
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

PLANNED DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

A central challenge in large language model inference is the trade-off between generation
speed and output quality. Autoregressive models produce high-quality text but generate
tokens sequentially. Diffusion models can generate tokens in parallel but often need many
iterations to match the same quality. We propose planned diffusion, a hybrid method that
combines the strengths of both paradigms. Planned diffusion works in two stages: first,
the model creates a short autoregressive outline that breaks the output into smaller, inde-
pendent spans. Second, the model generates these spans simultaneously using diffusion.
This approach expands the speed–quality Pareto frontier and provides a practical path to
faster, high-quality text generation. On AlpacaEval, a suite of 805 instruction-following
prompts, planned diffusion achieves Pareto-optimal trade-off between quality and latency,
achieving 1.84x speedup over autoregressive generation with only a 6.8% drop in win
rate. Our sensitivity analysis confirms that the internal planning of our model is reliable
and offers tunable control over the trade-off between generation speed and quality.

1 INTRODUCTION

Language model text generation is subject to a fundamental tradeoff between modeling textual dependencies
and leveraging the parallel processing capabilities of modern hardware. Autoregressive (AR) models have
defined the state-of-the-art in quality by excelling at the former (Radford et al., 2019); generating tokens
sequentially allows them to capture dependencies with high fidelity, but this process inherently creates a
latency bottleneck. Conversely, diffusion language models (Sahoo et al., 2024) are designed for parallelism
but can struggle with coherence when generating with a low number of iterative steps needed for low latency
(Wu et al., 2025). This establishes a Pareto frontier for LLMs, in which there exists a difficult compromise
between inference speed and output quality.

We propose planned diffusion, a framework that challenges this compromise by treating text generation as a
dynamic parallel scheduling problem. The motivation behind this technique is that the dependency structure
among tokens is context-dependent; typical language model responses include semantically independent
spans of tokens that can generate concurrently. For example, an answer that contains a bulleted list can
generate each bullet point in parallel (Ning et al., 2024).

Planned diffusion realizes this concept through a novel hybrid architecture where a single, unified model
transitions between autoregressive and diffusion-based generation. First, in a sequential planning stage, the
model operates autoregressively to generate a high-level "execution plan" composed of structural control
tags. This plan partitions the task into a set of conditionally independent sub-tasks. Second, in a parallel
diffusion stage, the model executes this plan, simultaneously generating the text for all planned segments.
By integrating these two modes, our method optimizes for parallel generation while preserving coherence
and quality. This single-model, hybrid approach offers a distinct architectural advantage over other acceler-
ation techniques, such as speculative decoding, which require multiple, separate models. To the best of our
knowledge, this is the first text-only model that uses both discrete diffusion and autoregression. Figure 1
presents a sample generation produced by our planned diffusion model.

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

1) Autoregressive Plan

User: What is Aurora Borealis? Please be concise.

<topic="definition" len=30>
<topic="description" len=30>
<topic="location" len=10>
<eos>

2) Programmatic Scaffold

Span A — definition

[M][M][M] … (30 total)

Span B — description

[M][M][M] … (30 total)

Span C — location

[M][M][M] … (10 total)

3) Diffusion Denoise

Span A — definition

Aurora Borealis, or the Northern Lights, is a
natural light display in Earth’s upper atmosphere
triggered by solar activity.

Span B — description

It appears as moving curtains or arcs of colored
light when charged particles from the Sun excite
atmospheric gases.

Span C — location

It is most common near the Arctic Circle.

Assistant: Aurora Borealis (Northern Lights) is a
natural light display in Earth’s upper atmosphere
during solar activity. It looks like moving curtains
or arcs of colored light caused by charged particles
exciting atmospheric gases, and it is most common
near the Arctic Circle.

Figure 1: A real example of planned diffusion. (1) Autoregressive Plan: The model first generates a sequen-
tial plan using control tags to define the structure and length of independent text spans. (2) Programmatic
Scaffold: This plan is then translated into a scaffold where each span is initialized with a corresponding
number of mask tokens. (3) Diffusion Denoise: Finally, the model denoises all spans in parallel with diffu-
sion, generating the text for each section simultaneously to produce the complete response.

We make the following contributions:

1. We introduce planned diffusion, a new parallel generation technique that decomposes text generation
into a sequential planning stage and a parallel diffusion stage.

2. We design the control tag language, model training methodology, and inference algorithm that enable a
single model to perform this hybrid generation process.

3. We demonstrate that planned diffusion achieves a state-of-the-art trade-off between speed and quality.
On the AlpacaEval benchmark, it achieves a 1.84x speedup over autoregressive generation while incur-
ring only a 6.8% drop in win rate.

4. We present sensitivity analysis which validates that the internal planning of our model is reliable and
offers tunable control over the trade-off between generation speed and quality.

2 RELATED WORK

Our work builds upon recent developments in non-autoregressive and parallel decoding strategies. We po-
sition our contributions in the context of two primary research areas: diffusion-based language models and
methods for achieving semantic parallelism.

Diffusion Language Models. Diffusion models have recently emerged as a new paradigm for generative
language tasks (Austin et al., 2021; Sahoo et al., 2024). A significant body of research is focused on accel-

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

erating the inference process, which traditionally involves many iterative denoising steps (Liu et al., 2025a).
These acceleration techniques include KV caching for diffusion models (Ma et al., 2025; Liu et al., 2025c),
the use of autoregressive verification (Hu et al., 2025; Israel et al., 2025a), and the development of fast sam-
pling strategies that reduce the number of required steps (Wu et al., 2025; Li et al., 2025; Hong et al., 2025).
Our proposed planned diffusion framework is orthogonal and complementary to these methods; any diffu-
sion sampling strategy can be integrated into the diffusion component of our algorithm to further increase
performance. Other related work include block diffusion (Arriola et al., 2025) which enforces an autore-
gressive structure over blocks and planned denoising (Liu et al., 2025b) which learns an adaptive denoising
schedule. While relevant, neither targets semantic parallelism, which is the purpose of planned diffusion.

Semantic Parallelism. While diffusion models achieve token-wise parallelism, they are not trained to
achieve parallelism across larger portions of text at the semantic level. We define semantic parallelism
as a broad class of techniques that produce models capable of parallelizing over semantically independent
segments. Many recent works explore semantic parallelism (Ning et al., 2024; Liu et al., 2024; Jin et al.,
2025; Wen et al., 2025; Yang et al., 2025; Pan et al., 2025; Rodionov et al., 2025). While existing works
operate within a purely autoregressive framework, to the best of our knowledge, our work is the first to
propose a hybrid autoregressive-diffusion model for text. By combining an autoregressive planning phase
with a parallel diffusion phase, our method leverages the inherent parallelism of diffusion-based decoding
in a structured manner, presenting a novel approach for efficient text generation.

Other Parallel Generation Techniques. There is a rich line of work on parallel generation. Insertion-based
models parallelize by inserting tokens into partial positions, reducing decoding depth via simultaneous span
updates (Stern et al., 2019). Non-autoregressive translation predicts many tokens at once and often refines
them iteratively, trading some quality for much lower latency (Gu et al., 2018; Ghazvininejad et al., 2019).
Speculative decoding accelerates autoregressive models by drafting multiple tokens and verifying them in
parallel (Leviathan et al., 2023; Chen et al., 2023; Zhang et al., 2024). Planned diffusion differs conceptually
as we use a single hybrid model to generate both autoregressively and in parallel.

3 PRELIMINARIES

Generative language models learn a probability distribution over sequences of discrete tokens. In this work,
our focus is on two main paradigms: autoregressive and discrete diffusion.

Autoregression. Autoregressive models are the standard for sequential text generation. They factorize the
joint probability of a token sequence x = (x1, x2, · · ·). The probability distribution under this model, which
we denote as pAR, is given by:

pAR(x) =

|x|∏
i=1

pθ(xi|x<i) (1)

where pθ is a parameterized conditional distribution over tokens. In autoregression, each token is sequen-
tially sampled conditioned on all previously generated tokens.

Discrete Diffusion. Discrete diffusion models learn to reverse a fixed data corruption process that gradually
introduces noise into a clean sequence. For language, this process often involves incrementally replacing
tokens with a special “mask” token (Austin et al., 2021). Let x0 be a clean sequence of tokens. The forward
corruption process q produces a noisy version xt at a timestep t ∈ [0, 1]. The distribution of a corrupted
sequence xt follows

qt|0(x
t
i | x0

i) =


t, if xt

i = [MASK]
1− t, if xt

i = x0
i

0 otherwise
qt|0(x

t | x0) =
∏
i

qt|0(x
t
i | x0

i) (2)

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

Because the true posterior over a forward noising process is intractable to compute exactly (Lou et al., 2024),
diffusion models learn an approximation by maximizing a variational lower bound on the log-likelihood
(Sahoo et al., 2024).

log pD(x
0) ≥ Et∼U(0,1),xt∼q(xt|x0)

∑
i

1(xt
i = [MASK]) log pθ(x0

i | xt) (3)

Unlike autoregressive sampling, the above diffusion distribution emits a sampling algorithm capable of
sampling multiple tokens in parallel. For brevity, when referring to diffusion we will let pD(x) denote the
clean distribution obtained through the above process.

In planned diffusion, we will assume pAR and pD can be conditioned on prior context tokens c = (c1, c2, · · ·).
Thus, we shall utilize the distributions pAR(· | c) and pD(· | c) respectively.

4 PLANNED DIFFUSION

Planned diffusion can be described probabilistically as a model that factorizes the text generation process
into distinct planning and diffusion components. While this formalization is a useful description, it abstracts
away technical details regarding implementation. The details comprise of three key contributions: (i) a
synthetic data curation pipeline to produce text annotated with planning control tags, (ii) a tailored training
objective with a custom attention masking to enforce the specified conditional independencies, and (iii) an
optimized inference procedure that utilizes KV caching to facilitate efficient parallel decoding.

4.1 FORMAL DESCRIPTION

We formalize the generative process for a single stage of planned diffusion. A stage begins with an initial
context c which may contain the prompt or any previously generated tokens. It then produces a plan z =
(z1, z2, . . .) followed by its corresponding asynchronous execution x, where both are sequences of tokens.
The plan z defines the structure for the subsequent parallel generation, specifying a set of b(z) asynchronous
spans. For each span k ∈ {1, . . . , b(z)}, the plan also specifies its length lk(z).

Let x(k) be the sequence of tokens corresponding to the k-th span, where |x(k)| = lk(z). The complete
sequence generated in the diffusion phase is the union of these spans, x =

⋃b(z)
k=1 x(k). The joint probability

of generating the plan z and the content x within a single stage of planning and diffusion, conditioned on
the context c, is given by the following factorization:

pPD(z, x|c) = pAR(z|c)︸ ︷︷ ︸
Planning

pD(x|z, c)︸ ︷︷ ︸
Diffusion

(4)

where pPD denotes the distribution of planned diffusion. In this definition, we note that the diffusion distri-
bution pD is conditioned on the plan z, which guarantees additional properties. In planned diffusion, each
span x(k) are generated independently of one another. Thus, the probability of a whole span x factorizes
over individual spans x(k).

pD(x|z, c) =
b(z)∏
k=1

pD(x(k)|z, c) (5)

Thus, planned diffusion is able to exploit conditional independence between spans to achieve significant
parallelism. In this formulation, we describe one stage of planned diffusion composed of autoregressive
planning and conditional diffusion. In general, this framework can be extended to multiple stages of planning
and diffusion chained together by setting c to the output of the previous stage. This multi-stage process can
be seen in Algorithm 1

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

Algorithm 1 Planned Diffusion

1: function PLANNED_DIFFUSION(c)
2: loop
3: Sample plan z ∼ pAR(·|c)
4: Parse z to get spans b(z) and their lengths {lk(z)}b(z)k=1

5: Sample {x(k)}b(z)k=1 in parallel from pD(·|z, c)
6: x←

⋃b(z)
k=1 x(k)

7: c← c⊕ z ⊕ x
8: if z[end] = <eos/> then
9: break

10: end if
11: end loop
12: c← REMOVECONTROLTAGS(c)
13: return c
14: end function

4.2 DATA

Control Tags. A span intended for parallel generation is first defined during a sequential planning stage.
This is done using a paired <topic> ... </topic> tag structure. Within this structure, the model generates
a concise description of the span’s content (e.g., description) and its predicted length (e.g., 3) in multiples
of 10 tokens. During the parallel diffusion stage, the tokens for each planned span are generated within a
corresponding <async> ... </async> tag pair. Finally, the <sync/> tag conveys generation dependency:
tokens that follow <sync/> may require details produced inside the preceding <async> spans, so we continue
sequential planning only after those spans are filled and available. We add all control tags to the model’s
vocabulary for training and inference and strip them during post-processing of final outputs.

Finetuning Dataset. We annotate the SlimOrca instruction–finetuning dataset (Lian et al., 2023) for parallel
generation, following Jin et al. (2025). We prompt a GEMINI model with the syntax and semantics of the
special tags (attribute schema, complete-coverage and non-overlap constraints). See Appendix A for more
details. GEMINI inserts the control tags into the assistant completion. The opening <async> carries two
attributes: topic (a concise label, ≤ 3 words) and tokens (a coarse length estimate, e.g., multiples of 10
tokens). We impose complete coverage: every non-tag token lies inside exactly one <async> ... </async>
span (no nesting, no overlap). During preprocessing for training, we insert 0–10 tokens of stochastic padding
inside each <async> span to create variable reconstruction gaps while preserving tag correctness. We vali-
date well-formedness (balanced tags, coverage, non-overlap, attribute types/ranges) and discard malformed
cases. Figure 2 contains a concrete example of the tagging language used by planned diffusion.

4.3 TRAINING

Training Loss. The goal of training is to maximize the joint probability over plan tokens and their content.
Suppose we are given access to an annotated datasetD in which a single "clean" example is given by Y ∈ D.
We can decompose Y into sets of planning tokens Z and content tokens X , such that Y = Z ∪X . Xt is a
noised sequence of tokens under noise distribution qt|0 as previously defined. Thus, Xt will contain masked
tokens with probability t. Let fθ be the function to instantiate planned diffusion, parameterized by θ. We
will use the notation fθ(x, i) to signify that the model takes input x and makes a prediction at index i of
the sequence. Finally, let Mi(X) be a masking function that takes as input a sequence X and outputs a

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Plan 1 (0-8)
0: <bos>
1: <topic>
2: task1
3: 3
4: </topic>
5: <topic>
6: task2
7: 2
8: </topic>

Plan 2 (17-21)
17: <sync/>
18: <topic>
19: task3
20: 1
21: </topic>

Diffusion 1 (9-16)
9: <async>
10: A
11: B
12: </async>
13: <async>
14: C
15: D
16: </async>

Diffusion 2 (22-25)
22: <async>
23: E
24: </async>
25: <eos>

Attended Masked

Figure 2: The attention mask for planned diffusion combines causal and bidirectional attention. Causal
attention is used for sequential planning stages. Bidirectional attention is used within <async> spans for
parallel denoising, with concurrent spans isolated from each other. After a <sync/> token, subsequent
tokens can to attend to all prior tokens. For illustrative purposes, this example shortens the diffusion spans.

subset Mi(X) ⊆ X of the sequence that fθ will be given access to at a particular index i. A more detailed
description of our mask can be found in the following section. Our overall training objective is given by

L(θ) = E
Y∼D

t∼U(0,1)

1

|Y |
∑
yi∈Y

1(yi ∈ Z)CE(fθ(y<i, i), yi)︸ ︷︷ ︸
Autoregressive

+
1

t
1(yi ∈ X)CE

(
fθ(Mi(X

t ∪ Z), i), yi
)

︸ ︷︷ ︸
Diffusion

(6)

A subtle characteristic of the training objective is that the same noise is applied to diffusion spans over
multiple sequential stages of planning and diffusion. In this decision, we are applying the interpretation of a
diffusion model as an any-order autoregressive model capable of supporting arbitrary conditional queries at
inference time (Shi et al., 2024). The same technique is used by Llada 7B (Nie et al., 2025), which is trained
with a diffusion objective, but during inference used for semi-autoregressive block sampling.

Attention Mask. We implement the following rules via the attention mask Mi. First, sequential-planning
tokens, which are composed of control tags and their attributes, are given causal attention (Plan 1 and 2 in
Figure 2). Second, tokens inside the same <async>. . .</async> span use bidirectional attention, as required
for diffusion-based parallel denoising (Diffusion 1 and 2 in Figure 2). Third, spans remain isolated until
synchronization: before <sync/>, we enforce no cross-span attention; after <sync/>, subsequent tokens
may attend to all previously completed <async> spans.

4.4 INFERENCE

Variable Length Denoising. Typically, diffusion models are configured to generate given a fixed number of
denoising steps. Generation quality increases and speed decreases with the number of steps. Unlike, vanilla
diffusion, planned diffusion does not generate a predetermined number of tokens, so as a consequence the
number of denoising steps cannot fixed. We define a parameter r called the steps ratio. Given a generation
length |x|, the number of denoising steps will be s = r ∗ |x|. Note that for multiple diffusion spans x(k) for
k ∈ {1, ..., b(z)} and a plan z, we will use s = r ∗maxk lk(z). The number of denoising steps may depend

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

only on the length of the longest span because if all spans are denoised in parallel, the total number of steps
will be entirely determined by the longest span.

KV Caching. KV caching plays a substantial role in the efficiency of planned diffusion. The KV cache of
planned diffusion can be derived from the model’s hybrid attention mask. The general principle is that a
token whose key and value embeddings are unaffected by future tokens can be cached. This is determined
by whether a token attends to future positions in the sequence. The autoregressive planning stage uses
causal attention and a conventional application of KV caching (Pope et al., 2023). In contrast, the diffusion
stage employs a bidirectional mask, in which tokens inside an <async> span attend to each other. Because
bidirectional attention does not support KV caching (Israel et al., 2025b), tokens inside an <async> span
cannot be cached until their respective denoising process is complete. However, subsequent tokens, such
as those in a new planning stage following a <sync/> tag, can efficiently attend to the KV cache of the
preceding planning and diffusion stages. This caching mechanism is essential for combining the speed of
diffusion with the computational savings of autoregressive KV caching.

Diffusion Inference. While diffusion models are trained on an objective that implies a random unmasking
order, in practice diffusion does not achieve the best results in this setting. Planned diffusion can integrate
any inference algorithm that determines diffusion unmask order. We apply entropy-ordered unmasking,
which is a default inference algorithm of Dream 7B (Ye et al., 2025).

5 EXPERIMENTAL EVALUATION

We experimentally assess the performance of planned diffusion, focusing on its trade-off between generation
quality and latency. Our results show that planned diffusion expands the latency-quality Pareto frontier for
text generation when compared to autoregressive and other diffusion-based approaches. Furthermore, we
demonstrate that our method scales better with additional compute; planned diffusion continues to improve
with more training, whereas the performance of the autoregressive baseline plateaus.

Training setup. We fine-tune Dream-7B-Base (Ye et al., 2025; Qwen et al., 2025); the base model is first
pre-trained autoregressively and then further pre-trained with a diffusion objective. We train with AdamW
(Kingma & Ba, 2017; Loshchilov & Hutter, 2019), peak learning rate 5 × 10−5 with linear decay, and
bfloat16 precision. We use per-GPU batch size 1 and global batch size 4. Because autoregressive and
diffusion language models have different optimal epoch counts (Prabhudesai et al., 2025), we sweep epochs
over {4, 8, 16}. We fine-tune on Gemini-annotated SlimOrca instruction-following data (Section 4.2); for
planned diffusion, we keep the control tags, while for autoregressive and diffusion baselines we strip them.
Training runs on 4×H200 (141 GB) with PyTorch and Hugging Face.

Baselines. We compare four decoding strategies. (i) Autoregressive samples tokens sequentially from the
autoregressive model. (ii) Diffusion samples masked tokens in parallel from the diffusion model; we con-
figure the number of denoising steps to equal the number of new tokens as this produces the highest quality
generation (Lou et al., 2024; Shi et al., 2025; Sahoo et al., 2024). (iii) Fast-dLLM (Wu et al., 2025) samples
from the same diffusion model but with an inference-time only optimization. We configure denoising steps
to be half the number of new tokens and use a confidence threshold of 0.9, which Wu et al., 2025 use as
the default value. (iv) Planned diffusion (ours) samples a plan autoregressively from the planned-diffusion
model, then samples masked tokens within each span in parallel from the same model; for each span, we
configure denoising steps to equal its predicted token count.

Inference setup. We sample with temperature 0.2 and top-p 0.95 following (Ye et al., 2025), and cap the
total sequence length at 2048 tokens. Inference runs on the same H200 hardware configuration.

Benchmark and metrics. We evaluate on AlpacaEval (805 instruction-following prompts) (Li et al., 2023;
Dubois et al., 2024). For each method we report: (i) average latency—the mean wall-clock time per re-

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

0 50 100 150
Latency (s, lower is better)
0

10
20
30
40
50
60

LC
 W

in
 R

at
e

(%
)

Fast-dLLMPlanned
Diffusion

AR Diffusion

0 500 1000 1500 2000
Len Critical Path (steps)

0
10
20
30
40
50
60

LC
 W

in
 R

at
e

(%
)

Fast-dLLMPlanned
Diffusion

AR Diffusion

0 100

20

40

60

LC
 W

in
 R

at
e

(%
) AR

Planned
Diffusion

150 160

Diffusion

Latency (s, lower is better)

Figure 3: Evaluation of planned diffusion on the AlpacaEval benchmark. Left: A comparison of latency
versus length-controlled win rate shows planned diffusion establishing a new Pareto frontier, offering a
better trade-off between speed and quality. Middle: An analysis of the average critical path length reveals
that planned diffusion requires substantially fewer sequential forward passes than autoregressive generation.
Right: A scaling analysis shows that planned diffusion’s win rate continues to improve with more training,
while the autoregressive baseline’s performance flatlines. Within each method, color brightness encodes
training epochs: lightest = 4 epochs, medium = 8 epochs, darkest = 16 epochs.

sponse; and (ii) quality—length-controlled win rate (LCWR) with an LLM-as-judge. We use the recom-
mended default configuration from (Dubois et al., 2024) due to its high correlation with human preference.
We fix the LCWR reference to the best autoregressive baseline. We identify this reference by evaluating the
autoregressive variants (4, 8, and 16 epochs) against the 4-epoch variant and choosing the model with the
highest LCWR 1. The 16-epoch model wins and serves as the fixed reference for all LCWR scores.

Quality and Latency. We plot the latency–quality trade-off in the left figure of Figure 3. planned diffusion
is 10.8× faster than the fast-dLLM and higher in quality (43.2% vs. 39.3% length-controlled win rate).
Relative to autoregressive decoding, it is 1.85× faster while achieving a 43.2% length-controlled win rate
against the autoregressive reference. Diffusion reaches the highest quality (51.7% length-controlled win rate)
but requires an order of magnitude more inference time than autoregressive decoding or planned diffusion.

Critical Path. We attribute much of planned diffusion’s speedup over autoregressive decoding to its shorter
critical path of generation. We define critical path length as the number of forward passes required to
produce the final answer. The middle panel of Figure 3 shows that, on AlpacaEval, the average critical
path of autoregressive decoding is 2.39× as long as that of planned diffusion (370.5 vs. 155.2 steps). This
is expected, as planned diffusion enables multiple spans to denoise simultaneously. The realized speedup
(1.85×) is smaller than this reduction (2.39×) because each planned diffusion step does more work—KV-
cache reuse is lower and per-step compute is heavier than an autoregressive token step.

Scaling. The right panel of Figure 3 shows how the latency-quality tradeoff evolves with training epochs
for the three training objectives we examine. We evaluate all models against the 16-epoch autoregressive
model as the quality reference. Autoregressive training shows no improvement: the length-controlled win
rate remains at 50.0% across 4, 8, and 16 epochs. Planned diffusion improves from 39.11% (4 epochs) to
43.18% (16 epochs), gaining 4.07 percentage points. Diffusion shows the largest improvement, rising from
42.71% (4 epochs) to 51.70% (16 epochs), gaining 8.99 percentage points.

Takeaway. Planned diffusion sets a new latency–quality Pareto frontier and keeps improving with more
training, while the autoregressive baseline plateaus.

1They tie on length controlled win rate, so we break ties using raw win rates.

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Latency (s)

0
10
20
30
40
50
60

LC
 W

in
 R

at
e

(%
)

0.5
1

1.5 2

3

0 2 4 6 8
Latency (s)

0
10
20
30
40
50
60

LC
 W

in
 R

at
e

(%
)

0.1
0.3

0.5

0.7 1.0

Figure 4: Sensitivity analysis of key hyperparameters in planned diffusion. Left: Effect of scaling predicted
span lengths. Quality (LCWR) peaks when the scaling factor is 1.0, indicating the model’s length predictions
are accurate. Right: Quality–latency trade-off as the step ratio varies. Smaller step ratios reduce latency but
also lower generation quality.

6 SENSITIVITY ANALYSIS

We present additional analysis on several design decisions key to planned diffusion.

Span Lengths. We test whether the model predicts span lengths accurately. Accurate length prediction is
key to achieving good generation quality for planned diffusion, as the diffusion denoising phase of generation
cannot alter the span length. Systematic over-prediction wastes time by adding masks and denoising steps,
while systematic under-prediction harms quality by forcing content truncation.

To test for potential systematic deviation from the optimal generation length, we multiply the model’s
predicted span length by a length scaling factor to set the number of masks, sweeping the factor over
{0.5, 1.0, 1.5, 2.0, 3.0}. We then measure length-controlled win rate (LCWR) and latency under identical
inference settings. Quality peaks at the model’s originally predicted length (that is, with a scaling factor of
1.0). Deviating by ±50% reduces length controlled win rate: +50% by 5.7% and −50% by 9.6%. Latency
rises with factors above 1.0 as expected because larger spans require more mask tokens and denoising steps.
Interestingly, we do not observe additional denoising steps leading to accuracy improvements. The model’s
length predictions are accurate; we do not observe systematic over/under-prediction.

Step Ratio. By default, we set the number of denoising steps for a span equal to that span’s length. Reducing
the number of steps can lower latency at the cost of quality. We measure the quality–latency trade-off that
results from varying the number of diffusion denoising steps.

We introduce a hyperparameter called step ratio (see Section 4.4), which sets the number of denoising steps
relative to the span length. A step ratio of 1 means the number of steps equals the number of tokens in the
span (our default). Smaller values mean fewer steps per token. We sweep step ratios of 0.1, 0.3, 0.5, and
0.7 and measure length-controlled win rate (LCWR) and latency under identical inference settings. Figure 4
shows an approximately linear trade-off between quality and latency as the step ratio decreases. Using a step
ratio of 0.5 (half as many steps as tokens) yields an LCWR of 27.05% with 4.3 s latency. Step ratio provides
a tunable trade-off between generation quality and latency. We use 1.0 by default, but smaller values are
useful when latency is the priority and a drop in quality is acceptable.

7 CONCLUSION

In this work, we introduce planned diffusion, a hybrid architecture that combines the quality of autoregres-
sive generation with the parallelism of discrete diffusion. Our experimental evaluation show that it expands
the latency–quality frontier of text generation, providing a promising framework for efficient text generation.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We specify the starting checkpoint, fine-tuning hyperparameters, inference settings, and hardware/software
setup in Section 5. Appendix A includes a shortened version of the data-annotation prompt; we omit in-
context examples for brevity.

LLM USE DISCLOSURE

We used LLMs to improve sentence-level writing and to search for related work.

REFERENCES

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Subham Sekhar
Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregressive and diffusion
language models. arXiv preprint arXiv:2503.09573, 2025.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured de-
noising diffusion models in discrete state-spaces. Advances in neural information processing systems, 34:
17981–17993, 2021.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John Jumper.
Accelerating large language model decoding with speculative sampling, 2023. URL https://arxiv.
org/abs/2302.01318.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled alpacaeval:
A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel decoding
of conditional masked language models. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan
(eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 6112–
6121, Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/
v1/D19-1633. URL https://aclanthology.org/D19-1633/.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O. K. Li, and Richard Socher. Non-autoregressive neural
machine translation, 2018. URL https://arxiv.org/abs/1711.02281.

Feng Hong, Geng Yu, Yushi Ye, Haicheng Huang, Huangjie Zheng, Ya Zhang, Yanfeng Wang, and
Jiangchao Yao. Wide-in, narrow-out: Revokable decoding for efficient and effective dllms. arXiv preprint
arXiv:2507.18578, 2025.

Zhanqiu Hu, Jian Meng, Yash Akhauri, Mohamed S Abdelfattah, Jae-sun Seo, Zhiru Zhang, and Udit Gupta.
Accelerating diffusion language model inference via efficient kv caching and guided diffusion. arXiv
preprint arXiv:2505.21467, 2025.

Daniel Israel, Guy Van den Broeck, and Aditya Grover. Accelerating diffusion llms via adaptive parallel
decoding. arXiv preprint arXiv:2506.00413, 2025a.

Daniel Israel, Aditya Grover, and Guy Van den Broeck. Enabling autoregressive models to fill in masked
tokens. arXiv preprint arXiv:2502.06901, 2025b.

Tian Jin, Ellie Y Cheng, Zachary Ankner, Nikunj Saunshi, Blake M Elias, Amir Yazdanbakhsh, Jonathan
Ragan-Kelley, Suvinay Subramanian, and Michael Carbin. Learning to keep a promise: Scaling lan-
guage model decoding parallelism with learned asynchronous decoding. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=ZfX43ZZRZR.

10

https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2302.01318
https://aclanthology.org/D19-1633/
https://arxiv.org/abs/1711.02281
https://openreview.net/forum?id=ZfX43ZZRZR

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL https:
//arxiv.org/abs/1412.6980.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative decod-
ing, 2023. URL https://arxiv.org/abs/2211.17192.

Pengxiang Li, Yefan Zhou, Dilxat Muhtar, Lu Yin, Shilin Yan, Li Shen, Yi Liang, Soroush Vosoughi,
and Shiwei Liu. Diffusion language models know the answer before decoding. arXiv preprint
arXiv:2508.19982, 2025.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following models. https:
//github.com/tatsu-lab/alpaca_eval, 5 2023.

Wing Lian, Guan Wang, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and "Teknium".
Slimorca: An open dataset of gpt-4 augmented flan reasoning traces, with verification, 2023. URL https:
//https://huggingface.co/Open-Orca/SlimOrca.

Anji Liu, Oliver Broadrick, Mathias Niepert, and Guy Van den Broeck. Discrete copula diffusion, 2025a.
URL https://arxiv.org/abs/2410.01949.

Mingdao Liu, Aohan Zeng, Bowen Wang, Peng Zhang, Jie Tang, and Yuxiao Dong. Apar: Llms can do
auto-parallel auto-regressive decoding, 2024. URL https://arxiv.org/abs/2401.06761.

Sulin Liu, Juno Nam, Andrew Campbell, Hannes Stärk, Yilun Xu, Tommi Jaakkola, and Rafael Gómez-
Bombarelli. Think while you generate: Discrete diffusion with planned denoising, 2025b. URL https:
//arxiv.org/abs/2410.06264.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang, and Lin-
feng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive caching. arXiv
preprint arXiv:2506.06295, 2025c.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https://arxiv.
org/abs/1711.05101.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios of the
data distribution, 2024. URL https://arxiv.org/abs/2310.16834.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion language
models. arXiv preprint arXiv:2505.15781, 2025.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-Rong
Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint arXiv:2502.09992, 2025.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang. Skeleton-of-thought:
Prompting llms for efficient parallel generation, 2024. URL https://arxiv.org/abs/2307.15337.

Jiayi Pan, Xiuyu Li, Long Lian, Charlie Snell, Yifei Zhou, Adam Yala, Trevor Darrell, Kurt Keutzer, and
Alane Suhr. Learning adaptive parallel reasoning with language models, 2025. URL https://arxiv.
org/abs/2504.15466.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference. Proceedings of machine
learning and systems, 5:606–624, 2023.

11

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2211.17192
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://https://huggingface.co/Open-Orca/SlimOrca
https://https://huggingface.co/Open-Orca/SlimOrca
https://arxiv.org/abs/2410.01949
https://arxiv.org/abs/2401.06761
https://arxiv.org/abs/2410.06264
https://arxiv.org/abs/2410.06264
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2310.16834
https://arxiv.org/abs/2307.15337
https://arxiv.org/abs/2504.15466
https://arxiv.org/abs/2504.15466

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Mihir Prabhudesai, Mengning Wu, Amir Zadeh, Katerina Fragkiadaki, and Deepak Pathak. Diffusion beats
autoregressive in data-constrained settings, 2025. URL https://arxiv.org/abs/2507.15857.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Gleb Rodionov, Roman Garipov, Alina Shutova, George Yakushev, Erik Schultheis, Vage Egiazarian, Anton
Sinitsin, Denis Kuznedelev, and Dan Alistarh. Hogwild! inference: Parallel llm generation via concurrent
attention, 2025. URL https://arxiv.org/abs/2504.06261.

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu, Alexander
Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language models. Advances in
Neural Information Processing Systems, 37:130136–130184, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and generalized
masked diffusion for discrete data. Advances in neural information processing systems, 37:103131–
103167, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and generalized
masked diffusion for discrete data, 2025. URL https://arxiv.org/abs/2406.04329.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Insertion transformer: Flexible sequence
generation via insertion operations, 2019. URL https://arxiv.org/abs/1902.03249.

Hao Wen, Yifan Su, Feifei Zhang, Yunxin Liu, Yunhao Liu, Ya-Qin Zhang, and Yuanchun Li. Parathinker:
Native parallel thinking as a new paradigm to scale llm test-time compute, 2025. URL https://arxiv.
org/abs/2509.04475.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song Han,
and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache and parallel
decoding. arXiv preprint arXiv:2505.22618, 2025.

Xinyu Yang, Yuwei An, Hongyi Liu, Tianqi Chen, and Beidi Chen. Multiverse: Your language models
secretly decide how to parallelize and merge generation, 2025. URL https://arxiv.org/abs/2506.
09991.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng Kong.
Dream 7b: Diffusion large language models. arXiv preprint arXiv:2508.15487, 2025.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft&; ver-
ify: Lossless large language model acceleration via self-speculative decoding. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
11263–11282. Association for Computational Linguistics, 2024. doi: 10.18653/v1/2024.acl-long.607.
URL http://dx.doi.org/10.18653/v1/2024.acl-long.607.

12

https://arxiv.org/abs/2507.15857
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2504.06261
https://arxiv.org/abs/2406.04329
https://arxiv.org/abs/1902.03249
https://arxiv.org/abs/2509.04475
https://arxiv.org/abs/2509.04475
https://arxiv.org/abs/2506.09991
https://arxiv.org/abs/2506.09991
http://dx.doi.org/10.18653/v1/2024.acl-long.607

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

A DATA ANNOTATION PROMPT

We present a shortened version of our data-annotation prompt below. We use it to instruct Gemini Flash 2.0
(temperature = 1.0, top-p = 0.95) to annotate our training data.

You will first identify whether the given chatbot response may be generated in
parallel. You are to then annotate the chatbot response using specific tags
that highlight segments suitable for parallel generation.

Use <async> tags to denote segments of text that may be generated asynchronously
in parallel with respect to the text that follows. Thus apply <async> tags only
to sentences that do not serve as necessary context for subsequent sentences.
Sentences that are crucial for understanding or generating following text are
not suitable for parallel asynchronous generation. For each <async> tag, include
a very concise topic description of the text surrounded within the <async> tags.
The topic description will be accessible to text generation after the closing
async tag to ensure continuity and coherence.

Use the singleton <sync/> tag for synchronization. All content generated before
<sync/>, including text marked by <async> is accessible to subsequent text
generation after the <sync/> tag, ensuring continuity and coherence.

Detailed Instructions:
- Tagging Rules:
- Use <async> tag in pairs.
- Ensure all text content is encapsulated within <async> tags.
- Ensure that each <async> tag encompasses at least five words.
- Refrain from altering the content of the response during annotation.
- Use a maximum of 3 words in the topic description.
- Use <sync/> sparingly as it introduces significant slowdown.

13

	Introduction
	Related Work
	Preliminaries
	Planned Diffusion
	Formal Description
	Data
	Training
	Inference

	Experimental Evaluation
	Sensitivity Analysis
	Conclusion
	Data Annotation Prompt

