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ABSTRACT

While pre-trained language models such as BERT and RoBERTa have achieved
impressive results on various natural language processing tasks, they have huge
numbers of parameters and suffer from huge computational and memory costs,
which make them difficult for real-world deployment. Hence, model compres-
sion should be performed in order to reduce the computation and memory cost of
pre-trained models. In this work, we aim to compress BERT and address the fol-
lowing two challenging practical issues: (1) The compression algorithm should be
able to output multiple compressed models with different sizes and latencies, so
as to support devices with different kinds of memory and latency limitations; (2)
the algorithm should be downstream task agnostic, so that the compressed models
are generally applicable for different downstream tasks. We leverage techniques
in neural architecture search (NAS) and propose NAS-BERT, an efficient method
for BERT compression. NAS-BERT trains a big supernet on a carefully designed
search space containing various architectures and outputs multiple compressed
models with adaptive sizes and latency. Furthermore, the training of NAS-BERT
is conducted on standard self-supervised pre-training tasks (e.g., masked language
model) and does not depend on specific downstream tasks. Thus, the models it
produces can be used across various downstream tasks. The technical challenge
of NAS-BERT is that training a big supernet on the pre-training task is extremely
costly. We employ several techniques including block-wise search, search space
pruning, and performance approximation to improve search efficiency and ac-
curacy. Extensive experiments on GLUE benchmark datasets demonstrate that
NAS-BERT can find lightweight models with better accuracy than previous ap-
proaches, and can be directly applied to different downstream tasks with adaptive
model sizes for different requirements of memory or latency.

1 INTRODUCTION

Pre-trained Transformer (Vaswani et al., 2017)-based language models like BERT (Devlin et al.,
2019), XLNet (Yang et al., 2019) and RoBERTa (Liu et al., 2019) have achieved impressive perfor-
mance on a variety of downstream natural language processing tasks. These models are pre-trained
on massive language corpus via self-supervised tasks to learn language representation and fine-tuned
on specific downstream tasks. Despite their effectiveness, these models are quite expensive in terms
of computation and memory cost, which makes them difficult for the deployment on different down-
stream tasks and various resource-restricted scenarios such as online servers, mobile phones, and
embedded devices. Therefore, it is crucial to compress pre-trained models for practical deployment.

Recently, a variety of compression techniques have been adopted to compress pre-trained models,
such as pruning (McCarley, 2019; Gordon et al., 2020), weight factorization (Lan et al., 2019),
quantization (Shen et al., 2020; Zafrir et al., 2019), and knowledge distillation (Sun et al., 2019;
Sanh et al., 2019; Chen et al., 2020; Jiao et al., 2019; Hou et al., 2020; Song et al., 2020). Several
existing works (Tsai et al., 2020; McCarley, 2019; Gordon et al., 2020; Sanh et al., 2019; Zafrir
et al., 2019; Chen et al., 2020; Lan et al., 2019; Sun et al., 2019) compress a large pre-trained model
into a small or fast model with fixed size on the pre-training or fine-tuning stage and have achieved
good compression efficiency and accuracy. However, from the perspective of practical deployment,
a fixed size model cannot be deployed in devices with different memory and latency constraints.
For example, smaller models are preferred in embedded devices than in online servers, and faster
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inference speed is more critical in online services than in offline services. On the other hand, some
previous methods (Chen et al., 2020; Hou et al., 2020) compress the models on the fine-tuning stage
for each specific downstream task. This can achieve good accuracy due to the dedicated design in
each task. However, compressing the model for each task can be laborious and a compressed model
for one task may not generalize well on another downstream task.

In this paper, we study the BERT compression in a different setting: the compressed models need to
cover different sizes and latencies, in order to support devices with different kinds of memory and
latency constraints; the compression is conducted on the pre-training stage so as to be downstream
task agnostic. To this end, we propose NAS-BERT, which leverages neural architecture search
(NAS) to automatically compress BERT models. We carefully design a search space that contains
multi-head attention (Vaswani et al., 2017), separable convolution (Kaiser et al., 2018), feed-forward
network and identity operations with different hidden sizes to find efficient models. In order to search
models with adaptive sizes that satisfy diverse requirements of memory and latency constraints in
different devices, we train a big supernet that contains all the candidate operations and architectures
with weight sharing (Bender et al., 2018; Cai et al., 2018; 2019; Yu et al., 2020). In order to reduce
the laborious compressing on each downstream task, we directly train the big supernet and get the
compressed model on the pre-training task to make it applicable across different downstream tasks.

However, it is extremely expensive to directly perform architecture search in a big supernet on the
heavy pre-training task. To improve the search efficiency and accuracy, we employ several tech-
niques including block-wise search, search space pruning and performance approximation during
the search process: (1) We adopt block-wise search (Li et al., 2020a) to divide the supernet into
blocks so that the size of the search space can be reduced exponentially. To train each block, we
leverage a pre-trained teacher model, divide the teacher model into blocks similarly, and use the
input and output hidden states of the corresponding teacher block as paired data for training. (2)
To further reduce the search cost of each block (even if block-wise search has greatly reduced the
search space) due to the heavy burden of the pre-training task, we propose progressive shrinking
to dynamically prune the search space according to the validation loss during training. To ensure
that architectures with different sizes and latencies can be retained during the pruning process, we
further divide all the architectures in each block into several bins according to their model sizes and
perform progressive shrinking in each bin. (3) We obtain the compressed models under specific con-
straints of memory and latency by assembling the architectures in every block using performance
approximation, which can reduce the cost in model selection.

We evaluate the models compressed by NAS-BERT on the GLUE benchmark (Wang et al., 2018).
The results show that NAS-BERT can find lightweight models with various sizes from 5M to 60M
with better accuracy than that achieved by previous work. Our contributions of NAS-BERT can be
summarized as follows:

• We carefully design a search space that contains various architectures and different sizes, and
apply NAS on the pre-training task to search for efficient lightweight models, which is able to
deliver adaptive model sizes given different requirements of memory or latency and apply for
different downstream tasks.

• We further apply block-wise search, progressive shrinking and performance approximation to
reduce the huge search cost and improve the search accuracy.

• Experiments on the GLUE benchmark datasets demonstrate the effectiveness of NAS-BERT for
model compression.

2 RELATED WORK

BERT Model Compression Recently, compressing pre-trained language models has been studied
extensively and several techniques have been proposed such as knowledge distillation, pruning,
weight factorization, quantization and so on. Existing works (Tsai et al., 2020; Sanh et al., 2019;
Sun et al., 2019; Song et al., 2020; Jiao et al., 2019; Lan et al., 2019; Zafrir et al., 2019; Shen
et al., 2020; Wang et al., 2019b; Lan et al., 2019; Zafrir et al., 2019; Chen et al., 2020) aim to
compress the pre-trained model into a fixed size of the model and have achieved a trade-off between
the small parameter size (usually no more than 66M) and the good performance. However, these
compressed models cannot be deployed in devices with different memory and latency constraints.
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Recent works (Hou et al., 2020) can deliver adaptive models for each specific downstream task
and demonstrate the effectiveness of the task-oriented compression. For practical deployment, it
can be laborious to compress models from each task. Other works (Fan et al., 2019) can produce
compressed models on the pre-training stage that can directly generalize to downstream tasks, and
allow for efficient pruning at inference time. However, they do not explore the potential of different
architectures as in our work. Different from existing works, NAS-BERT aims for task-agnostic
compression on the pre-training stage which eliminates the laborious compression for each specific
downstream task, and carefully designs the search space which is capable to explore the potential of
different architectures and deliver various models given diverse memory and latency requirements.

Neural Architecture Search for Efficient Models Many works have leveraged NAS to search
efficient models (Liu et al., 2018; Cai et al., 2018; Howard et al., 2019; Tan & Le, 2019; Cai et al.,
2019; Yu et al., 2020; Wang et al., 2020a; Tsai et al., 2020). Most of them focus on computer
vision tasks and rely on specific designs on the convolutional layers (e.g., inverted bottleneck con-
volution (Howard et al., 2019) or elastic kernel size (Cai et al., 2019; Yu et al., 2020)). Among
them, once-for-all (Cai et al., 2019) and BigNAS (Yu et al., 2020) train a big supernet that contains
all the candidate architectures and can get a specialized sub-network by selecting from the super-
net to support various requirements (e.g., model size and latency). HAT (Wang et al., 2020a) also
trains a supernet with the adaptive widths and depths for machine translation tasks. Our proposed
NAS-BERT also trains a big supernet. However, different from these methods, we target model
compression for BERT at the pre-training stage, which is a more challenging task due to the large
model size and huge pre-training cost. Therefore, we introduce several techniques including block-
wise search, progressive shrinking, and performance approximation to reduce the training cost and
improve search efficiency. Tsai et al. (2020) apply one-shot NAS to search a faster Transformer
but they cannot deliver multiple architectures to meet various constraints for deployment. Different
from Tsai et al. (2020), NAS-BERT 1) progressively shrinks the search space to allocate more re-
sources to promising architectures and thus can deliver various architectures without adding much
computation; 2) designs bins in the shrinking algorithm to guarantee that we can search architectures
to meet diverse memory and latency constraints. 3) explores novel architectures with convolution
layer, multi-head attention, and feed-forward layer, and achieves better performance than previous
works for BERT compression.

3 METHOD

In this section, we describe NAS-BERT, which conducts neural architecture search to find small,
novel and accurate BERT models. To meet the requirements of deployment for different memory
and latency constraints and across different downstream tasks, we 1) train a supernet with a novel
search space that contains different sizes of models for various resource-restricted devices, and 2)
directly search the models on the pre-training task to make them generalizable on different down-
stream tasks. The method can be divided into three steps: 1) search space design (Section 3.1); 2)
supernet training (Section 3.2); 3) model selection (Section 3.3). Due to the huge cost to train the
big supernet on the heavy pre-training task and select compressed models under specific constraints,
we introduce several techniques including block-wise search, search space pruning and performance
approximation in Section 3.2 and 3.3 to reduce the search space and improve the search efficiency.

3.1 SEARCH SPACE DESIGN

A novel search space allows the potential of combinations of different operations, instead of simply
stacking basic Transformer block (multi-head attention and feed-forward network) as in the original
BERT model. We adopt the chain-structured search space (Elsken et al., 2018), and construct an
over-parameterized supernet A with L layers and each layer contains all candidate operations in
O = {o1, · · · , oC}, where C is the number of predefined candidate operations. Residual connection
is applied to each layer by adding the input to the output. There areCL possible paths (architectures)
in the supernet, and a specific architecture a = (a1, · · · , aL) is a sub-net (path) in the supernet,
where al ∈ O is the operation in the l-th layer, as shown in Fig. 2 (a). We adopt weight sharing
mechanism that is widely used in NAS (Bender et al., 2018; Cai et al., 2019) for efficient training,
where each architecture (path) shares the same set of operations in each layer.
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We further describe each operation in O as follows: 1) Multi-head attention (MHA) and feed-
forward network (FFN), which are the two basic operations in Transformer and are popular in pre-
training models (in this way we can cover BERT model as a subnet in our supernet). 2) Separable
convolution (SepConv), whose effectiveness and efficiency in natural language processing tasks
have been demonstrated by previous work (Kaiser et al., 2018; Karatzoglou et al., 2020). 3) Identity
operation, which can support architectures with the number of layers less than L. Identity operation
is regarded as a placeholder in a candidate architecture and can be removed to obtain a shallower
network. More detailed considerations on choosing the operation set are in Appendix A.1. Apart
from different types of operations, to allow adaptive model sizes, each operation can have different
hidden sizes: {128, 192, 256, 384, 512}. In this way, architectures in the search space can be of
different depths and widths. The complete candidate operation setO contains (1+1+3)∗5+1 = 26
operations, where the first product term represents the number of types of operations and 3 represents
the SepConv with different kernel size {3, 5, 7}, the second product term represents that there are
5 different hidden sizes. We list 26 operations in Table 1. The detailed structure of separable
convolution is shown in Fig. 1.

Hidden Size 128 192 256 384 512

MHA 2 Heads 3 Heads 4 Heads 6 Heads 8 Heads

FFN 512 768 1024 1536 2048

SepConv
Kernel 3
Kernel 5
Kernel 7

Kernel 3
Kernel 5
Kernel 7

Kernel 3
Kernel 5
Kernel 7

Kernel 3
Kernel 5
Kernel 7

Kernel 3
Kernel 5
Kernel 7

Identity Identity

Table 1: Candidate operation set. For each type of operation including multi-head attention (MHA),
feed-forward network (FFN) and separable convolution (SepConv) in each row, we list the number
of heads in MHA and the size of the intermediate layer in FFN, and kernel size in SepConv under
different hidden sizes (in different columns).
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Figure 1: Structure of separable convolution.

3.2 SUPERNET TRAINING

3.2.1 BLOCK-WISE TRAINING WITH KNOWLEDGE DISTILLATION

Directly training the whole supernet causes huge cost due to its large model size and huge search
space. With limited computational resources (total training time, steps, etc.), the amortized training
time of each architecture from the huge search space is insufficient for accurate evaluation (Chu
et al., 2019; Luo et al., 2019; Li et al., 2020b). Inspired by Li et al. (2020a), we adopt block-wise
search to uniformly divide the supernet A into N blocks (A1,A2, · · · ,AN ) to reduce the search
space and improve the efficiency. To train each block independently and effectively, knowledge dis-
tillation is applied with a pre-trained BERT model. The pre-trained BERT model (teacher) is divided
into corresponding N blocks as in Fig. 2. The input and output hidden states of the corresponding
block in the teacher model are used as the paired data to train the block in the supernet (student).
Specifically, the n-th student block receives the output of the (n − 1)-th teacher block as the input
and is optimized to predict the output of the n-th teacher block with mean square loss

Ln = ||f(Yn−1;An)−Yn||22, (1)
where f(·;An) is the mapping function of n-th block An, Yn is the output of the n-th block of the
teacher model (Y0 is the output of the embedding layer of the teacher model). At each training step,
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Block 1 Block 2 Block 3
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(BERTbase) 
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NAS Search Block 
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NAS Search Block 
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NAS Search Block 
4

(b)

Layer 1

Layer 3

Layer 5

Layer 6

Layer 4

Layer 2

Operation

(a)

𝑂" 𝑂# … 𝑂%

Figure 2: (a) an architecture (path) in the supernet. (b) an illustration of block-wise distillation
(N = 4 blocks). The supernet (student) and the pre-trained teacher model are divided into blocks
respectively and each student block is trained to mimic the corresponding teacher block.

we randomly sample an architecture from the search space following Guo et al. (2019); Bender et al.
(2018); Cai et al. (2019), which is memory-efficient due to the single path optimization. Different
from Li et al. (2020a), we allow different hidden sizes and incorporate identity layer in each block to
support elastic width and depth to derive models that meet various requirements. Besides, the search
space within each block in our work is larger compared to Li et al. (2020a) (100x larger) which is
much more sample in-efficient and requires more techniques (described in Section 3.2.2) to improve
the training efficiency. Since the hidden sizes of the student block may be different from that in the
teacher block, we cannot directly leverage the input and output hidden of the teacher block as the
training data of the student block. To solve this problem, we use a learnable linear transformation
layer at the input and output of student block to transform each hidden size to match that of the
teacher block, as shown in Fig. 2.

3.2.2 PROGRESSIVE SHRINKING

Although block-wise training can largely reduce the search space, the supernet still requires huge
time for convergence due to the heavy pre-training task. To further improve the training effectiveness
and efficiency, we propose to progressively shrink the search space in each block during training to
allocate more training resources to more promising candidates (Wang et al., 2019a; Li et al., 2020b;
Luo et al., 2020). However, simply pruning the architectures cannot ensure to obtain different sizes
of models, since larger models in An are likely to be pruned on the early stage of training due to its
difficulty of optimization (Chu et al., 2019; Luo et al., 2019; Li et al., 2020b) and smaller models are
likely to be pruned at the late stage due to limited capacity. Therefore, we assign the architectures in
An into different bins where each bin represents a short range of model sizes. Besides, we also apply
latency constraints in each bin to avoid models accepted parameter size but large latency. Denote
pb =

b
B ·p(a

t) and lb = b
B · l(a

t) as the maximum parameter size and latency for the b-th bin, where
p(·) and l(·) calculate the parameter size and latency, at is the largest model in the search space and
B is the number of bins. The architecture a in b-th bin should meet (1) pb > p(a) > pb−1 and (2)
lb > l(a) > lb−1. Architectures that cannot satisfy the constraint of latency are removed.

Then we conduct the progressive shrinking algorithm in each bin at the end of each training epoch
as follows: 1) Sample E architectures in each bin and get the validation losses on the dev set; 2)
Rank the E architectures according to their validation losses in descending order; 3) Remove R
architectures with the largest losses. The shrinking algorithm terminates when there are only m
architectures left in the search space to avoid all the architectures being deleted. The design of bins
ensures the diversity of models when shrinking the search space, which makes it possible to select a
model given diverse constraints at the model selection stage.

3.3 MODEL SELECTION

After the supernet training with progressive shrinking, each block contains m ∗ B possible archi-
tectures and the whole supernet (N blocks) contains (m ∗ B)N complete architectures. The model
selection procedure is as follows: 1) We build a large lookup table LTarch with (m ∗ B)N items,
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where each item contains the meta-information of a complete architecture: (architecture, parame-
ter, latency, loss). Since it is extremely time-consuming to measure the exact latency and loss for
(m ∗B)N (e.g., 108 in our experiments) architectures, we use performance approximation to obtain
the two values as described in the next paragraph. 2) For a given constraint of model size and infer-
ence latency, we select the top T architectures with low loss from LTarch that meet the parameter
and latency constraint. 3) We evaluate the validation loss of the top T complete architectures on
the dev set and select the best one as the final compressed model. The compressed model is associ-
ated with an embedding layer with adaptive size rather than a fixed size, and the embedding size is
determined by the rules according to the requirement of target model size (see Appendix A.5).

Next we introduce the performance approximation of the latency and loss when building the lookup
table LTarch. We measure the latency of each candidate operation (just 26 in our design) on the
target device and store in a lookup table LTlat in advance, and then approximate the latency of an
architecture l(a) by l(a) =

∑L
l=1 l(a

l) following Cai et al. (2018), where l(al) is from LTlat. To
approximate the loss of an architectures in LTarch, we add up the block-wise distillation loss of the
sub-architecture in each block on the dev set. Obtaining the dev loss of all sub-architectures in all
blocks only involves m ∗B ∗N evaluations.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Supernet Training Setup The supernet consists of L = 24 layers, which is consistent with
BERTbase (Devlin et al., 2019) (BERTbase has 12 Transformer layers with 24 sub-layers in total,
since each Transformer layer has a MHA and FFN). We use a pre-trained BERTbase (Devlin et al.,
2019) as the teacher model. The detailed configurations of the search space and teacher model train-
ing can be found in Appendix A.1 and Appendix A.2. The supernet is divided into N = 4 blocks
and the search space in each block is divided into B = 10 bins. We first train the supernet for 3
epochs without progressive shrinking as a warm start, and then begin to shrink at the end of each later
epoch. We randomly sample E = 2000 architectures for validation (evaluate all architectures when
the number of architectures in search space is less than 2000) and perform the progressive shrinking
to remove R = E/2 architectures for each bin as in Section 3.2.2. The shrinking process terminates
when only m = 10 architectures are left in each bin in each block, and the training also ends. The
considerations about how to decide these hyper-parameters are described in Appendix A.5. The
supernet is trained on English Wikipedia plus BookCorpus (16GB size), with a batch size of 1024
sentences and each sentence consists of 512 tokens. The training costs 3 days on 32 NVIDIA P40
GPUs while training the BERTbase teacher model costs 5 days. Other training configurations re-
main the same as the teacher model. The latency used in progressive shrinking and model selection
is measured on Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60 GHz with 12 cores, but our method can
be easily applied to other devices (e.g., mobile platforms, embedded devices) by using the lookup
table LTlat (described in Section 3.3) measured and built for the corresponding device. We select
T = 100 models from the table LTarch on the model selection stage. In progressive shrinking, to
reduce the time of evaluating all the candidates, we only evaluate on 5 batches rather than the whole
dev set, which is accurate enough for the pruning according to our preliminary study.

Evaluation Setup on Downstream Tasks We evaluate the effectiveness of NAS-BERT by pre-
training the compressed models on the original pre-training task and fine-tuning on the GLUE
benchmark (Wang et al., 2018), which includes CoLA (Warstadt et al., 2018), SST-2 (Socher et al.,
2013), MRPC (Dolan & Brockett, 2005), STS-B (Cer et al., 2017), QQP (Chen et al., 2018),
MNLI (Williams et al., 2018), QNLI (Rajpurkar et al., 2016) and RTE (Dagan et al., 2006). Similar
to previous methods (Sanh et al., 2019; Wang et al., 2020b; Turc et al., 2019; Hou et al., 2020), we
also apply knowledge distillation and conduct it on two stages (i.e., pre-training and fine-tuning) as
the default setting for evaluation. The details of two-stage distillation can be found in Appendix A.4.
Considering the focus of our work is to compress pre-trained models with novel architectures instead
of knowledge distillation, we only use prediction layer distillation and leave the various distillation
techniques like layer-by-layer distillation, embedding layer distillation and attention matrix distilla-
tion (Sun et al., 2019; Jiao et al., 2019; Sanh et al., 2019; Hou et al., 2020; Wang et al., 2020b) that
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Setting FLOPs Speedup MNLI QQP QNLI CoLA SST-2 STS-B RTE MRPC AVG

BERT60 + PF 1.3e10 2.2× 82.6 90.3 89.4 52.6 92.1 88.3 75.6 89.2 82.5
NAS-BERT60 + PF 1.3e10 2.2× 83.0 90.9 90.8 53.8 92.3 88.7 76.7 88.9 83.2

BERT60 + KD 1.3e10 2.2× 83.2 90.5 90.2 56.3 91.8 88.8 78.5 88.5 83.5
NAS-BERT60 + KD 1.3e10 2.2× 84.1 91.0 91.3 58.1 92.1 89.4 79.2 88.5 84.2

BERT30 + PF 7.1e9 3.6× 80.0 89.6 87.6 40.6 90.8 87.7 73.2 84.1 79.2
NAS-BERT30 + PF 7.0e9 3.6× 80.4 90.0 87.8 48.1 90.3 87.3 71.4 84.9 80.0

BERT30 + KD 7.1e9 3.6× 80.8 89.8 88.7 44.7 90.5 87.6 70.3 85.2 79.7
NAS-BERT30 + KD 7.0e9 3.6× 81.0 90.2 88.4 48.7 90.5 87.6 71.8 84.6 80.3

BERT10 + PF 2.3e9 9.1× 74.0 87.6 84.9 25.7 88.3 85.3 64.1 81.9 74.0
NAS-BERT10 + PF 2.3e9 8.7× 76.0 88.4 86.3 27.8 88.6 84.3 68.7 81.5 75.2

BERT10 + KD 2.3e9 9.1× 74.4 87.8 85.7 32.5 86.6 85.2 66.9 77.9 74.6
NAS-BERT10 + KD 2.3e9 8.7× 76.4 88.5 86.3 34.0 88.6 84.8 66.6 79.1 75.5

BERT5 + PF 8.6e8 20.7× 67.7 84.1 80.9 10.4 81.6 81.1 62.8 78.6 68.4
NAS-BERT5 + PF 8.7e8 23.6× 74.2 85.7 83.9 19.6 84.9 82.8 67.0 80.0 72.3

BERT5 + KD 8.6e8 20.7× 67.9 83.2 80.6 12.6 82.8 81.0 61.9 78.1 68.5
NAS-BERT5 + KD 8.7e8 23.6× 74.4 85.8 84.9 19.8 87.3 83.0 66.6 79.6 72.7

Table 2: Comparison of NAS-BERT models and hand-designed BERT models under different sizes
(60M, 30M, 10M, 5M) on GLUE dev set. “PF” means pre-training and fine-tuning. “KD” means
two-stage knowledge distillation. MNLI is reported in the matched set. Spearman correlation is
reported for STS-B. Matthews correlation is reported for CoLA. Accuracy is reported for other
tasks.

can further improve the performance as to future work. During fine-tuning on the GLUE benchmark,
RTE, MRPC and STS-B are started from the model fine-tuned on MNLI following Liu et al. (2019).

4.2 RESULTS

Accuracy of NAS-BERT While our NAS-BERT can compress models with adaptive sizes, we
only show the results of compressed models with 60M, 30M, 10M and 5M parameter sizes (de-
noted as NAS-BERT60, NAS-BERT30, NAS-BERT10 and NAS-BERT5 respectively) on the GLUE
benchmark due to the large evaluation cost, and list the model structures with different sizes in
Appendix A.6. We compare our NAS-BERT models with hand-designed BERT models under the
same parameter size and latency (denoted as BERT60, BERT30, BERT10 and BERT5 respectively).
We follow several principles when manually designing the BERT models: we just use the origi-
nal BERT structure (MHA plus FFN) and keep the parameter, latency, depth and width as close
as possible to the corresponding NAS-BERT models. The detailed structures of the hand-designed
BERT models are introduced in the next paragraph. To demonstrate the advantages of architectures
searched by NAS-BERT, the comparisons are evaluated in two settings: 1) only with pre-training
and fine-tuning (PF), and 2) pre-training and fine-tuning with two-stage knowledge distillation (KD).
We measure the inference speedup of NAS-BERT compared with BERTbase and inference FLOPs
following Clark et al. (2019). The configurations are in Appendix A.3. The results are shown in
Table 2, from which we can see that NAS-BERT outperforms hand-designed BERT baseline across
almost all the tasks under various model sizes. Especially, the smaller the model size is, the larger
gap can be observed (e.g., NAS-BERT5 vs. BERT5). The results show that NAS-BERT can search
for efficient lightweight models that are better than Transformer based models.

BERT Baselines We follow several principles when manually designing the BERT models in
Table 2: 1) The size of the embedding layer is the same as that of the corresponding NAS-BERT
model; 2) We use the original BERT structure (MHA plus FFN) and keep the parameter, latency,
depth and width as close as possible to the corresponding NAS-BERT model. The baseline BERT
models in Table 2 are: BERT60 (L=10, H=512, A=8), BERT30 (L=6, H=512, A=8), BERT10 (L=6,
H=256, A=4) and BERT5 (L=6, H=128, A=2) where L is the number of layers, H is the hidden size,
and A is the number of attention heads.

Comparison with Previous Work Next, we compare the effectiveness of our NAS-BERT to pre-
vious methods on BERT compression. Since they usually compress BERT into a model size of about
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Model Params MNLI QQP QNLI CoLA SST-2 STS-B RTE MRPC AVG

dev set

DistilBERT 66M 82.2 88.5 89.2 51.3 91.3 86.9 59.9 87.5 79.6
MiniLM 66M 84.0 91.0 91.0 49.2 92.0 - 71.5 88.4 -
BERT-of-Theseus 66M 82.3 89.6 89.5 51.1 91.5 88.7 68.2 - -
PD-BERT 66M 82.5 90.7 89.4 - 91.1 - 66.7 84.9 -
DynaBERT* 60M 84.2 91.2 91.5 56.8 92.7 89.2 72.2 84.1 82.7

NAS-BERT 60M 84.1 91.0 91.3 58.1 92.1 89.4 79.2 88.5 84.2
NAS-BERT* 60M 84.8 91.2 91.9 58.7 93.1 89.9 79.8 88.9 84.8

test set

BERT-of-Theseus 66M 82.4 89.3 89.6 47.8 92.2 84.1 66.2 83.2 79.4
PD-BERT 66M 82.8 88.5 88.9 - 91.8 - 65.3 81.7 -
BERT-PKD 66M 81.5 88.9 89.0 - 92.0 - 65.5 79.9 -
TinyBERT* 66M 84.6 89.1 90.4 51.1 93.1 83.7 70.0 82.6 80.6

NAS-BERT 60M 83.5 88.9 90.9 48.4 92.9 86.1 73.7 84.5 81.1
NAS-BERT* 60M 84.1 88.8 91.2 50.5 92.6 86.9 72.7 86.4 81.7

Table 3: Results on the dev and test set of the GLUE benchmark. “*” means using data augmenta-
tion. The test set results are obtained from the official GLUE leaderboard.

Setting MNLI QQP QNLI CoLA SST-2 STS-B RTE MRPC AVG

w/o PS 83.5 90.6 90.8 55.5 92.0 88.1 77.4 86.5 83.1
w PS 84.1 91.0 91.3 58.1 92.1 89.4 79.2 88.5 84.2

Table 4: The results of NAS-BERT with and without progressive shrinking (PS) on NAS-BERT60.

66M or 60M, we use our NAS-BERT60 for comparison. We mainly compare our NAS-BERT with
1) DistilBERT (Sanh et al., 2019), which uses knowledge distillation on the pre-training stage; 2)
BERT-PKD (Sun et al., 2019), which distills the knowledge from the intermediate layers and the
final output logits on the pre-training stage; 3) BERT-of-Theseus (Xu et al., 2020), which uses mod-
ule replacement for compression; 4) MiniLM (Wang et al., 2020b), which transfers the knowledge
from the self-attention module; 5) PD-BERT (Turc et al., 2019), which distills the knowledge from
the target domain in BERT training; 6) DynaBERT (Hou et al., 2020), which uses network rewiring
to adjust width and depth of BERT for each downstream task. 7) TinyBERT (Jiao et al., 2019),
which leverage embedding layer, hidden layer, and attention matrix distillation to mimic the teacher
model at both the pre-training and fine-tuning stages. To make comparison with DynaBERT and
TinyBERT, we also use their data augmentation (Hou et al., 2020; Jiao et al., 2019) on downstream
tasks. Table 3 reports the results on the dev and test set of the GLUE benchmark. Without data aug-
mentation, NAS-BERT achieves better results on nearly all the tasks compared to previous work.
Further, with data augmentation, NAS-BERT outperforms DynaBERT and TinyBERT. Different
from these methods that leverage advanced knowledge distillation techniques in pre-training and/or
fine-tuning, NAS-BERT mainly takes advantage of architectures and achieves better accuracy, which
demonstrates the advantages of NAS-BERT in model compression.

4.3 ABLATION STUDY

Setting MNLI QQP QNLI CoLA SST-2 STS-B RTE MRPC AVG

PS-arch 84.1 91.0 91.3 58.1 92.1 89.4 79.2 88.5 84.2
PS-op 83.8 91.0 90.2 54.5 92.0 88.8 75.6 86.1 82.8

Table 5: The results of different progressive shrinking approaches on NAS-BERT60. PS-arch and
PS-op denote pruning architectures and operations in progressive shrinking.

Ablation Study on Progressive Shrinking To verify the effectiveness of progressive shrink-
ing (PS), we train the supernet with the same number of training epochs but without progressive

8
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shrinking. We follow the same procedure in NAS-BERT for model selection and final evaluation on
downstream tasks. Due to the huge evaluation cost during the model selection on the whole search
space without progressive shrinking, it costs 50 hours (evaluation cost on the shrinked search space
only takes 5 minutes since there are only 10 architectures remaining in each bin in each block). The
results are shown in Table 4. It can be seen that NAS-BERT with progressive shrinking searches
better architectures, with less total search time.

Figure 3: Loss curve of supernet training.
Progressive shrinking starts at the epoch 4.

We further show the training loss curve in Fig. 3. It can
be seen that the superset without progressive shrinking
suffers from slow convergence. The huge number of
architectures in the supernet need long time for suffi-
cient training. Given a fixed budget of training time,
progressive shrinking can ensure the promising archi-
tectures to be trained with more resources and result in
more accurate evaluation, and thus better architectures
can be selected. On the contrary, without progressive
shrinking, the amortized training time of each architec-
ture is insufficient, resulting in inaccurate evaluation
and model selection.

Different Progressive Shrinking Approaches Instead of pruning architectures (paths) from the
search space, we can also prune operations (nodes) from the supernet (Radosavovic et al., 2020;
Luo et al., 2020) in progressive shrinking. From the perspective of supernet, the former is to remove
paths and the latter is to remove nodes from the supernet. To evaluate the performance of operations
(nodes) in supernet, at the end of each training epoch, we evaluate the architectures on the dev set and
prune the search space according to the performance (validation loss) of operations. The validation
loss of the operation oi in l-layer is estimated by the mean validation losses of all the architectures
whose operation in the l-th layer al = oi. The shrinking algorithm proceeds as follows:

• Sample E architectures and get the validation losses on the dev set.

• Rank operations according to their mean validation losses in descending order.

• Prune operations with the largest losses from the supernet repeatedly until removing R
(R is a hyper-parameter to control the speed of pruning) of the architectures in the search
space.

The shrinking algorithm performs at the end of each training epoch, and terminates when only
m = 10 architectures are left in each bin in each block, and the training also ends. For the fair
comparison, we set m = 10 and E = 1000, which are same as settings in Section 4.1. At the
end of each epoch, we perform this algorithm to remove R = 30% architectures for each bin. In
this way, the algorithm terminates at the same epoch as that in Section 3.2.2. At the end of each
training epoch, we evaluate the architectures on the dev set and prune the search space according to
the performance of operations. As shown in Table 5, pruning architectures in progressive shrinking
achieves better results.

5 CONCLUSION

In this paper, we propose NAS-BERT, which leverages neural architecture search (NAS) to compress
BERT models. We carefully design a search space with different operations associated with different
hidden sizes, to explore the potential of diverse architectures and derive models with adaptive sizes
according to the memory and latency requirements of different devices. The compression is con-
ducted on the pre-training stage and is downstream task agnostic, where the compressed models can
be applicable for different downstream tasks. Experiments on the GLUE benchmark datasets demon-
strate the effectiveness of our proposed NAS-BERT compared with both hand-designed BERT base-
lines and previous works on BERT compression. For future work, we will explore more advanced
search space and NAS methods to achieve better performance.
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A APPENDIX

A.1 OPERATION SET AND SEARCH SPACE

The Design Choice of the Operation Set In addition to MHA and FFN, LSTM, convolution and
variants of MHA and FFN have achieved good performance in many NLP tasks (Chen et al., 2020;
Kaiser et al., 2018; Karatzoglou et al., 2020; Bahdanau et al., 2014). We describe the considerations
to choose the operations in Table 1 as follows: 1) LSTM is not considered due to slow training and
inference speed. 2) In our preliminary experiments, we try some variants of MHA and FFN (Lample
et al., 2019; Wu et al., 2018), but fail to observe the advantages of small model size and/or better
performance. 3) Considering the parameter size of convolution isK ∗H2 and separable convolution
(SepConv) isH2+K∗H whereK andH are the kernel size and hidden size, instead of convolution,
we use SepConv with a larger kernel (with a larger receptive field) without significantly increasing
the model size and the latency. Based on these considerations, we add SepConv into the candidate
operation set.

To determine the possible hidden sizes for operations, we mainly consider the range of the com-
pressed model sizes. Previous works (Sanh et al., 2019; Sun et al., 2019; Song et al., 2020; Jiao
et al., 2019; Lan et al., 2019; Zafrir et al., 2019; Shen et al., 2020; Lan et al., 2019; Zafrir et al.,
2019; Chen et al., 2020) usually compress pre-trained BERT model into a small model (usually no
more than 66M) for efficiency and effectiveness. Similarly, in this work, we aim to obtain com-
pressed models less than 66M. Therefore, we choose the hidden sizes between 128 and 512 for the
candidate operations, which enables a good trade-off between efficiency and effectiveness1.

The Complexity of the Search Space The supernet consists of L = 24 layers. If we do not use
block-wise search, there would be 2624 ≈ 1034 paths (possible candidate architectures) in the super-
net. We divide the supernet into N = 4 blocks and each block contains 6 layers. Within each block,
the hidden size of the 6 layers are required to be consistent, and the hidden sizes across different
blocks can be different. So there are 5 ∗ 66 = 233280 paths (possible candidate sub-architectures)
in each block, where the first 5 is the number of candidate hidden sizes and 66 represents that there
are 6 operations in 6 layers. Due to the identity operation, there is an unnecessary increase in the
possible sequence of operations (architecture) as pointed in Li et al. (2020a). For example, the archi-
tecture {FFN, identity, FFN, identity} is equivalent to {FFN, FFN, identity, identity}. Thus we only
keep the architectures that all of the identity operations are at the end (e.g., {FFN, FFN, identity,
identity}) and delete other redundant architectures. After cleaning the redundancy, the search space
in each block is reduced from the original 233280 to 97650, which largely improves the sample
efficiency. We can select sub-architectures from each block and ensemble them to get a complete
model. Considering N = 4 blocks, there are 976504 (about 1020 possible combinations). Therefore
the number of possible models is reduced from 1034 to 1020.

A.2 TRAINING CONFIGURATIONS

Teacher Model We train the BERTbase (L=12, H=768, A=12) (Devlin et al., 2019) as the teacher
model, where L is the number of layers, H is the hidden size, and A is the number of attention
heads. Following Devlin et al. (2019), we use BookCorpus plus English Wikipedia as pre-training
data (16GB in total). We use Adam (Kingma & Ba, 2014) with a learning rate of 1e-4, β1 = 0.9
and β2 = 0.999. The learning rate is warmed up to a peak value of 5e-4 for the first 10,000 steps,
and then linearly decays. The weight decay is 0.01 and the dropout rate is 0.1. We apply the best
practices proposed in Liu et al. (2019) to train the BERTbase on 16 NVIDIA V100 GPUs with large
batches leveraging gradient accumulation (2048 samples per batch) and 125000 training steps. We
present the performance of the teacher model and compare it with teacher models used in other works
in Table 6. Our teacher model is better than others, which is mainly caused by the volatility of RTE
and CoLA (small dataset). After removing these two datasets, the performance of the teacher model
(average score: 89.74) is close to the teacher model of other methods (DistilBERT: 89.73, BERT-
of-Theseus: 88.76 and DynaBERT: 89.68). In this way, NAS-BERT can still show its effectiveness
compared with other approaches, without considering RTE and CoLA in Table 3.

1We do not use hidden size smaller than 128 since it cannot yield model with enough accuracy.
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Teacher model MNLI-m QQP QNLI CoLA SST-2 STS-B RTE MRPC AVG

DistilBERT 86.7 89.6 91.8 56.3 92.7 89.0 69.3 88.6 83.0
MiNiLM 84.5 91.3 91.7 58.9 93.2 - 68.6 87.3 -
BERT-of-Theseus 83.5 89.8 91.2 54.3 91.5 88.9 71.1 89.5 82.3
DynaBERT 84.8 90.9 92.0 58.1 92.9 89.8 71.1 87.7 83.4
MobileBERT 87.0 - 93.2 - 94.1 - - 87.3 -
Ours 85.2 91.0 91.3 61.0 92.9 90.3 76.0 87.7 84.4

Table 6: The accuracy of the teacher models on dev set of the GLUE benchmark. The teacher model
of MobileBERT is IB-BERTLARGE which reaches the similar accuracy as original BERTLARGE.

A.3 INFERENCE AND FLOPS SETUP

Following Sun et al. (2019); Wang et al. (2020b), the inference time is evaluated on QNLI training
set with the batch size of 128 and the maximum sequence length of 128. The numbers reported
in Table 2 are the average of 100 batches on Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz with
12 cores. Following Clark et al. (2019), the inference FLOPs are calcuated with single length-128
input.

A.4 TWO-STAGE DISTILLATION

Teacher Model (Pre-trained) Student Model (Pre-trained)

Teacher Model (Fine-tuned) Student Model (Fine-tuned)

Knowledge distillation

Knowledge distillation

fine-tune fine-tune

Pre-training Corpus

Downstream task

Figure 4: The pipeline of two-stage distillation.

Two-stage distillation means applying knowledge distillation in both the pre-training and the fine-
tuning stage. Previous methods (Song et al., 2020; Sanh et al., 2019; Jiao et al., 2019; Gordon et al.,
2020) have proved that using two-stage distillation is superior to the single-stage distillation. The
pipeline of two-stage distillation is shown in Fig. 4. The procedure of two-stage distillation can be
summarized as follows:

1. Pre-train the teacher model on the pre-training corpus.
2. Pre-train the light-weight student model with knowledge distillation from the pre-trained

teacher model in step 1.
3. Fine-tune the pre-trained teacher model in step 1 on the downstream task.
4. Fine-tune the pre-trained student model in step 2 with knowledge distillation from the fine-

tuned teacher model in step 3 on the target downstream task.

To simplify our expression, we denote the parameter of the student and the teacher model as θS and
θT respectively. We adopt a general formulation for knowledge distillation in both stages:

L(x, y; θS , θT ) =
{X ,Y}∑
(x,y)

(1− λ) · LMLE(x, y; θS) + λ · LKL(f(x; θT ), f(x; θS)), (2)

where LMLE is the maximal likelihood loss of the student model θS over the training corpus (X ,Y)
(i.e., masked language model loss on the pre-training stage or classification/regression loss on the
fine-tuning stage), and LKL is the KL divergence between the predicted probability distribution
f(x; θT ) of the teacher model θT and the distribution f(x; θS) of the student model θS . λ is a
hyper-parameter to trade off LMLE and LKL, and is set as 0.5 in our experiments. There are other
advanced distillation techniques (e.g., embedding distillation or attention distillation) but here we
only consider prediction layer distillation.
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A.5 OTHER DESIGN CHOICES IN NAS-BERT

Why dividing the model into N(= 4) blocks? If N is small, the search space for each block
will be huge (e.g., CL possible architectures when N = 1) and the training is costly. If N is large,
candidate architectures in each block will be very limited (e.g., C architectures when N = L) and
cannot explore the potential of combinations of different operations. We set N = 4 for a trade-off
following Li et al. (2020a).

Why dividing the search space in each block into B(= 10) bins? If B is too large, there are
at least m ∗ B architectures during the whole process of supernet training. The amortized training
time of each architecture can be insufficient, resulting in inaccurate evaluation and model selection
as shown in Section 4.3. If B is very small, we cannot get various architectures at the end of the
training. Consequently, we set B = 10 for the trade-off.

Why conducting progressive shrinking untilm(= 10) architectures is reached? As introduced
in Section 3.3, we have (m ∗ B)N possible combinations to build the lookup table LTarch. When
m = 10, the table has 108 architectures for the selection, which is enough to select models under
diverse requirements. If m is too large, storing the big table LTarch with so many items ((m ∗B)N )
is costly and the evaluation cost in Section 3.3 will increase exponentially.

Is the hidden size transformation module in Fig. 2 retained in the final model? The answer is
No. In the final derived architecture, we re-train the architecture by two-stage distillation without
adding a hidden size transformation module because the architecture does not need to match the
hidden size to the one in the teacher model. However, there may be hidden size mismatch in the
architecture itself due to the design of blocks, and we simply add an additional linear layer to handle
it.

How to decide the embedding layer on the model selection stage? In order to save computing
resources, we do not search the width of the embedding layer in NAS-BERT. We manually design
the embedding layer for the final derived architecture according to the requirement of compressed
model size: 1) <10M, WE=64, 2) <20M, WE=128, 3) <35M, WE=256, 4) <50M, WE=384 and
5) >50M, WE=512, where WE is the width of the embedding layer. For example, we choose the
embedding layer with hidden size 512 when that target model size is required to be larger than 50M.

A.6 SEARCHED ARCHITECTURES BY NAS-BERT

Our NAS-BERT can generate different compressed models given specific constraints, as described
in Section 3.3. Besides the several NAS-BERT models we evaluate in Table 2, we further select
architectures with various sizes, from 5M to 60M with 5M interval, yielding totally 12 different
architectures with different sizes. We present the architectures in the below figures (Figure (a)∼(l)).
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(a) 60M (b) 55M

17



Under review as a conference paper at ICLR 2021

(c) 50M (d) 45M
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(e) 40M (f) 35M
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(g) 30M (h) 25M
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(i) 20M (j) 15M
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(k) 10M (l) 5M
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