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Abstract

Transformer-based genomic sequence-to-function models effectively capture long-
range genomic interactions but incur high computational costs due to the quadratic
complexity of their self-attention layers. In this work, we introduce FlashRNA,
which significantly improves computational and memory efficiency through
FlashAttention, advancements in model architecture, and optimized training setup.
FlashRNA achieves comparable or slightly improved predictive performance com-
pared to similar sized Borzoi or Flashzoi models, notably without depending on
pre-trained weights – a major limitation of Flashzoi. Remarkably, we trained
FlashRNA from scratch in one day on a single GPU, significantly accelerating
training and inference speed. These improvements can facilitate further develop-
ments in models for regulatory genomics by reducing computational cost. We
demonstrate this in two downstream applications: 1) we train a large ensemble of
16 FlashRNA models and distill them into a single model to improve performance
while maintaining efficiency, and 2) we fine-tune FlashRNA on three prediction
tasks – ChIP-seq, RNA half-life, and translation efficiency – achieving performance
matching or exceeding state-of-the-art task-specific models.

Github Code: https://github.com/deepgenomics/flashrna

1 Introduction

Recent transformer-based genomic models, like Enformer [2], Borzoi [14], BigRNA [4], and Al-
phaGenome [3], can accurately capture long-range cis-regulatory interactions across diverse cell
states. Often classified as sequence-to-function models, they are trained to predict functional genome
tracks from various experimental modalities measuring gene expression and epigenetic states, given
an input genomic sequence. Unlike another class of genomic models that are trained on unlabeled
sequences, sequence-to-function models can predict cell-state and disease specific effects of variants,
along with their molecular mechanisms. Notably, they have shown potential as foundational models
for DNA and RNA regulation, achieving state-of-the-art performance across a wide range of down-
stream applications, from variant effect predictions, fine-tuning to capture cell-state-specific context
of interest [13, 8, 19], and therapeutics design [4].

However, many promising applications of these genomic models rely on large-scale inference,
such as interpreting variant effects genome-wide or designing nucleic acid sequences. One crucial
challenge for these applications is the substantial computational cost, primarily due to the quadratic
complexity of self-attention layers. Previous efforts to mitigate this issue with efficient self-attention
mechanisms, such as FlashAttention [7, 6] or state-space models [9, 16], have resulted in either
degraded performance on variant effect predictions[12] or dependency on pre-trained weights from
existing models to work effectively [11].
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In this work, we introduce FlashRNA, a novel approach to significantly improve computational and
memory efficiency of genomic foundation models by leveraging FlashAttention, alongside improve-
ments in model architecture and training strategy. Unlike prior approaches, FlashRNA does not
depend on pre-trained weights [10], while preserving or improving downstream predictive perfor-
mance. Remarkably, when matching parameters to Borzoi, we trained FlashRNA from scratch in just
one day using a single Nvidia H100 GPU – a substantial improvement compared to 25 days with two
A100 40GB GPUs for training Borzoi [14]. Furthermore, the reduction in computational requirements
enables further improvements in scale and performance given an equivalent computational budget:
we demonstrate this with an ensemble of 16 FlashRNA models and distillation of this ensemble into a
single model that retains the ensemble’s predictive performance.

Figure 1: Computational and memory efficiencies of FlashRNA and Borzoi. (Left) examples per
second during forward pass and combined forward-backward passes. (Right) the maximum batch size
during training and maximum input length during inference relative to training context size before
running out of memory. All measurements were made on a single Nvidia H100 GPU.

2 Methods

Our primary contribution is demonstrating that FlashAttention combined with Rotary Positional En-
coding (RoPE) [17] can effectively replace computationally intensive self-attention layers of existing
transformer-based sequence-to-function models without compromising performance or requiring
pre-trained weights. Models like Borzoi and Enformer employ a hand-crafted relative positional
encoding (PE), which incorporates domain-specific inductive biases such as decaying attention with
distance. However, this custom positional encoding is incompatible with FlashAttention, necessitating
an alternative. While RoPE is a broadly adopted relative PE compatible with FlashAttention, previous
attempts resulted in inferior performance when training from scratch [10].

To compensate for losing the inductive biases from a domain-specific custom PE, FlashRNA employs
aggressive data augmentation (shift margins up to 1,024 bases), higher dropout rates (0.3), and
increased weight decay (0.1). Additionally, building upon the widely used U-Net based architecture
used across many models, FlashRNA introduces the following improvements: GELU activation [10]
replacing ReLU, Group Normalization [18] replacing Batch Normalization, and removing additive
biases in linear layers.

In addition to improvements in the model architecture, we hypothesize that much of the information
from CAGE and ChIP-seq tracks can be implicitly captured by RNA-seq, DNase-seq, and ATAC-
seq alone. We trained FlashRNA exclusively on RNA-seq, DNase-seq, and ATAC-seq, which
significantly reduced computational demands and improved convergence speed. The incorporation of
FlashAttention also enabled substantially larger batch sizes and allowed the use of higher learning
rates, further improving training efficiency and stability.

3 Results

We trained FlashRNA on a single Nvidia H100 GPU using the AdamW optimizer [15]. Compared
to Borzoi, a similarly-sized FlashRNA model achieved 6.1x faster inference and 2.4x faster back-
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propagation, while handling 4.0x larger batch sizes and 3.5x longer sequences at inference (enabling
context size up to 3.6 million base pairs), as shown in Figure 1. These speedups, in addition to other
training improvements, enabled training FlashRNA from scratch in just one day on a single H100
GPU, compared to approximately 56 GPU-days required by Borzoi on an A100 40GB GPU.

3.1 FlashRNA’s efficiency does not come at the cost of performance on key evaluation tasks

We evaluated FlashRNA on: 1) predicting coverage on held-out genomic intervals and 2) predicting
variant effects on fine-mapped GTEx eQTLs [5]. On the task of predicting held-out test sets,
FlashRNA demonstrated comparable predictive performance for RNA-seq, ATAC-seq, and DNase-seq
tracks across four model replicates (Table 1). Similar results were also observed for predicting effect
size on fine-mapped GTEx eQTLs, with FlashRNA and Borzoi achieving Spearman correlations of
0.406 versus 0.399, respectively (Table 2 right). Notably, excluding ChIP-seq and CAGE-seq tracks
accelerated training without degrading performance on either held-out correlations or eQTL effect
size predictions, suggesting these tracks provide minimal additional predictive value for these tasks.
When predictions for these excluded tracks are needed, we demonstrate in Section 3.3 that pre-trained
FlashRNA can be efficiently adapted through fine-tuning.

Table 1: Predicting held-out tracks (the same ‘fold3’ test set used in Borzoi). Inverse normalization
transformations, as described in [14], were applied to the model predictions and the target tracks
before computing correlations. Pearson correlations for each of the four model replicates and their
mean are shown.

Pearson R on test set

RNA-seq DNase-seq ATAC-seq

Borzoi 0.654 (±0.003) 0.820 (±0.003) 0.643 (±0.015)
Flashzoi 0.658 (±0.003) 0.833 (±0.001) 0.630 (±0.021)
FlashRNA 0.647 (±0.002) 0.845 (±0.001) 0.711 (±0.001)

Table 2: Predicting eQTL effect sizes. We used the same ‘logSED’ score used in Borzoi. Pearson
correlations for each of the four model replicates and their mean are shown.

GTEx eQTL
Spearman ρ

Borzoi 0.399 (±0.003)
Flashzoi 0.398 (±0.012)
FlashRNA 0.406 (±0.005)

3.2 Distillation from a large ensemble improves performance while retaining efficiency

Leveraging FlashRNA’s computational efficiency, we trained a large ensemble of 16 models and
investigated how performance scales with ensemble size. Model ensembling demonstrated substantial
performance gains on the GTEx eQTL effect size prediction. Single FlashRNA models achieved a
Spearman correlation of 0.406 while ensembles of 4 and 16 models achieved substantially higher
correlations of 0.440 and 0.454, respectively – representing a 12% improvement from single to the
full ensemble (Figure 2).

To maintain the performance benefit of ensembling while preserving computational efficiency of a
single model, we distilled the 16-model ensemble into a single model. Results are summarized in
Figure 2. The distilled model achieved a Spearman correlation of 0.452, matching the full ensemble’s
performance while dramatically improving inference speed. This distillation approach significantly
reduces the performance gap between FlashRNA and the current state-of-the-art model, AlphaGenome.
Notably, FlashRNA achieves this competitive performance using less than half the parameters and
training on standard GPU without sophisticated sequence parallelization – making it a more accessible
option to researchers without specialized infrastructure.
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Figure 2: Spearman correlations of GTEx eQTL effect size predictions comparing FlashRNA,
Flashzoi, Borzoi, and AlphaGenome. Single and an ensemble of four models are shown for FlashRNA,
Flashzoi, Borzoi. For FlashRNA, we additionally trained an even large ensemble of 16 models and
distilled it into a single model, retaining the ensemble’s performance. AlphaGenome’s distilled model
is included for comparison but is only accessible via its API.

3.3 FlashRNA enables efficient fine-tuning on downstream tasks

There has been significant interest in applying large genomic sequence-to-function models to a wide
range of downstream tasks. While approaches like parameter-efficient fine-tuning have been proposed
to reduce computational costs, full fine-tuning has been shown to achieve the best performance [19].
Here, we leverage FlashRNA’s efficiency to fine-tune it on three prediction tasks.

ChIP-seq. While FlashRNA was trained without ChIP-seq tracks for computational efficiency
and faster convergence, we show it can be effectively adapted to predict transcription factor (TF)
binding sites and histone modifications through fine-tuning. We add a ChIP-seq prediction head to
the pre-trained FlashRNA and compare two fine-tuning approaches: (1) training only the prediction
head while freezing the rest of the model, and (2) full fine-tuning.

After only 3 epochs of training, both approaches achieve competitive performance (Table 3). Full
fine-tuning reaches near-parity with Borzoi (Pearson correlation of 0.593 vs. 0.595) while head-only
fine-tuning achieves correlation of 0.574, consistent with the previous findings that full fine-tuning
often achieves the best performance [19]. These results demonstrate that FlashRNA’s learned
representations can be effectively adapted to predict new regulatory genomics tracks, despite their
absence during pre-training.

Table 3: Fine-tuning performance on ChIP-seq tracks from the Borzoi dataset. Pearson correlations
were computed on held-out tracks (the same ‘fold3’ test set used in Borzoi). Values show mean
correlations and standard deviations across four model replicates.

Borzoi FlashRNA (head only) FlashRNA (full)

Pearson R 0.595 (±0.001) 0.574 (±0.001) 0.593 (±0.001)

RNA half-life and translation efficiency. Through pre-training on RNA-seq data, FlashRNA has
likely learned latent representations relevant to various RNA properties. Here, we demonstrate that
FlashRNA can be fine-tuned to predict RNA half-life and translation efficiency, achieving competitive
performance with current state-of-the-art methods.
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We fine-tune FlashRNA using the same datasets as Saluki [1] for RNA half-life prediction and RiboNN
[20] for translation efficiency prediction, following their respective training and evaluation setups.
Notably, while both Saluki and RiboNN rely on additional genomic annotations1 to boost performance,
FlashRNA uses only RNA sequences. For each task, we add a task-specific head which takes pooling
embeddings from FlashRNA as input.

As shown in Table 4, FlashRNA achieves performance comparable to both Saluki and RiboNN, despite
using only sequences as input. Notably, FlashRNA significantly outperforms sequence-only versions
of these models.

Table 4: Performance on RNA property prediction tasks. Pearson correlation coefficients on human
held-out test sets are reported. Models marked with ‘(+annotations)’ use sequence plus genomic
annotations, while unmarked models use sequence only.

RNA half-life

Saluki 0.62
Saluki (+annotations) 0.77
FlashRNA 0.81

Translation efficiency

RiboNN 0.66
RiboNN (+annotations) 0.71
FlashRNA 0.73

4 Discussion

In this work, we demonstrated how FlashRNA significantly enhances the computational efficiency
of transformer-based sequence-to-function models. By leveraging FlashAttention and incorporating
additional improvements in model architecture and training setup, FlashRNA achieves better perfor-
mance on a fixed compute budget. Our results are consistent with recent findings in deep learning,
where more general and computationally efficient architectures can replace specialized ones with
domain-specific biases through data augmentation and regularization2.

The improved computational efficiency of FlashRNA enables many interesting future research
directions, both for groups with limited computational resources and for those with greater resources
who want to explore more broadly and iterate more quickly. These include exploring longer genomic
contexts, improving resolution of model outputs, and applying the model to broader downstream
tasks. By significantly reducing the computational barriers to training and inference, our work aims
to facilitate further advancements in the field of modeling regulatory genomics.

1These include annotations for splice sites, codon reading frames, and UTR alignments.
2For instance, recent gain in popularity of general transformer-based models where domain inductive bias is

incorporated through data augmentation and training setup, compared to models with specialized equivariant
architectures.
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