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Fooling 3D Face Recognition with One Single 2D Image
Anonymous Authors

ABSTRACT
3D face recognition is subject to frequent spoofing attacks, in which
3D face presentation attack is one of the most notorious attacks. The
attacker takes advantages of 3D scanning and printing techniques
to generate masks of targets, which has found success in numerous
real-life examples. The salient feature in such attacks is to obtain 3D
face models through 3D scanning, though relatively more expensive
and inconvenient when comparing with 2D photos. In this work,
we propose a newmethod, DREAM, to recover 3D face models from
single 2D image. Specifically, we adopt a black-box approach, which
recovers ‘sufficient’ depths to defeat target recognition models (e.g.,
face identification and face authentication models) by accessing its
output and the corresponding RGB photo. The key observation is
that it is not necessary to restore the true value of depths, but only
need to recover the essential features relevant to the target model.
We used four public 3D face datasets to verify the effectiveness of
DREAM. The experimental results show that DREAM can achieve
a success rate of 94% on face authentication model, even in cross-
dataset testing, and a success rate of 36% on face identification
model.

CCS CONCEPTS
• Security and privacy→ Systems security.

KEYWORDS
3D face recognition, Twin deep networks, RGB-D images, Black-box
attack

1 INTRODUCTION
Face is one of the most important human biometrics, which has
been widely used in authentication (verification) or identification
systems. In such systems, there are two stages, i.e., registration
and recognition. During registration, a user registers his or her
face to the systems (as template). During recognition, a face will
be compared with all templates stored in the system, to determine
whether it matches with one of registered face or not. The face
(and the corresponding individual) is identified and recognized as
legitimate if there is a match. Although 2D face recognition has
been widely used, due to lack of depth or distance information, the
face expression is incomplete, often rendering inefficiency under
dim lights and variants of poses and positions. In recent years, face
recognition has gradually shifted from 2D to 3D, as the prices of
depth cameras have been considerably decreased.
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There have been a variety of spoofing or adversarial attacks
against 3D face recognition systems. Among them, 3D presentation
attack has been extensively studied, which refers to use 3D scanning
and printing technologies to obtain a real size 3D reproduction of
the victim’s face [7, 37, 40] so as to fool 3D face recognition systems.
Unfortunately, building 3D face models requires specialized 3D
scanning equipment, which incurs high cost (e.g., a portable optical
3D scanner GOM TRITOP costs RMB 50,000 [34]). In contrast, it is
much cost effective to obtain 2D images instead, for instance, from
video conference and surveillance camera etc. Hence, in this work,
we seek to answer the question whether it is possible to build a
3D model from the captured 2D image to fool 3D face recognition
systems.

A direct way of launching 3D face spoofing attack with 2D facial
images is exploiting 3D-from-2D reconstruction technologies to
accurately recovery the corresponding 3D facial presentation. These
technologies can be divided into three strategies, i.e., photometric
stereo [8, 26, 31], statistical model fitting [4, 17, 36] and deep learning
[32, 46, 58]. Photometric stereo estimates the local orientations of
the face surface from a sequence of facial images (typically three or
more) of the target person, obtained from the same viewpoint and
under varying illumination, which are then integrated to establish
the face geometry. Statistical model fitting requiresmassive 3D faces
of different persons in order to obtain a statistical 3D facial model
to which small modification is applied according a 2D facial image
to be reconstructed. Given the fact that fine-tuning is achieved
through a limited set of model parameters, it may not be possible
to perfectly restore local detailed geometric features, resulting in
poor attack performance. Learning the 2D-to-3D mapping through
deep neural network (DNN) is a promising way. Some design a
DNN model to predict 3D facial models according to the input 2D
face images, the training of which requires huge amount of 3D
facial scans and is not always feasible [33]. Others learn the depth
of 3D scenes from pictures[39, 55]; however these methods only
recover rough depths rather than precise local geometries required
for facial recognition. As a result, for an attacker who holds a single
image of its victim and a small set of 3D faces, there is no successful
way to launch spoofing attack against 3D face recognition systems.

In this paper, we propose a novel 3D face spoofing attack, Depth
Recovery Attack Method (DREAM). In our attack, an attacker hold-
ing only one 2D face image establishes a 3D face which can pass
the face recognition of the target system. For example, one possi-
ble attack scenario is that an attacker tries to unlock the victim’s
mobile phone (within the number of consecutive unlock attempts
allowed by the system) while he or she leaves temporarily. DREAM
is inspired by the observation that a face recognition system com-
monly refers to a deep neural network extracting and comparing
key features between the registered template faces and the probe
face. This implies that 1) DREAM does not necessarily need to restore
the entire 3D face precisely, but only needs to reconstruct a model
sufficient to defeat the target face recognition system, which means
those key features relevant to face recognition are more important and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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should be given more attention. 2) 1) It is possible to learn key facial
features ‘remembered’ in the recognition model by interrogating it.

We emphasize that achieving our attack is however challenging
due to the following two reasons. Firstly, the attacker can only
access the target commercial device in a black-box manner, and the
number of consecutive interrogations is limited, e.g., 5. This means
that the knowledge about 3D facial templates could be obtained
from the target device is very limited. Secondly, black-box accessing
implies that the key features extracted for facial feature comparison
cannot be obtained, making it difficult to determine the priority of
different local features in geometric reconstruction. To overcome
the above challenges, DREAM is composed of two stages, i.e., zero-
knowledge pre-training of depth generator and depth fine-tuning
with target model. The attacker uses a rough 3D face learned in
the first stage to query the target device so as to refine it, which
guarantees a high attack success rate within the permitted number
of consecutive interrogations.

Specifically, in the first stage, a naive way to supplement the
facial depth according to a face image is to train a generative ad-
versarial network (GAN) [13] with a 3D face dataset held by the
attacker. Notice that the dataset can be publicly accessible and is
irrelevant to those registered users of the target device. However,
such a solution leads to a poor attack success rate, because GAN is
not able to be aware of key depth information solely. Thus, we use
a pre-trained agency face recognition model, and registers those 3D
faces to it. The attacker can obtain an agency model in many ways,
such as downloading the same (or similar) recognition applications
or using a device of the same type as the target device. Then the
agency model is responsible of supervising the facial depth recon-
struction. Meanwhile, we introduce an attention module in the
generator to distinguish key features, and design dual-contrast loss
[52] which enables the generator to gain stronger capability from
small-shot learning. In the second stage, the attacker uses the 3D
face obtained in the first stage to query the target device, leading to
two results. The first is passing the facial recognition directly, i.e.,
attack success. Otherwise, the attacker uses the device response,
e.g., similarity score, to optimize the input of the GAN network (i.e.,
random noise), resulting in an updated 3D face will be used in the
next round of query. The above process is repeated until the attack
success or the maximum number of queries is reached.

We launch our DREAM against both 3D face authentication
(1v1) and identification (1vn). We choose the widely used Siamese
architecture [6] as the target authentication model, and Led3D [35]
and the architecture proposed by Uppal et al. [47] as the target
identification models, respectively. Three public 3D face datasets,
Pandora [5], RGB-D Facial Dataset under Pose Variation [20] and
Texas Database [16], are used for authentication, and Lock3DFace
[54] is for identification. Extensive experimental results show that
the attack success rates of DREAM are 94.73%, 85.71% and 88.50%
within 5 attempts against face authentication model, and 36.36%,
89.32% within 5 attempts against face identification models.

2 RELATEDWORK
In this section, we briefly review 3D face recognition system, 3D
face reconstruction, and GAN.

2.1 3D Face Recognition System
Face recognition, as a biometric technology, has gained widespread
applications due to its ubiquity and non-invasiveness. It is exten-
sively utilized in various fields such as security, commerce, health-
care, and robotics applications [25, 41, 56]. Existing face recognition
techniques can be broadly divided into 2D and 3D face recognition
techniques according to the data modality [15]. Thanks to the low
price and wide availability of 2D image acquisition devices, most
research efforts and commercial developments have focused on 2D
face recognition. However, with the advancements in 3D sensing
devices (such as Microsoft Kinect, Intel RealSense) and computing
devices (such as GPU), 3D face recognition is gradually entering
everyday life, for example, Apple Face ID [1]. 3D face can be rep-
resented by data formats such as RGB-D image, point cloud and
mesh. Some work [20, 47, 48] propose taking RGB-D image pair as
input and extracting RGB and depth features for face recognition.
Some cloud platforms [3, 44] also use RGB-D image pair as input,
but use the depth for liveness detection and extract RGB feature
for face comparison. Led3D [35] only take face depth as input for
face recognition. PointFace [19] directly extracts features using face
point cloud and calculates the similarity with template point clouds
for discrimination.

3D face recognition has many advantages over 2D face recogni-
tion [21, 22, 28]. For example, (1) 3D data contain sufficient facial
geometric information without requiring any projection from 3D
physical space to 2D imaging plane, so it an provide more discrim-
inating features for face recognition; (2) 3D data is insensitive to
changes in pose, illumination, and expression. Therefore, face recog-
nition systems that use 3D data will be more robust to changes
in the surrounding environment and better suited to real-world
situations. (3) 3D face recognition systems have higher security, it
use depth information for liveness detection and naturally resistant
to common 2D printing and replay attacks [3, 42, 44].

Face spoofing attack can be divided into 2D and 3D spoofing
based on the attack method [18]. 2D spoofing typically involves
using printed photo or electronic screen, while 3D spoofing often
involves the use of face masks. Naive 2D spoofing attacks can-
not pose an effective threat to 3D face recognition systems, but
when combined with optical attacks, they can compromise 3D face
recognition systems. DepthFake [51] estimates the 3D depth infor-
mation of a target victim’s face from his 2D photo. Then, DepthFake
projects the carefully-crafted scatter patterns embedded with the
face depth information, in order to empower the 2D photo with 3D
authentication properties. Experiment show that DepthFake can
spoof multiple commercial SDKs and devices. 3D spoofing attack
and morphing attack usually use meticulously crafted facial mask
as tool, with the mask either closely resembling the victim or being
meticulously calculated through adversarial attack. Singh et al. [40]
successfully deceived the 3D face recognition based on PointNet
in digital attack scenarios by morphing the 3D information of two
individuals. Li et al. [30] design end-to-end attack algorithms to
generate adversarial illumination for 3D faces through the inherent
or an additional projector to produce adversarial points at arbitrary
positions. They successfully attacked point-cloud-based and depth-
image-based 3D face recognition algorithms in both digital and
physical worlds.
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2.2 3D Face Reconstruction
Recently, incorporation of 3D data into face analysis and its appli-
cations attract a lot of attention. Despite providing a more accurate
representation of the face and 3D sensor devices become more
available, 3D facial images are more complex to acquire than 2D
pictures and publicly available datasets are not on the same or-
der of magnitude in terms of the number of images and subjects.
As a consequence, great effort has been invested in developing
systems that reconstruct 3D faces from an uncalibrated 2D image.
However, as mentioned above, the 3D-from-2D face reconstruction
problem is ill-posed, thus priori knowledge is needed to restrict
the solutions space. According to [33], 3D face reconstruction can
be divided into three types based on the method of adding prior
knowledge, namely, statistical model fitting, photometry, and deep
learning. The deep learning strategy became the state-of-art in the
past few years because of better deep learning architectures and
algorithms, it can reconstruct finer details, even animatable details.
Lei et al. [27] present a novel hierarchical representation network
(HRN) to achieve accurate and detailed face reconstruction from
a single image, which implement the geometry disentanglement
and introduce the hierarchical representation to fulfill detailed face
modeling. Feng et al. [11] present the first approach that regresses
3D face shape and animatable details, because the proposed method
introduces a novel detail-consistency loss that disentangles person-
specific details from expression-dependent wrinkles. Due to the
ability to restore high-fine details, 3D face reconstruction can be
used to create a 3D mask of the victim’s face for 3D presentation
attack [9]. Marcel et al. [38] propose a novel template inversion
attack against 2D face recognition systems, which is the first work
on 3D face reconstruction from facial templates to reconstruct facial
texture details.

2.3 GAN
GAN is one of generative models that is capable of learning genera-
tive tasks in semi-supervised or unsupervised application scenarios.
It consists of two parts, i.e. generator and discriminator, the gener-
ator is mainly used to learn the distribution of real images so as to
make generated images more realistic, the discriminator needs to
discriminate between real and fake images. The whole process can
be seen as a game between the generator and the discriminator, and
eventually the two networks reach a dynamic equilibrium. In recent
years there has been a boom in research toward GAN, with a range
of variants of the GAN emerging. Some works [2, 14] are addressing
the problems of the vanilla-GAN such as mode collapse and gradi-
ent vanishing, while some works [23, 50, 57] is aimed at improving
the performance of GAN to generate better quality images and
applying GAN to a wide variety of tasks such as image enhance-
ment, cross-domain translation, text-to-image, and so on. Yuan et
al. [53] and Khosravy et al. [24] utilize GAN for model inversion
attacks, they leverage a GAN as an image prior to narrow the search
space, and can successfully reconstruct even the high-dimensional
data(e.g., face images). Wang et al. [49] use a GAN-based structure
fusing RGB images and depth maps to generate dense depth maps
with fine-grained textures in indoor scene. The ability of GANs
to learn the spatial distribution of real samples can add a priori

Figure 1: Attack scenarios: 3D Face Authentication vs. Identi-
fication.

knowledge to a wide variety of tasks, and we suspect that it would
be feasible to add a priori knowledge to 3D faces as well.

3 THREAT MODEL
In order to evaluate the effectiveness of DREAM and the vulnera-
bility of a given 3D face recognition system in which a DNN-based
recognition model, we need to first define the threat model that
characterises the adversary.

3.1 Attack Scenario
As shown in Fig. 1, we consider two attack scenarios:

• Face Identification: multiple 3D template faces belonging
to the registered users are recorded in the system. Once
a 3D face is fed into the target identification model, the
model calculates the similarity between the input face and
the template faces, and decides whether the input face is one
of multiple template faces based on the similarity score and
a predetermined threshold.

• Face Authentication: one (or multiple) 3D template face
belonging to the registered user is recorded in the system.
The model calculates the similarity between the input face
and the template face, and decides whether the input face is
the same person to the template face.

In this paper, we denote 3D faces in terms of RGB-D image pairs,
and these face recognition models use either RGB-D image pair or
depth image as input.

3.2 Properties for Adversary
Adversary’s goal: The attacker’s goal is to pass the identification
or authentication in order to get the control of the device. For
example, the attacker obtains the victim’s device stealthily and tries
to unlock it during his or her short leaves.

Adversary’s knowledge:We assume the attacker has the fol-
lowing information:

• The attacker holds a RGB photo of the victim, which can be
extracted from videos captured by cameras, or downloaded
from Internet etc.

• The attacker has a small set of 3D face pairs as an auxiliary
dataset, e.g., saved as RGB-D images, which are either public
available datasets, or built from 3D scanning. Please note that
the auxiliary dataset is non-overlapping with the training
dataset and template of the target model.
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(a) Zero-Knowledge Pretraining of Depth Generator (b) Fine-tuning Depth with Target Model

Figure 2: Overview of DREAM.

• The black-box knowledge of the target model, which implies
the attacker knows nothing about the target recognition
model except its outputs, i.e., similarity scores.

Adversary’s capability: We assume the attacker has the fol-
lowing capabilities:

• The attacker can inject arbitrary 3D information into a 3D
face recognition system, for example, via an optical adver-
sarial attack [30]; for simplicity, we assume that an attacker
can inject arbitrary RGB-D images into a black-box 3D face
recognition system.

• The attacker can consecutively query the target device for
a limited number of times. The target device will be locked
(switched off ) temporarily after consecutive failures.

• The attacker can obtain a similar agency model allowing
an infinite number of queries. The attacker can obtain the
agency model in many ways, such as downloading the same
(or similar) recognition applications or using a device of the
same type as the target device..

4 DESIGN OF DREAM
DREAM is composed of two phases, i.e., Zero-knowledge Pre-training
of Depth Generator and Depth Fine-tuning with Target Model. In the
first phase, the attacker first trains a GAN-based generator, which
is able to distinguish and recover key depth information to pass 3D
face recognition system from 2D face images. Then, the attacker
feeds an image of its victim to the generator, and obtains a rough 3D
facemodel. In the second phase, the attackers uses the rough 3D face
to query the target model for several times. After each query, the
output of the target model is used to optimize the recovered 3D face
to a ‘better’ one. The attack stops when succeeds or reaches to the
maximum number of queries allowed. In the following explanation,
we consider the problem of reconstructing a depth image from the
corresponding RGB image, i.e., restoring depth (D) without loss of
generality, since RGB-D images can easily be transformed to other
forms of 3D data, such as point clouds.

4.1 Zero-knowledge Pre-training of Depth
Generator

To reconstruct the depth image, we choose GAN for the reason
that it can learn distribution of depth images from public dataset.
This adds a priori knowledge in order to generate vaild face depth
images. We use a public 3D dataset that has no overlapping identity
with the dataset of the target network to train the generator and
discriminator. Fig. 2(a) shows the architecture of the offline training.

4.1.1 Architecture of Generator. We use an auxiliary RGB im-
age as an additional input to the generator so that the generated
depth image can align with the RGB image and preserve identity-
related information, as the RGB image still contains a lot of identity-
related information. After extracting the auxiliary information,
we add an attention block, Convolutional Block Attention Mod-
ule(CBAM), which enables the network to automatically learn what
and where to pay attention to in an image. CBAM consists of chan-
nel attention and spatial attention, applying the channel and spatial
attention modules sequentially to learn what and where to pay
attention in the channel and spatial dimensions, respectively. The
combination of auxiliary information and the attention block en-
ables the GAN to further learn to pay attention to identity-related
features based on learning a priori knowledge about the 3D face, and
to generate a depth image that can deceive the target recognition
model.

4.1.2 Dual Contrastive Loss. The traditional GAN loss is re-
placed by dual contrastive loss proposed in [52] to train the GAN,
which enhance the discriminative ability of the discriminator on
small datasets. At the same time, the discriminator pushes the gen-
erator to improve the synthesis ability to make the image more
real.

The loss function of a conventional GAN is shown in Eq. 1:

min
𝐺

max
𝐷

𝐿(𝐺,𝐷) = E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥 ) [𝑙𝑜𝑔𝐷 (𝑥)]

+ E𝑧∼𝑝𝑛𝑜𝑖𝑠𝑒 (𝑧 ) [𝑙𝑜𝑔(1 − 𝐷 (𝐺 (𝑧)))]
(1)

where 𝐺 denotes the generator, 𝐷 denotes the discriminator, 𝑝𝑑𝑎𝑡𝑎
is the true sample distribution, and 𝑝𝑛𝑜𝑖𝑠𝑒 is the noise distribution.
The process of GAN training can be described as the process of



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Fooling 3D Face Recognition with One Single 2D Image ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

solving the minimax problem, which can serve two purposes at the
same time, the first one is to enable the generator 𝐺 to generate
real samples, and the second one is to enable the discriminator
𝐷 to better distinguish real samples from the generated samples.
However, conventional GAN suffer from problems such as model
collapse and gradient vanishing during the training process, and
some improved methods [2, 14] solve the above problems starting
from the loss function.

Adversarial training relies on the discriminator’s ability on real
vs. fake classification. As in other classification tasks, discrimina-
tors are also prone to over-fitting when the dataset size is limited.
The auxiliary dataset used by the attacker to train the GAN is also
limited, but the training data within a batch is not fully utilised dur-
ing training. Inspired by contrastive learning, we treat the ground
truth depth image within the same batch as a positive example
and the generated depth image as a negative example to drive the
discriminator to learn good features or representations by compar-
ing similarities or differences between data samples. We use dual
contrastive loss to replace the original GAN loss, the formulations
are as eq. 2 and eq. 3:

𝐿+𝐺𝐴𝑁 =
1
𝑁

𝑁∑︁
𝑖=1

[
𝑙𝑜𝑔

𝑒𝐷 (𝑑𝑒𝑝𝑡ℎ𝑖 )

𝑒𝐷 (𝑑𝑒𝑝𝑡ℎ𝑖 ) +∑𝑁
𝑗=1 𝑒

𝐷 (𝐺 (𝑟𝑔𝑏 𝑗 ,𝑧 𝑗 ) )

]
(2)

𝐿−𝐺𝐴𝑁 =
1
𝑁

𝑁∑︁
𝑗=1

[
𝑙𝑜𝑔

𝑒−𝐷 (𝐺 (𝑧 𝑗 ) )

𝑒−𝐷 (𝐺 (𝑟𝑔𝑏 𝑗 ,𝑧 𝑗 ) ) +∑𝑁
𝑖=1 𝑒

−𝐷 (𝑑𝑒𝑝𝑡ℎ𝑖 )

]
(3)

where 𝑁 is the batch-size, 𝑑𝑒𝑝𝑡ℎ𝑖 ∼ 𝑝𝑑𝑎𝑡𝑎 is the ground truth
depth image, 𝑧 𝑗 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒 is the noise and 𝐺 (𝑟𝑔𝑏 𝑗 , 𝑧 𝑗 ) is its corre-
sponding generated depth image. For eq. 2, the goal of our loss
function is to teach the discriminator how to discriminate a single
ground truth depth image out of a batch of generated images. For
eq. 3, the discriminator learns to discriminate a single generated
image against a batch of ground truth depth images. So the final
GAN loss function can be written as Eq. 4.

min
𝐺

max
𝐷

𝐿(𝐺, 𝐷) = 𝐿+𝐺𝐴𝑁 + 𝐿−𝐺𝐴𝑁 (4)

4.1.3 Target Loss. We also introduce different target losses ac-
cording to different target models to make the generated depth
image closer to the template face depth image in the target model.
Prior to the introduction of target loss, the generator was only able
to produce depth image that looked realistic, and in order to be
able to fool the target recognition system, it was necessary to make
the generated depth image closer to the template depth image after
being processed by the target recognition system. So we introduce
different target losses according to different target models.

For 3D face verification, we introduce the target loss as in eq.
5, which is commonly used in face verification model training.

min
𝐺

𝐿𝑣𝑒𝑟𝑇𝑎𝑟𝑔𝑒𝑡 (𝐺) = (1 − 𝑌 ) 1
2
(𝐷𝑖𝑠 (𝑥,𝐺 (𝑟𝑔𝑏, 𝑧)))2

+ (𝑌 ) 1
2
{𝑚𝑎𝑥 (0,𝑚 − 𝐷𝑖𝑠 (𝑥,𝐺 (𝑟𝑔𝑏, 𝑧)))}2

(5)

where 𝑌 denotes whether the two input image pairs match, 0
means match and 1 for not match. 𝑥 is the ground truth depth image

or RGB-D image pair,𝐺 (𝑟𝑔𝑏, 𝑧) is is the corresponding generated
images. 𝐷𝑖𝑠 (𝑥,𝐺 (𝑟𝑔𝑏, 𝑧)) is the Euclidean distance between the
two input image pairs calculated by the target network, and𝑚 is a
margin. The purpose is to make the GAN to learn which features
are important to pass the system verification.

For 3D face identification, we introduce the cross-entropy loss
and Eq. 6 as the target loss for different identification model. 3D
face identification systems are commonly trained using softmax
layer and cross-entropy loss. However, some systems are employed
by removing the softmax layer and calculating the cosine similarity
between the features to determine which person in the system the
input is. So we introduce Eq. 6 as the target loss:

min
𝐺

𝐿𝑖𝑑𝑒𝑇𝑎𝑟𝑔𝑒𝑡 (𝐺) = − 1
𝑁

𝑁∑︁
𝑖=1

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑆𝑖𝑚(𝑥𝑖 ,𝐺 (𝑟𝑔𝑏𝑖 , 𝑧𝑖 ))∑𝑁
𝑗=1 𝑒𝑥𝑝 (𝑆𝑖𝑚(𝑥 𝑗 ,𝐺 (𝑟𝑔𝑏𝑖 , 𝑧𝑖 ))

(6)

where 𝑁 denotes the batch-size, 𝑥𝑖 is the i-th ground truth depth
image or RGB-D image pair in a batch,𝐺 (𝑟𝑔𝑏𝑖 , 𝑧𝑖 ) is the correspond-
ing generated images, 𝑆𝑖𝑚(·, ·) is the similarity between the two
input image pairs calculated by the target network. During the time
of training, pairs of auxiliary RGB and real depth image are used
to train, after inputting the RGB image and noise 𝑧 to generator,
it will generate a corresponding depth image. Then the similarity
calculated by target model between real images and generated im-
ages is considered as positive examples. The similarity between
real images and other generated images in the batch is considered
as negative examples. This ensures that similar data samples are
close to each other in the target system feature space and dissimilar
data samples are far away from each other.

The final loss function can be written as Eq. 7:

min
𝐺

max
𝐷

𝐿(𝐺,𝐷) = 𝐿𝐺𝐴𝑁 (𝐺,𝐷) + 𝜆𝐿𝑇𝑎𝑟𝑔𝑒𝑡 (7)

4.2 Depth Fine-tuning with Target Model
As shown in Fig. 2(b), after training, our goal is to find a potential
vector that enables the generated depth image or image pair (the
auxiliary RGB and generated depth image) to achieve the highest
similarity with the template face under the target network. We
introduce following optimization problem (Eq. 9) to find the optimal
vector 𝑧.

𝐿𝐷 (𝑧) = −𝑙𝑜𝑔(𝐷 (𝐺 (𝑧))) (8)

𝑧 = 𝑎𝑟𝑔min
𝑧

𝐿𝐷 (𝑧) + 𝛼𝐿𝐼𝐷 (𝑧) (9)

where𝐿𝐷 (𝑧) penalizes abnormal face features and target loss𝐿𝐼𝐷 (𝑧)
encourages the generated depth images to achieve maximum simi-
larity with template face under the target network.

For 3D face verification, the 𝐿𝑣𝑒𝑟
𝐼𝐷

is same as 𝐿𝑣𝑒𝑟
𝑇𝑎𝑟𝑔𝑒𝑡

. Because in
face verification, the output of target model is the distance between
the template and input, the attacker only needs to keep approaching
this template.

For 3D face identification, we use cross-entropy loss and cosine
embedding loss(Eq. 10) as the 𝐿𝐼𝐷 for different identification model.

𝐿𝑖𝑑𝑒𝐼𝐷 =

{1 − 𝑐𝑜𝑠 (𝑥1, 𝑥2), 𝑙𝑎𝑏𝑒𝑙 = 1
max(0, 𝑐𝑜𝑠 (𝑥1, 𝑥2) −𝑚𝑎𝑟𝑔𝑖𝑛), 𝑙𝑎𝑏𝑒𝑙 = −1 (10)
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Figure 3: Samples from Datasets.

If the target system recognizes the generated depth image or
image pair (the auxiliary RGB and generated depth image) as the
person we want to impersonate, the label is 1, otherwise it is -
1, 𝑐𝑜𝑠 (𝑥1, 𝑥2) is the cosine similarity of the target model output.
DREAM will continue to optimise according to the losses until the
attack is successful or the number of attempts is exhausted.

5 EXPERIMENTS
In this section, we will introduce the experimental settings and
demonstrate the effectiveness of DREAM against different FR sys-
tems under black-box scenario.

5.1 Datasets
We use four datasets, samples are shown in Fig. 3, to evaluate
DREAM:

1) Pandora [5] uses the Microsoft Kinect One device to acquire
depth data and includes over 250k RGB-D images of 20 subjects, 10
males and 10 females.

2) RGB-D Facial Dataset under Pose Variation [20] is captured by
the PrimeSense camera in the same indoor scene and contains 24839
RGB-D images of 952 identities, including only young Asians, 30%
of whom are male and 70% female. In this paper, USTC is referred
to this dataset.

3) Texas 3D [16] is acquired using a stereo imaging system man-
ufactured by 3Q Technologies (Atlanta, GA) in the x, y, and z di-
mensions at a very high spatial resolution of 0.32 mm. During each
acquisition, color and range images were captured simultaneously,
including 1149 pairs of images from 105 adult subjects.

4) Lock3DFace [54] is acquired using the second-generation of
the Kinect sensor. It totally consists of 5671 RGB-D face video
clips belonging to 509 individuals with diverse changes in facial
expression, pose, occlusion and time lapse. Among them, 377 are
male and 122 are female.

Pre-processing: for the first three datasets, we crop these im-
ages at the center and resize them to 64×64. 50% and 40% of the
images are used to train the face authentication network and our
DREAM, respectively, and the rest 10% is used for testing. For
lock3DFace, we crop those images at the center and resize them
to 224×224, and images from 340 and 100 individuals are used to
train the face identification network, and our DREAM, and the rest
images of 69 people are used for attacking. It is necessary to ensure
that the data for training the target network does not overlap with
the data used to train the GAN.

5.2 Target Model Implementation
We use three 3D face recognition models to validate our attack.

1) Face Authentication: we use Siamese network [43] imple-
mented by PyTorch and a contrasting loss function in Eq. 11.

𝐿(𝑊,𝑌,𝑋1, 𝑋2) =(1 − 𝑌 ) 1
2
(𝐹𝑊 )2

+ (𝑌 ) 1
2
{𝑚𝑎𝑥 (0,𝑚 − 𝐹𝑊 )}2

(11)

where 𝑋1, 𝑋2 are the two inputs (RGB-D image pair) to the authen-
tication network 𝐹 ,𝑊 are the parameters of the authentication
network, 𝐹𝑊 is the final output, that is, the Euclidean distance be-
tween the two inputs under the target network. The optimizer for
training is Adam with learning rate 0.001 and batch size 32.

We use false acceptance rate (FAR) and false rejection rate (FRR)
to evaluate the authentication model and choose a threshold empir-
ically. FRR is the probability of treating the same person as different
persons, but FAR indicates the probability of treating different per-
sons as the same person. FAR and FRR vary with threshold as Fig.
4, we set a threshold for them respectively as Tab. 1, corresponding
to the case where FAR+FRR is the smallest.

Table 1: Threshold Selection of Face Authentication Model.

Pandora Texas USTC
Threshold 1.00 0.60 0.23
FAR/FRR 0.03/0.03 0.07/0.21 0.14/0.21

2) Face Identification: we use Led3D [35] and the model proposed
by Uppal et al. [47]. Led3D utilizes a Softmax layer with the cross en-
tropy loss to guide network training, but during testing, it discards
the Softmax layer and calculates the cosine similarity between the
input sample and all the templates in the gallery, taking the iden-
tity of the template with the largest similarity. We use pre-trained
Led3D to evaluate our attack. We implement Uppal’s model using
parameter settings mentioned in the literature [47]. During training,
one main output and two auxiliary outputs of the model are used
with Softmax layer and cross entropy loss, while the two auxiliary
outputs are discarded during testing. We evaluate the performance
of the two models using rank-one accuracy on Lock3DFace, the
results are shown in Tab. 2.

Table 2: Performance of Two Identification Models.

Model Input Accuracy
Led3D [35] Depth 80.12%
Uppal [47] RGB+Depth 89.61%

5.3 DREAM Implementation
GAN: We implement the GAN using PyTorch. We use the same
Adam optimizer (𝛽1=0.5, and 𝛽2=0.999) for the generator and dis-
criminator with a learning rate of 0.001. The batch sizes are 32 and
64 for spoofing identification and authentication, respectively. The
value of 𝜆 will be discussed in Sec. 5.4. In the second stage, we set 𝛼
= 100 and use the SGD optimizer to optimize the potential vector 𝑧
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Figure 4: Relationship between FAR/FRR and Threshold on 3 Datasets.

with a learning rate of 0.02 and the momentum is 0.9. We randomly
initialize 𝑧 from a zero-mean unit variance Gaussian distribution
and optimize it for five iterations.

Attention Block:We implement CBAM as an attention mod-
ule using PyTorch. CBAM incorporates two sub-modules, CAM
(Channel Attention Module) and SAM (Spatial Attention Module),
which add attentional mechanisms on the channel and spatially,
respectively.

Comparisons:we use three 3D face reconstruction methods, i.e.
HRN [27], DECA [11] and Face++ interface [10] , as our comparison
baselines. We use pre-trained models published by HRN and DECA
to reconstruct faces and generate depth images. For the Face++ in-
terface [10], we need to upload one or more RGB images as required
to get a 3D model. After getting the model, we need to render a pair
of RGB and depth images. The 3D rendering is implemented using
a python script for Blender [45], a free open-source 3D graphics
imaging software that runs cross-platform.

5.4 Determining Key Parameter 𝜆.
𝜆 is used to balance the target loss and the loss of the GAN itself,
making the restored 3D face be able to pass the authentication or
identification, and the reconstructed depth image maintain facial
geometric structures, simultaneously. We experimentally examine
the ASRs under different values of 𝜆. Tab. 3 shows that the attack
against face authentication and identification models are the most
effective when 𝜆 = 1.2 and 1.0, respectively. In our experiments, we
set 𝜆 as 1.2 and 1.0 when the attack targets are face authentication
and identification models, respectively.

Table 3: Impact of 𝜆 on ASRs

𝜆=0.8 𝜆=1.0 𝜆=1.2 𝜆=1.5
Pandora 73.17% 81.57% 94.73% 94.73%
Texas 70.52% 78.57% 85.71% 71.42%
USTC 86.20% 88.50% 89.65% 89.65%

Lock3DFace(Led3D) 28.78% 36.36% 31.81% 30.31%
Lock3DFace(Uppal) 89.32% 89.32% 89.32% 89.32%

5.5 Experimental Results
Performance Comparison. The overall performance of DREAM
are shown in Tab. 4. It can be seen that DREAM always outperforms
3D face reconstruction attack, and the ASR is much higher than that

of face reconstruction attack on Texas and Lock3DFace (Led3D).
This is due to the fact that 3D face reconstruction attack is a one-shot
attack, which relies heavily on the reconstruction effect and fails to
exploit the weakness of the authentication system. DREAM adds
the target loss of the target network during the training process, so
that the depth image generated by the generator keeps decreasing
the distance from the template, thus the system is misclassified.

The reason why 3D face reconstruction attack has no effect
on Led3D is because Led3D only utilizes depth image as input.
Furthermore, the 3D reconstruction does not utilize the output of
the target model for optimization, resulting in reconstructed depth
image that lack sufficient identity-related features. On the contrary,
DREAM achieved a maximum ASR of 36%, much greater than the
0 achieved by the 3D face reconstruction attack.

Table 4: ASRs Comparison of Four Methods

Method
Datasets

Pandora Texas USTC Lock3DFace
Led3D Uppal

Face++ 55.26% 3.57% 38.50% 0% 89.32%
HRN 60.52% 17.85% 44.82% 0% 89.32%
DECA 63.15% 21.42% 48.27% 0% 89.32%

DREAM 94.73% 85.71% 88.50% 36.36% 89.32%

3D face reconstruction attack achieves comparable performance
to DREAM against Uppal [47], this is because the identification
model uses the depth image to generate the attention map, and
the final features used to make a decision are the RGB features
multiplied by the attention map.

We also measure the ASRs for different number of queries. As
shown in the Fig. 5, "Auth." denotes the face authentication model,
even the first round of queries has a high ASR, as the number of
query rounds increases, the ASR also increases, especially for Texas.
This shows that both phases of DREAM contribute significantly to
the effect of the attack.

The generated depth images and 3D reconstructed depth images
for several cases of successful attacks are shown in Fig. 6. The
leftmost number is the ID of the case, RGB stands for the auxiliary
data that can be utilised, Depth stands for the ground truth depth
image, and the others are four of the comparison methods. HRN,
DECA and Face++ 3D face reconstruction algorithms are based on
face models such as FLAME [29] and BFM [12] for reconstruction.
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Figure 5: ASRs at Different Rounds

Figure 6: Restored Depth Images of Different Methods.

As a result, they render a depth image that is visually closer to
a natural human face. However, 3D face reconstruction is a one-
shot deal and cannot exploit the output of the face recognition
model to continue adjusting the depth image. DREAM focuses on
the behaviour of target recognition models from the ground up,
learning which features are better at spoofing target recognition
models and continuously optimising them during online attacks.

Cross-dataset Testing. We perform cross-dataset attack on the
face authentication model. The results are shown in the Tab. 5, for
example, 71.26% represents ASR by the attack model trained on
Pandora dataset against the target model trained on USTC dataset.
The attack model trained on Texas dataset gets a low ASR against
the target model trained on Pandora, this is because the distribu-
tions of the two datasets may vary significantly, either in terms
of the number of individuals or the total number of images, the
situation is similar in the opposite case. In summary, the generality
of DREAM is good, because we aim to reduce the distance between
input and template.

Ablation Experiment. To verify the effectiveness of the archi-
tecture of GAN, dual contrastive loss and target loss, we performed
ablation experiments on four datasets. Tab. 6 shows the change
in ASR with the use of each component, which proves that each
component contributes to the improvement of the ASR.

Regular GAN just randomly generates a face depth image, if there
is a target loss there is an additional goal to make the generated

Table 5: ASRs Cross Datasets

Pandora Texas USTC
Pandora 94.73% 14.28% 71.26%
Texas 44.73% 85.71% 83.90%
USTC 78.94% 71.42% 88.50%

Table 6: Ablation Experiment

Method
Datasets

Pandora Texas USTC Lock3DFace
Led3D Uppal

G 65.78% 42.85% 57.47% 0% 89.32%
G + 𝐿𝑇 81.57% 71.42% 78.16% 21.23% 89.32%

G + A + 𝐿𝑇 86.84% 78.57% 83.90% 27.28% 89.32%
G + A + 𝐿𝑇 + 𝐿𝐷𝐶𝐿 94.73% 85.71% 88.50% 36.37% 89.32%
G denotes GAN.
𝐿𝑇 denotes target loss.
A denotes attention block.
𝐿𝐷𝐶𝐿 denotes dual contrastive loss.

depth image spoof the target recognition. With an auxiliary input
and attention block, DREAM can learn to generate key features
more accurately from focused areas, rather than blindly generating
key features. Dual contrastive loss makes the discriminator more
powerful and at the same time forces the generator to improve its
generation ability to make the generated image closer to the true
depth image distribution, which also helps to the improve the ASR.

In the case where the available auxiliary dataset is small, the
modified target loss (Eq. 6) based on the contrastive learning loss
can keep the depth image generated based on the auxiliary RGB
close enough to the identity of the RGB and far enough from other
identities in Led3D. We also use the cross-entropy loss and the
cosine embedding loss to train the attack model on Led3D, the
cosine similarity between the generated depth image and all other
identities is higher than 0.8, including the target identity we want to
impersonate. But the cosine similarity between the generated depth
and the target identity is not highest, both of which fail to keep the
generated depth image sufficiently distant from other identities.

6 CONCLUSION
In this paper, we propose a block-box attack method that can fool
the 3D face recognition system with depth information recovered
from 2D images. The attacker exploits the output of the target
model and the 2D images of victim to recover the depth, which
is convenient compared to previous methods of recovering depth
information. We add target loss of target network and attention
block to the GAN to recover the depth of able to pass the authen-
tication, rather than approaching ground truth. Dual contrastive
loss also contributes to the ASR. Finally we evaluate the effective-
ness of DREAM on four public 3D face datasets. Our experimental
results show that DREAM is effective and performs well on differ-
ent datasets, some 3D face recognition systems still rely on RGB
features which is vulnerable.
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