︸ ︷︷ ︸
epistemic uncertainty

dθ. (1)

After observing the data D during training, the posterior distribution p(θ|D) describes a density
over the parameter space of the model, capturing epistemic uncertainty. The distribution p(y|x, θ),
on the other hand, captures the variation in the data and possible model predictions, i.e., aleatoric
uncertainty. Due to the typically intractable epistemic uncertainty distribution, the integral on the
right hand side of equation 1 is usually not accessible. Therefore, it is of particular interest to
develop suitable approximations of the predictive distribution or parts of the integral in 1, and various
image segmentation approaches and models have been proposed for this purpose (Kohl et al., 2018;
Monteiro et al., 2020; Kohl et al., 2019; Baumgartner et al., 2019).
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In this context, the standard cross-entropy minimization approach pursued in most current deep
learning research can be understood as approximating the posterior distribution p(θ|D) by a Dirac
distribution δ(θ− θ1) and assuming that there is no spatial correlation between the pixels in an image.
Under these assumptions, one obtains

− log p(a|x,D) = − log p(a|x, θ1) = − log

S∏
i=1

p(ai|xi, θ1) = −
S∑
i=1

log p(ai|xi, θ1), (2)

which is precisely the standard negative log likelihood (or cross-entropy) loss.

Variational Bayesian methods approximate the intractable integrals arising in Bayesian inference
directly through optimization. A special case that uses Bernoulli distributions to approximate the
posterior distribution of the parameters as well as the predictive distribution is the Monte Carlo
Dropout method (Gal & Ghahramani, 2016a; 2015). Pixel-wise uncertainty values can be retrieved
by averaging multiple forward passes, while applying dropout during inference time before each
weight layer of a neural network. The resulting approximation of the predictive distribution is
always multi-modal and not necessarily expressive (Folgoc et al., 2021), and drawn samples can lack
coherence (Czolbe et al., 2021; Gal & Ghahramani, 2016b).

Ensemble methods (Lakshminarayanan et al., 2017) also yield pixel-wise uncertainty estimates by
averaging over the predictions of different models which are independently trained on the same
dataset. Contrary to Monte Carlo Dropout, which implicitly averages multiple models during
inference time, those models do not share the same weights but can be seen as a frequentist approach
to estimating p(θ|D). On the other hand, ensembles and multi-head models (Rupprecht et al., 2017;
Lee et al., 2016) independently trained on one expert’s annotation each return – in expectation – a
distribution over annotations, therefore also modelling the variability and disagreement between the
annotators p(a|x) (Czolbe et al., 2021).

Models that mainly focus on modelling the annotator distribution p(a|x) have been introduced based
on combinations of deterministic segmentation networks and generative modelling techniques such
as conditional variational autoencoders and normalizing flows (Baumgartner et al., 2019; Kohl et al.,
2019; Selvan et al., 2020). Moreover, a Gaussian-Process based convolutional architecture was
recently suggested to distinguish between annotator variability and estimator uncertainty (Popescu
et al., 2021). Other approaches model the distribution over annotations with probabilistic graphical
models and combinations of those with neural networks (Batra et al., 2012; Kirillov et al., 2015a;b;
2016; Arnab et al., 2018; Kamnitsas et al., 2017). However, the computational expense of inference in
those models usually prohibits more than a maximum a posteriori estimate of the targeted distribution.

In the following, we will describe in detail two state-of-the-art methods for quantifying aleatoric
segmentation uncertainty: the probabilistic U-net (Kohl et al., 2018) and the Stochastic Segmentation
Networks (Monteiro et al., 2020). We propose a new modelling objective for the annotator distribution
p(a|x) including label styles, and we show how both models can be modified to fit it, increasing their
applicability to datasets with varying label styles.

3 SEGMENTATION UNCERTAINTY MODELS CONDITIONED ON LABEL STYLE

Segmentation uncertainty models fit a predictive distribution p(y|x, θ) to the annotator distribution
p(a|x). We argue that, in practice, the targeted distribution of annotations should also be conditioned
on label style. Therefore, we propose to model p(a|x, l) instead, where l ∈ {0, . . . , i > 0} denotes
a discrete variable representing the label style, and i denotes the number of available label styles.
In this setting, the segmentation model is to be learned from a dataset D = (X,A,L) containing
tuples (xn, akn, l

k
n) of images xn ∈ X , annotations akn ∈ A, and corresponding label styles lkn ∈ L.

In the following, we present modified versions of the probabilistic U-net and Stochastic Segmentation
Networks that incorporate label styles directly into training and inference by conditioning the models
on a discrete variable (Mirza & Osindero, 2014), therefore fitting the new modelling objective.

3.1 CONDITIONED PROBABILISTIC U-NET

The probabilistic U-net (Kohl et al., 2018) combines a U-net with a conditional variational auto-
encoder. To encode plausible segmentation variants, an encoder P parameterized by ω takes an
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image x as its input and estimates the mean µω(x) and variance σω(x) of a diagonal Gaussian
N (µω(x), σω(x)) in R6. During inference, a sample z from this distribution is drawn and concate-
nated with the deterministic output of the U-net gθ(x) and combined by 1× 1 convolutions fψ. A
prediction y for a given latent z can then be written as

y = f(gθ(x), z, ψ). (3)

The prior net is trained by minimizing the Kullback-Leibler divergence between its predicted latent
space distribution P and a distribution given by the encoder Q, called the posterior net. Q has
parameters ν and receives both the image x and annotation a as inputs, estimating the parameters
of the distribution N (µν(x, a), σν(x, a)). We adjust this model by adding a discrete label style
variable l to the input of the prior net encoder, which is tiled and concatenated one-hot-encoded to the
channel axis of the input image x. The latent variable z is then modelled as the normal distribution

z|x, l ∼ N (µω(x, l), σω(x, l)), (4)

where the covariance matrix σω is, again, assumed to be diagonal, and both σω and µω are estimated
by the prior net encoder. During training, the posterior net Q receives the style lkn in addition to the
image xn and annotation akn. Like the original model, the architecture is trained by minimizing the
variational lower bound as described in Kohl et al. (2018) (see appendix A.5 for details).

3.2 CONDITIONED STOCHASTIC SEGMENTATION NETWORKS

Stochastic Segmentation Networks (SSN) (Monteiro et al., 2020) are a recently suggested model
class for quantifying aleatoric segmentation uncertainty. The method can be applied to any feature
map received by a deterministic segmentation network, in our case a U-net gθ(x). The feature
map is passed through three separate convolutional layers, µ(x), D(x), and P (x), that estimate the
parameters of a low-rank multivariate normal distribution over the logits η. Since g is deterministic,
we can write the layers as directly dependent on x. The covariance matrix is given by

Σ(x) = D(x) + P (x)P (x)T , (5)

and one can then pass samples drawn from the estimated logit distribution

η|x ∼ N (µ(x),Σ(x)) (6)

through a softmax layer to receive predictions for a given image x. For details on the training
procedure and loss function, we refer the reader to appendix A.5.

We adjust this model by passing the discrete label style variable l through an encoder and by
concatenating the resulting feature map to the feature map given by the U-net. The combined feature
map is then passed through the respective convolutional layers that estimate the parameters of the
logit distribution. The style variable is again tiled and concatenated (one-hot-encoded) to the channel
axis of the feature maps. The distribution over the logits η is then modelled as

η|x, l ∼ N (µ(x, l),Σ(x, l)). (7)

Given an image during test time, it is now possible with both models to condition their predictions
on a label style l ∈ {0, . . . , i > 0} that has been used for training. Figure 5 in appendix A.4 gives a
schematic overview of the baseline models and the conditioned versions during inference.

4 EXPERIMENTS

To train and evaluate segmentation uncertainty models fitting the updated modelling objective
p(a|x, l), we need datasets with multiple annotations per image in differing label styles. We consider
two such datasets: a subset of the ISIC19 dataset and a new version of the PhC-U373 dataset.

4.1 DATA

For our first evaluation, we consider a subset of the ISIC19 skin lesion segmentation challenge
(Combalia et al., 2019; Codella et al., 2018; Tschandl et al., 2018), where each image has exactly
three annotations available. A distinctive feature of this dataset is the clear difference between
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Label style 0 Label style 0 Label style 0Label style 1 Label style 2 Label style 2

Figure 2: Two sample images from the ISIC dataset with annotations in different label styles (red):
fine-grained delineations (style 0), smooth, close borders (style 1) and coarse crops (style 2). An
image might have multiple annotations of a certain label style (as in the right example).

label styles, exemplified in Fig. 2: Some annotations follow the skin lesion boundary as exactly as
possible; this is important as the size and boundary features can be used to clinically classify lesions
as malignant or benign (Abbasi et al., 2004). Other annotations, conversely, consist of loosely defined
regions containing the lesion. This type of weak labeling is more consistent with the task of detecting
lesions than segmenting them.

The ISIC dataset contains ground-truth segmentations generated by three different methods, each of
which we consider as one label style. Label style 0 corresponds to tight annotations with a detailed
boundary, generated by a semi-automated flood-fill algorithm supervised by an expert. Label style 1
annotations stem from a fully-automated algorithm, reviewed and accepted by experts, while label
style 2 are polygonal annotations traced manually by specialists. Note that not every image has
exactly one annotation of each label style, so different combinations can occur such as in Fig. 2 – we
include such images on purpose to illustrate our models’ ability to make the most of the available
data when the choice of annotations is beyond our control. We consider the fine-grained annotations
of label style 0 the ground truth in the downstream analysis of annotator bias. For our experiments,
the images and annotations are rescaled to 256× 256 pixels.

Table 1: Datasets and number of
image-annotation pairs contained in
the different splits.

ISIC

Train Val Test Total

Style 0 62 20 22
Style 1 54 18 19
Style 2 63 21 21
All 179 59 62 300

PhC-U373

Train Val Test Total

Style 0 1170 390 393
Style 1 1170 390 393
All 2340 780 786 3906

Our second dataset is based on a cell-tracking video from the
PhC-U373 dataset of the ISBI cell tracing challenge (Ulrich
et al., 2009; Ulman et al., 2017). We use the first video se-
quence, containing 115 2D images of multiple cells, annotated
with two classes (Cell, Background). To obtain images of
single cells, we find the smallest bounding boxes around the
ground-truth masks and extend those by 20px on all sites. We
then crop these bounding boxes out of the original images
and use only those patches where the expanded bounding box
lies completely within the full-sized image. This results in
a dataset containing 651 images of single cells, which are
resized to 128 × 128 pixels. In addition to the ground-truth
labels, all images were annotated by three researchers inde-
pendently, of which two labeled the dataset twice (in different
styles), resulting in five additional annotations. Labelers were
instructed to perform either detailed annotation (label style
0) or wider annotations (label style 1). In total, we end up
with three annotations labeled in style 0 and three annotations
labeled in style 1 for each image in the dataset. Label style 0 is, again, considered the ground truth in
the downstream task analysis of annotator bias later on.

Both datasets are divided into subsets containing only one label style and randomly split for training,
validation and testing with a ratio of 60%, 20% and 20% respectively. Table 1 gives an overview over
the resulting datasets and splits. Since all models are trained on pairs of images and annotations, we
report this number for a fair comparison of the dataset sizes.

4.2 MODELS

The following models are compared in our experiments: (1) The proposed conditioned models,
namely the style-conditioned probabilistic U-net (c-prob. U-net) and the style-conditioned Stochastic
Segmentation Network (c-SSN), which are trained on annotations of all label styles. During inference,
we condition on the style that the model will be evaluated on. (2) Probabilistic U-nets (prob. U-net)
(Kohl et al., 2018) and Stochastic Segmentation Networks (SSN) (Monteiro et al., 2020) trained
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on subsets that only contain one specific label style. These models are indicated by a (subset) tag.
(3) Probabilistic U-nets and Stochastic Segmentation Networks trained on the complete dataset,
containing annotations of all label styles, but not conditioned on label style. These models are
indicated by an (all) tag. Note that this would be the most common way to use the data.

All models are implemented in PyTorch and share a U-net backbone with four encoder and decoder
blocks for comparability. Each block contains three convolution layers and bilinear interpolation was
used for upsampling. Dropout (p = 0.5) is used in the lowest-level feature map of all architectures.
For the probabilistic U-nets, we chose a latent space dimension of 6 as in Kohl et al. (2018). Encoder
networks in the probabilistic U-net are identical to the contraction path of the backbone U-net. For
the stochastic segmentation networks, the output of the last decoder block of the backbone U-net is
passed into three different 1× 1 convolutional layers to estimate the low-rank approximation of the
normal distribution. Refer to appendix A.1 for further details on the training procedure.

5 RESULTS

Table 2: Average area difference with standard
deviation in pixels between model predictions and
respective label style 0 ground-truth annotations
achieved on both datasets.

Dataset

Model ISIC PhC-U373

Prob. U-net (all) 6019 (13648) 370 (402)
Prob. U-net (subset 0) 4879 (15106) 584 (534)

c-prob. U-net 311 (8332) 43 (417)

SSNs (all) 5176 (15629) 716 (1022)
SSNs (subset 0) 3142 (19438) 1534 (2131)

c-SSNs 3199 (12987) 262 (558)

Both datasets considered in this paper contain
annotations of high quality that closely outline
the object of interest and ones of lower quality
that generally over-segment the object of inter-
est. In Figure 3 and Table 2, we show the distri-
bution of area differences (measured in number
of pixels) between the different models’ predic-
tions and the high-quality annotations of a fixed
label style 0 test set. Intuitively, training the
prob. U-net and the SSNs on all annotations
leads to predictions that are biased towards too
large annotations compared to the high-quality
segmentations of label style 0 on both datasets.
To evaluate whether it is possible to reduce this
bias while maintaining the prediction quality as
well as the ability of the those models to fit the
annotator distribution, we compare the prob. U-
net and SSNs in all experiments below against the two alternatives described above in section 4.2:
Firstly, against both models trained on subsets and, secondly, against the conditioned versions that
we proposed to fit the new objective for the annotator distribution p(a|x, l).

5.1 VANILLA MODELS HAVE AN AREA BIAS; THIS DECREASES UNDER THE UPDATED
MODELLING OBJECTIVE

Figure 3 and Table 2 show that the prob. U-net and SSNs, both trained on subsets of only label style
0 annotations, tend to over-segment the targets, despite removing the coarser label style annotations.
Further, we find that the conditioned models show lower area bias compared to the baselines. For the
ISIC dataset, the standard SSN model trained on the label style 0 subset shows a slightly lower area
bias compared to the conditioned model. The same is true for the subset-trained prob. U-net in the
PhC-U373 dataset, but in both cases, the model trained on the subset shows a higher variance.

5.2 INCREASED PREDICTIVE PERFORMANCE AND FIT TO THE ANNOTATOR DISTRIBUTION

We evaluated predictive performance to assess how well the different models can predict in a certain
label style. To this end, we calculated the Intersection over Union (IoU) between the model’s mean
prediction against test sets that only contain annotations of the targeted label style, indicated by the
column index in Table 3. Note that for column i, the prob. U-nets (subsets) or SSNs (subsets) were
trained only on annotations of the targeted label style i. Across both datasets and all label styles, the
best predictive performance in terms of IoU is achieved by the style-conditioned models, with the
exception of the c-SSN conditioned on label style 1 on the ISIC dataset.

In addition, we computed the area under the receiver-operating characteristic curve (AUROC) with
respect to pixel-wise model predictions compared to the ground-truth segmentation mask. Table 4
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Figure 3: We assess bias in lesion and cell area estimation for the two test datasets (ISIC, PhC-U373)
by distribution of area difference (in pixels) between 100 model predictions per image and respective
label style 0 ground-truth annotations. Markers indicate the mean.

Table 3: Average IoU and standard deviation for the models’ mean prediction on subsets of the ISIC
and the PhC-U373 datasets containing only one label style each.

IoU wrt. to a subset of label style

ISIC PhC-U373

Model 0 1 2 0 1

Prob. U-net (all) 0.65 (0.09) 0.65 (0.10) 0.69 (0.21) 0.89 (0.01) 0.90 (0.02)
Prob. U-net (subsets) 0.66 (0.11) 0.55 (0.17) 0.71 (0.15) 0.85 (0.03) 0.86 (0.03)

c-prob. U-net 0.77 (0.15) 0.78 (0.15) 0.76 (0.15) 0.92 (0.02) 0.92 (0.01)

SSNs (all) 0.72 (0.01) 0.77 (0.09) 0.71 (0.19) 0.89 (0.02) 0.93 (0.02)
SSNs (subsets) 0.61 (0.13) 0.75 (0.13) 0.61 (0.11) 0.85 (0.04) 0.92 (0.02)

c-SSNs 0.77 (0.10) 0.71 (0.20) 0.78 (0.19) 0.92 (0.01) 0.93 (0.01)

shows the values obtained by the different models; the conditioned models show higher AUROC
values across all models and label styles.

Figure 8 and Figure 9 in Appendix A.7 show qualitative results of sample predictions on 5 images
from the ISIC dataset for the different models as well as the respective annotations, illustrating that
the conditioning on label style corrects for the overestimation bias.

Table 4: Pixel-wise AUROC on ISIC and PhC-U373 test
sets that only contain annotations of the targeted label
style, indicated by the column index.

ISIC PhC-U373

Label style 0 1 2 0 1

Prob. U-net (all) 0.9289 0.9102 0.8153 0.9960 0.9959
Prob. U-net (subsets) 0.9171 0.9516 0.8819 0.9925 0.9903

c-prob. U-net 0.9444 0.9750 0.9407 0.9963 0.9968

SSNs (all) 0.8873 0.9111 0.8633 0.9958 0.9950
SSNs (subsets) 0.7986 0.9351 0.8609 0.9893 0.9957

c-SSNs 0.9249 0.9506 0.9255 0.9964 0.9963

The goal of quantifying aleatoric seg-
mentation uncertainty is formulated as
fitting a model’s predictive distribution
p(y|x) to the unknown true distribution
p(a|x), represented by the available an-
notations of ground-truth segmentations
in the dataset. To assess this fit, we cal-
culated the generalized energy distance
(GED) (Székely & Rizzo, 2013; Kohl
et al., 2018) between segmentations sam-
pled from the predictive distribution of
the models and the set of ground-truth
segmentations. In Table 5, we show
mean GED values and their standard
deviation for different pairs of predictive and annotator distributions. Annotator distributions
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Figure 4: Distributions and medians of pixel-wise uncertainty (as quantified by the entropy of pixel-
wise model predictions) for true positive (TP), false positive (FP), true negative (TN), and false
negative (FN) predictions.

p(a|x, l = i) contain only the set of ground-truth segmentations of label style i of the test set,
whereas p(a|x) contains all available annotations across all label styles of the test set. Table rows
contain the predictive distributions of the following models: the standard prob. U-nets and SSNs
trained on all annotation styles; the standard prob. U-nets and SSNs trained on subsets of only
annotation style i for each column and the c-prob. U-net and c-SSN conditioned on label style i. We
find that for the fine-grained predictions of style 0 on the ISIC dataset, the c-prob. U-net and the
c-SSN exhibit lower GED values, indicating a better model fit. This also holds for the other label
styles on the ISIC dataset, with the exception of the c-SSN conditioned on label style 1. On the
PhC-U373 dataset, we find that the GED values are very similar across all models.

Table 5: Mean GED (with standard deviation) between models’ predictive distributions and the
targeted annotator distributions p(a|x, l) of the available label styles as well as the full annotator
distribution p(a|x) of an ISIC and PhC-U373 test set.

ISIC PhC-U373

Annotator distribution p(a|x, l = 0) p(a|x, l = 1) p(a|x, l = 2) p(a|x) p(a|x, l = 0) p(a|x, l = 1) p(a|x)
Prob. U-net (all) 0.58 (0.14) 0.57 (0.23) 0.54 (0.14) 0.57 (0.17) 0.69 (0.06) 0.60 (0.07) 0.61 (0.06)
Prob. U-net (subsets) 0.61 (0.14) 0.57 (0.23) 0.51 (0.17) - 0.70 (0.06) 0.62 (0.07) -

c-prob. U-net 0.57 (0.13) 0.55 (0.24) 0.49 (0.19) 0.55 (0.18) 0.68 (0.06) 0.61 (0.06) 0.61 (0.06)

SSNs (all) 0.59 (0.14) 0.55 (0.23) 0.51 (0.17) 0.55 (0.17) 0.69 (0.06) 0.60 (0.07) 0.61 (0.06)
SSNs (subsets) 0.61 (0.15) 0.55 (0.25) 0.55 (0.23) - 0.70 (0.06) 0.62 (0.07) -

c-SSNs 0.58 (0.13) 0.56 (0.28) 0.48 (0.19) 0.55 (0.20) 0.68 (0.06) 0.60 (0.06) 0.60 (0.06)

5.3 DOES HIGH SEGMENTATION UNCERTAINTY INDICATE PROBABLE SEGMENTATION ERROR?

To answer this question, we assessed the relationship between pixel-wise segmentation uncertainty
and the likelihood of a segmentation error in that pixel (as compared to the ground-truth segmentation
mask) on the label style 0 test set. The distribution of the pixel-wise entropy (see appendix A.3) of
the predictions (as a measure of segmentation uncertainty) was assessed for the cases of true positive
(TP), false positive (FP), true negative (TN), and false negative (FN) pixel predictions. A default
threshold of 0.5 was applied. The results are shown in Figure 4 for all models and both datasets. We
find that the c-prob. U-net consistently assigns higher uncertainty to false positive and false negative
predictions on both datasets compared to the standard prob. U-net variants. The c-SSN performs on
par with the alternative models.
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6 DISCUSSION AND CONCLUSION

Our paper took as starting point the hypothesis that probabilistic segmentation models could be biased
by different label styles if these are not accounted for by the model. We find this supported by the
results of Fig. 3, where we see that the prob. U-net and SSNs trained in the standard way on all label
styles tend to over-segment the objects of interest. In contrast, the c-prob. U-net conditioned on the
close-cropped label style 0 can reduce this bias considerably on both datasets. Even compared to
prob. U-nets and SSNs trained only on the label style 0 annotations, the conditioned models give
lower or on par bias.

However, the bias reduction in practice is only of value if the prediction performance does not
decrease. Indeed, we find that the c-prob. U-net and the c-SSNs outperform the compared models
across label styles in terms of IoU, except for the c-SSN on the label style 1 test set. On average, the
mean prediction of the conditioned models is more similar to the targeted label style compared to
the standard models trained on all data or on respective subsets. This indicates that the proposed
conditioning of the models allows the models to implicitly correct for confounding label styles while
preserve the ability to segment in a meaningful way. The strong predictive performance is supported
by consistently higher AUROC values for the conditioned models in Table 4. Additionally, the
conditioned models fit the annotator distributions better, as the results in Table 5 suggest. We observe
that the advantage in predictive performance of the conditioned models measured by IoU is larger
compared to the advantage in fitting the annotator distribution measured by GED. This might be due
to the fact that the IoU is calculated on the models’ mean predictions while the GED is based on 100
samples drawn from the predictive distribution.

For any segmentation uncertainty model, it is of interest to which extent the uncertainty estimates can
be used to flag a high-probability segmentation error. In the context of label styles, a second highly
relevant question is whether we really need fine-grained annotations, or whether we can exploit
coarse-grained annotations to obtain a more precise indication of potential segmentation errors. From
our preliminary analysis of the relationship between uncertainty estimates and segmentation errors,
it can be observed that, as desirable, entropy is higher in the case of segmentation errors across all
models and datasets (Fig. 4). The c-prob. U-net gives a consistent advantage across both datasets,
while the c-SSN either improves on or performs on par with the alternative models across datasets.

To summarize, our results support that the proposed method of conditioning on label style provides
an advantage over, firstly, the standard way of training a segmentation uncertainty model on all
available data, ignoring label style, and, secondly, the strategy of removing confounding labels
from the training set. We further demonstrate in appendix A.6 that dynamically augmenting coarse
annotations from fine-grained ones does not outperform the strategy of including annotations of all
label styles in a conditioned model. While we find that the standard models are biased by coarser
annotations (styles 1 or 2) and the models trained on subsets might suffer from the missing training
data, our proposed method enables the segmentation uncertainty model to incorporate all annotations
regardless of label style in a meaningful way. This leads to the conditioned models performing best
in predicting fine-grained label style 0 annotations. The modifications made to the architectures
for conditioning based on the new modelling objective can be easily implemented and do not incur
heavier models, while yielding better results. Finally, the ability to incorporate annotations of many
different label styles into training allows for using real-world datasets as they are, thus increasing the
applicability of segmentation uncertainty models to datasets as they occur in the wild.

6.1 LIMITATIONS AND FURTHER RESEARCH

Due to limited availability of labeled data, the correctness of the segmentation mask distributions
learned by the different models can only be assessed cursorily (as done by means of the GED in
Table 5). To perform a more comprehensive validation of the learned distribution, experiments with
synthetic data could be performed, similar to the synthetic experiments reported by Kohl et al. (2018).
More generally, an evaluation of the impact of different label styles, and the performance of the
style-conditioned models, in more and larger datasets is of interest. While the conditioned models in
this work require a discrete label style variable, an interesting direction for further research could be
the conditioning on continuous label styles as well as considering settings in which different label
styles are present but not labelled.
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A APPENDIX

A.1 TRAINING PROCEDURE FOR THE ISIC AND PHC-U373 DATASETS

All models are trained using the Adam optimizer. For the probabilistic U-net, as well as the
conditioned probabilistic U-net, we minimize the reconstruction term given by the binary cross-
entropy loss, added with a weighted Kullback-Leibler divergence between the estimated normal
distributions, as described by Kohl et al. (2018). The Stochastic Segmentation Networks are trained
on the loss function described in Monteiro et al. (2020). Across all datasets we used a learning
rate of 10−4 to train the models. For the skin lesion datasets, we trained for 600 epochs with
batch size 16; for the PhC-U373 dataset, we trained for 200 epochs with a batch size of 32. The
above hyperparameters were retrieved by grid search on the validation set. All computations were
performed on an internal GPU cluster.

A.2 GENERALIZED ENERGY DISTANCE

In section 5.2, we use the Generalized Energy Distance (Székely & Rizzo, 2013; Kohl et al., 2018) as
a distance measure between distributions. It is defined as

D2
GED(p, p̂) = 2Ey∼p,ŷ∼p̂[d(y, ŷ)]− Ey,y′∼p[d(y, y′)]− Eŷ,ŷ′∼p̂[d(ŷ, ŷ′)],

where d is set to 1 − IoU(·, ·). We set d = 0 if both segmentations are empty. Low GED values
indicate high similarity between distributions. The expectations are approximated with 100 sample
predictions from each model as done by Monteiro et al. (2020).

Note that when calculating the GED between the full annotator distribution p(a|x) and the conditioned
models’ predictive distribution, we need to draw samples from p(y|x, l). To this end, we sample l
from a categorical distribution with density p(l = k) = pk, where pk could be set to 1

i for i different
label styles or be estimated form the training dataset. We choose to set pk = 1

3 for the ISIC dataset
and pk = 1

3 for the PhC-U373 dataset and predict a sample prediction with the respective model,
conditioned on the drawn label style.

A.3 PIXEL-WISE ENTROPY

In section 5.3, we use the pixel-wise entropy as a measure of segmentation uncertainty. It is given by

H(p(ym)|x, l)) = −p(ym|x, l) log p(ym|x, l)− (1− p(ym|x, l)) log(1− p(ym|x, l)) (8)

for the conditioned models and

H(p(ym|x)) = −p(ym|x) log p(ym|x)− (1− p(ym|x)) log(1− p(ym|x)) (9)

for the baseline models, respectively, where p(ym|x, l) and p(ym|x) are the probabilities of being of
the target class at pixel m of the models’ predictive distributions.

A.4 SCHEMATIC MODEL ARCHITECTURES

Figure 5: Schematic model architectures (adapted from Kohl et al. (2018) and Monteiro et al. (2020))
of the prob. U-net (a) and SSN (b) during inference time. Our modifications to the models are shown
in green. (b) illustrates a normal distribution over the logit pixel space as predicted by a SSN.
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A.5 LOSS FUNCTIONS

A.5.1 CONDITIONED PROBABILISTIC U-NET

For training the prob. U-net and the conditioned prob. U-net, we implemented the loss function
as described by Kohl et al. (2018). While in the following we formulate the loss function for the
conditioned prob. U-net case, we want to remark that the implementations of the loss functions for
the conditioned and the standard model cases doe not differ. For a formulation of the loss function of
the standard prob. U-net we refer the reader to Kohl et al. (2018). For a training sample (xn, a

k
n, l

k
n),

prior net distribution P and posterior net distribution Q, the loss function is calculated as

L(akn, xn, lkn) = Ez∼Q(z|xn,akn,l
k
n)

− log p(akn|y(xn, z)) + β · KL(Q(z|xn, akn, lkn)||P (z|xn))

= −
M∑
m=1

aknm log ym(xn, z) + (1− aknm) log(1− ym(xn, z))︸ ︷︷ ︸
Binary Cross-Entropy Loss

+ β · KL(Q(z|xn, akn, lkn)||P (z|xn))
for one sample from the posterior net distribution Q,

z ∼ Q(z|xn, akn, lkn).
M denotes the number of pixels for the images x and annotations a. Since both P andQ are Gaussian,
the Kullback-Leibler divergence has a closed-form solution.

A.5.2 CONDITIONED STOCHASTIC SEGMENTATION NETWORKS

SSNs relax the spatial independence assumption made for deriving the standard cross-entropy loss
(compare equation 2) and learn a low-rank normal distribution over logits. The resulting loss function
as derived in Monteiro et al. (2020) is given by

L(akn, xn, lkn) = −logsumexpSs=1(

M∑
m=1

log p(akn|η(s)m )) + log(S)

= −logsumexpSs=1 (

M∑
m=1

aknm log(σ(η(s)m )) + (1− aknm) log(1− σ(η(s)m )))︸ ︷︷ ︸
Binary Cross-Entropy Loss

+ log(S),

where σ denotes the softmax function. It is calculated by drawing S Monte-Carlo samples from the
logit distribution

η|x, l ∼ N (µ(xn, l
k
n),Σ(xn, l

k
n)). (10)

The loss is backpropagated using the reparameterization trick. Again, we formulate the loss function
for the conditioned case while remarking that it does not differ in implementation from the standard
SSN case discussed in Monteiro et al. (2020).

A.6 DYNAMIC AUGMENTATION FOR FINE-GRAINED ANNOTATIONS

In this section, we test whether similar performance gains can be obtained by a dynamic augmentation
strategy that only uses fine-grained annotations. For this experiment, we start with the ISIC training
dataset that was used for the conditioned models and the baseline models trained on all label styles
(not the subsets). For each image in the training set, coarse annotations are substituted by augmented
versions of the fine-grained annotations of that image. If there are more than two fine-grained
annotations available, one is selected randomly. The augmentation is done by applying a dilation
operation followed by a Gaussian filter that smooths out the boundary. We train the c-prob. U-net and
the c-SSN on this dynamically augmented training set utilizing the style labels. For comparison, we
trained the baselines (prob. U-net and SSN) on this training set not using the style labels as described
in section 4.2. The four new models are indicated by an (aug) tag. The models are then evaluated in
terms of IoU, GED and area bias following the exact same experimental setup as in section 5.2.
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Table 6: Average IoU and standard deviation for the models’ mean prediction on subsets of the ISIC
dataset containing only one label style each.

IoU wrt. to a subset of label style

Model 0 1 2

Prob. U-net (all) 0.65 (0.09) 0.65 (0.10) 0.69 (0.21)
Prob. U-net (subsets) 0.66 (0.11) 0.55 (0.17) 0.71 (0.15)
Prob. U-net (aug) 0.68 (0.16) 0.61 (0.14) 0.53 (0.23)

c-prob. U-net (aug) 0.73 (0.17) 0.70 (0.09) 0.69 (0.14)
c-prob. U-net 0.77 (0.15) 0.78 (0.15) 0.76 (0.15)

SSNs (all) 0.72 (0.01) 0.77 (0.09) 0.71 (0.19)
SSNs (subsets) 0.61 (0.13) 0.75 (0.13) 0.61 (0.11)
SSNs (aug) 0.69 (0.09) 0.62 (0.12) 0.59 (0.15)

c-SSNs (aug) 0.75 (0.11) 0.66 (0.14) 0.68 (0.16)
c-SSNs 0.77 (0.10) 0.71 (0.20) 0.78 (0.19)

Table 7: Mean GED (with standard deviation) between models’ predictive distributions and the
targeted annotator distributions p(a|x, l) of the available label styles as well as the full annotator
distribution p(a|x) of an ISIC test set.

ISIC

Annotator distribution p(a|x, l = 0) p(a|x, l = 1) p(a|x, l = 2) p(a|x)
Prob. U-net (all) 0.58 (0.14) 0.57 (0.23) 0.54 (0.14) 0.57 (0.17)
Prob. U-net (subsets) 0.61 (0.14) 0.57 (0.23) 0.51 (0.17) -
Prob. U-net (aug) 0.59 (0.14) 0.61 (0.20) 0.62 (0.13) 0.61 (0.15)

c-prob. U-net (aug) 0.59 (0.12) 0.57 (0.21) 0.53 (0.21) 0.58 ( 0.10)
c-prob. U-net 0.57 (0.13) 0.55 (0.24) 0.49 (0.19) 0.55 (0.18)

SSNs (all) 0.59 (0.14) 0.55 (0.23) 0.51 (0.17) 0.55 (0.17)
SSNs (subsets) 0.61 (0.15) 0.55 (0.25) 0.55 (0.23) -
SSNs (aug) 0.60 (0.14) 0.58 (0.22) 0.55 (0.16) 0.57 (0.11)

c-SSNs (aug) 0.58 (0.14) 0.57 (0.23) 0.53 (0.20) 0.57 (0.15)
c-SSNs 0.58 (0.13) 0.56 (0.28) 0.48 (0.19) 0.55 (0.20)

As seen in Figure 6, the conditioned models are still able to correct for area bias compared to the
baseline models in this setting. However, segmentation and uncertainty quantification performance
are reduced. The IoU decreases relatively (see Table 6) while GED increases (see Table 7). For the
baseline models, area bias and segmentation performance is worse compared to all other models.

These results support our reasoning that coarse annotations contain additional information about
annotator variability, while at the same time adding area bias. Figure 7 shows examples from the
ISIC dataset that illustrate exactly this: The coarse annotations do not always contain the fine-grained
annotations. It is, therefore, not possible to capture all the annotator variability when using only
augmentations of fine-grained annotations.

A.7 QUALITATIVE RESULTS ON THE ISIC DATASET

Figure 8 and 9 show sample images from the ISIC dataset with overlayed annotations. Fig. 8 shows
predictions (threshold 0.5) of the probabilistic U-net trained on all data, the prob. U-nets trained on
the label style subsets and the c-prob. U-net conditioned on the different label styles. Fig. 9 shows
predictions (threshold 0.5) of the SSN trained on all data, the SSNs trained on the label style subsets
and the c-SSN conditioned on the different label styles. In both figures, the last column shows an
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Figure 6: We assess bias in lesion and cell area estimation for the ISIC test dataset by distribution
of area difference (in pixels) between 100 model predictions per image and respective label style 0
ground-truth annotations. Markers indicate the mean.

Figure 7: Three examples from the ISIC dataset with their respective annotations. The last column
shows a heatmap of the average of all three annotation masks. The respective label style l is written
on each annotation.
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overlay of the conditioned models’ prediction when conditioning on each of the three label styles
for the given image. In both figures, it is visible that the conditioning on label style corrects for the
overestimation bias.

17



Published as a conference paper at ICLR 2023

Fi
gu

re
8:

M
ea

n
pr

ed
ic

tio
ns

of
th

e
di

ff
er

en
tp

ro
b.

U
-n

et
m

od
el

s
fo

r5
im

ag
es

fr
om

th
e

IS
IC

da
ta

se
t.

Fr
om

le
ft

to
ri

gh
t:

Im
ag

e;
O

ve
rl

ay
ed

an
no

ta
tio

ns
;p

ro
b.

U
-n

et
(a

ll)
;p

ro
b.

U
-n

et
(s

ub
se

t0
);

pr
ob

.U
-n

et
(s

ub
se

t1
);

pr
ob

.U
-n

et
(s

ub
se

t2
);

c-
pr

ob
.U

-n
et

co
nd

iti
on

ed
on

st
yl

e
0;

c-
pr

ob
.U

-n
et

co
nd

iti
on

ed
on

st
yl

e
1;

c-
pr

ob
.U

-n
et

co
nd

iti
on

ed
on

st
yl

e
2;

O
ve

rl
ay

ed
pr

ed
ic

tio
ns

fr
om

c-
pr

ob
.U

-n
et

fo
re

ac
h

la
be

ls
ty

le
.

18



Published as a conference paper at ICLR 2023

Fi
gu

re
9:

M
ea

n
pr

ed
ic

tio
ns

of
th

e
di

ff
er

en
tS

SN
m

od
el

s
fo

r5
im

ag
es

fr
om

th
e

IS
IC

da
ta

se
t.

Fr
om

le
ft

to
rig

ht
:I

m
ag

e;
O

ve
rla

ye
d

an
no

ta
tio

ns
;S

SN
(a

ll)
;S

SN
(s

ub
se

t
0)

;S
SN

(s
ub

se
t1

);
SS

N
(s

ub
se

t2
);

c-
SS

N
co

nd
iti

on
ed

on
st

yl
e

0;
c-

SS
N

co
nd

iti
on

ed
on

st
yl

e
1;

c-
SS

N
co

nd
iti

on
ed

on
st

yl
e

2;
O

ve
rla

ye
d

pr
ed

ic
tio

ns
fr

om
c-

SS
N

fo
r

ea
ch

la
be

ls
ty

le
.

19


	Introduction
	Contribution

	Background and Related Work
	Segmentation uncertainty models conditioned on label style
	Conditioned probabilistic U-net
	Conditioned Stochastic Segmentation Networks

	Experiments
	Data
	Models

	Results
	Vanilla models have an area bias; this decreases under the updated modelling objective 
	Increased predictive performance and fit to the annotator distribution 
	Does high segmentation uncertainty indicate probable segmentation error?

	Discussion and conclusion
	Limitations and further research

	Appendix
	Training procedure for the ISIC and PhC-U373 datasets
	Generalized Energy Distance
	Pixel-wise Entropy
	Schematic Model Architectures
	Loss Functions
	Conditioned Probabilistic U-net
	Conditioned Stochastic Segmentation Networks

	Dynamic Augmentation for fine-grained annotations
	Qualitative Results on the ISIC dataset


