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Abstract

Cheap-to-Build Very Large-Language Mod-001
els (CtB-LLMs) with affordable training are002
emerging as the next big revolution in natural003
language processing and understanding. These004
CtB-LLMs are democratizing access to train-005
able Very Large-Language Models (VLLMs)006
and, thus, may represent the building blocks of007
many NLP systems solving downstream tasks.008
Hence, a little or a large bias in CtB-LLMs may009
cause huge harm. In this paper, we performed a010
large investigation of the bias of three families011
of CtB-LLMs, and we showed that debiasing012
techniques are effective and usable. Indeed, ac-013
cording to current tests, the LLaMA and the014
OPT families have an important bias in gender,015
race, religion, and profession. In contrast to the016
analysis for other LLMs, we discovered that017
bias depends not on the number of parameters018
but on the perplexity. Finally, the debiasing019
of OPT using LoRA reduces bias up to 4.12020
points in the normalized stereotype score.021

1 Introduction022

Very Large Language Models (VLLMs) like Chat-023

GPT have become a standard building block in024

Artificial Intelligence applications since they can025

be adapted to a wide range of downstream tasks.026

Transformer-based language models (Vaswani027

et al., 2017), which have disrupted classical NLP028

pipeline (Tenney et al., 2019), have grown in size029

and capabilities in recent years. The pre-training030

step from large text corpora, with different lan-031

guage modeling strategies, appeared to be the key032

to getting remarkable results on various tasks af-033

ter fine-tuning on smaller datasets. VLLMs that034

represent the new version of transformer-based lan-035

guage models are based on corpora not so far from036

their forerunners. While the performance is unmis-037

takable, the resources needed are prohibitive for038

non-company research.039

*These authors contributed equally to this work

Recently, Touvron et al. (2023) proposed Large 040

Language Model Meta AI (LLaMA). This solution 041

aims to democratize training and domain adapta- 042

tion of VLLM by opening the door to Cheap-to- 043

Build Very Large-Language models (CtB-LLMs). 044

LLaMA was made available in different sizes to 045

provide smaller, high-performance models that 046

allow all researchers to use these models. The 047

LLaMA’s success seems to be the trade-off between 048

lowering parameters and enriching pre-training cor- 049

pora compared to other VLLMs (see Tab. 2). 050

However, the considerable increase in pre- 051

training corpora makes it challenging to assess 052

the characteristics and check the reliability of 053

these data. Therefore, learned representations may 054

inherit the biases and stereotypical associations 055

present in the large text corpora in the language 056

and, thus, in the pre-training corpora taken from 057

the web (Liang et al., 2021). Bias is the presence 058

of systematic prejudices in models, that tendency 059

to generate responses that reflect the biases present 060

in the data it was trained on, potentially leading 061

to skewed or unfair outputs that perpetuate stereo- 062

types and inequalities. Although the spread of the 063

phenomenon is widely recognized, the causes that 064

emphasize this phenomenon remain largely unex- 065

plored. It has been observed that as the size of a 066

model increases, its linguistic modeling capabili- 067

ties and biases increase (Nadeem et al., 2021). On 068

the other hand, distilled versions of target models 069

tend to show more bias (Silva et al., 2021). These 070

mixed results demonstrate that bias does not de- 071

pend on the number of parameters but, more likely, 072

on the data on which they were trained. 073

In this paper, we performed a deep investigation 074

of the bias of three families of CtB-LLMs, and 075

we showed that debiasing techniques are effective 076

and usable. By investigating the analogies between 077

model size growth concerning pre-training param- 078

eters or corpora and bias memorization. Thus, we 079

hypothesize that the CtB-LLMs performance de- 080

pends on the quality of the training data and that, 081
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Domain Context Sentences p p-Debias LLaMA
gender unrelated Sometimes my grandfather can be flashlight. 0.04 0.00281
gender stereotype Sometimes my grandfather can be sexist. 0.013 0.00859
gender anti-stereotype Sometimes my grandfather can be openminded. 0.012 0.00858
race unrelated Australian people are know for how much of laidback people they are. 0.015 0.011
race stereotype Australian people are know for how much of kangaroos people they are. 0.013 0.010
race anti-stereotype Australian people are know for how much of fighters people they are. 0.014 0.012

Table 1: Example of bias in sentences taken from StereoSet (Nadeem et al., 2021). We report the probabilities of
each example p and p-Debias LLaMA according to LLaMA 7b and its debiased version Debias LLaMA .

between different models, there are no significant082

differences in terms of bias. Finally, we also study083

the effect of fine-tuning with anti-stereotypical sen-084

tences by proposing a lightweight approach to build085

fairer models. By testing the 7-billion-parameter086

LLaMA model and Open Pre-trained Transformer087

Language Models (OPT) (Zhang et al., 2022), we088

show that although the model shows less biased be-089

havior after fine-tuning, the method also achieves090

a reasonable overall performance of the language091

model. Therefore, our approach produces fairer lan-092

guage models using limited resources and achieves093

sustainable performance on downstream bench-094

mark tasks.095

The major contributions of this paper are:096

• a first comprehensive analysis of the bias for097

three families of affordable, Cheap-to-Build098

Large-Language Models (CtB-LLMs)099

• establishing the anti-correlation between per-100

plexity and bias in CtB-LLMs101

• demonstrating that simple de-biasing tech-102

niques can be positively used to reduce bias103

in these three classes of CtB-LLMs while not104

reducing performance on downstream tasks105

2 Background and related work106

Bias problems in Machine Learning are the107

Achilles heel of many applications, including rec-108

ommendation systems (Schnabel et al., 2016), fa-109

cial recognition (Wang and Deng, 2019), and110

speech recognition (Koenecke et al., 2020). One111

of the main sources of bias comes from training112

datasets, as noted by Shankar et al. (2017) Ima-113

geNet and the Open Images dataset disproportion-114

ately represented people from North America and115

Europe. To mitigate biased behaviors in Machine116

Learning models, researchers have proposed meth-117

ods targeting different tasks and domains, such as118

classification (Roh et al., 2021), adversarial learn-119

ing (Xu et al., 2018) and regression (Agarwal et al.,120

2019).121

On the other side of the coin, traditional static 122

word embedding models are no exception to this 123

trend. Bolukbasi et al. (2016) and Caliskan et al. 124

(2017) showed that word2vec (Mikolov et al., 2013) 125

and GloVe (Pennington et al., 2014) contain stereo- 126

typed associations found in classic human psychol- 127

ogy studies (Greenwald et al., 1998). These works 128

measured word-level bias using cosine similarity 129

between embedding vectors, as in Bolukbasi et al. 130

(2016) and Word Embedding Association Tests 131

(WEAT) (Caliskan et al., 2017). 132

Later, May et al. (2019) extended WEAT to the 133

Sentence Encoder Association Test (SEAT) and re- 134

vealed harmful stereotypes in Pre-trained Language 135

Models and their contextual word embeddings such 136

as GPT-2 (Radford et al.), ELMo (Peters et al., 137

2018) and BERT (Devlin et al., 2019). Sheng et al. 138

(2019) defined and measured a concept of regard 139

and sentiment for GPT-2 output. Finally, Nadeem 140

et al. (2021) proposed StereoSet to measure the 141

bias on gender, race, profession, and religion do- 142

mains. These benchmarks help in quantifying to 143

what extent the bias is present in language models. 144

Due to the extent of this phenomenon, different 145

analyses have been performed trying to understand 146

the causes and mitigate its presence. Conflicting 147

results were observed in the attempt to understand 148

how the same training strategies and data affect 149

different models. A positive correlation has been 150

observed between model size and bias presence in 151

(Nadeem et al., 2021), studying GPT-2, BERT, and 152

RoBERTa. However, Silva et al. (2021) showed 153

that bias is often much stronger on the distilled 154

version of BERT and RoBERTa, DistilBERT, and 155

DistilRoBERTa. For these reasons, in this paper, 156

we aim to understand whether the model size di- 157

rectly affects bias. 158

To mitigate the bias models, Bolukbasi et al. 159

(2016) proposed a mechanism to de-emphasize the 160

gender direction projected by words that are sup- 161

posed to be neutral, maintaining the same distance 162

between non-gender words and gender word pairs. 163
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Later, Zhao et al. (2018) reserved some dimen-164

sions of embedding vectors for specific informa-165

tion content, such as gender information, where166

gender-neutral words were made orthogonal to the167

direction of gender. Peng et al. (2020), using GPT-168

2, proposed a weighty reward mechanism to reduce169

the frequency of non-normative output. Zhao et al.170

(2019) used data augmentation to replace gendered171

words with their opposites in the original training172

corpus and have a new model on the union of both173

corpora. Finally, Joniak and Aizawa (2022) used174

movement pruning, weight freezing, and a debi-175

asing technique based on a projection of gender-176

related words along (Kaneko and Bollegala, 2021).177

In this paper, we propose a comprehensive anal-178

ysis of the stereotypes present in three Large Lan-179

guage Models: Large Language Model Meta AI180

(LLaMA) (Touvron et al., 2023), Open Pre-trained181

Transformer Language Models (OPT) (Zhang et al.,182

2022) and BLOOM (BigScience-Workshop et al.,183

2023). We chose these open models because of the184

trade-off between the number of parameters, which185

is accessible to our resources, and the size of the186

pre-training corpora (see Tab. 2). Hence, we pro-187

pose a debiasing method using an external corpus188

characterized by anti-stereotypical sentences. We189

stem from the observation that not all model pa-190

rameters need to be updated to perform debiasing191

(Gira et al., 2022; Joniak and Aizawa, 2022) and192

that perturbation mitigated biases in smaller models193

(Zhao et al., 2019; Qian et al., 2022). Our debiased194

models are extensively evaluated on a large num-195

ber of biased domains, and we also evaluate their196

performance on GLUE tasks.197

3 Method and Data198

This section briefly describes the datasets and199

metrics used to evaluate the LLaMA, OPT, and200

BLOOM families (Section 3.1). Then, we analyze201

our debiasing technique and fine-tuning data (Sec-202

tion 3.2).203

3.1 Evaluation Datasets204

An ideal language model excels at language mod-205

eling while not exhibiting stereotypical biases. To206

determine the success of both goals, we evaluate a207

given model’s stereotypical bias and language mod-208

eling abilities. For evaluating the bias of the lan-209

guage models, we used StereoSet (Nadeem et al.,210

2021) described in Section 3.1.1. To assess that211

the language models are not significantly losing212

performance after debiasing, we used the GLUE 213

benchmark (Wang et al., 2018) described in Section 214

3.1.2 215

3.1.1 StereoSet 216

StereoSet (Nadeem et al., 2021) is a benchmark 217

used to assess the presence of bias in four domains: 218

gender, profession, race, and religion. It is com- 219

posed of triples of correlated English sentences. 220

Triples of sentences are organized around a target 221

term. Each triple then consists of a stereotypical, 222

an anti-stereotypical, or an unrelated, neutral con- 223

text for the target term. For example, grandfather 224

is associated respectively with sexist, openminded, 225

and flashlight whereas Australian people are asso- 226

ciated respectively with kangaroos, fighters, and 227

laidback. Then, simple and similar sentences are 228

built around target terms and context words to re- 229

duce the impact of the sentence structure in the 230

computed probability (see Tab. 1). 231

Ideally, tests in StereoSet aim to observe whether 232

or not the analyzed language model leans toward 233

stereotypical contexts. Language models are tested 234

by observing which contexts they prefer for each 235

target among stereotyped and anti-stereotyped con- 236

texts: they are biased if they systematically choose 237

the stereotyped context. 238

StereoSet defines two classes of tests: intra- 239

sentence (8,498 triples) and inter-sentence (16,995 240

triples). In our experiments (Section 4.1), we 241

tested LLaMA, OPT, and BLOOM models with 242

the intra-sentence test excluding the inter-sentence 243

test since, in order to perform the Next Sentence 244

Prediction, the models should be fine-tuned, possi- 245

bly introducing biases also in this phase. Indeed, 246

in the inter-sentence test, language models are first 247

fed a context sentence and asked to perform the 248

Next Sentence Prediction over the stereotyped, anti- 249

stereotyped, and neutral attribute sentence. 250

The StereoSet intra-sentence test used in our 251

study is based on four measures: the Stereotype 252

Score (ss), the Normalized Stereotype Score (nss), 253

the Language Modelling Score (lms), and the Ide- 254

alized CAT Score (icat). 255

Stereotype Score (ss) focuses on the stereotyp-
ical and the anti-stereotypical sentences of each
triple and measures the preference of a language
model over these pairs of sentences. Comparing
the probability of the stereotypical and the anti-
stereotypical sentences, it is defined as the percent-
age of times the stereotypical sentence is assigned
a higher probability than the anti-stereotypical sen-
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Model parameters pre-training
size

BERT (Devlin et al., 2019) 110b, 324b ∼ 16GB
GPT-2 (Radford et al.) 117m, 345m ∼ 80GB
GPT-3 (Brown et al., 2020) 125b, 234b ∼ 570GB
OPT (Zhang et al., 2022) 0.12b, 17b, 66b ∼ 0.85TB
BLOOM (BigScience-Workshop et al., 2023) 560m, 1b7, 3b, 7b ∼ 0.80TB
LLaMA (Touvron et al., 2023) 7b, 13b, 33b, 65b ∼ 1TB

Table 2: Number of parameters (b for billion and m
for million) and size of pre-training corpora of some
representative LLMs models. We report the number of
parameters for the most commonly used versions, i.e.
medium and large, except for LLaMA.

tence. An ideal model picks uniformly between
stereotyped and anti-stereotyped sentences, with
a ss = 50. Because understanding the Stereo-
type Score can be challenging, we introduced the
Normalized Stereotype Score (nss) is defined as
follows:

nss =
min(ss, 100− ss)

0.50

Hence, nss is a measure that stays between 0 and256

100 where 100 is the non-biased or non-anti-biased257

value. For comparison purposes, we report both ss258

and nss.259

The Language Modeling Score (lms) assesses260

the ability of a model to rank a meaningful associa-261

tion over a meaningless one when presented with262

a target term, a contextual framework, and two po-263

tential associations. The meaningful association264

can either correspond to the stereotype or the anti-265

stereotype option. In this case, a perfect model has266

lms = 100.267

The Idealized CAT Score (icat) is the combina-
tion of the other two measures, and it is defined as
follows:

icat = lms ∗ nss/100

An ideal model, unbiased and with high language268

modeling abilities, has a icat = 100.269

3.1.2 GLUE270

The GLUE benchmark (Wang et al., 2018) is271

largely used to assess the capabilities of NLP mod-272

els mainly based on large language models. Us-273

ing NLP tasks in combination with debiasing tech-274

niques is extremely important as it has been previ-275

ously noted that debiasing methods tend to degrade276

model performance in downstream tasks (Joniak277

and Aizawa, 2022). We use GLUE to demonstrate278

that the debiasing technique we introduce does not279

negatively affect downstream performance.280

Hence, we choose a subset of GLUE tasks and281

show how the proposed model, Debias LLaMA282

(see Table 4), performs well but at the same time 283

has higher fairness. The selected tasks cover three 284

classes of problems: Natural Language Inference, 285

Similarity&Paraphrase, and Single Sentence. For 286

Natural Language Inference, we used Multigenre 287

NLI (MNLI) (Williams et al., 2018), Question NLI 288

(QNLI) (Wang et al., 2018), Recognizing Textual 289

Entailment (RTE) (Bentivogli et al., 2009), and 290

Winograd NLI (WNLI) (Levesque et al., 2012). 291

For Similarity&Paraphrase, we used the Microsoft 292

Research Paraphrase Corpus (MRPC) (Dolan and 293

Brockett, 2005), the Semantic Textual Similarity 294

Benchmark (STS-B) (Cer et al., 2017), and Quora 295

Question Pairs (QQP) (Sharma et al., 2019); senti- 296

ment classification - Stanford Sentiment Treebank 297

(SST-2) (Socher et al., 2013). Finally, for Single 298

Sentence, we used the corpus of linguistic accept- 299

ability (CoLA) (Warstadt et al., 2019). 300

3.2 Debiasing via efficient Domain Adaption 301

and Perturbation 302

The cheap-to-build families of LLMs – LLaMA, 303

OPT, and BLOOM – give the possibility to perform 304

debiasing. To speed up all the processes, the debi- 305

asing procedure utilized is performed via domain 306

adaptation and causal language modeling as fine- 307

tuning. We also froze a large number of parameters 308

and trained only the attention matrices of the exam- 309

ined models. While a similar approach of freezing 310

weights has been performed (Gira et al., 2022), to 311

the best of our knowledge, it is the first time that 312

the debiasing is performed via domain adaption on 313

these LLMs with the perturbed dataset described in 314

the following. Moreover, while Gira et al. (2022) 315

focuses on debiasing GPT-2 with different tech- 316

niques, we adopt a single, flexible approach to a 317

large number of different models. Moreover, since 318

it has been observed that the attention matrices 319

are, in fact, low-rank matrices on a large number 320

of models, we train each model using LoRA (Hu 321

et al., 2021) on the attention matrices at each layer. 322

In written texts, bias is prevalent as models of- 323

ten mirror the content they are exposed to. Thus, 324

we have contemplated the introduction of counter- 325

stereotypical sentences to mitigate this bias. We 326

opted LoRA primarily due to its adapter-based ap- 327

proach, as it appeared to be the most viable solution 328

given the large models at hand, addressing the mem- 329

ory constraints efficiently. The resulting training 330

procedure is easier since we do not memorize the 331

gradient for each weight, scalable because it does 332
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require fewer training data compared to training333

from scratch, and the resulting adapter weights are334

more accessible to share instead of a large model335

obtained by standard fine-tuning. This choice leads336

to a percentage of learnable parameters that is al-337

ways lower than 0.5%. Despite its simplicity, this338

technique allows us to obtain models that are less339

biased (Section 4.2) and to maintain them with com-340

parable performances on language understanding341

tasks (Section 4.3).342

To perform the debiasing procedure we relied343

on the perturbed sentences of the PANDA dataset344

(Qian et al., 2022). PANDA consists of 98k pairs345

of sentences. Each one is composed of an origi-346

nal sentence and a human-annotated one, with the347

latter being a rewriting of the former by chang-348

ing the demographic references in the text. For349

example, “women like shopping” is perturbated350

in “men like shopping”. The resulting sentence351

is, hence, anti-stereotypical. The demographic352

terms targeted in the dataset belong to the do-353

main of gender, ethnicity, and age. Qian et al.354

(2022) used this human-annotated dataset to re-355

train RoBERTa entirely. While this approach leads356

to good performances both on the measured bias357

and language modeling tasks, it requires a time and358

data-consuming complete pre-training step. For359

these reasons, we performed instead the domain360

adaptation with LoRA (Hu et al., 2021) applied361

only to attention matrices of LLaMA, OPT, and362

BLOOM. The proposed debiasing technique will363

be public and available to all.364

4 Experiments365

In this section, we first analyze the presence of bias366

in pre-trained LLMs. We use StereoSet to assess367

the presence of bias (Section 4.1). Furthermore,368

in Section 4.2, we focus on the analysis of the369

models after we apply the debiasing technique pre-370

viously described, and we assess it causes no harm371

to the language modeling performance abilities of372

the model considered, testing on downstream tasks373

(Section 4.3). Finally, we investigate whether the374

correlation between model size and bias, noted in375

previous works, does emerge also in the models be-376

longing to the LLaMA, OPT, and BLOOM families377

(Section 4.4).378

4.1 Bias in Pre-trained models379

In the following analysis, we investigate the pres-380

ence of bias in LLMs, in particular, we focused381

on LLaMA, OPT, and BLOOM pre-trained mod- 382

els. Our choices are justified by the characteristics 383

of the models and the hardware resources avail- 384

able (see Tab. 2). In this section, we also aim to 385

understand whether the model size has a positive 386

correlation with the bias and, in case of a negative 387

answer, it is possible to find another measure of 388

complexity of the model that can give us a bet- 389

ter explanation. We observe that when the bias is 390

higher, the perplexity of the models tends to be 391

higher. 392

Using the StereoSet benchmark, bias seems to 393

affect all models across both LLaMA, OPT, and 394

BLOOM families, despite the number of parame- 395

ters of each model (as can be observed in Table 3, 396

columns plain). All models achieve a lms higher 397

than 0.9, meaning they exclude the meaningless op- 398

tion a large percentage of the time. Yet, they are far 399

from the ideal score of 0.5 for ss, which can be ob- 400

served in all different domains, and, consequently, 401

the nss is far from 100. 402

Considering all the domains together, BLOOM 403

seems fairer (less biased) than LLaMA and OPT. 404

BLOOM consistently outperforms both models for 405

any configuration of the number of parameters. The 406

size of the model is not affecting the fairness of 407

LLaMA even if it remains unsatisfactory since nss 408

is around 68. BLOOM and OPT instead decrease 409

their fairness when augmenting the model size. In 410

fact, their best nss are obtained with 560m and 411

350m parameters for BLOOM and OPT, respec- 412

tively. The fairness of BLOOM 560m is definitely 413

interesting as its nss is around 83, and its icat is 414

73.72 compared with 63.17 and 68.28 of LLaMA 415

and OPT, respectively. 416

It is not a surprise that BLOOM is fairer than the 417

other two models. Indeed, this family of models 418

has been trained over a polished and controlled cor- 419

pus (BigScience-Workshop et al., 2023). More than 420

100 workshop participants have contributed to the 421

dataset curation phase. These participants selected 422

sources trying to minimize the effect of specific 423

biases and revised the procedures for automatically 424

filtering corpora. 425

All families of models show a bias higher than 426

the mean for the gender domain, are on par with 427

the mean for the profession domain, and are fairer 428

for the race and religion domains. Gender and 429

profession seem to be then less balanced in the 430

pre-training phase. The extremely poor result in 431

the gender domain seems to suggest that this bias 432
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plain debiased
domain model lms ss nss icat perplexity lms ss nss icat perplexity

all

LLaMA 7b 91.98 65.66 68.68 63.17 152.56 91.16 65.1 69.80 63.63 244.41
LLaMA 13b 91.96 65.82 68.36 62.87 154.33 - - - - -
LLaMA 30b 91.93 65.97 68.06 62.57 152.25 - - - - -
OPT 350m 91.72 62.78 74.44 68.28 333.77 91.76 61.9 76.2 69.92 352.39
OPT 1.3b 93.29 66.03 67.94 63.38 278.89 92.96 64.58 70.84 65.85 315.62
OPT 2.7b 93.26 66.75 66.5 62.03 266.25 93.04 64.26 71.48 66.5 305.36
OPT 6.7b 93.61 66.83 66.34 62.11 264.1 93.41 64.5 71. 66.33 308.72
BLOOM 560m 89.26 58.71 82.58 73.72 684.54 90.01 58.92 82.16 73.95 574.38
BLOOM 1b1 90.23 60.04 79.92 72.11 666.84 90.42 60.38 79.24 71.65 542.42
BLOOM 1b7 91.09 60.28 79.44 72.35 622.18 91.1 61.08 77.84 70.9 476.41
BLOOM 3b 91.65 61.4 77.2 70.75 397.91 91.63 62.01 75.98 69.61 338.8
BLOOM 7b1 92.03 62.79 74.42 68.48 412.72 91.89 62.23 75.54 69.42 428.9

gender

LLaMA 7b 92.64 69.3 61.4 56.89 141.34 91.91 68.62 62.76 57.69 241.6
LLaMA 13b 92.74 69.59 60.82 56.4 140.65 - - - - -
LLaMA 30b 92.69 68.71 62.58 58 141.49 - - - - -
OPT 350m 92.74 66.86 66.28 61.46 286.38 91.96 65.98 68.04 62.56 266.74
OPT 1.3b 94.05 70.18 59.64 56.1 237.49 92.98 69.3 61.4 57.09 239.34
OPT 2.7b 93.52 69.59 60.82 56.88 237.8 92.54 68.13 63.74 58.99 238.88
OPT 6.7b 94.05 69.1 61.8 58.12 231.7 93.03 68.62 6276 58.39 245.33
BLOOM 560m 90.69 63.74 72.52 65.76 546.51 91.47 63.65 72.70 66.51 422.03
BLOOM 1b1 91.86 65.79 68.42 62.85 562.54 91.76 65.5 69.00 63.32 396.52
BLOOM 1b7 91.86 65.4 69.2 63.57 549.21 92.01 65.98 68.04 62.59 381.49
BLOOM 3b 92.11 67.74 64.52 59.43 336.33 92.25 68.32 63.36 58.44 275.92
BLOOM 7b1 92.25 67.64 64.72 59.7 380.93 93.37 65.89 68.22 63.7 382.03

profession

LLaMA 7b 91.3 63.31 73.38 67 132.84 90.38 62.62 74.76 67.56 218.53
LLaMA 13b 91.57 63.5 73.00 66.85 136.13 - - - - -
LLaMA 30b 91.33 64.06 71.88 65.65 131.49 - - - - -
OPT 350m 91.26 62.81 74.38 67.87 330.95 91.38 63.12 73.76 67.4 352.08
OPT 1.3b 92.36 64.74 70.52 65.13 300.4 92.8 64.56 70.88 65.78 341.09
OPT 2.7b 92.24 65.37 69.26 63.89 283.76 92.44 64.93 70.14 64.84 331.77
OPT 6.7b 92.77 65.18 69.64 64.6 286.29 93.08 64.4 71.2 66.27 328.16
BLOOM 560m 88.82 59.38 81.24 72.16 567.71 89.76 58.67 82.66 74.2 477.65
BLOOM 1b1 90.04 59.85 80.30 72.3 588.91 90.06 60.16 79.68 71.75 423.06
BLOOM 1b7 90.82 60.79 78.42 71.23 568.4 90.73 59.6 80.8 73.31 422.9
BLOOM 3b 91.4 61.22 77.56 70.88 357.58 91.12 60.88 78.24 71.29 291.64
BLOOM 7b1 91.72 62.19 75.62 69.36 344.08 91.88 61.97 76.06 69.88 340.47

race

LLaMA 7b 92.27 67.01 65.98 60.87 172.2 91.44 66.63 66.74 61.02 268.52
LLaMA 13b 91.94 67.12 65.76 60.47 173.21 - - - - -
LLaMA 30b 92.05 67.29 65.42 60.21 172.6 - - - - -
OPT 350m 91.72 61.71 76.58 70.25 346.09 91.9 59.73 80.54 74.02 370.71
OPT 1.3b 93.78 66.02 67.96 63.73 269.25 93 63.56 72.88 67.78 308.5
OPT 2.7b 93.91 66.99 66.02 62 255.92 93.54 62.44 75.12 70.26 296.64
OPT 6.7b 94.08 67.37 65.26 61.4 252.31 93.72 63.28 73.44 68.82 306.01
BLOOM 560m 89.07 56.91 86.18 76.76 817.62 89.69 58 84. 75.34 696.01
BLOOM 1b1 89.79 58.89 82.22 73.83 761.3 90.19 59.27 81.46 73.47 679.47
BLOOM 1b7 91.1 58.99 82.02 74.72 680.7 91.09 61.25 77.5 70.59 543.18
BLOOM 3b 91.63 60.31 79.38 72.74 446.44 91.76 61.55 76.9 70.56 394.36
BLOOM 7b1 92.01 62.29 75.42 69.4 473.47 91.44 61.86 76.28 69.75 505.53

religion

LLaMA 7b 93.1 61.04 77.92 72.54 144.57 92.94 59.82 80.36 74.7 216.62
LLaMA 13b 93.56 61.04 77.92 72.9 148.39 - - - - -
LLaMA 30b 93.87 60.12 79.76 74.86 144.69 - - - - -
OPT 350m 93.1 62.58 74.84 69.68 361.86 93.1 63.19 73.62 68.54 403.71
OPT 1.3b 94.02 65.64 68.72 64.6 313.98 93.87 62.27 75.46 70.83 391.13
OPT 2.7b 94.63 68.4 63.20 59.8 308.21 94.48 67.48 65.04 61.44 360.07
OPT 6.7b 94.79 69.33 61.34 58.15 290.05 94.17 67.18 65.64 61.82 349.51
BLOOM 560m 91.41 57.98 84.04 76.83 660.96 91.72 57.67 84.66 77.65 536.44
BLOOM 1b1 92.18 57.67 84.66 78.04 620.79 92.64 59.82 80.36 74.45 520.65
BLOOM 1b7 91.1 54.91 90.18 82.16 674.18 92.02 58.28 83.44 76.78 495.14
BLOOM 3b 92.79 56.44 87.12 80.84 402.36 93.25 58.9 82.2 76.66 329.56
BLOOM 7b1 94.48 59.51 80.98 76.51 454.26 92.79 57.67 84.66 78.56 520.91

Table 3: StereoSet scores in each domain. The proposed debiasing method reduces bias across all the different
domains.

is absolutely cast into texts. Even BLOOM has433

a performance drop of 10 points with respect to434

its mean for the nss value (72.52 for gender vs. 435

82.52 for all). The corpus curation was ineffective 436

6



Natural Language Inference Similarity & Paraphrase Single Sentence
Model WNLI RTE QNLI MNLI QQP MRPC SST-2 CoLA
LLaMA 33.8 76.53 62.43 55.63 68.41 68.37 82.45 66.15
LLaMA-Debias 32.98 75.95 62.54 58.43 67.95 69.45 82.22 69.23

OPT-350m 52.47 66.42 50.23 81.16 54.44 86.44 50.91 52.43
OPT-Debias-350m 54.43 66.96 51.12 86.55 55.35 86.97 51.16 54.06
OPT-1b3 54.56 68.33 52.44 85.19 54.83 87.96 52.78 54.67
OPT-Debias-1b3 54.79 68.98 53.06 87.16 55.83 88.05 53.21 54.97
OPT-2b7 55.27 69.12 52.98 85.78 55.93 88.14 54.07 55.22
OPT-Debias-2b7 55.98 70.16 53.24 86.15 56.18 88.64 55.71 55.69
OPT-6b7 57.38 70.11 54.41 87.13 57.23 89.32 56.27 56.72
OPT-Debias-6b7 57.13 69.97 54.92 86.97 57.78 90.17 57.03 56.94

BLOOM-560m 52.23 54.43 80.03 38.55 53.32 82.57 83.21 36.27
BLOOM-Debias-560m 39.41 51.44 78.91 39.77 51.43 80.16 82.83 34.22
BLOOM-1b7 52.82 59.20 81.01 39.86 56.42 85.81 85.21 46.55
BLOOM-Debias-1b7 46.77 58.19 80.21 37.16 54.71 84.91 80.55 43.30
BLOOM-3b 54.37 62.64 82.39 40.11 57.14 85.97 86.04 46.93
BLOOM-Debias-3b 49.83 57.93 80.16 37.89 55.49 82.19 82.31 45.05
BLOOM-7b 55.16 65.19 84.13 42.23 60.46 87.18 86.94 51.16
BLOOM-Debias-7b 54.26 63.98 83.52 40.28 59.67 85.33 85.37 50.81

Table 4: Performance on the GLUE tasks. For MRPC and QQP, we report F1. For STS-B, we report Pearson and
Spearman correlation. For CoLA, we report Matthews correlation. For all other tasks, we report accuracy. Results
are the median of 5 seeded runs. We have reported the settings and metrics proposed in (Wang et al., 2018).

for this domain but it was extremely effective for437

the two most divisive domains, that is, race and438

religion. BLOOM 1.7b has the impressive result of439

nss = 90.18 for religion paired with icat = 82.16.440

Hence, religion has been particularly curated in its441

training dataset.442

4.2 Debiasing results443

Given the results of the previous section, it seems444

that data curation seems to be the best cure for445

bias in CtB-LLMs. Yet, this strategy is not always446

possible, as training CtB-LLMs from scratch may447

be prohibitive. Debiasing maybe the other solution.448

When the fairness is low, debiasing plays a major449

role in reducing the bias of CtB-LLMs (see Table 3).450

For the family OPT, the bias decrease on the overall451

corpus is neat, even not impressive. The average452

nss value increases by 4.12 points, and the average453

icat by 3.66 points. This decrease in bias is mainly454

due to the decrease in the domain of race where the455

increase of nss reaches 7.26 points on average, and456

the increase in icat is on average of 6.44 points. In457

the case of gender and profession, the bias is not458

greatly reduced. Apparently, the PANDA corpus is459

not extremely powerful for reducing bias in these460

two important categories.461

Debiasing has no effect on BLOOM, which is462

already fairer than the other two families of models.463

Moreover, debiasing does not help the OPT and the464

LLaMA family to reduce the bias of these models465

to the levels of BLOOM. This seems to suggest that466

it is better to invest in carefully selecting corpora 467

than debiasing techniques. However, results on 468

downstream tasks shed another light on this last 469

statement (see Sec. 4.3). 470

4.3 Performance on downstream tasks 471

Finally, we tested the families of CtB-LLMs and 472

their debiased counterparts on downstream tasks. 473

In fact, it has been noted that debiasing LLMs 474

may affect the quality of their representations and, 475

consequently, a degradation of the performances. 476

Hence, the aim of this section is twofold: 477

• to understand whether or not performances of 478

CtB-LLMs degrade after debiasing; 479

• to determine the relationship between bias and 480

performance on final downstream tasks. 481

We then tested the proposed models on many down- 482

stream tasks commonly used for benchmarking, 483

that is, GLUE (Wang et al., 2019). What we expect 484

from these further experiments is that the capabili- 485

ties of the language model will be maintained by 486

the fine-tuning proposed in Section 4.2. 487

Debiasing does not introduce a drop in perfor- 488

mance on downstream tasks for LLaMA and for 489

OPT (see Tab. 4). In these two families, debi- 490

asing plays an important role as it is really re- 491

ducing the bias. Nevertheless, it does not reduce 492

the performance significantly in any of the GLUE 493

downstream tasks. For specific cases, debiasing 494
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(a) (b)

Figure 1: Model bias (ss) against model size (1a) and perplexity (1b). All measures have been standardized across
the two different families of models. Our experiments suggest a lack of correlation between model size and bias
(1a). A negative correlation can be observed (1b) across the different domains between perplexity and ss score
while it is not possible to establish its statistical significance due to the limited number of models.

increases performance in the final downstream task495

for LLaMA and OPT.496

However, fairness and performance are not cor-497

related. Indeed, OPT performs better with larger498

models (see Tab. 4). Yet, larger models have a499

stronger bias (see Tab. 3). Performance is directly500

correlated with the size of the OPT model. More-501

over, BLOOM, the fairer CtB-LLM, performs very502

poorly on many tasks compared with the OPT and503

LLaMA.504

4.4 On language modeling abilities and bias505

Since all models are biased, we aim to investigate506

if there is a reason that makes models belonging to507

the same family perform in different ways. First,508

we notice the absence of correlation between model509

size and bias presence (Figure 1a). Hence, we in-510

vestigate a property usually related to model size,511

such as the perplexity of a model. The perplexity is512

related to model confusion, and large models gener-513

ally have higher language modeling performances514

and lower perplexity. Figure 1b shows strong, neg-515

ative correlations between average perplexity and516

ss in LLaMA and OPT families on the StereoSet517

benchmark. Despite the trend appearing to be clear,518

due to the still limited number of models analyzed,519

it is not possible to assess the statistical significance520

of the results. This observed correlation requires521

further exploration.522

5 Conclusions 523

The outbreak of Large Language Models (LLMs) 524

based has shocked traditional NLP pipelines. These 525

models achieve remarkable performance but are 526

not accessible to everyone, given the prohibitive 527

number of parameters they work on. Touvron et al. 528

(2023) and Zhang et al. (2022) have proposed ver- 529

sions with a reduced number of parameters but, 530

at the same time, use larger pre-training corpora. 531

These Cheap-to-Build LLMs (CtB-LLMs) may 532

soon become the de-facto standard for building 533

downstream tasks. Controlling their bias is then a 534

compelling need. 535

In this paper, we proposed an extensive analysis 536

of CtB-LLMs, and we showed that debiasing is a 537

viable solution for mitigating the bias of these mod- 538

els. However, we have mixed findings. Although 539

the debiasing process in itself is not reducing per- 540

formance on downstream tasks, a reduced bias, in 541

general, seems to hurt performance on final down- 542

stream tasks. 543

In the future, we will continue exploring ways 544

to reduce bias in CtB-LLMs by ensuring their eth- 545

ical and unbiased use in various applications. By 546

addressing the problems, we can spread the full 547

potential of these models and harness their power 548

for the progress of society. 549
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6 Limitations550

We outline some limitations and possible directions551

for future research in mitigating bias in Large Lan-552

guage Models (LLMs):553

• Our approach could be better, as we have554

found compromises between performance and555

correctness. Thus, we have obtained refined556

LLMs with a certain amount of attenuated bias557

and should not be considered a guarantee for558

safety in the real world. Therefore, attention559

must be paid to interpreting, using, and eval-560

uating these models in different real-world561

contexts.562

• Our approach is linked to carefully crafted563

stereotype bias definitions. These definitions564

largely reflect only a perception of bias that565

may not be generalized to other cultures, re-566

gions, and periods. Bias may also embrace567

social, moral, and ethical dimensions, which568

are essential for future work.569

• One of the risks associated with our stereotype570

identification technique is the potential fail-571

ure to recognize stereotypes, which ultimately572

hinders effective debiasing. Conversely, an573

overly aggressive approach to debiasing may574

lead to the creation of an excessively anti-575

stereotypical model, inadvertently introducing576

bias.577

• Finally, the last point that partially repre-578

sents a limitation is related to our resources579

(NVIDIA RTX A6000 with 48 GB of VRAM),580

which did not allow us to test larger LLMs and581

to run more than one time. This part will also582

be taken care of in future work by offering a583

complete analysis.584

These points will be the cornerstone of our future585

developments and help us better show the underly-586

ing problems and possible mitigation strategies.587
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