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Abstract
Machine learning models typically fail in deploy-
ment environments where the distribution of data
does not perfectly match that of the training do-
mains. This phenomenon is believed to stem from
networks’ failure to capture the invariant features
that generalize to unseen domains. However, we
attribute this phenomenon to the limitations that
the labeling mechanism employed by humans im-
poses on the learning algorithm. We conjecture
that providing multiple labels for each datapoint
where each could describe the existence of partic-
ular objects/concepts on the data point, decreases
the risk of capturing non-generalizable correla-
tions by the model. We theoretically show that
learning over a multi-label regime, where K la-
bels for each data point are present, tightens the
expected generalization gap by a factor of 1/

√
K

compared to a similar case where only one label
for each data point is in hand. Also, we show that
learning under this regime is much more sample
efficient and requires a fraction of training data to
provide competitive results.

1. Introduction
Machine learning models often fail to generalize to unseen
domains where the data distribution is shifted with respect
to the training distribution. The shift in the distribution can
stem from changes in the correlation of data and labels, or
the covariates of the input data. To be more specific, the
correlation shifts are typically caused by spurious corre-
lations in training domains, which are either induced by
selection bias or anti-causal correlations between data and
label. Although the failure of machine learning models
under distribution shifts has received significant attention
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in the recent years (Shen et al., 2021), an optimal solution
has not yet been achieved. The body of literature on this
problem typically incorporate training data from different
environments that can potentially highlight the globality or
locality of correlations within the data, and then employ
regularizing techniques to enforce the discovery and learn-
ing of global correlations. The enforcement can be satisfied
by minimizing the average/interpolation/extrapolation of
risks across training domains, matching the representations
of data across domains, or matching the loss landscape of
model across domains.

Regardless of the progress on this problem, we believe that
machine learning models capturing spurious correlations
as global/invariant correlations is not a failure, rather is the
effect of human’s mistake in translating an environment into
machine’s language. In fact, the labeling mechanisms em-
ployed by humans directly mislead and confuse the learning
algorithms with a mixture of local and invariant correlations,
without no extra information for the model to discriminate
them. Although some correlations in the data can be spu-
rious to a specific task, it is again misleading to render a
correlation as “globally spurious”. In fact, a model would
ultimately be able to generalize to unseen domains if it
has correctly and concretely learned all the correlations in
the training domains. For instance, in the current label-
ing scheme, an image of a dog that includes a number of
concepts such as the dog itself together with several other
objects/concepts such as sky, grass, and different colors is
labeled as “Dog”. Thus, it is no surprise that the model
confuses any other concept/object in the image with the
Dog label. While the model is not receiving any extra in-
formation on the image other than the one word label, Dog,
it is unrealistic to expect the model to autonomously dis-
tinguish between different objects. In the “Cow-Camel”
example introduced by (Arjovsky et al., 2019), while the
model does not have a general knowledge about the set of
concepts/objects it can expect to see in an image, it is no
surprise that easier to learn features, i.e., the green and khaki
colors, are mistakenly learned instead of the true correlation
between the objects cow and camel and the label of the
image. In this work, we make the following contributions:
(i) We employ auxiliary labels for each datapoint to provide
our learning model with extra information that might help
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disentangling the correlations and building more reliable
decision rules; (ii) We investigate the effect of considering
the compositionality of a problem into account in order to
learn high-complexity tasks; (iii) We theoretically prove
that the proposed multi-label learning scheme with K labels
tightens the generalization gap of a single-label learning
scheme by a factor of 1/

√
K, if equal number of training

samples across the two scenarios are provided.

2. Method
Pleas note that throughout the paper, capital letters, lower-
case letters, and caligraphic letters correspond to random
variables, their values, and their domain. If X is a random
variable, X̄ is its independent copy, and if (X,Y ) ∼ PX,Y

is a pair of data and label, then the joint distribution of
(X̄, Ȳ ) is PX̄,Ȳ = PX̄

⊗
PȲ = PX

⊗
PY . Convention-

ally in supervised learning, for each data point z = (x, y),
where X ∈ X ⊂ Rd and Y ∈ Y ⊂ R only one label is used
to form a labeled dataset, i.e., S = {(xi, yi); i = 1, ..., N}.
However, in this work, we consider a labeled dataset such
that for each data point x, a binary vector, y, of length K
identifies the presence of K different objects/concepts in
the data point, i.e., yK = [y1, ..., yk, ..., yK ] : Y K ∈ YK ⊂
{0, 1}K . Thus, we can form a dataset of n data points as
S = {(xi, y

K
i ); yKi = [y1i , ..., y

K
i ]; i = 1, ..., n}. Next, we

show that the expected generalization bound of a network
under the multi-label scheme is 1/

√
K times tighter than

the one of a network trained on single-label data, if both are
given equal number of training samples.

2.1. Expected Generalization Bound

In this part, we build on the results provided by Harutyunyan
et al. (2021); Xu & Raginsky (2017), which derive an upper
bound for the expected generalization gap of a learning
algorithm in terms of the mutual information between an
input dataset and the output of a learning algorithm, i.e., the
trained parameters. To start, let S = (z1, z2, . . . zn) ∼ Dn

be a dataset of n i.i.d sampled training examples, and R ⊥
⊥ R be a random variable representing the stochasticity
of the data (R ∈ S). The learning algorithm A is defined
as A : Zn × R −→ W , where W are the parameters of the
model. Assuming that W = A(S,R) and a loss function as
ℓ : W ×Z −→ R, we define the following items

empirical risk: Lemp(A,S,R) = 1
n

∑n
i=1 ℓ(W,Zi), (1)

population risk: L(A,S,R) = EZ′∼Dℓ(W,Z ′), (2)

where Z ′ denotes the random variable of test samples inde-
pendent from S. Then, we define the expected generalisa-
tion gap as ES,R

[
L(A,S,R)− Lemp(A,S,R)

]
. The goal

in generalization is to design algorithm A such that a model
closes the gap between empirical and population risks. In
the following theorem, (Xu & Raginsky, 2017) provide an

upper bound for this gap, given the stochasticity of dataset.
Theorem 2.1 (Xu & Raginsky (2017)). If ℓ(w,Z ′), where
Z ′ ∼ D, is σ − subgaussian for all w ∈ W , then

|ES,R[L(A,S,R)−Lemp(A,S,R)]|≤
√

2σ2I(W ;S)

n
(3)

In addition to this result, (Harutyunyan et al., 2021) in Theo-
rem 2.2 have shown that the above theorem still holds when
only a subset of size m from the whole dataset of size n is
used for training.
Theorem 2.2 (Harutyunyan et al. (2021)). Let U be a ran-
dom subset of [n] with size m, independent of S and R.
If ℓ(w,Z ′), where Z ′ ∼ D, is σ − subgaussian for all
w ∈ W , then

|ES,R[L(A,S,R)− Lemp(A,S,R)]|

≤ Eu∼U

√
2σ2I(W ;Su)

m
(4)

Since in the problem setting of this paper, K different la-
bels are associated with a datapoint, n = mK multi-label
datapoints can be reused K times, each time for a different
label, as if n different datapoints are available in the dataset.
Thus, by capitalizing on Theorems 2.1 and 2.2, we can state
that m = n/K multilabel datapoints provide the same up-
per bound for expected generalization gap as n single-label
datapoints would achieve. In addition, it is inferred that
given the same number of samples across the single-label
and multi-label scenarios, the upper bound of the expected
generalization gap of the multi-label one is 1/

√
K times

tighter than the one of the single-label one.
Assumption 2.3. Given a dataset S of n i.i.d sampled exam-
ples collected from P (X) where each sample has K labels,
k ∈ Z,K > 1, we assume that n/K is still large enough
such that n/K samples drawn from P (X) are still i.i.d with
respect to each other.
Theorem 2.4. Let ℓ(w,Z ′) is σ − subgaussian for all
w ∈ W , and Z ′ ∼ D. Given a dataset S of n samples where
each sample has K labels, for all w ∈ W , the expected
generalization bound is tighter by a factor of 1√

K
than the

case where each sample of a dataset with the same size has
only 1 label. In other words,

|ES,R[L(A,S,R)− Lemp(A,S,R)]|

≤
√

2σ2I(W ;S)

n
=

√
2σ2I(W ;S)

Km
. (5)

Please note that across the single-label and multi-label sce-
narios, we assume that the number of parameters and the
stochasticity of dataset does not change. What can be in-
ferred from Theorem 2.4 is that m = n/K number of multi-
label training samples provide the same upper bound on the
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expected generalization gap that n number of single-label
datapoints from the same distribution would do. In other
words, given equal number of training examples from both
scenarios, the upper bound of expected generalization gap
for the multi-label scheme is 1/

√
K times tighter than the

one of single-label case.

3. Experiments
To evaluate the efficacy of the concept models over OoD
generalization problems, we mainly focused on datasets that
exhibits a pure case of correlation shifts, i.e., Ptrain(Y |
X) ̸= Ptest(Y | X), that are Waterbirds, CelebA, and
Colored-MNIST (Ye et al., 2021). The reason for this choice
is that correlation shifts typically occur due to selection
bias in the data sampling process or presence of anti-causal
features in the dataset. Thus, disentangling the concepts in
an environment is expected to help the model capture the
true concepts that describe a label.

3.1. Experimental Setup

Our experimental setup has two stages: (i) for the CelebA
and Waterbirds datasets in which the final label of the data
is among the concepts, we train a model in a multi-label
setting, where the labels are the concepts to be learned, and
the evaluation is done by looking at the accuracy of the
model in predicting a specific label or concept; and (ii) for
the Colored-MNIST dataset where the label is not among
the concepts but can be inferred based on them, we train a
network in a multi-label setting to learn the concepts, which
is then topped by another layer to do the inference. To
train the modular architecture in the latter case, we follow
the three training strategies as described by (Koh et al.,
2020a). Let x ∈ Rd is the input, y ∈ RK is the target
vector identifying the existence of K concepts, and l ∈ R
is the final label of the data point. We define the concept
bottleneck as g : Rd −→ RK and the inference module
as f : RK −→ R. Also, let Ly : RK × RK −→ R+ and
Ll : R × R −→ R+ be the loss functions at the concept
level and the label level, respectively. To train this modular
architecture, the following strategies are employed:

• Independent Bottleneck, where the mod-
ules are trained independent from each other,
i.e., ĝ = arg ming

∑
i,j Ly(g

j(xi); y
j
i ) and

f̂ = arg minf
∑

i Ll(f(yi); li).

• Sequential Bottleneck, where the con-
cept bottleneck is trained first based on
ĝ = arg ming

∑
i,j Ly(g

j(xi); y
j
i ), and then the infer-

ence module is trained on the outputs of the concept
bottleneck, i.e., f̂ = arg minf

∑
i Ll(f(ĝ(xi)); li).

• Joint Bottleneck, where the two modules are

trained simultaneously based on a weighted
sum of the loss for the two modules, i.e.,
ĝ, f̂ = arg ming,f

∑
i

[
Ll(f(g(xi)); li) +∑

j λLy(g
j(xi); y

j
i )
]
.

It is worth noting that, to train the concept networks, binary
cross entropy for each of the individual concepts is applied
as the loss function, which is in contrast with the typical
training strategy for multi-class classification problems in
which a Softmax layer is followed by cross-entropy loss.
In the multi-class setting, the Softmax layer maximizes the
probability of a certain class by minimizing the probability
for other classes while, in the multi-label setting, each of
the concepts are learned independent of other labels through
a binary cross-entropy loss.

3.2. Results

Please note that the results reported here are averaged over
10 random seeds to mitigate any effect of initialization in the
final accuracy. Also, the hyper-parameters of the deployed
models are fine-tuned over a validation set sampled from
training domains.

Concept Bottleneck Network over Colored-MNIST.
The results are provided in Table 1. Since for the Colored-
MNIST dataset our model follows a modular architecture
where the first module predicts the concepts and the sec-
ond one predicts the final binary label of samples, Table 1
shows the performance of the two modules separately. In
this table, please note the the columns denote the source of
training data, which we name them as +90%, and +80%,
and the combination of the two. An important outcome of
this table is that learning the concepts effectively, is a neces-
sary condition for a model to generalize to unseen domains.
The evidence is the ERM method that fails to capture the
concepts, thus fails to generalize to test domain. However,
as the results for the “Independent” and “Joint” methods
suggest, a good accuracy at the concept level is not sufficient
to guarantee a good OoD performance. The “Sequential”
method, on the other hand, offers significantly important
results as it achieves 57.09% classification accuracy over a
test domain whose correlation is completely opposite of the
training domain. Please note that the best achievable test
accuracy theoretically is 75%. These results can be seen
as an evidence that learning generalizable features does not
necessarily rely on collecting data from different domains.

Concept Bottleneck Network over CelebA and Water-
birds. The results of this analysis are provided in table 2.
Since for these two datasets, the final label is among the
concepts, we only consider the prediction accuracy for the
original labels given for each classification problem. Due
to the nature of the two datasets, the correlation shift we
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Table 1: Accuracy of concept-based learning in OoD gener-
alization over the Colored-MNIST dataset.

Concept Accuracy Label Accuracy
Method +90% +80% {+90%}

⋃
{+80%} +90% +80% {+90%}

⋃
{+80%}

Independent 98.98 98.87 99.24 10.95 26.90 11.82
Sequential 98.82 98.89 99.35 57.09 54.09 57.59

Joint 98.93 99.07 99.16 12.93 27.01 13.00
ERM 50.55 26.18 74.32 17.08 29.82 28.51

Table 2: Accuracy of concept learning in OoD generaliza-
tion over Waterbirds and CelebA datasets.

Waterbirds CelebA
Model Worst group Average Worst group Average
GDRO (Sagawa et al., 2019) 83.80 89.40 88.30 91.80
ERM 60.00 97.30 41.10 94.80
VIB (Alemi et al., 2016) 75.31 95.39 78.13 91.94
CIM (Taghanaki et al., 2021) 73.35 89.78 81.25 89.24
CIM+VIB (Taghanaki et al., 2021) 77.23 95.60 83.59 90.61
Ours 88.99 91.85 97.65 98.13

face in these problems is induced by selection bias. Thus,
it is imperatively important to validate the worst group ac-
curacy as well as the average accuracy of the model in test
domains. As the results suggest, a concept-based learning
approach not only improves the average accuracy of the
network, by providing more accurate predictions on the
over-presented group, but also significantly enhances the
prediction accuracy of the network over less-represented
group. This behaviour is crucially required to ensure a fair
operation for a model.

Sample Efficiency. Another important factor that the pro-
posed concept-based learning method needs to be tested
on is its sample efficiency, i.e., the minimum number of
training data required to achieve a certain level of perfor-
mance. The reason is that the growing trend in collecting
more data to train better models in terms of generalizability
on one hand, and the extra effort required for providing
auxiliary labels for each datapoint, on the other hand, might
render our proposed technique as impractical. Thus, it is
imperative to check if the sample efficiency of the method
compensates for the extra effort in labeling the datapoints
(we have already shown that our technique outperforms its
counterparts by large margins). The results of this analysis
are shown in Figs. 1 and 2, where the former shows the
classification accuracy of the model, and the latter shows
the loss of the model during the training process. As the
results suggest, a model through the proposed learning strat-
egy manages to outperform any existing baseline by using
only 10% of the whole dataset, achieving almost the same
degree of performance compared to a case where the entire
training samples are deployed. Although our theoretical
results suggest a tighter generalization bound for the case
that a dataset of single-labeled samples be transformed to a
multi-label dataset and be entirely employed in training, the
current results suggest that almost the same performance
can be achieved by using only a fraction of dataset.

Figure 1: The accuracy of the concept-based learning over
different datasets. x−axis is the classification accuracy
(%) and y−axis is the portion of training dataset used for
training. Top left: concept accuracy over Colored-MNIST.
Top right: label accuracy over Colored-MNIST. Bottom
left: label accuracy over Waterbirds. Bottom right: label
accuracy over CelebA.

Figure 2: Training loss of a model for different portions of
training data. x−axis is the training step, and y−axis is the
loss. Left: training loss for Colored-MNIST. Middle: train-
ing loss for Waterbirds. Right: training loss for CelebA.

4. Conclusion
In this work, we investigated the efficacy of concept net-
works in generalizing to out of distributions. Ensuring that
neural networks are not overfitted on spurious correlations
requires that we make sure if the network has correctly
learned the underlying concepts that define each class. Al-
though providing multiple labels for a data point seems to
require extra effort in gathering datasets, we have shown that
the multi-label learning scheme requires a fraction of data to
achieve the performance of ordinary neural networks. More-
over, we have theoretically proven that providing K labels
for a data point rather than one, tightens the generalization
bound of the intended label by a factor of 1/

√
K. Our re-

sults over the three benchmarking datasets of correlation
shifts, i.e., CelebA, Colored-MNIST, and Waterbirds, offer
the state-of-the-art/competitive performances compared to
its counterparts.
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Appendix

A. Details of Experiments
A.1. Datasets

Modified CelebA Dataset. In this version of the CelebA dataset (Liu et al., 2015), the task is to solve a binary classification
task yi ∈ {male,female}. The challenge is that models trained based on empirical risk minimization, due to the strong
correlation between gender and hair colour in celebrity images, pick up hair colour as the discriminating feature for
the male/female problem. We have enriched this dataset by adding two extra labels about hair colour and formulated a
multi-label classification problem such that the presence of objects or concepts is determined by a binary vector

y = [male,female,black hair,blond hair].

Waterbirds Dataset. This dataset also presents a binary classification problem where the task is to distinguish between
waterbirds and landbirds (Sagawa et al., 2019). The challenge is that these two classes are strongly correlated with their
background colour, and neural networks build strong decision rules based on the background colour instead of the birds’
shape and colour. We reformulated this problem, again, as a multi-label problem where each image is labeled with a binary
vector determining the presence of the following objects.

y = [waterbird,landbird,water background,land background].

Colored-MNIST. This dataset that was originally introduced by (Arjovsky et al., 2019) and reformulates the original
MNIST dataset as a binary classification problem where the digits less than 5 are labeled as “0” and the rest are labeled
as “1”. The binary labels are also corrupted by 25% label noise. The challenge with this dataset is that depending on the
definition of environment and the binary label of each image, a background of red or green is added to MNIST images, which
in fact, introduces a spurious correlation to the dataset. Following the environment definition in (Gulrajani & Lopez-Paz,
2020), there are two training environments where in each, background colours are +90% and +80% correlated with the
binary label of an image (green with class“0” and red with class“1”), while in the test environment, the correlation is −90%.
This dataset introduces a correlation shift problem caused by selection bias. To evaluate our proposed approach on this
dataset, we have enriched it by introducing the following set of concept labels, that indeed are the ones that a human would
use to address the binary classification problem. The concept labels are:

y = [0,1, · · · ,9,red colour,green colour].

A.2. Models

To fairly evaluate and compare the performance of concept networks over the aforementioned OoD generalization problems,
we apply a pretrained ResNet-18 model for the CelebA and Waterbirds datasets. The model is initialized on ImageNet
pretraining parameters, and its final layer is replaced by two dense layers of 64 and 4 nodes each, yielding the set of concepts
defined for each dataset. Although a pretrained model for the concept network is deployed, its parameters will still be
updated in the training phase. We use an Adam optimizer with a weight decay of 0.0001 for the whole model with a learning
rate of 0.0001 for the pretrained model and a learning rate of 0.001 for the dense layers.

For the Colored-MNIST dataset, on the other hand, the employed model is of two modules, i.e., a concept bottleneck module
and an inference module. The former follows the same architecture and hyper-parameters as defined in the DomainBed
suite (Gulrajani & Lopez-Paz, 2020) for the MNIST-based datasets, which is a four-layer CNN, respectively having 64, 128,
128, and 128 feature maps, followed by three layers of dense layers each having 64, 32, and 4 nodes. The latter module to
infer the binary classification rule based on the outputs of the first module (the concepts) consists of three consecutive dense
layers, each with 10, 4, and 2 nodes. Here we also use an Adam optimizer with a learning rate of 0.001 and a weight decay
of 0.0001 to train the model.

A.3. Code base

An anonymous repository of the code and instructions needed to reproduce the results of this paper can be found here1. In
this code base, the Colored-MNIST dataset is borrowed from the DomainBed suite (Gulrajani & Lopez-Paz, 2020) (MIT
License), and Waterbirds and CelebA datasets are borrowed from the WILDS library (Koh et al., 2020b) (MIT License).

1https://anonymous.4open.science/r/BottleneckGeneralization-8274/README.md
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A.4. Model Architectures and Hyperparameters

The architectures of the models employed in this paper are given in Tables 3 and 4. For both models, an Adam optimizer is
used to optimize the network. The network is Table 3 uses a learning rate of 0.00001 for the ResNet model, and a learning
rate of 0.0001 for the subsequent dense layers. The model described in Table 4, utilizes a learning rate of 0.001 for the
whole network. Please note that in these tables, d is the dimension of of input data.

All the models and the hyperparameters employed in this work are fine-tuned over a validation set taken from the training
data. The training data of each dataset is split into two groups of 80% and 20% portions, where the former is reserved for
the training phase, and the latter is used for validation purposes. Please note that this scheme of forming the validation set
imposes a true case of Domain Generalization problem, where no information about the test domain is available during the
training process.

Table 3: Model Architecture for CelebA and Waterbirds datasets

# Layer

Concept Module
1 ResNet-18 (in=d, out=1024)
2 Dense Layer (in=1024, out=64)
3 Dense Layer (in=64, out=4)

Table 4: Model Architecture for Colored-MNIST dataset

# Layer

Concept Module

1 Conv2D (in=d, out=64)
2 ReLU
3 GroupNorm (groups=8)
4 Conv2D (in=64, out=128, stride=2)
5 ReLU
6 GroupNorm (8 groups)
7 Conv2D (in=128, out=128)
8 ReLU
9 GroupNorm (8 groups)
10 Conv2D (in=128, out=128)
11 ReLU
12 GroupNorm (8 groups)
13 Global average-pooling
14 Dense Layer (in=128, out=64)
15 ReLu
16 Dense Layer (in=64, out=32)
17 ReLu
18 Dense Layer (in=32, out=12)

Inference Module

19 Dense Layer (in=12, out=10)
20 BatchNorm (10)
21 Dropout (0.25)
22 ReLu
23 Dense Layer (in=10, out=4)
24 BatchNorm (4)
25 ReLu
26 Dense Layer (in=4, out=2)
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A.5. Compute Power

The experiments presents in this paper are implemented in Python language, thanks to the PyTorch library. All the
experiments take about one week to be executed on 2 NVIDIA Quadro RTX 6000.

B. Related Works
Concept Bottleneck Models. In these models, the downstream tasks are learned based on a number of human-identified
concepts that underlie the class of labels in an environment/dataset. In fact, a model can be split in two modules where
the first one predicts the concepts and the second one predicts the label of data point based on the identified concepts.
The significance of earlier works on this approach (Kumar et al., 2009; Lampert et al., 2009) was overshadowed by the
performance of end-to-end neural networks but more recently, deep neural networks with concepts bottlenecks have received
growing attention for different applications. For instance, this method is employed for retinal disease diagnosis (De Fauw
et al., 2018), visual question-answering (Yi et al., 2018), content-based image retrieval (Bucher et al., 2018), and healthcare
applications (Chen et al., 2021).

Out-of-Distribution (OoD) Generalization. Invariance principle (Arjovsky et al., 2019; Shen et al., 2021) is the backbone
of methods in OoD generalization which aims at, either explicitly or implicitly, leveraging the invariances among multiple
training environments that can potentially enable the network to generalize to unseen domains. Invariances could be sought
in the representation space where the goal is to minimize the discrepancy between different environments (Arjovsky et al.,
2019; Bai et al., 2020; Zhang et al., 2020), or at the risk level where the goal is to have a network which performs equally
well in different environments (Sagawa et al., 2019; Krueger et al., 2020), or at the loss surface level where to objective is to
train a model such that it converges to minima common across different domains (Parascandolo et al., 2020; Shahtalebi
et al., 2021; Rame et al., 2021; Shi et al., 2021). In parallel, there are works that render invariances as causal mechanisms
that regardless of the environment, always cause a set of features to receive a specific label (Schölkopf et al., 2021; Bengio
et al., 2019).

Multi-task Learning (MTL). In MTL the goal is to learn multiple number of tasks based on a shared nonlinear
representation derived through a neural network (Vandenhende et al., 2021). Since in the MTL settings, different tasks
are learned based on a shared representation, it is known that if different tasks share complementary information or
act as regularizer for one another, MTL methods offer an enhanced performance compared to the case of single task
learning (Caruana, 1997; Zhang & Yang, 2021; Ruder, 2017; Gong et al., 2019). The shared representation is typically
obtained via Hard Parameter Sharing (Lu et al., 2017; Vandenhende et al., 2019; Guo et al., 2020) or Soft Parameter
Sharing (Ruder et al., 2019; Gao et al., 2019; Liu et al., 2019) architectures.

Disentangling. Here the goal is to map data to a space where Factors of Variation (FoV) are represented indepen-
dently (Träuble et al., 2021). The majority of recent works on disentanglement use variational autoencoders (VAEs) (Kingma
& Welling, 2013; Rezende et al., 2014) as their core block and modify its objective function such that the notion of
disentangled representations can be fulfilled, e.g., β-VAE, AnnealedVAE, FactorVAE, β-TCVAE, and DIP-VAE (Higgins
et al., 2016; Burgess et al., 2018; Kim & Mnih, 2018; Chen et al., 2018; Kumar et al., 2017; Eastwood & Williams,
2018; Mathieu et al., 2019). To disentangle representations in unsupervised settings, inductive biases such as grouping
information (Bouchacourt et al., 2018) or weak labels (Goyal et al., 2019; Földiák, 1991; Schmidt et al., 2007; Bengio et al.,
2019; Ke et al., 2019; Klindt et al., 2020) are typically employed. Although impressive progress has been made in the past,
such methods assume that FoVs are independent, which restricts their applicability in real world problems.

C. Extended Discussions
Our results on Waterbirds and CelebA datasets suggest the efficacy of our method in enhancing the prediction accuracy for
the less-represented populations in the dataset, as well as improving the average classification accuracy over the entire dataset.
Such accuracy gains are of significant importance for problems concerning the fairness of a model, where subpopulation
shifts are induced due to selection bias. The results on Colored-MNIST dataset reveal an extraordinary capacity for the
proposed technique, as a model trained on data only from the environment with +90% correlation, achieves 57.09% accuracy
on an environment with a completely opposite correlation. In addition, the set of results over this dataset implicitly suggest
the necessary and sufficient conditions for a model to generalize to unseen domains. What can be told confidently about the
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necessary condition is that for a model to generalize to unseen domains, it should capture, either implicitly or explicitly as in
this work, the underlying concepts of an environment. The learned concepts not only provide better generalizability, but also
allow for improved interpretability of the model, as well as faster transfer to new tasks.

Limitations. Despite the gain in the performance and generalizibility of neural networks that is achieved by the proposed
multi-label training mechanism, this techniques requires datasets where multiple labels are provided for each datapoint where
each identify the existence of an object/concept in a datapoint. This requirement renders the majority of existing datasets as
obsolete, and requires collection of new datasets. Nonetheless, in the literature it is shown theoretically (Tripuraneni et al.,
2020) and we have observed empirically that training a network in multi-label scheme is much more sample efficient, i.e.,
requires less training data, which compensates for extra labels needed. As an extension to this work, one can investigate
unsupervised learning methods to detect and learn the underlying concepts of an environment, so that the extra effort in
collecting multi-label datapoints can be avoided.

Societal impacts. Our proposed multi-label learning strategy provides neural networks with a higher capacity to generalize
to unseen domains, which is a crucial behaviour when deploying such models in the wild. This feature is of utmost
importance in applications like self-driving cars or AI-assisted diagnosis, where the deployment environments are divers and
collecting training data from every single environment is not feasible. Besides, the multi-label learning strategy provides us
with a network (the concept bottleneck) which can be deployed for a variety of different downstream tasks, without the need
to retrain a model from scratch. The reusability of concepts not only helps with learning new tasks where abundance of
training data is not available, but also saves a considerable amount of time and computational power.


