
Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

META-LEARNING USING PRIVILEGED INFORMATION
FOR DYNAMICS

Ben Day, Alexander Norcliffe, Jacob Moss & Pietro Liò
Department of Computer Science
University of Cambridge
Cambridge, United Kingdom
{bjd39, alin2, jm2311, pl219}@cam.ac.uk

ABSTRACT

Neural ODE Processes approach the problem of meta-learning for dynamics using
a latent variable model, which permits a flexible aggregation of contextual infor-
mation. This flexibility is inherited from the Neural Process framework and allows
the model to aggregate sets of context observations of arbitrary size into a fixed-
length representation. In the physical sciences, we often have access to structured
knowledge in addition to raw observations of a system, such as the value of a con-
served quantity or a description of an understood component. Taking advantage
of the aggregation flexibility, we extend the Neural ODE Process model to use
additional information within the Learning Using Privileged Information setting,
and we validate our extension with experiments showing improved accuracy and
calibration on simulated dynamics tasks.

1 INTRODUCTION & BACKGROUND

Learning using privileged information (LUPI) is a machine learning paradigm where we have access
to additional information during training that may not be available at test time (Vapnik & Vashist,
2009; Vapnik & Izmailov, 2015). Typically this information is higher quality in some way, often
it conveys some expert understanding we have about the system being modelled. To paraphrase an
example of Vapnik & Vashist (2009), we might have access to extensive patient records associated
with biopsy scans in a training set but wish to deploy our trained model ‘on-the-front-line’ where
records are incomplete or unavailable. We would like to improve the model by using this information
without coming to rely on it; to provide an accurate prognosis without human help. An analogy can
be made to the role of a teacher. Besides providing corrections, skilled teachers accelerate the
understanding of their students through explanations and insights. This is important in the context
of learning about physics, where a new perspective often provides traction with difficult problems.

In this work we propose a method for conveying such insight in the case of modelling dynamics.
Our main contribution is a new training-mode architecture that allows privileged information to
guide learning, that results in more accurate predictions and better calibrated uncertainty estimation.

Neural Processes. Deep neural networks are excellent function approximators that are cheap to
evaluate and straightforward to train, but typically only provide point estimates and require retraining
to make use of information gained at test time. However, meta-learning (occasionally, ‘learning-to-
learn’) with neural networks is enjoying a resurgence in popularity as an answer to the serialised
learning question, and has been applied in a range of domains (Hospedales et al., 2020). Gaussian
Processes have markedly different advantages, handling uncertainty in a principled way and adapting
to new data at test time (Rasmussen, 2003), at the cost of computational expense. Neural Processes
(NP) aim to combine the best of both by learning to model a distribution over functions, framing the
meta-learning problem as a latent variable model (Garnelo et al., 2018a;b).

Neural ODEs. Dynamical systems are a fundamental object of study in physics and are often most
elegantly described using ordinary differential equations (ODE). Neural ODEs (NODE) (Chen et al.,
2018) combine the representation learning capabilities of neural networks with an ODE structure to
allow ODEs to be learned directly from observational data. Follow-up works have made improve-
ments to expressivity (Dupont et al., 2019), investigated time series modelling (Kidger et al., 2020;

1

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

Figure 1: Comparing relevant abilities of NODEs, NPs, and NDPs. (a) NODEs explicitly learn
dynamics, and can extrapolate well in time as a result, but cannot adapt to new information without
retraining. (b) NPs offer uncertainty estimation and can adapt to new information but do not have a
principled way to extrapolate in time. (c) NDPs combine these abilities in a single model.

Norcliffe et al., 2020), and tackled adaptability and uncertainty estimation using Bayesian neural
networks (Çağatay Yıldız et al., 2019).

Neural ODE Processes. An alternative to the work of Çağatay Yıldız et al. (2019) for modelling
uncertainty in dynamics is the Neural ODE Process (NDP) which uses a neural process derived
formulation to learn a distribution over dynamics (Norcliffe et al., 2021). These models are able
to fast-adapt to new data points at test time, unlike vanilla-NODEs, whilst inheriting superior time-
series modelling as compared to vanilla-NPs. The key components of the NDP are an observation
encoder, representation aggregator, latent ODE, and decoder.

Learning using privileged information. The LUPI framework, introduced by Vapnik & Vashist
(2009) and expanded by Vapnik & Izmailov (2015), formalises a learning setup in which a teacher
is able to provide the student learner with structured explanations, comments, comparisons, etc.
beyond direct supervision. Hernández-Lobato et al. (2014) show that privileged information can be
used effectively by GP classifiers, whilst Lambert et al. (2018) apply LUPI to deep neural networks
by setting the dropout rate to be a function of the privileged information.

2 LEARNING USING PRIVILEGED INFORMATION WITH NDPS

Problem statement. Formally, our setting closely matches that of the NDP: we consider modelling
random functions over time, F : T → Y , where F has distribution D induced by a second distribu-
tion, D′, over some underlying dynamics1. We are provided with a set of labelled samples from an
instantiation F of F referred to as the context set, indexed by IC and denoted C = {(tCi ,yC

i)}i∈IC .
The task is to predict the values {yT

j }j∈IT taken by F at a set of target times {tTj}j∈IT , indexed by
IT, which together form the target set, T = {(tTj ,yT

j)}j∈IT .

To ensure the model is able to learn the underlying distribution over dynamics, and how this mani-
fests as a distribution over functions, training assumes access to a set of time-series sampled from F .
Diverging from the NDP setting, during training the model also has access to privileged information
relating to each instantiation F of F , πF . The privileged information could be some physical prop-
erty or conserved quantity of the system, such as the spring stiffness, as in Figure 2. At test time no
privileged information is provided and there is no difference from the vanilla-NDP setting.

Model overview. The differences introduced by the LUPI framework affect the training proce-
dure, introducing a second source of information with which to form the global latent variable z.
To incorporate the privileged information within the LUPI-NDP we introduce a second encoder to
produce a representation rπ = fπe (π), where fπe is parametrised as a fully-connected neural net-
work. During training, an additional aggregation step is introduced to combine the observations
derived representation, ro, with that of the privileged information to form a global representation,
rtrain = g(ro, rπ). Practically, as the test-time global representation is that formed using only the
observations, i.e. rtest = ro, we choose to parametrise g as a residual network (He et al., 2016), that
is, g(ro, rπ) = ro+g′(ro, rπ), such that the privileged information is explicitly used as a correction
term. At test time, the model we propose is equivalent to a vanilla-NDP.

Learning and Inference. The true posterior is intractable and, as is the NP custom, the model is
trained using amortised variational inference. We select an objective that reflects the intended test

1If the dynamics manifest directly in observation space (i.e. they are not latent), D and D′ coincide.

2

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

Figure 2: LUPI-NDP computational diagram. The LUPI training-mode is shown in green, with
a dotted line for the vanilla-NDP path (no privileged information). Pink shows the evaluation-
mode path, that matches the NDP evaluation-mode exactly. Observations are first encoded then
aggregated. Privileged information, in this case the spring stiffness, is separately encoded and,
during training, combined with the aggregated observations representation. As in NPs and NDPs, the
representations parametrise the global latent variable z, which is then used to condition the decoder.
Typically, as in this cartoon, the privileged information enables highly accurate predictions.

time behaviour of making predictions based solely on the context set, given by

log p(yj∈IT |tj∈IT ,C) ≥ Eq(z|T,π)

[
log

q′(z|C)
q(z|T,π)

+
∑
i∈IT

log p(yi|z, ti)

]
, (1)

with variational posterior q (a derivation is provided in Appendix A). Note that during training C is
a subset of T. The original NDP model is recovered by setting π to null (dropping it).

3 EXPERIMENTS

We compare our proposed LUPI-NDP model with a vanilla-NDP that does not make use of the
privileged information and, as there are no architectural changes, at test time the models are distin-
guishable only by the value of their weights. As explained in Section 2, both models are NDPs, so
we refer to them as LUPI and NoPI (no-privileged-information) for clarity. Full model and training
details are provided in Appendix B, code at github.com/bjd39/lupi-ndp.

0.0 0.2 0.4 0.6 0.8 1.0
Normalised time, t

-1

0

1

Di
sp

la
ce

m
en

t,
x

Damped Oscillator Trajectories
x1
x2

0.0 0.2 0.4 0.6 0.8 1.0
Normalised time, t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Po
pu

la
tio

ns

LV trajectories
u
v

Figure 3: Induced dynamics.

Metrics. Besides providing high quality predictions, NDPs, and
NPs generally, are interesting because the way they approach the
meta-learning problem (as a latent variable model) produces uncer-
tainty estimates. We measure the quality of these estimates by the
calibration error and sharpness. Calibration measures the degree
to which uncertainty estimates are commensurate with residuals: if
the model estimates an outcome to happen one time in every ten,
does it actually occur that frequently? Sharpness is simply how
low the uncertainty estimates are: between equally well-calibrated
models we should favour the sharper model as being more informa-
tive. Practically speaking, we value accuracy over calibration over
sharpness. We follow the definitions of Kuleshov et al. (2018) for
the calibration error and sharpness, detailed in Appendix C.

Damped coupled oscillators. We first consider modelling a sys-
tem of two masses attached by identical springs in series between
parallel walls, described by the second-order differential equations

m1ẍ1 = (x2 − 2x1)k − cẋ1 , m2ẍ2 = (x1 − 2x2)k − cẋ2, (2)

with spring and damping constants, k and c, respectively. A distribution over dynamics is induced
by sampling some parameters of the system, and this parameter forms the privileged information.
Examples of the trajectories induced by sampling over the drag coefficient as c ∼ U(0.5, 2) are
presented in Figure 3.

3

https://github.com/bjd39/lupi-ndp

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

0

1

x

LUPI with PI & targets LUPI with context only

0 1
t

0

1

x

noPI with targets

0 1
t

noPI with context only

Predictions on an oscillators task example

(a) Example predictions

0.0 0.2 0.4 0.6 0.8 1.0
Expected Confidence Interval

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 C
on

fid
en

ce
 In

te
rv

al

Calibration on the oscillators task
Ideal calibration
LUPI with PI+targets
LUPI context only
NoPI with targets
NoPI context only

(b) Calibration

0.00 0.02 0.04 0.06 0.08 0.10
Predicted standard deviations

0

10

20

30

40

50

De
ns

ity

Histogram of uncertainty estimates for the oscillators task
LUPI mean
noPI mean
LUPI context only
noPI context only

(c) Sharpness

Figure 4: Various comparisons of trained LUPI and NoPI models on the damped coupled oscillators
task with varying stiffness, k. The LUPI model is more accurate, better calibrated and sharper.
All the models are overconfident to some degree, but the training-mode NoPI is by far the least
calibrated. Though the LUPI model is sharper, the NoPI model has greater dispersion (spread in
uncertainty estimates) which would be preferable if the model were better calibrated.

Table 1: Mean squared error (MSE) and measures of uncertainty quality for the varying-stiffness,
varying-damping, and L-V tasks. Models labelled * were evaluated in the training setting, i.e. using
the full target set for context and, in the case of the LUPI models, the privileged information, and
are included for reference. Lower is better; the better performance in each bracket is indicated in
bold; units are arbitrary and results should not be compared between the tasks.

Varying stiffness, k ∼ U(0.2, 1) Varying damping, c ∼ U(0.5, 2)
Model MSE ↓ Calib. error ↓ Sharp. ↓ MSE ↓ Calib. error ↓ Sharp. ↓
NoPI 1.05 ± 0.05 0.51 ± 0.02 6.88 2.82 ± 0.29 0.84 ± 0.04 2.15
LUPI 0.93 ± 0.04 0.47 ± 0.02 6.57 2.39 ± 0.09 0.37 ± 0.02 4.71

NoPI* 0.16 ± 0.02 2.69 ± 0.02 1.00 0.56 ± 0.02 1.56 ± 0.03 0.93
LUPI* 0.06 ± 0.01 0.91 ± 0.02 1.10 0.25 ± 0.01 0.73 ± 0.03 1.18

L-V, u0 ∼ U(0.2, 1), v0 ∼ U(0.1, 0.5)
Model MSE ↓ Calib. error ↓ Sharp. ↓
NoPI 6.44 ± 0.44 2.19 ± 0.05 2.23
LUPI 1.82 ± 0.13 0.90 ± 0.04 3.44

NoPI* 5.24 ± 0.30 2.89 ± 0.04 1.37
LUPI* 0.73 ± 0.02 1.23 ± 0.04 1.48

Lotka-Volterra. We investigate modelling a second two dimensional system, the Lotka-Volterra
equations (L-V). The populations of ‘predator’ and ‘prey’ species, v and u, are governed by

u̇ = αu− βuv ; v̇ = δuv − γv. (3)

In these examples we use the values α = 2/3, β = 4/3, γ = 1, δ = 1. To produce a range of
dynamics we uniformly sample different initial populations u0 ∼ U(0.2, 1), v0 ∼ U(0.1, 0.5) as
shown in Figure 3. For these equations V = δu − γ ln(u) + βv − α ln(v) is a conserved quantity,
and is provided as privileged information.

4 DISCUSSION

Training in the LUPI setting produces significantly more accurate and better calibrated models in
each task. Table 1 presents numerical results, Figure 4 provides more detail for the varying stiffness
task, and further plots are provided in the Appendix. The models are mostly less sharp (5/6) but
sharpness is a secondary measure to calibration, especially when the sharper model is less accurate,
as is the case here. We would also highlight the subtle difference in the kinds of information be-
ing incorporated by the models—stiffness and damping are independent variables, whereas V is a
conserved quantity that arises from the dynamical system directly—and suggest this is a promising
result for the wider applicability of the model. Future work could explore the effects LUPI has on
generalisation, recovering estimates of the privileged information at test-time, and, as the model can
be applied as-is to any Neural Process, tasks other than dynamics.

4

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

REFERENCES

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary dif-
ferential equations. Advances in Neural Information Processing Systems 32, 2018.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural ODEs. In Advances in
Neural Information Processing Systems 32. 2019.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
International Conference on Machine Learning, pp. 1704–1713. PMLR, 2018a.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami,
and Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018b.

Mark Harrower and Cynthia A Brewer. Colorbrewer. org: an online tool for selecting colour schemes
for maps. The Cartographic Journal, 40(1):27–37, 2003.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Daniel Hernández-Lobato, Viktoriia Sharmanska, Kristian Kersting, Christoph H Lampert, and Novi
Quadrianto. Mind the nuisance: Gaussian process classification using privileged noise. arXiv
preprint arXiv:1407.0179, 2014.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. arXiv preprint arXiv:2004.05439, 2020.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equa-
tions for irregular time series. arXiv preprint arXiv:2005.08926, 2020.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning
using calibrated regression. In International Conference on Machine Learning, pp. 2796–2804.
PMLR, 2018.

John Lambert, Ozan Sener, and Silvio Savarese. Deep learning under privileged information using
heteroscedastic dropout. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 8886–8895, 2018.

Tuan Anh Le, Hyunjik Kim, Marta Garnelo, Dan Rosenbaum, Jonathan Schwarz, and Yee Whye
Teh. Empirical Evaluation of Neural Process Objectives. In NeurIPS workshop on Bayesian
Deep Learning, 2018.

Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Liò. On second or-
der behaviour in augmented neural odes. In Advances in Neural Information Processing Systems,
2020.

Alexander Norcliffe, Cristian Bodnar, Ben Day, Jacob Moss, and Pietro Liò. Neural ODE pro-
cesses. In International Conference on Learning Representations, 2021. URL https://
openreview.net/forum?id=27acGyyI1BY.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on machine
learning, pp. 63–71. Springer, 2003.

Vladimir Vapnik and Rauf Izmailov. Learning using privileged information: similarity control and
knowledge transfer. J. Mach. Learn. Res., 16(1):2023–2049, 2015.

Vladimir Vapnik and Akshay Vashist. A new learning paradigm: Learning using privileged infor-
mation. Neural networks, 22(5-6):544–557, 2009.

Çağatay Yıldız, Markus Heinonen, and Harri Lähdesmäki. Ode2vae: Deep generative second order
odes with bayesian neural networks, 2019.

5

https://openreview.net/forum?id=27acGyyI1BY
https://openreview.net/forum?id=27acGyyI1BY

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

ACKNOWLEDGEMENTS

We’d like to thank Cătălina Cangea, Nikola Simidjievski and Cristian Bodnar for their valuable
feedback on this work. JM is supported by a GlaxoSmithKline grant.

A OBJECTIVE DERIVATION

At test time we want to (accurately) predict the targets yj∈IT at known times tj∈IT given the context
set C, which means maximising p(yj∈IT |tj∈IT ,C) during training. Knowing that we want to end up
with something similar to the objectives used by Garnelo et al. (2018b) and Norcliffe et al. (2021),
i.e. something like

log p(yj∈IT |tj∈IT ,C) ≥ Eq(z|T)

log q(z|C)
q(z|T)

+
∑
i∈IT

p(yi|ti, z)

 ,
we start with the marginal

p(yj∈IT |tj∈IT ,C) =
∫

dz p(z|tj∈IT ,C)p(yj∈IT |tj∈IT , z,C).

Noting p(yj∈IT |tj∈IT , z,C) = p(yj∈IT |tj∈IT , z) and p(z|tj∈IT ,C) = p(z|C), we multiply by
q(z|T,π)/q(z|T,π) = 1 to get

p(yj∈IT |tj∈IT ,C) =
∫

dz q(z|T,π) p(z|C)
q(z|T,π)

p(yj∈IT |tj∈IT , z)

= Eq(z|T,π)

[
p(z|C)
q(z|T,π)

p(yj∈IT |tj∈IT , z)

]
.

As usual, p(z|C) is intractable, and we approximate it with q′(z|C) = q(z|C,π ← null). Finally,
applying Jensen’s inequality produces our objective

log p(yj∈IT |tj∈IT ,C) ≥ Eq(z|T,π)

[
log

q′(z|C)
q(z|T,π)

+
∑
i∈IT

log p(yi|z, ti)

]
. (4)

This objective is similar to the evidence lower-bound but better reflects the intended test time model
behaviour.

B ARCHITECTURAL AND TRAINING DETAILS

The context/targets distinction is related to training and evaluation and is separate from the ar-
chitecture of the model. As such, for this explanation we refer to the set of observations as
X = {(tXi ,yX

i)}i∈IX indexed by IX, for which we can substitute C or T as appropriate. We con-
ceive of the model as consisting of

1. an observation encoder mapping observations to representations ri = fobs(ti,yi)

2. an aggregator that combines observation representations into a fixed length representation
rX = ⊕i∈IX(ri)

3. a privileged information encoder mapping the privileged information to a representation
rπ = fπ(π)

4. a second aggregator that combines rX and rπ , r = g(rX, rπ), where r and rX have the
same dimensionality

5. a pair of functions, µ(r), σ(r), that parametrise the global latent variable z as a function
of either r or rX, z ∼ N(µ(r), σ(r))

6. a function to initialise the latent ODE state from a sample from the global latent variable,
L(0) = finit(z

′)

6

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

7. the neural ODE derivative as a function of time, the instantaneous latent state and the global

latent sample,
dL

dt
= fODE(L(t), z

′, t)

8. and a decoder that maps from the latent ODE state back to observation space and also
depends on the sample from the global latent, ŷ(t) = fdec(L(t), z

′)

as is the fashion, we chose to use neural networks for every parametric function, that is all but the
first aggregation ⊕. Now we know what the parts are for, the architecture we used is

1. fobs: a three-layer MLP with ReLU activations on the hidden layers (not the output) and
hidden dimension 16

2. ⊕: the mean concatenated with the LogSumExp (a smooth approximation of max)

3. fπ: a three-layer MLP with ReLU activations on the hidden layers (not the output) and
hidden dimension 16

4. g: a ResNet with an input-to-output skip connection for rX and a residual connection con-
sisting of a three-layer MLP with ReLU activations on the hidden layers (not the output)
and hidden dimension 16

5. µ, σ: two three-layer MLPs with ReLU activations on the hidden layers (not the output)
and hidden dimension 16, with shared weights in the first two hidden layers

6. finit: a three-layer MLP with ReLU activations on the hidden layers (not the output) and
hidden dimension 16

7. fODE: a three-layer MLP with softplus(x) = log (1 + exp(x)) activations on the hidden
layers (not the output) and hidden dimension 16

8. fdec: a three-layer MLP with ReLU activations on the hidden layers (not the output) and
hidden dimension 16.

We did not undertake any extensive hyperparameter tuning though we can report that neither model
is able to learn if the hidden dimension is set to be small (< 4). We follow the best practices estab-
lished by Le et al. (2018) for training NPs, and during training use a learned uncertainty estimate
rather than resampling. This estimate is produced as an additional output from the decoder.

We use Adam with a learning rate of 0.001 = 10−3 and otherwise default PyTorch settings, and
train for 100 epochs with a training set of 500 examples split 80/20 between train/validation. We do
not use early stopping as we found that the models are stable at convergence i.e. they do not diverge
when “overtrained”. The test sets consist of a further 500 examples (of 100 time steps each) over
which the reported evaluation metrics were calculated.

Data generators, and iPython notebooks and Google Colabs for running our experiments can be
found at https://github.com/bjd39/lupi-ndp.

C CALIBRATION & SHARPNESS FOR REGRESSION

These descriptions and definitions borrow heavily from Kuleshov et al. (2018) and are included for
completeness.

C.1 CALIBRATION

Classification. In the classification setting, we say a forecaster (making a large number of predic-
tions) is calibrated if events that are assigned some probability occur about that frequently. Formally,
a forecaster H is calibrated if∑T

t=1 yt1{H(xt) = p}∑T
t=1 1{H(xt) = p}

→ p ∀ p ∈ [0, 1] as T →∞,

that is, in the long run (T →∞) predictions assigned probability p (H(xt) = p) occur (yt = 1) with
frequency p.

7

https://github.com/bjd39/lupi-ndp

Published as a workshop paper at the Learning to Learn workshop at ICLR 2021

0

1
u

LUPI with PI & targets LUPI with context only

0 1
t

0

1

u

NoPI with targets

0 1
t

NoPI with context only

Predictions on an LV example

(a) Example predictions

0.0 0.2 0.4 0.6 0.8 1.0
Expected Confidence Interval

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 C
on

fid
en

ce
 In

te
rv

al

Calibration on the LV task
Ideal calibration
LUPI with PI+targets
LUPI context only
NoPI with targets
NoPI context only

(b) Calibration

0.00 0.02 0.04 0.06 0.08 0.10
Predicted standard deviations

0

20

40

60

80

De
ns

ity

Histogram of uncertainty estimates for the LV task
LUPI mean
NoPI mean
LUPI context only
NoPI context only

(c) Sharpness

Figure 5: Various comparisons of trained LUPI and NoPI models on the Lotka-Volterra task with
initial conditions, (u(0), v(0)). The LUPI model is more accurate and better calibrated, but less
sharp. All the models are overconfident to some degree, but the LuPI models are significantly better
calibrated.

Regression. In the regression setting, the forecaster outputs a cumulative distribution function Ft
targeting yt. Calibration here means that yt should fall within a 90% confidence interval approxi-
mately 90% of the time. We can formalise this using the quantile function, defined as returning the
threshold value that random draws from Ft would fall below p of the time. For quantile function
Qt(p) = inf{y : p ≤ Ft(y)}, we define calibration to mean∑T

t=1 1{yt ≤ Qt(p)}
T

→ p ∀ p ∈ [0, 1] as T →∞.

That is, in the long-run (T → ∞) targets fall below the quantile function at p (yt ≤ Qt(p)) with
frequency p, for any p.

To produce a calibration score, we consider how far the empirical calibration deviates from a per-
fectly calibrated model. This is measured by computing the empirical frequency at a set of confi-
dence levels 0 ≤ p1 < p2 < ... < pm ≤ 1 as

p̂j =
|{yt|Ft(yt) ≤ pj , t = 1, . . . , T}|

T
(5)

i.e. how often do the targets fall at a confidence level that is less than the threshold pj , and computing
the score

cal(F1, y1, ..., Ft, yt) =

m∑
j=1

(pj − p̂j)2 (6)

(which is the mean-squared-error of the cumulative histogram of confidence over empirical fre-
quency from the identity.)

C.2 SHARPNESS

A sharp forecast has confidence intervals that are tightly bound, and the sharpness score can be more
straightforwardly defined as the mean variance of the cumulative distribution Ft,

sha(F1, . . . , FT) =
1

T

T∑
t=1

var(Ft).

D LOTKA-VOLTERRA PLOTS

Figure 5 shows additional details for the Lotka-Volterra experiment.

8

	Introduction & background
	Learning using privileged information with NDPs
	Experiments
	Discussion
	Objective derivation
	Architectural and training details
	Calibration & sharpness for regression
	Calibration
	Sharpness

	Lotka-Volterra plots

