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Abstract

In this work, we examine the impact of inter-patch dependencies in the decoder of1

masked autoencoders (MAE) on representation learning. We decompose the decod-2

ing mechanism for masked reconstruction into self-attention between mask tokens3

and cross-attention between masked and visible tokens. Our findings reveal that4

MAE reconstructs coherent images from visible patches not through interactions5

between patches in the decoder but by learning a global representation within the6

encoder. This discovery leads us to propose a simple visual pretraining framework:7

cross-attention masked autoencoders (CrossMAE). This framework employs only8

cross-attention in the decoder to independently read out reconstructions for a small9

subset of masked patches from encoder outputs, yet it achieves comparable or10

superior performance to traditional MAE across models ranging from ViT-S to11

ViT-H. By its design, CrossMAE challenges the necessity of interaction between12

mask tokens for effective masked pretraining. Code is available here.13

1 Introduction14

Masked image modeling [46, 30, 61, 4] has emerged as a pivotal unsupervised learning technique15

in computer vision. One such recent work following this paradigm is masked autoencoders (MAE):16

given only a small, random subset of visible image patches, the model is tasked to reconstruct the17

missing pixels. By operating mostly on this small subset of visible tokens, MAE can efficiently18

pre-train high-capacity models on large-scale vision datasets, demonstrating impressive results on a19

wide array of downstream tasks [33, 38, 49].20

The MAE framework employs self-attention across the entire model for self-supervised reconstruction21

tasks. In this setup, both masked and visible tokens engage in self-attention, not just with each other22

but also with themselves, aiming to generate a holistic and context-aware representation. However,23

the masked tokens inherently lack information. Intuitively, facilitating information exchange among24

adjacent masked tokens should enable the model to synthesize a more coherent image, thereby25

accomplishing the task of masked reconstruction and improving representation learning. A question26

arises, though: Is this truly the case?27

We decompose the decoding process of each mask token into two parallel components: self-attention28

with other mask tokens, as well as cross-attention to the encoded visible tokens. If MAE relies on29

the self-attention with other mask tokens, its average should be on par with the cross-attention. Yet,30

the quantitative comparison in Figure 1.(b) shows the magnitude of mask token-to-visible token31

cross-attention (1.42) in the MAE decoder evaluated over the entire ImageNet validation set far32

exceeds that of mask token-to-mask token self-attention (0.39).33

This initial observation prompts two questions: 1) Is the self-attention mechanism among mask34

tokens in the decoder necessary for effective representation learning? 2) If not, can each patch be35
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Figure 1: Method Overview. (A) Masked autoencoder (MAE) starts by masking random patches of the input
image. (B) To reconstruct a mask token (marked by the blue star), MAE attends to both the masked tokens
(B.Left) and the visible tokens (B.Right). A quantitative comparison over the ImageNet validation set shows
that the masked tokens in MAE disproportionally attend to the visible tokens (1.42 vs 0.39), questioning the
necessity of attention within mask tokens. (C) We propose CrossMAE, the masked patches are reconstructed
from only the cross attention between the masked tokens and the visible tokens. Surprisingly, CrossMAE attains
the same or better performance than MAE on ImageNet classification and COCO instance segmentation.

Figure 2: Example reconstructions of ImageNet validation images. For each set of 5 images, from left to right,
are the original image, masked image with a mask ratio of 75%, MAE [30], CrossMAE (trained to reconstruct
25% of image tokens, or 1/3 of the mask tokens), and CrossMAE (trained to reconstruct all masked tokens).
Since CrossMAE does not reconstruct them, all model outputs have the visible patches overlaid. Intriguingly,
CrossMAE, when trained for partial reconstruction, can decode all mask tokens in one forward pass (shown
above), indicating that the encoder rather than the decoder effectively captures global image information in
its output tokens. Its comparable reconstruction quality to full-image-trained models suggests that full-image
reconstruction might not be essential for effective representation learning.

independently read out from the encoder output, allowing the reconstruction of only a small subset of36

masked patches, which in turn, accelerates the pretraining without performance degradation?37

In addressing these questions, we introduce CrossMAE, which diverges from MAE in three ways:38

1. Cross-attention for decoding. Rather than passing a concatenation of mask and visible39

tokens to a self-attention decoder, CrossMAE uses mask tokens as queries to read out the masked40

reconstructions from the visible tokens in a cross-attention decoder. In this setting, mask tokens41

incorporate information from the visible tokens but do not interact with other mask tokens, thereby42

reducing the sequence length for the decoder and cutting down computational costs.43

2. Independent partial reconstruction. With self-attention removed, the decoding of each mask44

token, based on the encoded features from visible tokens, becomes conditionally independent. This45

enables the decoding of only a fraction of masked tokens rather than the entire image.46

3. Inter-block attention. Due to the separation of visible and mask tokens, we can use features47

from different encoder blocks for each decoder block. Empirically, we find solely relying on the last48
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encoder feature map for reconstruction, the design present in MAE, hurts feature learning. We propose49

a lightweight inter-block attention mechanism that allows the CrossMAE decoder to leverage a mix50

of low-level and high-level feature maps from the encoder, improving the learned representation.51

The analysis performed on CrossMAE led to a novel way to understand MAE. Even though the52

patches to be reconstructed are independently decoded, our findings demonstrate that coherent53

reconstruction for each masked patch can be independently read out from the encoder output, without54

any interactions among masked tokens in the decoder for consistency (Figure 2). Furthermore, the55

downstream performance of the model remains robust even without these interactions (Figure 1.(c),56

Tables 1 and 2). Both pieces of evidence confirm that the encoder’s output features already encapsulate57

the necessary global context for image reconstruction, while the decoder simply performs a readout58

from the encoder output to reconstruct the pixels at the location of each patch.59

To sum up, our main contributions are the following:60

1. We present a novel understanding of MAE. Our findings show that MAE reconstructs coherent61

images from visible patches not through interactions between patches to be reconstructed in the62

decoder but by learning a global representation within the encoder. This is evidenced by the model’s63

ability to generate coherent images and maintain robust downstream performance without such64

interactions, indicating the encoder effectively captures global image information.65

2. We advocate replacing self-attention layers with a simple cross-attention readout function.66

Given our discovery that the encoder in MAE already captures a comprehensive global representation,67

we propose replacing self-attention layers in the decoder with a more efficient information readout68

function. Specifically, we suggest utilizing cross-attention to aggregate the output tokens of the69

encoder into each input token within the decoder layers independently, thereby eliminating the need70

for token-to-token communication within the decoder.71

3. CrossMAE achieves comparable or superior performance with reduced computational72

costs in image classification and instance segmentation compared to MAE on vision transformer73

models ranging from ViT-S to ViT-H. Code is available here.74

2 Related Works75

2.1 Self-Supervised Learning76

In self-supervised representation learning, a model trains on a pretext task where the supervision77

comes from the input data itself without labels. Contrastive learning methods learn representations78

by contrasting positive and negative samples, such as SimCLR [11], CPC [44], MoCo [29, 12, 13],79

CLD [59] and SwAV [7]. Additionally, in BYOL [26], iBOT [65], DINO [8], DINOv2 [45], and80

MaskAlign [62] make a student model to imitate a teacher model without negative pairs.81

Generative modeling, focusing on acquiring a generative model capable of capturing the underlying82

data distribution, is an alternative method for self-supervised learning. VAE/GAN [35] merges the83

strengths of variational autoencoders and generative adversarial networks to acquire disentangled84

representations of data. PixelCNN, PixelVAE, and PixelTransformer [55, 27, 54] generate images85

pixel by pixel, taking into account the context of previously generated pixels. Masked modeling, a86

large subclass of generative modeling, is discussed in the following subsection. After the pre-training87

stage, these generative models can be finetuned for many downstream applications.88

2.2 Masked Modeling89

Masked modeling learns representations by reconstructing a masked portion of the input. Pioneering90

works in natural language processing (NLP) present various such pretraining objectives. BERT [19]91

and its extensions [41, 34] use a bidirectional transformer and present few-shot learning capabil-92

ities from masked language modeling. GPT [47, 48, 5], uses autoregressive, causal masking and93

demonstrates multi-task, few-shot, and in-context learning capabilities.94

Early works in computer vision, such as Stacked Denoising Autoencoders [57] and Context En-95

coder [46], investigated masked image modeling as a form of denoising or representation learning.96

Recently, with the widespread use of transformer [20] as a backbone vision architecture, where97

images are patchified and tokenized as sequences, researchers are interested in how to transfer the98

success in language sequence modeling to scale vision transformers. BEiT [3], MAE [30], and Sim-99

3

https://anonymous.4open.science/r/mae-cross-anon-11EB/README.md


Figure 3: MAE [30] concatenates all mask tokens with the visible patch features from a ViT encoder and passes
them to a decoder with self-attention blocks to reconstruct the original image. Patches that correspond to visible
tokens are then dropped, and an L2 loss is applied to the rest of the reconstruction as the pretraining objective.
CrossMAE instead uses cross-attention blocks in the decoder to reconstruct only a subset of the masked tokens.

MIM [61] are a few of the early works that explored BERT-style pretraining of vision transformers.100

Compared to works in NLP, both MAE and SimMIM [30, 61] find that a much higher mask ratio101

compared to works in NLP is necessary to learn good visual representation. Many recent works102

further extend masked pretraining to hierarchical architectures [61, 40] and study data the role of data103

augmentation [9, 21]. Many subsequent works present similar successes of masked pretraining for104

video [52, 58, 22, 28], language-vision and multi-modal pretraining [1, 39, 23] and for learning both105

good representations and reconstruction capabilities [60, 37].106

However, BERT-style pretraining requires heavy use of self-attention, which makes computational107

complexity scale as a polynomial of sequence length. PixelTransformer [54] and DiffMAE [60] both108

use cross-attention for masked image generation and representation learning. Siamese MAE [28]109

uses an asymmetric masking pattern and decodes frames of a video condition on an earlier frame. In110

these settings, all masked patches are reconstructed. In this work, we investigate if learning good111

features necessitates high reconstruction quality and if the entire image needs to be reconstructed to112

facilitate representation learning. PCAE [36] progressively discards redundant mask tokens through113

its network, leading to a few tokens for reconstruction. VideoMAEv2 [58] concatenates randomly114

sampled masked tokens with visible tokens and uses self-attention to reconstruct the masked patches.115

In comparison, we minimally modify MAE with a cross-attention-only decoder and masked tokens116

are decoded in a conditional independent way.117

2.3 Applications of Cross-Attention118

In addition to the prevalent use of self-attention in computer vision, cross-attention has shown to be a119

cost-effective way to perform pooling from a large set of visible tokens. Intuitively, cross-attention120

can be seen as a parametric form of pooling, which learnably weighs different features. Touvron121

et al. [53] replace mean pooling with cross-attention pooling and find improvement in ImageNet122

classification performance. Jaegle et al. [32] uses cross-attention to efficiently process large volumes123

of multi-modal data. Cross-attention is also widely used for object detection. Carion et al. [6] utilizes124

query tokens as placeholders for potential objects in the scene. Cheng et al. [16, 15] further extend125

this concept by introducing additional query tokens to specifically tackle object segmentation in126

addition to the query tokens for object detection. Distinct from thes prior works, we are interested the127

role of cross-anttention for representation learning in a self-supervised manner.128

3 CrossMAE129

We start with an overview of vanilla masked autoencoders in Section 3.1. Next, in Section 3.2, we130

introduce the use of cross-attention in place of self-attention in the decoder for testing the necessity131

of interaction between mask tokens for representation learning. In Section 3.3, we discuss how132

eliminating self-attention in the decoding process enables us to reconstruct only a subset of masked133

tokens, leading to faster pretraining. Finally, Section 3.4 presents our inter-block attention mechanism,134

which allows decoder blocks to leverage varied encoder features.135

3.1 Preliminaries: Masked Autoencoders136

Masked Autoencoders (MAE) [30] pretrain Vision Transformers (ViTs) [20]. Each image input is137

first patchified, and then a random subset of the patches is selected as the visible patches. As depicted138

in Figure 3, the visible patches, concatenated with a learnable class token [CLS], are subsequently139
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Figure 4: Overview of CrossMAE. (a) The vanilla version of CrossMAE uses the output of the last encoder
block as the keys and queries for cross-attention. The first decoder block takes the sum of mask tokens and their
corresponding positional embeddings as queries, and subsequent layers use the output of the previous decoder
block as queries to reconstruct the masked patches. (b) Unlike the decoder block in [56], the cross-attention
decoder block does not contain self-attention, decoupling the generation of different masked patches. (c)
CrossMAE’s decoder blocks can leverage low-level features for reconstruction via inter-block attention. It
weighs the intermediate feature maps, and the weighted sum of feature maps is used as the key and value for
each decoder block.

fed into the ViT encoder, which outputs a set of feature latents. The latent vectors, concatenated with140

the sum of the positional embeddings of the masked patches and the learnable mask token, are passed141

into the MAE decoder. The decoder blocks share the same architecture as the encoder blocks (i.e.,142

both are transformer blocks with self-attention layers). Note that the number of tokens fed into the143

decoder is the same length as the original input, and the decoding process assumes that the decoded144

tokens depend on both visible and masked tokens. Decoder outputs pass through a fully connected145

layer per patch for image reconstruction. After the reconstruction is generated, the loss is applied146

only to the masked positions, while the reconstructions for visible spatial locations are discarded.147

Recall in Sec. 1 we measure the mean attention value across all attention maps over the ImageNet148

validation set to study the properties of MAE. We grouped the attention values by cross-attention149

and self-attention between visible and masked tokens. We observed that in the decoding process150

of an MAE, mask tokens attend disproportionately to the class token and the visible tokens (see151

Figure 1.(b)). This motivates us to make design decisions and conduct experiments specifically to152

answer the following question: Can we simplify the decoding process by eliminating self-attention153

among masked tokens without compromising the model’s ability to generate coherent images and154

perform well on downstream tasks?155

3.2 Reconstruction with Cross-Attention156

To address this question, we substitute the self-attention mechanism in the decoder blocks with157

cross-attention, using it as a readout function to decode the latent embedding from the encoder to raw158

pixel values. Specifically, the decoder employs multi-head cross-attention where the queries are the159

output from previous decoder blocks (or the sum of position embedding of the masked patches and160

mask token for the first decoder block). The keys and values are from the encoded features.161

In the most basic CrossMAE, the output from the final encoder block is used as the key and value162

tokens for all layers of the decoder, as illustrated in Fig. 4(a). Further exploration in Sec.3.4 reveals163

that utilizing a weighted mean of selected encoder feature maps can be beneficial. The residual164

connections in each decoder block enable iterative refinement of decoded tokens as they progress165

through decoder blocks.166

Diverging from the original transformer architecture [56], our decoder omits the causal self-attention167

layer before the introduction of multi-head cross-attention. This elimination, coupled with the fact168

that layer normalization and residual connections are only applied along the feature axis but not169
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the token axis, enables the independent decoding of tokens. This design choice is evaluated in the170

ablation study section to determine its impact on performance.171

Given the disparity in the dimensions of the encoder and decoder, MAE adapts the visible features to172

the decoder’s latent space using an MLP. However, in CrossMAE, as encoder features are integrated173

at various decoder blocks, we embed the projection within the multi-head cross-attention module.174

Cross-attention layers serve as a readout function that decodes the global representation provided175

in the encoder’s output tokens to the pixel values within each patch to be reconstructed. However,176

CrossMAE does not restrict the architecture to a single cross-attention block. Instead, we stack177

multiple cross-attention decoder blocks in a manner more akin to the traditional transformer [56].178

3.3 Partial Reconstruction179

The fact that CrossMAE uses cross-attention rather than self-attention in the decoder blocks brings180

an additional benefit over the original MAE architecture. Recall that mask tokens are decoded inde-181

pendently and thus there is no exchange of information between them, to obtain the reconstructions182

at a specific spatial location, CrossMAE only needs to pass the corresponding mask tokens to the183

cross-attention decoder. This allows partial reconstruction in contrast to the original full-image184

reconstruction in the MAE architecture which needs to pass all the masked tokens as the input of the185

decoder blocks due to the existence of self-attention in the decoder blocks.186

To address the second question in Sec. 3.1, rather than decoding the reconstruction for all masked187

locations, we only compute the reconstruction on a random subset of the locations and apply the loss188

to the decoded locations. Specifically, we name the ratio of predicted tokens to all image tokens as189

prediction ratio (γ), and the mask ratio (p). Then the prediction ratio is bounded between γ ∈ (0, p].190

Because we are sampling within the masked tokens uniformly at random and the reconstruction191

loss is a mean square error on the reconstructed patches, the expected loss is the same as in MAE,192

while the variance is (p/γ) times larger than the variance in MAE. Empirically, we find that scaling193

the learning rate of MAE (β) to match the variance (i.e. setting the learning rate as γβ/p)) helps194

with model performance. Since cross-attention has linear complexity with respect to the number of195

masked tokens, this partial reconstruction paradigm decreases computation complexity. Empirically,196

we find that the quality of the learned representations is not compromised by this approach.197

3.4 Inter-block Attention198

MAE combines the feature of the last encoder block with mask tokens as the input to the self-attention199

decoder, which creates an information bottleneck by making early encoder features inaccessible200

for the decoder. In contrast, CrossMAE’s cross-attention decoder decouples queries from keys and201

values. This decoupling allows different cross-attention decoder blocks to take in feature maps from202

different encoder blocks. This added degree of flexibility comes with a design choice for selecting203

encoder features for each decoder block. One naive choice is to give the feature of the ith encoder204

block to the last ith decoder (e.g., feeding the feature of the first encoder to the last decoder), in a205

U-Net-like fashion. However, this assumes the decoder’s depth matches the depth of the encoder,206

which is not the case for MAE or CrossMAE.207

Instead of manually matching each decoder block with an encoder feature map, we make the selection208

learnable and propose inter-block attention for feature fusion for each decoder block (Figure 4(c)).209

Analogous to the inter-patch cross-attention that takes a weighted sum of the visible token embeddings210

across the patch dimensions to update the embeddings of masked tokens, inter-block attention takes211

a weighted sum of the visible token embeddings across different input blocks at the same spatial212

location to fuse the input features from multiple blocks into one feature map for each decoder block.213

Concretely, each decoder block takes a weighted linear combination of encoder feature maps {fi} as214

keys and values. Specifically, for each key/value token tk in decoder block k in a model with encoder215

depth n, we initialize a weight wk ∈ Rn ∼ N (0, 1/n). Then tk is defined as216

tk =

n∑
j=1

wk
j fj . (1)

217 In addition to feature maps from different encoder blocks, we also include the inputs to the first218

encoder block to allow the decoder to leverage more low-level information to reconstruct the original219
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Method ViT-S ViT-B ViT-L ViT-H

Supervised [50] 79.0 82.3 82.6 83.1
DINO [8] - 82.8 - -
MoCo v3 [14] 81.4 83.2 84.1 -
BEiT [3] - 83.2 85.2 -
MultiMAE [2] - 83.3 - -
MixedAE [9] - 83.5 - -
CIM [21] 81.6 83.3 - -
MAE [30] 78.9 83.3 85.4 85.8
CrossMAE (25%) 79.2 83.5 85.4 86.3
CrossMAE (75%) 79.3 83.7 85.4 -

Table 1: ImageNet-1K classification accuracy.
CrossMAE performs on par or better than MAE.
All experiments are run with 800 epochs. The best
results are in bold while the second best results are
underlined.

APbox APmask

Method ViT-B ViT-L ViT-B ViT-L

Supervised [38] 47.6 49.6 42.4 43.8
MoCo v3 [14] 47.9 49.3 42.7 44.0
BEiT [3] 49.8 53.3 44.4 47.1
MixedAE [9] 50.3 - 43.5 -
MAE [38] 51.2 54.6 45.5 48.6
CrossMAE 52.1 54.9 46.3 48.8

Table 2: COCO instance segmentation. Compared to
previous masked visual pretraining works, CrossMAE per-
forms favorably on object detection and instance segmen-
tation tasks.

image. We can select a subset of the feature maps from the encoder layers instead of all feature maps.220

This reduces the computation complexity of the system. We ablate this in Table 3d.221

We show that using the weighted features rather than simply using the features from the last block222

greatly improves the performance of CrossMAE. Intriguingly, in the process of learning to achieve223

better reconstructions, early decoder blocks tend to prioritize information from later encoder blocks,224

while later decoder blocks focus on earlier encoder block information, as demonstrated in Section 4.5.225

4 Experiments226

We perform self-supervised pretraining on ImageNet-1K, following MAE [30]’s hyperparameter227

settings, only modifying the learning rate and decoder depth. The hyperparameters were initially228

determined on ViT-Base and then directly applied to ViT-Small, ViT-Large, and ViT-Huge. Both229

CrossMAE and MAE are trained for 800 epochs. We provide implementation details and more230

experiments in the appendix.231

4.1 ImageNet Classification232

Setup. The model performance is evaluated with end-to-end fine-tuning, with top-1 accuracy used233

for comparison. Same as in Figure. 2, we compare two versions of CrossMAE: one with a prediction234

ratio of 25% (1/3 of the mask tokens) and another with 75% (all mask tokens). Both models are235

trained with a mask ratio of 75% and a decoder depth of 12.236

Results. As shown in Table 1, CrossMAE outperforms vanilla MAE using the same ViT-B encoder237

in terms of fine-tuning accuracy. This shows that replacing the self-attention with cross-attention238

does not degrade the downstream classification performance of the pre-trained model. Moreover,239

CrossMAE outperforms other self-supervised and masked image modeling baselines, e.g., DINO [8],240

MoCo v3 [14], BEiT [3], and MultiMAE [2].241

4.2 Object Detection and Instance Segmentation242

Setup. We additionally evaluate models pretrained with CrossMAE for object detection and instance243

segmentation, which require deeper spatial understanding than ImageNet classification. Specifically,244

we follow ViTDet [38], a method that leverages a Vision Transformer backbone for object detection245

and instance segmentation. We report box AP for object detection and mask AP for instance246

segmentation, following MAE [30]. We compare against supervised pre-training, MoCo-v3 [14],247

BEiT [4], and MAE [30].248

Results. As listed in Table 2, CrossMAE, with the default 75% prediction ratio, performs better249

compared to these baselines, including vanilla MAE. This suggests that similar to MAE, CrossMAE250

performance on ImageNet positively correlates with instance segmentation. Additionally, Cross-251

MAE’s downstream performance scales similarly to MAE as the model capacity increases from ViT-B252

to ViT-L. This observation also supports our hypothesis that partial reconstruction is suprisingly253

sufficient for learning dense visual representation.254
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Method Acc. (%)
MAE 83.0
CrossMAE 83.3
CrossMAE + Self-Attn 83.3

(a) Attention type in decoder
blocks. Adding back self-attention
between mask tokens does not im-
prove performance.

Mask Ratio Acc. (%)
65% 83.5
75% 83.3
85% 83.3

(b) Mask ratio. CrossMAE has
consistent performance across high
mask ratios.

Pred. Ratio Acc. (%)
15% 83.1
25% 83.2
75% 83.3

(c) Prediction ratio. CrossMAE
performs well even when only a
fraction of mask tokens are recon-
structed.

# Feature
Maps Fused

Acc.
(%)

1 82.9
3 83.3
6 83.5
12 83.3

(d) Inter-block attention. A com-
bination of six select encoder fea-
ture maps is best.

Decoder
Depth

Acc.
(%)

1 83.0
4 83.1
8 83.1
12 83.3

(e) Decoder depth. CrossMAE
performance scales with decoder
depth.

Image
Resolution

Acc.
(%)

224 83.2
448 84.6

(f) Input resolution. CrossMAE
scales to longer input sequences.

Table 3: Ablations on CrossMAE. We report fine-tuning performance on ImageNet-1K classification with 400
epochs (i.e., half of the full experiments) with ViT-B/16. MAE performance is reproduced using the official
MAE code. Underline indicates the default setting for CrossMAE. Bold indicates the best hyperparameter
among the tested ones. 1 feature map fused (row 1, Table 3(d)) indicates using only the feature from the last
encoder block. We use 25% prediction ratio for both settings in Table 3(f) to accelerate training.

4.3 Ablations255

Cross-Attention vs Self-Attention. As shown in Table 3a, CrossMAE, with its cross-attention-256

only decoder, outperforms vanilla MAE in downstream tasks as noted in Section 4.1. Additionally,257

combining cross-attention with self-attention does not enhance fine-tuning performance, indicating258

that cross-attention alone is adequate for effective representation learning.259

Mask Ratio and Prediction Ratio. In our experiments with different mask and prediction ratios (i.e.,260

the ratio of mask tokens to all tokens and the ratio of reconstructed tokens to all tokens, respectively)261

(see Table 3b and Table 3c), we found that our method’s performance is not significantly affected by262

variations in the number of masked tokens. Notably, CrossMAE effectively learns representations263

by reconstructing as few as 15% of tokens, compared to the 100% required by vanilla MAE, with264

minimal impact on downstream fine-tuning performance, which shows that partial reconstruction is265

sufficient for effective representation learning.266

Inter-block Attention. Our ablation study, detailed in Table 3d, explored the impact of varying the267

number of encoder feature maps in our inter-block attention mechanism. We found that using only268

the last feature map slightly lowers performance compared to using all 12. However, even a partial269

selection of feature maps improves CrossMAE’s performance, with the best results obtained using 6270

feature maps. This indicates that CrossMAE does not require all features for optimal performance.271

Decoder Depth. Table 3e shows that a 12-block decoder slightly improves performance compared272

to shallower ones. Remarkably, CrossMAE achieves similar results to MAE with just one decoder273

block, demonstrating its efficiency. Our experiments in Figure 7 that models with lower prediction274

ratios benefit more from deeper decoders.275

Input Resolution. We extend CrossMAE to longer token lengths by increasing the image resolution276

with constant patch size. Escalating the resolution from 224 to 448 increases the token length from277

197 to 785, challenging the scalability of current approaches. Thus, we opt for a CrossMAE variant278

with a 25% prediction ratio. In Table 3f, we observe that the classification accuracy positively279

correlates with the input resolution, indicating that CrossMAE can scale to long input sequences.280

4.4 Training Throughput and Memory Utilization281

Due to partial reconstruction and confining attention to between mask tokens and visible tokens,282

CrossMAE improves pre-training efficiency over MAE. Results in Table 10 show that the FLOPs283
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Figure 5: We visualize the output of each decoder block. (a-b) Different decoder blocks play different roles
in the reconstruction, with most details emerging at later decoder blocks, which confirms the motivation for
inter-block attention. (c) Visualizations of inter-block attention shows that different decoder blocks indeed
attend to feature from different encoder blocks, with later blocks focusing on earlier encoder features to
achieve reconstruction. The reconstructions are unnormalized w.r.t ground truth mean and std for each patch.

reduction does translate to an 1.54× training throughput and at least 50% reduction in GPU memory284

utilization compared to MAE.285

4.5 Visualizations286

Visualizing Per-block Reconstruction. Rather than only visualizing the final reconstruction, we287

have two key observations that allow us to visualize the work performed by each decoder block:288

1) Transformer blocks have skip connections from their inputs to outputs. 2) The final decoder289

block’s output goes through a linear reconstruction head to produce the reconstruction. As detailed in290

Appendix D, we can factor out each block’s contribution in the final reconstruction with linearity.291

This decomposition allows expressing the reconstruction as an image stack, where summing up all the292

levels gives us the final reconstruction. As shown in Figure 5 (a,b), we observe that different decoder293

blocks play different roles in reconstruction, with most details emerging at later decoder blocks. This294

justifies the need for low-level features from early encoder blocks, motivating inter-block attention.295

Visualizing Inter-block Attention Maps. As shown in the visualizations of the attention maps of296

inter-block attention in 5(c), CrossMAE naturally leverages the inter-block attention to allow the later297

decoder blocks to focus on earlier encoder features to achieve reconstruction and allow the earlier298

decoder blocks to focus on later encoder features. This underscores the necessity for different decoder299

blocks to attend to different encoder features, correlating with the performance improvements when300

inter-block attention is used.301

5 Discussion and Conclusion302

In our study, we present a novel understanding of MAE, demonstrating that coherent image recon-303

struction is achieved not through interactions between patches in the decoder but by learning a global304

representation within the encoder. Based on this insight, we propose replacing self-attention layers305

in the decoder with a simple readout function, specifically utilizing cross-attention to aggregate306

encoder outputs into each input token within the decoder layers independently. This approach, tested307

across models ranging from ViT-S to ViT-H, achieves comparable or better performance in image308

classification and instance segmentation with reduced computational requirements, showcasing the309

potential for more efficient and scalable visual pretraining methods. Our findings underscore the310

efficacy of the encoder’s global representation learning, paving the way for streamlined decoder311

architectures in future MAE implementations. CrossMAE’s efficiency and scalability demonstrate312

potential for large-scale visual pretraining, particularly on underutilized in-the-wild video datasets.313

However, our work has not yet explored scaling to models larger than ViT-H, the largest model314

examined in MAE, leaving this for future research.315
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A Implementation details483

A.1 Attention Calculation484

To compare the attention values for mask tokens in vanilla MAE (Figure 1), we trained a ViT-B/16485

MAE for 800 epochs using the default hyperparameters provided in [30]. For each image, we486

randomly generate a 75% binary mask (m) for all tokens, with mi = 1 representing a token being487

masked and mi = 0 otherwise. During the forward pass of the decoder, for each self-attention488

operation, the attention map is stored. This means that for the default MAE, a total of 8 attention489

maps, each with 16 attention heads are stored. Based on the mask pattern, we calculate the outer490

product (m ·m⊤) for the self-attention among mask tokens, and m · (1−m⊤) for the cross-attention491

from the mask token to the visible tokens. We then calculate the average across all feature maps492

and attention heads for self-attention and cross-attention to get the image average values. Lastly, we493

averaged across the entire ImageNet validation set to obtain the final values.494

A.2 Inter-Block Attention495

We tried a few implementations for inter-block attention (IBA) and found the following implementa-496

tion to be the fastest and most memory-efficient. In this implementation, we combine inter-block497

attention for all encoder layers as a single forward pass of a linear layer. For each decoder block,498

we index into the output tensor to extract the corresponding feature map, and a layer norm will be499

applied before the feature map is fed into the decoder block. Other alternatives we tried include 1)500

performing separate inter-block attentions before each decoder block, and 2) 1x1 convolution on the501

stacked encoder feature maps.502

In MAE, there exists a layer norm after the last encoder feature map before feeding into the decoder.503

In our implementation, we only add layer norm after inter-block attention. We find that adding504

an additional layer norm before inter-block attention to each encoder feature map does not lead to505

improvements in model performance but will significantly increase GPU memory usage.506

The pseudo-code of inter-block attention is the following:507

1 class InterBlockAttention ():508

2 def __init__(self , num_feat_maps , decoder_depth):509

3 self.linear = Linear(num_feat_maps , decoder_depth , bias=False)510

4 std_dev = 1. / sqrt(num_feat_maps)511

5 init.normal_(self.linear.weight , mean=0., std=std_dev)512

6513

7 def forward(self , feature_maps : list):514

8 """515

9 feature_maps: a list of length num_feat_maps , each with516

dimension517

10 Batch Size x Num. Tokens x Embedding Dim.518

11 """519

12 stacked_feature_maps = stack(feature_maps , dim=-1)520

13 return self.linear(stacked_feature_maps)521

Additionally, we further investigate the importance of using a cross-attention decoder, where each522

decoder block can use different feature maps from the encoder for decoding. In this experiment, we523

incorporated IBA into MAE, which uses only a self-attention decoder. Specifically, we concatenate524

the interblock attention features with the masked tokens. We then feed the combined features into525

MAE’s self-attention decoder. We pre-trained the model and finetuned it for Imagenet classification.526

The results are presented in Table. 4, where all models are pre-trained for 400 epochs. We observe that527

inter-block attention has negligible performance improvements for MAE, potentially because MAE528

only takes in one feature map in its decoder. In contrast, inter-block attention allows cross-attention529

layers in CrossMAE to attend to features from different encoder blocks, thanks to its decoupling of530

queries with keys and values.531

A.3 Ablation that Adds Self-Attention532

In Section 4.3 (a), we propose adding self-attention back to CrossMAE as an ablation. In that533

particular ablation study, we analyze the effect of self-attention between the masked tokens, which534
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Method Acc. (%)
MAE 83.0
MAE + IBA 83.0
CrossMAE (25%) 83.2
CrossMAE (75%) 83.3

Table 4: For MAE, inter-block attention has very small differences in terms of finetuning performance, potentially
due to the fact that MAE’s decoder only takes in one set of features.

can be used to improve the consistency for reconstruction. Specifically, we modify the formulation in535

the original transformer paper [56], where the mask/query tokens are first passed through a multi-536

head self-attention and a residual connection before being used in the multiheaded cross-attention537

with the features from the encoder. The primary difference with the vanilla transformer decoder538

implementation [56] is we do not perform casual masking in the multi-head self-attention. Please539

reference Figure 6 for a more visual presentation of the method.540

Figure 6: Modification for self-attention ablation

A.4 Ablation on Inter-block Attention541

In Table 3d, the following cases are considered. 1 feature map (row 1) does not use inter-block542

attention. Each decoder block only takes the last feature map from the encoder as the keys and values.543

For scenarios where more than one feature map is used, the output of the patch embedding (input to544

the ViT) is also used.545

In addition to the simple design of inter-block attention proposed above, we also experimented546

with a variant of inter-block attention by further parameterizing the attention with linear projections.547

Specifically, rather than directly performing weighted sum aggregation to form the features for each548

cross-attention layer in the decoder, we added a linear projection for each encoder feature before the549

feature aggregation. We denote this variant as CrossMAE+LP. As shown in the Table. 5 (with ViT-B550

pre-trained for 400 epochs, consistent with the setting in Table. 3), adding a linear projection slightly551

improves the performance. This indicates that it is possible to design variants of readout functions,552

such as through improved inter-block attention, to improve the feature quality of CrossMAE.553

Method Acc. (%)
CrossMAE 83.3
CrossMAE + LP 83.5

Table 5: Improving inter-block attention by adding linear projections to the input features. The performance
gain indicates that it is possible to design variants of readout functions to improve CrossMAE.
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A.5 Hyperparameters554

Pre-training: The default setting is in Table 6, which is consistent with the official MAE [30]555

implementation. As mentioned in Sec. 3.4, we scale the learning rate by the ratio between mask ratio556

(p) and prediction ratio (γ) to ensure the variance of the loss is consistent with [30]. Additionally, we557

use the linear learning rate scaling rule [25]. This results in lr = γ ∗ base_lr ∗ batchsize/(256 ∗ p).558

For Table 1, we use 12 decoder blocks, with mask ratio and prediction ratio both 75%, and interblock559

attention takes in all encoder feature maps. For the 400 epochs experiments in Table 2, we scale the560

warm-up epochs correspondingly. Other hyperparameters, such as decoder block width, are the same561

as MAE.562

Finetuning: We use the same hyperparameters as MAE finetuning. We use global average pooling563

for finetuning. In MAE, the layer norm for the last encoder feature map is removed for finetuning,564

which is consistent with our pretraining setup. Please refer to Table 7 for more detail.

Config Value
optimizer AdamW [43]

base learning rate 1.5e-4
learning rate schedule cosine decay [42]

batch size 4096
weight decay 0.05

optimizer momentum β1, β2 = 0.9, 0.95 [10]
warm up epoch [24] 20, 40

total epochs 400, 800

augmentation RandomResizedCrop,
RandomHorizontalFlip

Table 6: Pretraining Hyperparameters

565

A.6 Compute Infrastructure566

Each of the pretraining and finetuning experiments is run on 2 or 4 NVIDIA A100 80GB GPUs. The567

batch size per GPU is scaled accordingly and we use gradient accumulation to avoid out-of-memory568

errors. ViTDet [38] experiments use a single machine equipped with 8 NVIDIA A100 (80GB) GPUs.569

We copy the datasets to the shared memory on the machines to accelerate dataloading. We use570

FlashAttention-2 [18] to accelerate attention calculation.571

Config Value
optimizer AdamW

base learning rate 1e-3
learning rate schedule cosine decay

batch size 1024
weight decay 0.05

optimizer momentum β1, β2 = 0.9, 0.999
warm up epoch 5

total epochs 100 (B), 50 (L)
augmentation RandAug (9, 0.5) [17]

label smoothing [51] 0.1
mixup [64] 0.8
cutmix [63] 1.0

drop path [31] 0.1

Table 7: Finetuning Hyperparameters
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B Additional Experiments572

B.1 Linear Probe573

We provide linear probe comparisons (at 800 epochs) for ViT-Small and ViT-Base in Table. 8. For both574

of these experiments, we run CrossMAE with a prediction ratio of 75% (reconstruction of all masked575

patches). These results show that CrossMAE achieves slightly better linear probe performance than576

vanilla MAE.577

Method ViT-S ViT-B
MAE 49.7 65.1
CrossMAE 51.5 65.4

Table 8: Linear probe experiments of CrossMAE.

B.2 Masking Strategy578

Method Acc. (%)
Grid Masking 83.2
Random Masking 83.3

Table 9: Ablation of masking strategies.

Similar to MAE [30], we here ablate the masking pattern. Instead of random masking, we perform579

grid-wise sampling that “keeps one of every four patches” (see MAE Figure 6). The finetuning580

performance is reported in Table. 9 for ViT-B (at 400 epochs), which shows that grid masking does581

not lead to additional improvements in downstream performance.582

C Runtime and GPU Memory Comparisons with MAE583

Method Memory
(MB/GPU)

Runtime
(min/epoch)

Acc.
(%)

MAE OOM (>81920) 5.19∗ 83.3
CrossMAE 41177 3.38 83.5

Table 10: CrossMAE greatly improves the training
throughput and reduces the memory requirements,
lowering the barrier for masked pretraining. Statistics
are measured on 2 NVIDIA A100 80GB GPUs. Please
refer to Appendix C for comparison details. ∗: MAE’s
default batch size exceeds the capacity of 4 GPUs, re-
quiring gradient accumulation for runtime measurement.

Figure 7: We compare ViT-B which is pre-trained
for 800 epochs with different variants of Cross-
MAE v.s. MAE. For CrossMAE, we vary the pre-
diction ratio p and number of decoder blocks n,
and we denote each as (p, n). While all exper-
iments are run with inter-block attention, Cross-
MAE has lower decoder FLOPS than MAE [30]
and performs on par or better.

All experiments in Table 10 are conducted on a server with 4 NVIDIA A100 (80GB) GPUs, with the584

standard hyperparameters provided above for pretraining. NVLink is equipped across the GPUs. We585

use the default setting for MAE and set the global batch size to 4096. For CrossMAE, we also use586

the default setting with a prediction ratio 0.25, and this takes around 41GB memory per GPU without587

gradient accumulation (i.e., local batch size is set to 1024 samples per GPU). However, the same588

local batch size results in out-of-memory (OOM), which indicates that the total memory requirement589

is larger than the available memory for each GPU (80GB). To run MAE on same hardware, we590

thus employ gradient accumulation with a local batch size of 512 to maintain the global batch size.591

The benchmark runs each method and measures the average per epoch runtime as well as the max592

memory allocation for 10 training epochs. Our experiments in Figure 7 show that models with lower593

prediction ratios benefit more from deeper decoders. Our model performs on par or better when594

compared to MAE, with up to 3.7× lower decoder FLOPS.595
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D Visualizing the Contributions per Decoder Block596

We propose a more fine-grained visualization approach that allows us to precisely understand the597

effect and contribution of each decoder block.598

Two key observations enable per-block visualization: 1) Transformer blocks have residual connections599

from their inputs to outputs. Let fi be the output and gi(·) the residual function of decoder i, so600

fi = fi−1 + gi(fi−1). 2) The final decoder block’s output goes through a reconstruction head h,601

which is linear, consisting of a layer-norm and a linear layer, to produce the reconstruction. With602

D as the decoder depth, f0 the initial input, and y the final output, y is recursively defined as603

y = h(fD−1 + gD(fD−1)), which simplifies due to the linearity of h:604

y = h(f0 + g1(f0) + · · ·+ gD(fD−1))

= h(f0)︸ ︷︷ ︸
Pos Embed. + Mask Token

+h(g1(f0))︸ ︷︷ ︸
Block 1

+ · · ·+ h(gD(fD−1))︸ ︷︷ ︸
Block D

This decomposition allows us to express the reconstruction as an image stack, where the sum of all605

the levels gives us the final reconstruction. We present the visualization in Figure 5.606
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paper’s contributions and scope?610

Answer: [Yes]611

Justification: The claims in the abstract are justified in the method and the experiments612

section.613

Guidelines:614

• The answer NA means that the abstract and introduction do not include the claims615

made in the paper.616

• The abstract and/or introduction should clearly state the claims made, including the617

contributions made in the paper and important assumptions and limitations. A No or618

NA answer to this question will not be perceived well by the reviewers.619

• The claims made should match theoretical and experimental results, and reflect how620

much the results can be expected to generalize to other settings.621

• It is fine to include aspirational goals as motivation as long as it is clear that these goals622

are not attained by the paper.623

2. Limitations624

Question: Does the paper discuss the limitations of the work performed by the authors?625

Answer: [Yes]626

Justification: The limitations of the work have been discussed in the Discussion and Conclu-627

sion section.628

Guidelines:629

• The answer NA means that the paper has no limitation while the answer No means that630

the paper has limitations, but those are not discussed in the paper.631

• The authors are encouraged to create a separate "Limitations" section in their paper.632

• The paper should point out any strong assumptions and how robust the results are to633

violations of these assumptions (e.g., independence assumptions, noiseless settings,634

model well-specification, asymptotic approximations only holding locally). The authors635

should reflect on how these assumptions might be violated in practice and what the636

implications would be.637

• The authors should reflect on the scope of the claims made, e.g., if the approach was638

only tested on a few datasets or with a few runs. In general, empirical results often639
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• The authors should reflect on the factors that influence the performance of the approach.641
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• The authors should discuss the computational efficiency of the proposed algorithms646

and how they scale with dataset size.647

• If applicable, the authors should discuss possible limitations of their approach to648

address problems of privacy and fairness.649

• While the authors might fear that complete honesty about limitations might be used by650

reviewers as grounds for rejection, a worse outcome might be that reviewers discover651

limitations that aren’t acknowledged in the paper. The authors should use their best652

judgment and recognize that individual actions in favor of transparency play an impor-653

tant role in developing norms that preserve the integrity of the community. Reviewers654

will be specifically instructed to not penalize honesty concerning limitations.655

3. Theory Assumptions and Proofs656

Question: For each theoretical result, does the paper provide the full set of assumptions and657

a complete (and correct) proof?658
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Justification: This work offers observations and hypotheses justified with empirical results.660

Guidelines:661

• The answer NA means that the paper does not include theoretical results.662

• All the theorems, formulas, and proofs in the paper should be numbered and cross-663

referenced.664

• All assumptions should be clearly stated or referenced in the statement of any theorems.665

• The proofs can either appear in the main paper or the supplemental material, but if666

they appear in the supplemental material, the authors are encouraged to provide a short667

proof sketch to provide intuition.668

• Inversely, any informal proof provided in the core of the paper should be complemented669

by formal proofs provided in appendix or supplemental material.670

• Theorems and Lemmas that the proof relies upon should be properly referenced.671

4. Experimental Result Reproducibility672

Question: Does the paper fully disclose all the information needed to reproduce the main ex-673

perimental results of the paper to the extent that it affects the main claims and/or conclusions674

of the paper (regardless of whether the code and data are provided or not)?675

Answer: [Yes]676

Justification: Our code, which reproduces our results, is provided through an anonymous677
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Guidelines:679

• The answer NA means that the paper does not include experiments.680

• If the paper includes experiments, a No answer to this question will not be perceived681

well by the reviewers: Making the paper reproducible is important, regardless of682

whether the code and data are provided or not.683

• If the contribution is a dataset and/or model, the authors should describe the steps taken684

to make their results reproducible or verifiable.685

• Depending on the contribution, reproducibility can be accomplished in various ways.686

For example, if the contribution is a novel architecture, describing the architecture fully687

might suffice, or if the contribution is a specific model and empirical evaluation, it may688

be necessary to either make it possible for others to replicate the model with the same689

dataset, or provide access to the model. In general. releasing code and data is often690

one good way to accomplish this, but reproducibility can also be provided via detailed691

instructions for how to replicate the results, access to a hosted model (e.g., in the case692

of a large language model), releasing of a model checkpoint, or other means that are693

appropriate to the research performed.694

• While NeurIPS does not require releasing code, the conference does require all submis-695

sions to provide some reasonable avenue for reproducibility, which may depend on the696

nature of the contribution. For example697

(a) If the contribution is primarily a new algorithm, the paper should make it clear how698

to reproduce that algorithm.699

(b) If the contribution is primarily a new model architecture, the paper should describe700

the architecture clearly and fully.701

(c) If the contribution is a new model (e.g., a large language model), then there should702

either be a way to access this model for reproducing the results or a way to reproduce703

the model (e.g., with an open-source dataset or instructions for how to construct704

the dataset).705

(d) We recognize that reproducibility may be tricky in some cases, in which case706

authors are welcome to describe the particular way they provide for reproducibility.707

In the case of closed-source models, it may be that access to the model is limited in708

some way (e.g., to registered users), but it should be possible for other researchers709

to have some path to reproducing or verifying the results.710

5. Open access to data and code711
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Question: Does the paper provide open access to the data and code, with sufficient instruc-712

tions to faithfully reproduce the main experimental results, as described in supplemental713

material?714

Answer: [Yes]715

Justification: Our method is evaluated on open datasets that are publicly available.716
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• The answer NA means that paper does not include experiments requiring code.718

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/719

public/guides/CodeSubmissionPolicy) for more details.720

• While we encourage the release of code and data, we understand that this might not be721
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benchmark).724

• The instructions should contain the exact command and environment needed to run to725

reproduce the results. See the NeurIPS code and data submission guidelines (https:726

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.727

• The authors should provide instructions on data access and preparation, including how728

to access the raw data, preprocessed data, intermediate data, and generated data, etc.729

• The authors should provide scripts to reproduce all experimental results for the new730

proposed method and baselines. If only a subset of experiments are reproducible, they731

should state which ones are omitted from the script and why.732

• At submission time, to preserve anonymity, the authors should release anonymized733

versions (if applicable).734

• Providing as much information as possible in supplemental material (appended to the735

paper) is recommended, but including URLs to data and code is permitted.736

6. Experimental Setting/Details737
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the739

results?740

Answer: [Yes]741
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• The answer NA means that the paper does not include experiments.745

• The experimental setting should be presented in the core of the paper to a level of detail746

that is necessary to appreciate the results and make sense of them.747
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material.749

7. Experiment Statistical Significance750
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information about the statistical significance of the experiments?752

Answer: [No]753

Justification: Error bars are not reported because they would be too computationally expen-754

sive.755
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• The answer NA means that the paper does not include experiments.757

• The authors should answer "Yes" if the results are accompanied by error bars, confi-758

dence intervals, or statistical significance tests, at least for the experiments that support759

the main claims of the paper.760

• The factors of variability that the error bars are capturing should be clearly stated (for761

example, train/test split, initialization, random drawing of some parameter, or overall762

run with given experimental conditions).763
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• The method for calculating the error bars should be explained (closed form formula,764

call to a library function, bootstrap, etc.)765

• The assumptions made should be given (e.g., Normally distributed errors).766

• It should be clear whether the error bar is the standard deviation or the standard error767

of the mean.768

• It is OK to report 1-sigma error bars, but one should state it. The authors should769
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of Normality of errors is not verified.771

• For asymmetric distributions, the authors should be careful not to show in tables or772

figures symmetric error bars that would yield results that are out of range (e.g. negative773

error rates).774

• If error bars are reported in tables or plots, The authors should explain in the text how775

they were calculated and reference the corresponding figures or tables in the text.776

8. Experiments Compute Resources777

Question: For each experiment, does the paper provide sufficient information on the com-778

puter resources (type of compute workers, memory, time of execution) needed to reproduce779

the experiments?780

Answer: [Yes]781

Justification: We described the compute requirements in Appendix A.6. We do not use782

GPUs from a cloud provider.783

Guidelines:784

• The answer NA means that the paper does not include experiments.785

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,786

or cloud provider, including relevant memory and storage.787

• The paper should provide the amount of compute required for each of the individual788

experimental runs as well as estimate the total compute.789

• The paper should disclose whether the full research project required more compute790

than the experiments reported in the paper (e.g., preliminary or failed experiments that791

didn’t make it into the paper).792

9. Code Of Ethics793

Question: Does the research conducted in the paper conform, in every respect, with the794

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?795

Answer: [Yes]796

Justification: The research conforms to the NeurIPS Code of Ethics.797

Guidelines:798

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.799

• If the authors answer No, they should explain the special circumstances that require a800

deviation from the Code of Ethics.801

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-802

eration due to laws or regulations in their jurisdiction).803

10. Broader Impacts804

Question: Does the paper discuss both potential positive societal impacts and negative805

societal impacts of the work performed?806

Answer: [Yes]807

Justification: This paper aims to advance the field of self-supervised learning. Like other self-808

supervised learning methods, our work may have various societal implications. However,809

we do not believe any specific consequences need to be highlighted in this context.810
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• The answer NA means that there is no societal impact of the work performed.812

• If the authors answer NA or No, they should explain why their work has no societal813

impact or why the paper does not address societal impact.814
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• Examples of negative societal impacts include potential malicious or unintended uses815

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations816

(e.g., deployment of technologies that could make decisions that unfairly impact specific817

groups), privacy considerations, and security considerations.818

• The conference expects that many papers will be foundational research and not tied819

to particular applications, let alone deployments. However, if there is a direct path to820

any negative applications, the authors should point it out. For example, it is legitimate821

to point out that an improvement in the quality of generative models could be used to822

generate deepfakes for disinformation. On the other hand, it is not needed to point out823
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being used as intended and functioning correctly, harms that could arise when the827

technology is being used as intended but gives incorrect results, and harms following828

from (intentional or unintentional) misuse of the technology.829

• If there are negative societal impacts, the authors could also discuss possible mitigation830

strategies (e.g., gated release of models, providing defenses in addition to attacks,831

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from832

feedback over time, improving the efficiency and accessibility of ML).833

11. Safeguards834

Question: Does the paper describe safeguards that have been put in place for responsible835

release of data or models that have a high risk for misuse (e.g., pretrained language models,836

image generators, or scraped datasets)?837

Answer: [NA]838

Justification: The paper does not pose such risks.839
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• The answer NA means that the paper poses no such risks.841

• Released models that have a high risk for misuse or dual-use should be released with842

necessary safeguards to allow for controlled use of the model, for example by requiring843

that users adhere to usage guidelines or restrictions to access the model or implementing844

safety filters.845

• Datasets that have been scraped from the Internet could pose safety risks. The authors846

should describe how they avoided releasing unsafe images.847

• We recognize that providing effective safeguards is challenging, and many papers do848

not require this, but we encourage authors to take this into account and make a best849

faith effort.850

12. Licenses for existing assets851

Question: Are the creators or original owners of assets (e.g., code, data, models), used in852

the paper, properly credited and are the license and terms of use explicitly mentioned and853
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• For existing datasets that are re-packaged, both the original license and the license of869
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create an anonymized URL or include an anonymized zip file.886
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Justification: The paper does not involve crowdsourcing or research with human subjects.892

Guidelines:893

• The answer NA means that the paper does not involve crowdsourcing nor research with894

human subjects.895

• Including this information in the supplemental material is fine, but if the main contribu-896

tion of the paper involves human subjects, then as much detail as possible should be897

included in the main paper.898

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,899

or other labor should be paid at least the minimum wage in the country of the data900

collector.901

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human902

Subjects903

Question: Does the paper describe potential risks incurred by study participants, whether904

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)905

approvals (or an equivalent approval/review based on the requirements of your country or906

institution) were obtained?907

Answer: [NA]908

Justification: The paper does not involve crowdsourcing or research with human subjects.909

Guidelines:910

• The answer NA means that the paper does not involve crowdsourcing nor research with911

human subjects.912

• Depending on the country in which research is conducted, IRB approval (or equivalent)913

may be required for any human subjects research. If you obtained IRB approval, you914

should clearly state this in the paper.915

• We recognize that the procedures for this may vary significantly between institutions916

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the917

guidelines for their institution.918

• For initial submissions, do not include any information that would break anonymity (if919

applicable), such as the institution conducting the review.920

24


	Introduction
	Related Works
	Self-Supervised Learning
	Masked Modeling
	Applications of Cross-Attention

	CrossMAE
	Preliminaries: Masked Autoencoders
	Reconstruction with Cross-Attention
	Partial Reconstruction
	Inter-block Attention

	Experiments
	ImageNet Classification
	Object Detection and Instance Segmentation
	Ablations
	Training Throughput and Memory Utilization
	Visualizations

	Discussion and Conclusion
	Implementation details
	Attention Calculation
	Inter-Block Attention
	Ablation that Adds Self-Attention
	Ablation on Inter-block Attention
	Hyperparameters
	Compute Infrastructure

	Additional Experiments
	Linear Probe
	Masking Strategy

	Runtime and GPU Memory Comparisons with MAE
	Visualizing the Contributions per Decoder Block

