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Figure 1: ApBot enables robots to operate diverse, novel, complex home appliances in a zero-shot
manner using manuals. It translates open-ended instructions to grounded multi-step actions.

Abstract: Operating home appliances, among the most common tools in every
household, is a critical capability for assistive home robots. This paper presents
ApBot, a structured appliance modelling approach that enable robots operate novel
household appliances by “reading” their user manuals. ApBot faces multiple chal-
lenges: (i) infer goal-conditioned partial policies from unstructured, textual de-
scriptions in the manual document, (ii) ground the policies to the appliance in
the physical world, and (iii) execute policies reliably over potentially many steps,
despite compounding errors. To address these, ApBot constructs a structured,
symbolic model of an appliance from its manual, with the help of a large vision-
language model (VLM). It grounds symbolic actions to control panel elements and
updates the model based on visual feedback. Our experiments show that across
a wide range of simulated and real-world appliances, ApBot achieves consistent,
statistically significant improvements in task success rate, compared with state-
of-the-art large VLMs used directly as control policies. These results suggest that
structured representations of appliance models are crucial for robust robot opera-
tion of home appliances, especially complex ones. Code is provided.

Keywords: Home Appliance Operation; Structured Model for Decision Making;
Foundation Models for Robotics

1 Introduction
Operating household appliances is a fundamental yet underexplored topic for assistive robots at
home. It could greatly expand robot capabilities. Unlike passive tools, appliances encapsulate com-
plex, high-level functionalities (e.g., cooking, cleaning, heating) that direct manipulation cannot
replicate. Ideally, robots should operate general-purpose appliances automatically using maunals.
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However, this task challenges existing robotic systems. First, manuals are unstructured text-symbol
documents that are hard for robots to interpret. In addition, appliances follow constrained, mode-
based workflows that tolerate little error. Therefore, this work seeks to answer: How can we enable
robots to generate visually grounded policies for novel appliance operation with user manuals?

To this end, we propose ApBot, a structured appliance modelling framework for operating gen-
eralizable, open-world appliances (Fig 1). Using large vision-language models (LVLMs), ApBot
constructs symbolically structured models of novel appliances from user manuals for interpretable,
controllable, and verifiable policy generation. The model captures symbolic representations of ex-
ecutable actions, appliance states, and transition rules. Given a natural language task, the model
generates an action sequence grounded in the panel layout, which is then executed by low-level skill
primitives. To address manual ambiguity and open-world issues [1], ApBot iteratively updates the
models based on visually observation to better reflect real appliance behavior. As a result, ApBot
robustly operate novel, complex appliances with language instructions and no additional training.

Structured representation with online error correction significantly improves robustness, especially
for complex appliances. To evaluate ApBot, we constructed a simulated benchmark from manuals
[2, 3], covering 6 appliance types and 30 interactive instances; dehumidifier, bottle washer, rice
cooker, microwave oven, bread maker, and washing machine. Each appliance is paired with 10
natural language instructions. Since appliances vary in complexity, we standardize the number of
variables (e.g., time and temperature) required by the instructions for each type, ranging from easy
to hard. We compare ApBot with LLM- and VLM-based methods [4–6], and the results show our
method consistently outperforms them by a clear margin. We also deploy ApBot in the real world
with a Kinova Gen3 arm and validate its effectiveness on real appliances.

In summary, we propose a novel, symbolically structured representation for generalizable home
appliance operation. It bridges the gap between unstructured inputs and policies, enabling robots to
make controllable decisions and reliably operate novel appliances using visual input and manuals.

2 Related Work
Robotic Appliance Operation Previous work related to robotic appliance operation falls into
three categories: perception, low-level manipulation, and long-horizon plan generation. For per-
ception, existing works mainly concentrate on button localization, by leveraging edge-based visual
features [7, 8], RFID tags [9], or neural networks [10–13]. For low-level skills, human-machine
interfaces typically rely on a limited and shared set of input modalities [14] (e.g. keyboards, dials,
swipes, pinches). Button manipulation is important, hence, many works focus on physical inter-
action with diverse button types by specializing fingertips [15] or leveraging additional sensory
feedback [15, 16]. Alternatively, language-conditioned policies use linguistic embeddings to speed
up adaptation [17]. Long-horizon appliance operation remains relatively underexplored. A recent
work [12] uses handcrafted behaviors to generate plans for home appliance operation, but lacks gen-
eralization to novel appliances or tasks. By contrast, our approach learns to model the appliances by
reading the user manuals, hence enabling operation policy generation for new appliances and task
instructions in a zero-shot manner.

Foundation Models for Robotic Decision Making Foundation models have been widely applied
to robotic decision-making [18]. Prompting large models to generate structured representations,
such as logic frameworks [19–22] and codes [23–28] enables integration with external solvers or
executors, though often under strict syntax constraints. It has been shown to improve reasoning pre-
cision at the cost of generality, particularly for long-horizon tasks with hard constraints [29–32]. Un-
structured representations such as textual reasoning trees [33–36] or natural languages [37–42] offer
flexibility and generality but suffer from ambiguity and lack correctness guarantees. Approaches
such as syntax validation [43, 44], corrective feedback [40, 45], and prompt optimization [46] aim
to take advantage of both by modular design.

Particularly, domain-specific languages (DSLs) can enhance LVLM reliability and robustness via
in-context learning [25, 47–50], offering key insights for our structured design for appliances. We
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Figure 2: Overview of ApBot. The structured model built from manuals can generate actions to
operate novel appliances. It can be calibrated with observed feedback during close-loop execution.

adopt a DSL-based design tailored to appliance operation and generate it via in-context learning and
syntax validation. To support numerical computation, we enable the invocation of external function
calls similar to [24]. This ensures generalizability while maintaining correctness guarantees.

Graphical User Interface Agents Graphical User Interface (GUI) agents [51, 52], similar but
unlike appliance operation, operate devices through software interfaces. Small-scale multimodal
models can be trained from scratch to ground manuals with observations and goals for policy learn-
ing [53, 54]. Recently, the prevailing approach involves fine-tuning VLMs on datasets of web or
mobile interactions, such as clicking, typing, or tapping, to directly predict on-screen actions [55–
58]. An alternative line of work uses visual prompting, where VLMs select actions based on overlaid
marks (e.g., boxes or numbers) on GUI screenshots [59–62]. Yet, these methods often struggle with
complex GUIs, especially when the documentation is incomplete or unstructured. Another line of
related research is Retrieval-Augmented Generation (RAG) [63], which augments model input with
information retrieval from external sources, such as online manuals or documents. Building on
this idea, we introduce structurally grounded representations for appliance operation, which encode
knowledge from user manuals to enable robust plan generation.

3 ApBot
3.1 Problem Formulation
We consider the task of household appliance operation based on parameterized natural language
instructions and visual observations, with the help of textual information from user manuals. Given
a natural language instruction (e.g., Cook long grain rice for 1 hour), the system must interpret
the goal state, reason about appliance constraints, and generate a sequence of executable low-level
actions that complete the task.

We formulate the appliance as a state machine [64] with tasks specified as a subset of goal states:
M = ⟨S,A, T , Sg⟩. Each state s in S comprises a list of variables for the appliance (e.g., a rice
cooker with variables such as power (on/off), menu (rice/porridge/soup), timer (1–6 hours)). For
action space A, we empirically find that most actions of operating a home appliance can be catego-
rized into two classes: Ag and An. Any action in Ag will directly go to a pre-defined, specific state
(e.g., press “Menu” to select cook menu), if the current state is in a specific subset of S (e.g., the rice
cooker is powered on and not locked). Any action in An (e.g., “+” and “-”) will turn the state of a
variable to a neighborhood value, subject to the current state. Accordingly, we have a deterministic
transition model for each type s′ = T (s, a), where T ∈ {Tg, Tn}. Given the above formulation, we
aim to find a shortest sequence of actions a∗ = (a∗1, a

∗
2, ..., a

∗
T ) to achieve an arbitrary goal state in

Sg , a subset of S.

However, in practice, we cannot have access to the underlying true model M. Instead, we construct
an approximated one M = ⟨S,A, T , Sg⟩ from the manual, upon which we generate the operation
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policy for the appliance. To construct M, we assume that robots can observe the home appliances
visually and have the corresponding manuals in raw text. We assume that the users will interact
with robots in natural languages to specify tasks, which defines Sg given S. We posit that LVLMs
can read raw textual information in the manual and build a partially correct appliance model M
accordingly, by proper design.

We propose a system, ApBot, for natural language control of household appliances by combining
user manuals and visual input. As shown in Figure 2, the system (1) constructs a symbolic model
from manuals (Sec. 3.2), (2) grounds symbolic actions to visual control elements (Sec. 3.3), (3)
models transitions as macro actions (Sec. 3.4), and (4) executes tasks with closed-loop updates
based on real-time feedback (Sec. 3.5) to address errors of model construction.

3.2 Construct Structured Appliance Model
Modeling States, Actions, Transitions. To construct the symbolic model M = ⟨S,A, T , Sg⟩,
we sequentially generate the state space S, action space A, and transition function T with the help
of LVLM agents [6] using prompting [4]. Concretely, for each of them, we provide the manual,
a predefined output format, and a complete list of valid options, and ask LVLMs to generate the
appliance model accordingly. Model generation goes in an in-context way [65], where examples
are provided in the input to improve robustness. Syntax checkers are then applied to ensure output
validity, with up to three regeneration attempts if errors occur, e.g, violations of constraints. We
provide a detailed example of appliance modeling in Appendix A, along with the corresponding
prompts in Appendix I, and list the syntax checks used for validation in Appendix B.

Extracting Goals from Instructions. To infer the goal state Sg from a natural language instruc-
tion, we prompt the LVLM agent to produce a partial assignment over symbolic variables that fulfills
the task requirements. For example, given the instruction “Cook long grain rice for 1 hour”, the in-
ferred goal corresponds to a symbolic state where power is on, menu is long grain rice, and timer is
1 hour, while all other variables remain unconstrained.

3.3 Action Grounding
To make actions physically executable, we need to ground the symbolic actions visually onto the ob-
served control panel elements, which are interactive components of an appliance, such as buttons, di-
als, and printed touch pads. Each grounded action â is a tuple â = (a, b, σ), where a ∈ A is the sym-
bolic action from the manual, b is a bounding box of the visual region, and σ ∈ {press, hold, turn}
denotes the primitive robot skill required to execute the action. We demonstrate the pipeline of action
grounding in Fig. 3.

Control Element Detection. We assume the control panel elements can be clearly detected using
existing object detectors. We prioritize high recall in detection to ensure all buttons are captured. To
this end, we run three models in parallel. Segment Anything (SAM) [66] segments the image into
regions of visually distinct entities. OWL-ViT2 [67] is queried with prompts of “button”, “dial”,
and “switch” to detect control elements. An OCR model [68] extracts regions of visible text labels.
We take the union to form a candidate set for all control elements. To remove false positives, we
sort the bounding boxes in descending order of detection confidence. For each pair of boxes (bi, bj),
if IoU(bi, bj) > 0.85, we discard the box with lower detection confidence, as overlapping boxes
likely refer to the same object. We further use LVLMs to check whether each remaining box likely
contains a valid control panel element, following [69]. So far, we have a set of boxes B = {bi}Nb

i=1,
where Nb is the number of boxes.

Actions Grounding. To get the executable action â = (a, b, σ), we need to do visual grounding,
i.e., an injection from symbolic actions A to boxes B, and identify the manipulation type σ for each
a ∈ A. To do so, we first query LVLMs to assign an action a ∈ A for each b ∈ B, i.e., a mapping
from B to A. Inversely, now, each a may: (1) have a unique box b; (2) have no box; (3) have a set
of boxes Ba ⊆ B, |Ba| > 1. For (1), it is ideal. For (2), we directly remove it from A since it is no
longer executable, hence, all tasks involving this action will fail. For (3), we impose the following
two heuristics by further prompting the LVLMs: 1. the box including clear physical boundaries is
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preferred; 2. the box with an icon-based label is preferred over text-only ones. Finally, we assign
the manipulation type σ directly based on the description of a along with the assigned visual region
b, forming â = (a, b, σ), which can be executed using the corresponding low-level primitive skill.

3.4 Structured Transition Modeling with Macro Actions

Figure 3: Overview of action grounding with
visual observations.

Perfectly modeling appliances with one shot is im-
practical due to the inherent ambiguity of the manu-
als (e.g., “adjust to desired level”) and inevitable er-
rors of LVLMs (e.g., hallucinations), making plan-
ning hard. Instead, we leverage two observations
of common appliance designs: (1) variable adjust-
ments often follow consistent action sequences, such
as pressing “+” repeatedly or entering digits condi-
tioned on an explicitly specified number string; and
(2) user manuals often describe step-by-step tutori-
als for common usages. We formalize user manu-
als as macro actions Φ, a constructed version of the
underlying ground truth set of macro actions Φ, for
efficient and generalizable appliance modeling.

Definition of Macro Actions. Macro action ϕ ∈ Φ is a parameterized sequence of symbolic ac-
tions that encapsulate a meaningful functionality (e.g., Cook, Kitchen Timer). Specifically, each
macro action ϕ consists of a symbolic action sequence aϕ = (a1, a2, ...), where ai ∈ A. Besides,
each macro action has a set of variables sv on which it imposes effects and a macro transition de-
scribing these effects Γ(sv). Note that sv is part of the full state s. Formally, ϕ = (sv,Γ(sv),aϕ).
For example, the macro action ϕ = Cook(LongGrain, 1 hour) may include two symbolic ac-
tions: a1 = press menu and a2 = press time, which will change the values of variables
sv = (menu, cooking time), so as to (1) set the menu to LongGrain; and (2) set the cooking
time to 1 hour. Macro actions enable LVLMs to plan by specifying high-level subgoals, simplify-
ing reasoning by substantially reducing the reasoning horizon.

Modeling Macro Actions. The full list of macro actions, including the corresponding variables
and target effects, is extracted by prompting LVLMs (see Appendix I). To fully model the macro
actions, we need to generate a sequence of low-level actions aϕ based on the current variable sv and
target transition Γ(sv). Specifically, aϕ can be directly computed from two transition types: T n for
An actions like ”+” or ”-”, and T g for go-to actions in Ag . The computation invokes codes directly,
similar to [24], based on the current and goal values. For actions in An, we compute the number of
repeats based on its transition model (e.g., from 1 to 5 requires 4 presses of “+”). For actions in Ag ,
we translate the description in the manual directly to get the specific actions.

3.5 Closed-loop Task Execution
Automatic Execution from Macro Actions. To specify the executable actions for robots, ApBot
generates a parameterized symbolic task policy π = [ϕ1, ϕ2, ..., ϕT ] conditioned on the inferred goal
Sg , where each ϕi ∈ Φ is a parameterized macro action, covering one or more variables in goal state.
To do so, we feed the list of applicable macro actions and the textual specification of Sg to LVLMs,
and generate the policy π directly. Actions in each ϕi are determined via its transition rule T i. The
robot executes low-level actions sequentially via parameterized primitive skills. Implementation
details of the primitive skills used on the real robot are provided in Appendix G.

State Estimation and Model Updates. To ensure robustness against inaccuracies in generated
appliance models, we adopt closed-loop model calibration. After each macro action is executed,
the system gets new observations and tracks the state to check whether the target state is achieved.
In simulation, the environment returns a textual description (e.g., “cooking time is set to 30 min”),
while in the real world, an image is captured as visual feedback. In both cases, the feedback is
passed to LVLMs to infer the actual value of the corresponding variables. If the actual value fails to
match the expected one by the transition, ApBot first traverses the full value range of the variable
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to observe how it responds to repeated actions. ApBot then utilizes the executed trace to update the
transition T (e.g., step size, value bounds), based on which the action sequence in this macro action
aϕ will be updated accordingly. With the updated macro actions, a new plan will be regenerated. For
example, if press("+") produces a sequence like 0,min → 10,min → · · · → 60,min → 0,min,
the updated rule reflects a 10-minute step and a wraparound at 60 minutes. The details of state
tracking and model updates are elaborated in Appendix C.

4 Experiments
We evaluate ApBot by answering three questions: (1) How does it compare to state-of-the-art LVLM
agents for home appliance operation? (2) What are the main contributors of ApBot? (3) How does
it perform on real-world appliances? For (1), we compared ApBot with leading LVLM agents using
unstructured inputs and found that ApBot consistently achieves higher success rates with fewer steps
in both simulation and real-world settings. For (2), ablations show that structured appliance models,
structured reasoning, and closed-loop updates are all critical for robust operation. For (3), real-world
deployments demonstrate the effectiveness of ApBot on unseen appliances and long-horizon tasks.

4.1 Experimental Settings
Evaluation Benchmark. Our evaluation aims to systematically assess the effectiveness and gener-
alization of ApBot across varying appliances. We construct a simulated benchmark of 30 interactive
appliances with their manuals across 6 categories.

Task instructions are designed with varying numbers of variables, from simple to hard. Each instruc-
tion specifies explicit target values for the adjustable variables. In total, we evaluated each method
on a set of 300 goal-directed natural language instructions, 10 per appliance instance. For auto-
matic evaluation, each appliance in the benchmark is paired with a symbolic simulator that models
true action effects and provides corresponding feedback to the algorithms. Full dataset including
appliances image, user manual and instructions, along with the simulator details, is provided in Ap-
pendix D. For real-world evaluation, the system is deployed on three appliances using a Kinova
Gen3 robot, following the same structured pipeline but relying on realistic visual observations for
feedback. Fig. 7 shows the experimental setup.

Baselines. We compare ApBot with several baselines designed to ablate key components. LLM as
policy w/ image uses LVLMs for all modules, including visual grounding [69] and reasoning based
on unstructured, textual inputs. LLM as policy w/ grounded actions reasons over grounded actions
from Sec. 3.3. We also conduct ablations as follows. ApBot w/o model does not build appliance
model M. Instead, LVLMs (1) decide which action to execute directly; (2) if the LVLM deems that
repeating steps is required, it invokes codes to get the required action sequences. ApBot w/o button
policy builds a structured model M, and follows the macro actions in policy π strictly, but relies on
LVLMs for low-level action generation instead of leveraging the transition T . ApBot w/o close-loop
update disables model updates from observation feedback and executes in open-loop. Besides, we
compare our action grounding approach with Molmo, a state-of-the-art visual grounding method.
We elaborate all model settings and baselines in Appendix E.

Evaluation metrics. Success is defined as achieving all specified values correctly. For metrics,
we evaluate (1) Success Rate within 25 reasoning steps, (2) Average Steps taken before success or
termination, and (3) Success weighted by Path Length (SPL) to evaluate the weighted success rate
considering the actual execution steps. Optimal steps are computed using oracle appliance models
and task policies that specify the ground-truth action sequences.

4.2 Simulation Results
How does our framework compare to large-scale vision-language agents? The overall perfor-
mance of ApBot is shown in Fig. 4. Compared to purely LVLM-based agents (LLM as policy w/
image and LLM as policy w/ grounded actions), ApBot achieves significantly better performance
overall. Noticeably, comparing LLM as policy w/ image and LLM as policy w/ grounded actions, vi-
sually grounded actions overall help for appliance operation tasks. This shows that current state-of-
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Figure 4: Overall performance of home appliance operation, including average task success rate
(SR), average number of execution steps (Average Steps), and SPL (Success weighted by Path
Length) across (a) baseline methods and (b) our ablations. Both performance and derivations are
across appliance types.

the-art LVLMs are not yet good at open-vocabulary detection or visual grounding tasks, especially
those requiring fine-grained text recognition. Detailed performance by appliance types is listed in
Table 4. Referring to the rightmost figure in Fig. 4, we can see that ApBot has shown robustness
against appliance complexity (from left to right). ApBot does not suffer from severe performance
drop when the number of involved variables increases. By contrast, both baselines suffer from sig-
nificant performance degradation. We also conducted χ2 tests for all method pairs. As shown in
Fig. 5, performance differences are statistically significant for all pairs except ApBot w/o close-loop
update and LLM as policy w/ image, indicating they are equally poor. Detailed analysis by appliance
type is provided in Appendix F.

Figure 5: p-value matrix of all
method pairs by χ2-test.

What are the main contributors of ApBot? We conduct
ablations to evaluate the contributions of key components
in ApBot. In summary, removing the structured appliance
models (ApBot w/o model) significantly degrades perfor-
mance, mainly due to skipped steps or prematurely ending
execution, which somehow mirrors the behavior of LLM as
policy w/ grounded actions. This is because LVLMs can-
not handle reasoning tasks involving a long history of many
variables or constraints. It often ignores or hallucinates some
of them (e.g., deciding whether the appliance is in the cor-
rect mode, proposing the required action to take), making
the plan fail. Compared to ApBot w/o button policy, we can
conclude that invoking code to compute required action sequences (Sec. 3.4) is crucial to ensure the
correctness of generated policies. This is because LVLM agents struggle to assign variable values
correctly when the variable range is large, when the transition T is complex or when the variable
value options are semantically similar. Finally, we find that closed-loop updates for home appli-
ance models are critical. Performance of ApBot w/o close-loop update suffers a rapid, sharp drop
as the complexity of appliances increases. It fails to recover from any model errors, like open-loop
policies. It reveals that current state-of-the-art LVLMs still struggle with generating constrained
structures correctly in one shot, like the models of home appliances. All these results illustrate
the necessity of structured reasoning for robust appliance operation. We further provide qualitative
examples in Appendix F and failure analysis in Appendix H.
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Induction Cooker Instruction: Select the HotPot mode and adjust the power setting to 2000 W.

Water Dispenser Instruction: Set temperature to 60 degrees and then pour water.

Figure 7: Snapshots of our system operating an induction cooker and a water dispenser.

What is the benefit of explicit action grounding? Our proposed method to ground actions
can boost the overall performance of home appliance operation by 18% on average by compari-
son with the performance between LLM as policy w/ image and LLM as policy w/ grounded ac-
tions in Fig. 4, because LVLMs struggle with appliance button recognition. To further investi-
gate the effectiveness of our action grounding methods, we tested and provided the visual ground-
ing results for symbolic actions based on control panel images. The ground-truth labels of ex-
ecutable action regions are manually labeled. The comparison results between our method and
Molmo are shown in Fig. 6. Our method is statistically significantly better than Molmo across
all appliances (with p-value less than 0.001). The performance gain primarily comes from com-
bining the advantages of (1) explicit text recognition, (2) high-recall detection, and (3) seman-
tic understanding of graphical button icons of LVLMs. By contrast, Molmo demonstrates rea-
sonable text or symbol recognition ability, yet not robust enough as the specialist OCR models.

Figure 6: Comparison of action ground-
ing performance between our method
and Molmo. Standard deviation is
across different appliance types.

4.3 Deployment on Real-Robot

We deploy our method on a Kinova Gen3 arm and demon-
strate its applicability to three household appliances: a
blender, an induction cooker, and a water dispenser, each
evaluated with semantically diverse instructions. The
button-pressing policy is parameterized by a bounding
box. To compute the target end-effector pose, we com-
pute the point cloud of the button and extract its surface
normal. The robot aligns its gripper tip with the normal at
a slightly tilted angle and moves 0.1 cm beyond the sur-
face to ensure successful activation. More details can be
founded in Appendix G. Fig. 7 illustrates two example
instructions carried out on the water dispenser and the in-
duction cooker, each frame executing an action. With our method, the robot can reason about how to
perform previously unseen, long-horizon operation tasks by referring to the user manual. Additional
real-world demonstrations and results can be found in Appendix G and the accompanying video.

5 Conclusion

We presented ApBot, a generalizable method that enables zero-shot operation of novel household
appliances by referencing the user manual. By leveraging the structured model of appliances, Ap-
Bot demonstrates statistically significant robustness against diverse appliance types and language
instructions. We built an evaluation suite including the benchmark of real-world appliances, man-
uals, open-ended task instructions, and symbolic simulators to benchmark home appliance opera-
tion. Compared to all baselines, ApBot significantly improves success rate. We also deployed and
demonstrated our system on real-world robotic tasks. Results show that ApBot can reliably finish
language-specified tasks autonomously with only the manual and visual observation as the inputs.
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6 Failure Analysis & Limitations
Failure Analysis. Two major causes are identified in 18 failed instructions: action grounding
(16.7%) and modeling (83.3%). Action grounding can fail when detectors misidentify soft-touch
panels or icon-only buttons without physical boundaries. Modeling can fail due to goal ambiguity
and persistent LLM hallucinations despite syntax checks. Failure details are in Appendix H.

Limitations. First, ApBot does not support touchscreens, which are becoming increasingly com-
mon. We will integrate material design of the manipulator to support such interfaces. Besides,
button manipulation itself is a challenging task of robotics [15]. Currently, ApBot lacks fine-grained
modelling of diverse buttons (e.g., frictions, tactile feedbacks), which are crucial for robust but-
ton manipulation. We will incorporate tactile sensing to improve reliability [70]. Also, the action
grounding module is not fully reliable, especially for buttons without clear physical boundaries or
with icon-only symbols. We will develop a robust detector to ground buttons or integrate a human-
in-the-loop strategy [71]. Finally, ApBot does not consider complex manipulation skills for appli-
ances, such as opening/closing doors, plugging, and putting in or removing items from the appliance
container. We will integrate policy learning to support such sophisticated skills.
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Yih, T. Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in neural information processing systems, 33:9459–9474, 2020.

[64] D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the ACM
(JACM), 30(2):323–342, 1983.

[65] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances
in neural information processing systems, 33:1877–1901, 2020.

[66] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, et al. Segment anything. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 4015–4026, 2023.

[67] M. Minderer, A. Gritsenko, and N. Houlsby. Scaling open-vocabulary object detection. Ad-
vances in Neural Information Processing Systems, 36:72983–73007, 2023.

[68] JaidedAI. EasyOCR: Ready-to-use OCR with 80+ supported languages. https://github.

com/JaidedAI/EasyOCR, 2020.

[69] J. Yang, H. Zhang, F. Li, X. Zou, C. Li, and J. Gao. Set-of-mark prompting unleashes extraor-
dinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441, 2023.

[70] S. Yu, K. Lin, A. Xiao, J. Duan, and H. Soh. Octopi: Object property reasoning with large
tactile-language models. In Robotics: Science and Systems (RSS), 2024.

[71] A. Xiao, N. Janaka, T. Hu, A. Gupta, K. Li, C. Yu, and D. Hsu. Robi butler: Remote multimodal
interactions with household robot assistant. arXiv preprint arXiv:2409.20548, 2024.

13

https://github.com/JaidedAI/EasyOCR
https://github.com/JaidedAI/EasyOCR


A Example of the Appliance Model and Simulation
A.1 Structured Appliance Model Example
Below is an example of the appliance model generated using ApBot for a dehumidifier. It includes a
list of variables extracted from the manual, the macro actions, and transitions. During inference, we
directly generate the model in the following format with the help of LVLM agents, based on which
we further generate operation plans with Prompt 8. Note that the macro action, which is typically a
concept in computer science, is phrased as feature in our prompts to match the commonly used term
in most of the manuals. In practice, we group consecutive actions of adjusting the same variable in a
macro action into a step, which empirically improves robustness and facilitates the syntax checking
(Sec. B).

# Variables of the appliance defined in the State
variable_power_on_off = DiscreteVariable(value_range=["on", "off"],

current_value="off")↪→

variable_fan_speed = DiscreteVariable(value_range=["low", "mid",
"high"], current_value="low")↪→

...

# Macro actions
feature_list = {}

feature_list["turn_on_off"] = [
{"step": 1, "actions": ["press_power_button"], "variable":

"variable_power_on_off", "step_size": 2}↪→

]
feature_list["adjust_fan_speed"] = [

{"step": 1, "actions": ["press_speed_button"], "variable":
"variable_fan_speed", "step_size": 3}↪→

]
...

# Transitions
simulator_feature = Feature(feature_list=feature_list,

current_value=("empty", 1))↪→

class Simulator(Appliance):

def reset(self):
self.feature = simulator_feature
self.variable_power_on_off = variable_power_on_off
self.variable_fan_speed = variable_fan_speed
...

def press_power_button(self):
self.feature.update_progress("press_power_button")
self.execute_action_and_set_next("press_power_button")

def press_speed_button(self):
self.feature.update_progress("press_speed_button")
self.execute_action_and_set_next("press_speed_button")

...
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B Details of the Syntax Checker
To mitigate hallucination during appliance model generation, we implement a suite of syntax check-
ers to further validate the generated models, mainly for the macro actions, transitions, and goal
specifications. Additionally, all generated codes are verified to ensure that they fit the required out-
put format, with the help of regular expressions. The detailed prompt can be found in Prompt 6. We
list the syntax checkers here:

1. Missing Variable:

Every step should adjust some variables.

2. Empty or Non-Existent Action: Each step should contain at least one valid action.

3. Action Coverage: Every action in A should appear in some macro actions.

4. Variable Coverage. Every variable defined in the state space S should appear in some
macro actions.

5. Duplicate Action Sequences: We check if there are possibly duplicate action sequences
(e.g., set a variable to a specified value twice).

6. Number-Pad Action Compatibility: Number-pad actions should not appear when mod-
eling appliances without a number pad.

7. Input String Reset: The appliance with a number pad should reset the input string of the
number pad whenever it switches away.

8. Action-Variable Consistency: Actions should only adjust associated variables.

9. Goal Validity: Sg should be fully specified, i.e., each variable should be assigned or inten-
tionally ignored.

C Details of State Estimation and Model Updates
State Estimation. The robot estimates the appliance state using two feedback modalities. In sim-
ulation, textual feedback directly provides ground truth values for state variables being tuned. In
real-world scenarios, the robot captures an image of the appliance and uses LVLM agents to convert
visual observations into textual state descriptions. After completing each macro action, the robot
compares the predicted state resulting from the planned action with the observed state extracted
from feedback. The result indicates whether the macro action successfully achieved its intended
effect.

Model Updates. The generated operation plan is executed in the minimal unit of a macro action.
The robot does not track states or update appliance models during the execution of a macro action,
but only after its completion. If the observed state does not match the predicted state, it indicates
that some transitions in this macro action might be wrong. Hence, the robot initiates a sequence of
exploration actions to explore and fix the possible errors. Empirically, we found that go-to transitions
in T g are mostly correct. Therefore, for each action in An, the robot continuously executes it until
a previously observed state is observed again. This exploration strategy is based on the observation
that most actions in An for appliances are circular. Based on the observed state transitions, the robot
updates the transition model regarding the corresponding action and regenerates all macro actions
that depend on it.

An Example of State Estimation and Model Updates. Below is an example illustrating how
the appliance model is automatically updated using closed-loop feedback. Consider a task that re-
quires turning on the fan and setting the fan speed to high. The robot begins by executing the
press power button action under the macro action of turn on off. Upon receiving feedback in-
dicating power = on, it invokes Prompt 9 to confirm that the subgoal is achieved as expected, i.e.,
the prediction matches the observation. Next, it proceeds to the macro action of adjust fan speed.
Assuming the current speed is low, the robot executes the action sequence in this macro action.
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Figure 8: Appliances in our benchmark. (a) Appliance Types. (b) All Instances of Bread Maker.

Figure 9: An example user manual for the Bread Maker. (a) Control panel. (b) Unstructured step-
by-step procedure for a macro action.

Given a ground-truth cyclic variable range of {low, medium, high}, assume that the current action
sequence is wrong, for example, requiring 1 press of the speed button, which results in medium

speed. After executing the planned actions, the feedback again indicates speed = medium, sug-
gesting the goal is not yet met. The robot continues pressing the speed button and observes the
feedback sequence: medium → high → low → medium. The repeated value medium indicates
the entire value range has been cycled. Using Prompt 10, the robot diagnoses that the transition of
the action adjust fan speed was incorrect. It then updates the model according to the diagnosis.
In detail, it sequentially updates the variable definition via Prompt 11, revises the appliance model
using Prompt 12, and adjusts the goal state accordingly using Prompt 13. With the updated current
value of medium, the robot re-plans the action sequence and presses the speed button once more.
This time, the feedback confirms speed = high, and Prompt 9 verifies that the goal is satisfied.
The task completes successfully.

D Details of the Evaluation Benchmark
D.1 Appliances Categories and Data Collection

The benchmark covers six types of household appliances: dehumidifiers, bottle washers, rice cook-
ers, microwave ovens, bread makers, and washing machines. These categories were chosen for their
differences in mechanism complexity and functional diversity. As shown in Figure 8, each category
includes five distinct instances, resulting in 30 appliances in total.

For each instance, we collect an image of the control panel from the Internet, including Amazon and
eBay. We also collect the corresponding user manual from the product’s official website or support
page. From each manual, we extract two key parts: (1) a control panel legend that links interface
elements to their locations (see Fig. 9a), and (2) step-by-step instructions that describe how to
operate specific features (see Fig. 9b). They are used to construct the structured symbolic model for
each appliance. The appliances vary in interface layout and the number of adjustable variables. To
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Table 1: Examples of Task Instructions for Different Appliances

# Vars Appliance Sample Instruction Target Settings

1 Dehumidifier “Set the humidity to 50%.” • Humidity = 50%

2
Bottle

Washer
“Power on the device and initiate a 45-minute automatic
sterilization and drying cycle.” • Power = On • Drying Time = 45 min

3
Rice

Cooker
“Adjust the delay timer to 30 minutes, set the rice cooker
to White Rice mode, and start the operation.”

• Menu = White Rice
• Start = On

• Delay Timer = 30 min

4 Microwave
Oven

“Set the upper tube temperature to 150°C. Select the
cooking function as ’upper and lower heating tube’. Then
set the lower tube temperature to 150°C and adjust the
cooking time to 20 minutes.”

• Upper Temp = 150°C
• Lower Temp = 150°C

• Time = 20 min

• Function = Upper / Lower Heating

5 Bread
Maker

“Bake a large, medium-crust French loaf using the French
menu. Set a 2-hour delay timer, then start the bread
maker.”

• Menu = French
• Crust = Medium
• Start = On

• Loaf Size = Large
• Delay = 2 hrs

6 Washing
Machine

“Turn on the washing machine. Select the Normal
program for everyday clothes, set the water level to 55 L,
schedule it to finish in 4 hours, start the machine, and
activate the child lock.”

• Power = On
• Water Level = 55 L
• Start = On

• Program = Normal
• Preset = 4 hrs
• Child Lock = On

ensure fair comparison, we assign a fixed number of target variables per appliance type, subject to
their inherent complexity. For example, dehumidifiers require adjusting one variable, while washing
machines require six.

D.2 Task Instructions
We design 300 goal-directed natural language instructions, with 10 tasks per appliance instance.
Each instruction specifies a clear goal by assigning specific target values to a set of variables. This
ensures consistency across methods and focuses evaluation on symbolic reasoning and execution.
Ground-truth values are manually labeled to support automatic evaluation. The number of variables
involved in each task depends on the type of appliance, facilitating controllable comparison. For ex-
ample, all instructions for dehumidifier involve only one variable. More complex ones, like washing
machines, involve up to six variables. Details and samples of instructions are listed in Table 1.

D.3 Simulators and Ground Truth Feedback
Each appliance instance is paired with a symbolic simulator implemented in Python, providing a de-
terministic testing environment. The simulator encodes adjustable variables and valid actions based
on the appliance manual, preserving constraints defined by its manual. It also defines executable
regions tied to control panel elements. Actions are input as a pair: a bounding box and an action
type (e.g., press or turn). If the action is valid, the simulator updates the variable state and returns a
textual message (e.g., temperature = 150°C) indicating the resulting variable value.

D.4 Metrics
We mainly evaluate Success Rate, Average Step, and Success weighted by Path Length. Besides, we
also report the Execution Step in Appendix F.

Success Rate: It is defined as the proportion of tasks completed successfully before exceeding 25
reasoning steps. The number of reasoning steps is defined as the total number of macro actions,
excluding the exploration steps. We define success as the achievement of variable values included
in the specified goal state at the end of execution.

Average Step: This metric indicates the average number of reasoning steps, i.e., the number of
macro actions excluding the exploration, taken before either achieving success or reaching the maxi-
mum number (25 in our experiments). This metric focuses on the reasoning efficiency of the system.

Success weighted by Path Length (SPL): SPL evaluates success while considering the actual
number of physical execution steps, i.e., symbolic actions in A. The optimal number of actions is
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Table 2: Hyperparameters of Used Models.

Component Parameter Name Explanation Value

GPT
model GPT model version. GPT-4o-

2024-11-20

temperature Controls output randomness. 1.0

top p Nucleus sampling cutoff. 1

OWLv2 model OWLv2 model name. owlv2-large-
patch14-ensemble

box threshold Object detection threshold. 0.5

EasyOCR
text threshold Text detection threshold. 0.5

low text Includes blurry text. 0.4

contrast ths Contrast enhancement threshold. 0.05

Segment
Anything

Model

iou IoU threshold for masks. 0.1

conf Mask confidence filter. 0.9

manually labeled by a human oracle. Intuitively, this metric evaluates the efficiency considering
both execution and exploration.

Execution Step: It indicates the average number of symbolic actions in A, i.e., the number of ac-
tions that the robot actually executes physically, including the exploration ones, taken before success
or reaching the max reasoning steps. It evaluates the physical execution efficiency of algorithms.

E Details of Experimental Settings
E.1 Detailed Settings of LVLMs
Table 2 lists non-default hyperparameters of all models used in our experiments. GPT-4o was used
for both appliance model construction and action grounding. Claude-3.5, EasyOCR, and OWLv2
were used only for action grounding. In real-world experiments, where control panels are simpler,
only OWLv2 was used for control element detection to improve efficiency; EasyOCR and SAM
were omitted.

E.2 Baselines
Table 3 summarizes the key components in each method. ✓indicates the component is present in
the corresponding method; × indicates it is omitted or replaced directly by LVLM equivalents. The
prompts used for all methods can be found in Appendix I.

Grounded Action refers to whether the method reasons over symbolic actions, which are visually
grounded to control panel elements via our action grounding method (see Sec. 3.3), or directly
reasons over image regions without symbolic abstraction.

Model M indicates whether the method constructs and follows a symbolic appliance model ex-
tracted from the user manual. If present, variable adjustments follow a fixed sequence specified by
macro actions Φ and the task policy π, instead of being chosen reactively by an LLM.

Button Policy denotes whether action sequences for variable adjustment are computed using pre-
defined transition functions T , rather than being generated by LLMs.

Closed-loop Update refers to whether the method incorporates execution feedback to update state
estimation and re-generate action sequences. Methods without this component operate in an open-
loop manner, executing fixed sequences or reasoning reactively without correcting for execution
errors.
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Table 3: Baseline methods and ablation of key components in ApBot. ✓indicates the component is
used.

Method Grounded Model M Button Closed-loop
Action Policy Update

LLM as policy w/ image × × × ✓

LLM as policy w/ grounded
actions

✓ × × ✓

ApBot w/o model ✓ × ✓ ✓

ApBot w/o button policy ✓ ✓ × ✓

ApBot w/o close-loop update ✓ ✓ ✓ ×
ApBot ✓ ✓ ✓ ✓
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F Details of Performance

Figure 10: Performance of home appliance operation by appliance type, including average task
success rate (SR), average number of execution steps (Average Steps), and SPL (Success weighted
by Path Length) on baseline methods.

Figure 10 and Figure 11 shows the performance of ApBot on six appliance types. Each appliance
type has a different number of variables to adjust, from 1 to 6 (top to bottom). As the number
of variables increases, ApBot does not suffer a severe performance drop in terms of success rate
(Figure 13). By contrast, baseline methods like LLM as policy w/ image and LLM as policy w/
grounded actions drop significantly on tasks with more variables. This shows that structured models,
structured reasoning, and closed-loop updates help in handling complex tasks. Another interesting
observation is that SPL suffers from an obvious drop when increasing the complexity of appliances.
The reason is that for complex appliances and tasks, there will always be more modeling errors,
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Figure 11: Performance of home appliance operation by appliance type, including average task
success rate (SR), average number of execution steps (Average Steps), and SPL (Success weighted
by Path Length) on ablation methods.

which require more exploration steps for model updates. This further demonstrates the necessity of
appliance modeling and online updates.

Figure 12 presents pairwise χ2-test p-values across six methods for each appliance type, with diago-
nal entries marked as ”N/A”. Each subplot corresponds to an appliance type, ordered by the number
of variables to adjust per user instruction. As the number of variables increases, the performance
gap between ApBot and baseline methods such as LLM as policy w/ image and LLM as policy w/
grounded actions becomes more statistically significant.

Figure 14 compares action grounding performance between ApBot and Molmo across six appliance
types, evaluated by precision, recall, and F1 score. ApBot consistently outperforms Molmo on all
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Figure 12: p-value matrix of all method pairs by χ2-test on different appliance types.

appliance types, particularly on appliances with symbolic, iconic, or multi-word text labels, where a
structured grounding procedure performs better.

We illustrate an online model update example triggered by a transition failure. An incorrect tran-
sition rule for the microwave function dial extracted from the user manual led to a goal mismatch.
Upon observing inconsistent state feedback, ApBot exhaustively explores the function dial’s state
space and updates the macro action to reflect the correct transition mapping.

Update Macro Action: Adjust Microwave Function

Action Applied: (‘turn function dial clockwise’, 1)

Feedback Received:
• Fermentation

Goal Comparison:
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Figure 13: Average task success rate (SR) by increasing variable size conditioned on appliance type.

Figure 14: Comparison of action grounding performance between our method and Molmo on preci-
sion and recall across appliance types.

• Expected: Lower & Upper Heater
• Observed: Fermentation
• Result: Values are semantically different. Goal not reached.

Execution Trace:
Action Observed Value

(‘turn function dial clockwise’, 1) Fermentation
(‘turn function dial clockwise’, 1) Lower heater
(‘turn function dial clockwise’, 1) Upper heater
(‘turn function dial clockwise’, 1) Lower & upper heater
(‘turn function dial clockwise’, 1) Convection
(‘turn function dial clockwise’, 1) Rotary
(‘turn function dial clockwise’, 1) Off
(‘turn function dial clockwise’, 1) Fermentation
(‘turn function dial clockwise’, 1) Lower heater

Inferred Variable Definition:
• Name: variable function
• Type: DiscreteVariable
• Value Range:
['Fermentation', 'Lower heater', 'Upper heater',
'Lower & upper heater', 'Convection', 'Rotary', 'Off']

• Current Value: ’Off’
Generated Code:
variable_function_knob = DiscreteVariable(

value_range=[
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Table 4: Detailed Performance of Success Rate / Average Steps by Appliance Types

Method Dehumid-
ifier

Bottle
washer

Rice
cooker

Microwave
oven

Bread
maker

Washing
machine

LLM as policy w/ image 0.80 / 5.34 0.46 / 4.64 0.40 / 10.46 0.22 / 7.12 0.22 / 12.88 0.32 / 13.46
LLM as policy w/ grounded actions 0.96 / 5.48 0.74 / 6.94 0.74 / 7.88 0.32 / 9.22 0.34 / 13.02 0.52 / 15.36
ApBot w/o button policy 0.84 / 3.28 0.80 / 4.58 0.46 / 5.22 0.32 / 6.98 0.46 / 8.18 0.22 / 8.04
ApBot w/o model 0.98 / 5.32 0.88 / 7.22 0.72 / 7.80 0.76 / 10.38 0.58 / 11.92 0.56 / 11.44
ApBot w/o close-loop update 0.84 / 2.82 0.74 / 3.82 0.26 / 4.34 0.32 / 4.00 0.00 / 5.34 0.00 / 5.62
Ours 0.98 / 3.12 1.00 / 4.22 0.96 / 6.28 0.86 / 7.46 0.88 / 9.14 0.90 / 11.64

'Fermentation', 'Lower heater', 'Upper heater',
'Lower & upper heater', 'Convection', 'Rotary', 'Off'

],
current_value='Off'

)
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G Details of Real World System
G.1 Real World System Design

Figure 15: The real-world framework
In our real-world robotic system, we implement a framework that enables a manipulator to interact
with physical appliances by pressing buttons accurately and robustly, as illustrated in Figure 15. An
RGB-D camera mounted near the robot’s end-effector captures both RGB images and depth data of
the appliance interface. Given a press action parameterized by the bounding box of the target button,
the button pose estimation module extracts the corresponding point cloud and computes the surface
normal of the button region. This normal vector determines the correct approach angle for the robot
to align its end-effector.

Figure 16: The pressing details

To reduce the contact area and improve precision, the robot aligns its gripper with the surface normal
at a slight tilt. The pressing trajectory is generated in two stages: first, the end-effector moves to
a position directly above the button; then, it advances 0.1 cm beyond the estimated button surface
to ensure a firm press, as shown in Figure 16. This approach compensates for minor depth inaccu-
racies and mechanical backlash, enhancing contact reliability. The generated trajectory is executed
using workspace tracking control, allowing the end-effector to follow the desired pressing motion
precisely. This framework generalizes well across various devices and button types, demonstrating
robustness to differences in button size, orientation, and mechanical resistance.

G.2 Real World Experiments Setting
To evaluate the performance and generalization ability of our proposed system, we conducted a se-
ries of real-world experiments involving common household appliances. Specifically, the robot was
tasked with operating three distinct devices: a blender, an induction cooker, and a water dispenser, as
shown in Fig. 17. These appliances were selected for their diversity in interface design and physical
interaction requirements, representing different types of button layouts, activation mechanisms, and
task objectives. For each appliance, we designed three task scenarios, resulting in a total of nine
distinct interaction tasks. These tasks involve activating power buttons, selecting modes (e.g., milk
mode or hot pot mode), or dispensing liquids, depending on the appliance. These tasks require the
system to generalize based on visual input and prior knowledge for reasoning encoded in the user
manual.
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Figure 17: The real world setting

Table 5: Detailed Performance of Success Rate / Execution Step / SPL by Appliance Types

Method Blender Water Dispenser Induction Cooker Avg

LLM as policy w/ image 1.0 / 3.50 / 0.29 1.0 / 5.70 / 0.59 0.5 / 17.70 / 0.13 0.83 / 8.97 / 0.34
ApBot 1.0 / 1.0 / 1.0 0.7 / 8.4 / 0.31 1.0 / 16.5 / 0.38 0.9 / 8.63 / 0.56

T1. Select the HotPot mode and set power to 2000 W.
T2. Select the Milk mode.
T3. Select the HotPot mode and set power to 1600 W.
T4. Set the insulation temperature to 98°, then pour the water.
T5. Set the insulation temperature to 85°, then pour the water.
T6. Set the insulation temperature to 65°, then pour the water.
T7. Hold at slow speed for 10 seconds.
T8. Hold at slow speed for 15 seconds.
T9. Hold at turbo speed for 10 seconds.

G.3 More Real World Execution Visualization
To evaluate the impact of parsing visual feedback from appliance displays, we built simulators for
these three appliances, each using images of digital control panels to reflect state changes. For each
appliance, 10 instructions were tested. LVLM agents were used to parsed the display after each
action to infer the updated state, which was passed back as feedback to guide the next step. For
LLM as policy w/ image, the image was directly given to LVLM agents. For ApBot, feedback
parsing is done by guiding the LVLM to focus on the variable currently being adjusted (Prompt 18).
We compare LLM as policy w/ image and ApBot in terms of success rate, execution steps, and
SPL, as shown in Table 5. Due to the simplicity of these appliances, both methods show similar
performance. For more visualization, please see Fig. 18.

H Details of Failure Mode Analysis
We categorize and analyze the main failure modes observed across different baseline methods as
shown below.

Failure due to Lack of Action Grounding This is defined as failures that occur due to incorrect
grounding of actions to visual elements. For example, the model may select a neighboring button
instead of the correct one because LVLMs struggle to associate OCR text labels with the correct
control panel element. This highlights limitations in visual-text alignment within vision-language
models. This failure mode is mainly applicable to: LLM as policy w/ image.

Failure due to Lack of Structured Model This mainly include failures that occur due to (1)
incorrect association between actions and effects due to lack of transition modeling; (2) repeated
adjustment of the same variable due to lack of macro actions; (3) premature ending or wrongly
parsed visual feedback due to lack of state estimation; (4) incorrect goal state specification due to
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lack of structured goal states. This failure mode is mainly applicable to LLM as policy w/ image;
LLM as policy w/ grounded actions; ApBot w/o model.

Failure due to Incorrect Transition Model This mainly includes failures caused by incorrect
interpretation of transition rules, especially when the variable exhibits irregular step sizes in its value
space. This failure mode is mainly applicable to: ApBot w/o button policy; ApBot w/o close-loop
update.

Failure due to Hallucinated Model Details This includes failures caused by LLM hallucination
during model construction, resulting in invalid transition rules that fail syntax checks. This failure
mode is mainly applicable to: ApBot, ApBot w/o button policy, ApBot w/o model, ApBot w/o
close-loop update.

I Prompts
In this section, we provide the detailed prompts for two baselines: LLM as policy w/ image (Prompt
1) and LLM as policy w/ grounded actions (Prompt 2). The remaining ablation methods share the
same prompts as ApBot.

For ApBot, we provide prompts for three sections: (1) Build appliance models; (2) Update appliance
models using closed-loop feedback; (3) Action grounding. To build appliance models, we need to (1)
extract control panel element names (Prompt 3) and action names (Prompt 4); (2) extract variables
(Prompt 5), macro actions (Prompt 6), and generate the appliance model with extracted information
(Prompt 7); finally (3) Generate task policy and goal state based on the appliance model (Prompt
8).

To update the appliance model using closed-loop feedback, the steps include: (1) After execution of
each macro action and receiving feedback, ApBot parses the feedback (Prompt 18) and compares
the goal with the feedback (Prompt 9). If the goal is achieved, it proceeds to the next action. Oth-
erwise, it executes exploration actions to collect a sequence of observations. Then, it uses them to
diagnose the incorrectly modeled variable (Prompt 10), updates the variable definition (Prompt 11),
and updates the appliance model (Prompt 12) and goal state (Prompt 13) accordingly.

To perform action grounding, we need to: (1) Use LVLMs to detect candidate bounding boxes for
control panel elements, then remove false positives using LVLMs (Prompt 14). This step ensures
only valid regions are kept before passing them for slower, more detailed grounding. (2) Map
bounding boxes to control panel element names (Prompt 15). (3) Remove duplicate bounding boxes
being mapped to the same control panel element (Prompt 16). And (4) Map each action name to a
grounded control panel element name and an action type (Prompt 17).

Prompt 1: LLM as policy w/ image Action Proposal

You are given:
• Two images:

(1) A photo of the appliance control panel.
(2) A version with indexed bounding boxes circling the control panel elements (buttons,

dials).
• A user command describing the target task.
• User manual.
• A set of allowed action types: press, hold, turn dial clockwise,
turn dial anti clockwise.

• Optionally, display panel feedback in text after each action.

Action Proposal Rules:
• At the start of the task, assume the initial appliance state is unknown. Execute an action to

receive feedback. On subsequent steps, use observed display panel feedback to reason about
the current state, and propose the next action needed to complete the task.

• Only one action is allowed per response, but you can execute it multiple times (e.g., set
execution times = 2.
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• hold actions require specifying a duration. If not mentioned in manual, default to 10 sec-
onds. hold can involve two buttons simultaneously and requires a duration. The other
action types apply to a single button or dial.

• If the task is completed or infeasible (e.g., display feedback remains wrong after repeated
attempts failed), return an end action to stop.

Output Format: Return 5 Python variables in the following format:

variable_reason = "<Your reasoning>"
action_type = "press_button" # or other valid type
bbox_index = 5 # int or [int, int] if pressing two

buttons↪→
execution_times = 1 # integer count
duration = None # duration in seconds if hold, otherwise

None↪→

# to terminate a task:
variable_reason = "Task is completed / unable to achieve."
action_type = "end"
bbox_index = None
execution_times = None
duration = None

Example:

# User instruction: Set the dial (index = 8) from \texttt{OFF} to
\texttt{3}.↪→

variable_reason = "Current power value is OFF. I will turn the dial
clockwise 3 times to set it to 3."↪→

action_type = "turn_dial_clockwise"
bbox_index = 8
execution_times = 3
duration = None

Prompt 2: LLM as policy w/ grounded actions Action Proposal

You are given:
• A user command describing the target task.
• User manual.
• A list of available executable actions.
• Optionally, display panel feedback in text after each action.

Action Proposal Rules:
• At the start of the task, assume initial appliance state is unknown. Execute an action to

receive feedback. On subsequent steps, use observed display panel feedback to reason about
current state, and propose the next action needed to complete the task.

• Use only the listed available actions. Each action should be returned as a Python function
call. Provide a clear and concise reason using variable reason.

• Only one action is allowed per response, but you can execute it multiple times (e.g., set
execution times = 3).

• If a hold action causes values to change too quickly, avoid using it. Use repeated press
actions instead. hold actions require specifying a duration. If not mentioned in the manual,
default to 10 seconds.

• If the task is completed or infeasible (e.g., display feedback remains incorrect after repeated
attempts), return an end action to stop.

Output Format: Return 2 Python variables in the following format:
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variable_reason = "<Your reasoning>"
variable_response_string = "run_action('action_name',

execution_times=N)"↪→

# Example of hold actions:
variable_response_string = "run_action('hold_buttonX_and_buttonY',

execution_times=1, duration=5)" # 5 seconds↪→

# To terminate the task:
variable_reason = "Task is completed / unable to achieve."
variable_response_string = "end"

Example:

# User instruction: Set the dial from OFF to 3 by turning it
clockwise.↪→

variable_reason = "Current power value is OFF. I will turn the dial
clockwise 3 times to set it to 3."↪→

variable_response_string = "run_action('turn_dial_clockwise',
execution_times=3)"↪→

Prompt 3: Extract Control Panel Element Names

You are given an appliance user manual and an image of its control panel. Identify all control panel
elements, i.e., button and dial.

Identification Guidelines:
• Include elements mentioned in the manual or shown in the image if they clearly correspond

to a described function.
• Use one name per physical control. If it adjusts multiple settings, use a combined name

(e.g., power timer dial, not power dial and timer button). If the manual names a
button (e.g., function button), use that name, even if the image shows only labels of its
configurations like menu 1, menu 2, menu 3.

• List each distinct button separately, even if they adjust the same function. Exam-
ples: air roast button, air fry button; increase button, decrease button;
number 0 button, number 1 button, ...

Exclude:
• Non-executable parts such as printed labels, static icons, light indicators, and digital displays.
• Any component not on the control panel, such as power plugs or lids.

Naming Conventions:
• Use name type format (e.g., start stop button, power level dial).
• Only lowercase letters, digits, and underscores are allowed. No spaces or special characters.

Output Format:
• Return a Python list named names list.
• Each item must be a string with a Python comment describing its function, location, and any

visible symbol (e.g., triangle, bottle, arrow).

Example Output:

names_list = [
"start_stop_button", # starts/stops cooking; lower right;

triangle icon↪→
"number_1_button", # sets time; middle keypad; labeled '1'
"increase_button", # increases value; top left; '+' symbol

]
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Prompt 4: Extract Action Names

You are given an appliance user manual and a list of control panel element names. Your task is to
identify all executable actions that are:

(1) described in the user manual, and
(2) Involve control panel elements listed above (e.g., buttons, dials).

Carefully match each control element with relevant actions described in the manual.

Valid Action Types:
• press <element name>
• hold <element name> #(duration = x seconds; use 3 if unspecified)
• hold <element1> and <element2> #(duration = x seconds; use 3 if unspecified)
• turn <element name> clockwise (only valid for dials)
• turn <element name> anticlockwise (only valid for dials)

Naming conventions:
• Construct each action by selecting a valid action type from the list above and inserting a

control element name from the provided list.
• Use lowercase letters, digits, and underscores only. Do not include any special characters or

symbols.

Exclusions:
• Do not include actions not mentioned in the manual.
• Do not create duplicate or ambiguous actions.
• Do not include duration in the action name. Write it as a comment on the same line.

Output Format: List each valid action as a separate line of plain text.

Example Output:

press_kitchen_timer_button
press_time_dial
press_and_hold_stop_button #(duration = 5 seconds)
press_and_hold_start_button_and_cancel_button #(duration = 3 seconds)
turn_power_level_dial_clockwise
turn_power_level_dial_anticlockwise

Prompt 5: Extract Variables

You are given an appliance user manual, a list of executable action names, a list of control panel
element names, and a list of predefined variable classes in Python. Your task is to extract all appliance
variables as instances of the predefined Python classes.

Definition of Variable: An internal configuration state of the appliance that can be adjusted through
actions (e.g., power level, temperature, time).

How to Identify a Variable: User manuals often describe multiple features (i.e. high-level functions
like Defrost, Grill), each consisting of actions that configure internal appliance states. These states
are the variables. For example, a microwave may include Defrost and Grill features, both of which
adjust menu and time, but assign different values depending on the feature. Here, Defrost and Grill
are features. menu and time are variables shared across features. Define a variable if:

(1) It is explicitly described in the manual,
(2) It is adjusted via a listed control panel element name (e.g., button, dial), and
(3) It is modified by an listed action action.

Naming Convention: Use the format variable <variable name>. Use only lowercase letters and
underscores.

variable_power_on_off = ... # User manual: Press POWER to turn off.
variable_child_lock = ...
variable_start_pause = ...
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Valid Variable Types: Used to define variable transition rules. Each variable type can be directly
invoked via code. Each variable can have its value changed by .next() and .prev() or directly
assigned by .set current value().

(1) DiscreteVariable: Categorical values. Value range consists of strings.

variable_power = DiscreteVariable(value_range=["on", "off"],
current_value="on")↪→

variable_mode = DiscreteVariable(value_range=["eco", "turbo",
"auto"], current_value="eco")↪→

(2) ContinuousVariable: Numerical values. Supports piecewise ranges.

variable_clock_setting_hour =
ContinuousVariable(value_ranges_steps=[[0, 23, 1]],
current_value=0) # value range: 0-23 hours, step size: 1
hour

↪→
↪→
↪→
variable_wash_time = ContinuousVariable(value_ranges_steps=[[0,

3, 3], [3, 15, 1]], current_value=0) # value range: 0 or
3-15 minutes

↪→
↪→

(3) TimeVariable. Supports ”hour-minute-second” format.

variable_timer = TimeVariable(values_ranges_steps =
[('00:00:00', '00:59:00', 60)], current_value='00:00:00') #
value range: 0-59 minutes: step size: 1 min

↪→
↪→

(4) InputString. Stores keypad input sequence.

# User manual: Enter a 3-digit code using number pads to set
the timer.↪→

variable_input_string = InputString()

Output Format: Executable python code that defines each variable. The current variable value should
be initialised to the first value in the range if not otherwise specified by the manual.

Example Output:

variable_power = DiscreteVariable(value_range = ["on", "off],
current_value = "on")↪→

variable_temperature = ContinuousVariable(value_ranges_stpes = [[20,
30, 1]], current_value = 20)↪→

Special Cases:
(1) Setting Adjustable via Different Features: If a setting can be adjusted in different fea-

tures using different transition rules (i.e. how a variable’s value changes given an action),
define a separate variable for each (e.g., cook time set via number pads vs. incremented by
press start button).
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# User manual <normal cook>:
# 1) Press "COOK" once;
# ...
# 4) Use the number pads to enter cooking time in MM:SS format

(e.g., to set 6 minutes, press "6", "0", "0");↪→
# 5) Press "COOK" again to confirm.
variable_normal_cook_time = ...

# User manual <speedy cook>:
# 1) Press "Start" to start cooking for 30 seconds. Each

subsequent press adds time by 30 seconds.↪→
variable_speedy_cook_time = ...

(2) Setting Adjusted Across Different Feature Steps: If a setting is adjusted in multiple steps
(e.g., hour and minute of a timer) in a feature, define one variable per step.

# User manual <clock setting>:
# 1) Press "CLOCK" once, the hour figure flashes.
# 2) Press "up arrow" or "down arrow" to adjust the hour

(0--23).↪→
# 3) Press "CLOCK", the minute figure flashes.
# 4) Press "up arrow" or "down arrow" to adjust the minute

(0--59).↪→
# 5) Press " CLOCK " to finish clock setting. ":" will flash,

the "clock symbol" indicator will go out. The clock setting
has been finished.

↪→
↪→
variable_clock_setting_hour = ...
variable_clock_setting_minute = ...

(3) Setting Conditioned on Program Choice: If a setting’s value range depends on the selected
program, (e.g. microwave menu, washing machine program), follow this structure.

• Define a selector variable, e.g., variable program index, to store the chosen pro-
gram.

• Define a placeholder variable, e.g., variable program setting = None, which is
dynamically assigned.

• For each program, define a separate variable using the
format variable <feature name> <program name> (e.g.,
variable set program popcorn).

• Create a dictionary program setting dict to map each program to its respective
setting variable.

32



# User manual:
# Microwave program popcorn sets size (1 cup, 2 cup), pizza

sets weight (250g, 350g, 450g), soup sets volume (200ml,
300ml, 400ml).

↪→
↪→
# Each time a new program is selected, variable_program_setting

is updated using program_setting_dict.↪→

# variable A (selector)
variable_program_index = DiscreteVariable(["popcorn", "pizza",

"soup"], "popcorn")↪→

# variable B (placeholder)
variable_program_setting = None

# program-specific variables
variable_program_setting_popcorn = DiscreteVariable(["1 cup",

"2 cup"], "1 cup")↪→
variable_program_setting_pizza = DiscreteVariable(["250g",

"350g", "450g"], "250g")↪→
variable_program_setting_soup = DiscreteVariable(["200ml",

"300ml", "400ml"], "200ml")↪→

# mapping dictionary
program_setting_dict = {

"popcorn": variable_program_setting_popcorn,
"pizza": variable_program_setting_pizza,
"soup": variable_program_setting_soup

}
# Selecting a mode updates variable_menu_setting from this

dictionary.↪→

Prompt 6: Extract Features

You are given the user manual of an appliance, a list of executable action names, a list of variables, and
a predefined Feature() class in Python. Your task is to extract all appliance features as an instance
of the predefined Feature() object.

Definition of Feature: A high-level operation (e.g., clock setting, cooking) consisting of step-
by-step procedures that adjust one or more variables using valid actions.

Output Format: Define a dictionary feature list, where each item is a feature name and its value
is a list of steps. Each step is a dictionary with:

(1) step index (integer),
(2) actions (list of action strings),
(3) Optional variable adjusted in this step,
(4) Optional comment describing fixed action effects or input string parsing requirements.

If any actions or variables are unused, include them under the reserved feature "null":

feature_list["null"] = [{"step": 1, "actions": ["unused_action_1"],
"missing_variables": ["variable_a"]}]↪→

Conclude with:

simulator_feature = Feature(feature_list=feature_list,
current_value=("empty", 1))↪→
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Example Output:

# User manual <clock setting>:
# 1) Press "CLOCK" once, the hour figure flashes.
# 2) Press "up arrow" or "down arrow" to adjust the hour (0--23).
# 3) Press "CLOCK", the minute figure flashes.
# 4) Press "up arrow" or "down arrow" to adjust the minute (0--59).
# 5) Press " CLOCK " to finish clock setting. ":" will flash, the

"clock symbol" indicator will go out. The clock setting has been
finished.

↪→
↪→

feature_list = {}
feature_list["clock_setting"] = [

{"step": 1, "actions": ["press_clock_button"]},
{"step": 2, "actions": ["press_up_arrow_button",

"press_down_arrow_button"], "variable":
"variable_clock_setting_hour"},

↪→
↪→
{"step": 3, "actions": ["press_clock_button"]},
{"step": 4, "actions": ["press_up_arrow_button",

"press_down_arrow_button"], "variable":
"variable_clock_setting_minute"},

↪→
↪→
{"step": 5, "actions": ["press_clock_button"]}

]
feature_list["null"] = [{"step": 1, "actions": [],
"missing_variables": []}]
simulator_feature = Feature(feature_list=feature_list,

current_value=("empty", 1))↪→

Identification Guidelines:
(1) Only model features with clear step-by-step instructions written in the user manual. Ignore

features introduced only by naming buttons and dials without full procedures.
(2) Exclude non-essential features like WiFi, app control, remote control, reset, cleaning, multi-

stage cooking, sound/audio settings, memory, touchscreen feedback, or progress queries
after operation starts. For hold <element> actions, ignore action effects that merely speed
up changes. Only model a hold action if it toggles a function (e.g., child lock).

(3) Split features into shorter, reusable units where possible. For consecutive steps in a fea-
ture, if they adjust different variables, consider separating them into distinct features (e.g.
start, cancel, power on). If consecutive steps in a feature adjust the same variable (e.g.,
lock/unlock), merge them.

(4) The feature that should stay merged is program settings, as the specific program setting is
conditioned the program choice (e.g. pizza program requires setting cooking weight, but
soup program requires setting soup volume (explained in extract variable). Follow this
structure:

feature_list["set_program"] = [
{"step": 1, "actions": ["press_program_button"], "variable":

"variable_program_index"},↪→
{"step": 2, "actions": ["press_plus_button",

"press_minus_button"], "variable":
"variable_program_setting"}

↪→
↪→

]

(5) If an action always sets a variable to a fixed value, remark in "comment".

feature_list["start_cooking"] = {"step": 1, "actions":
["press_start_button"], "variable":
"variable_start_cooking",

↪→
↪→
"comment": "start always set to on"}
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(6) If an action affects multiple variables, set the variable whose values will be assigned dynam-
ically under variable and describe those with fixed target values in comment.

# user manual <speedy cooking>:
# press start button will immediately start cooking at 100%

power for 30 seconds. Each subsequent press increases
cooking time by 30 seconds.

↪→
↪→

feature_list["start_cooking"] = {"step": 1, "actions":
["press_start_button"], "variable":
"variable_cooking_time",

↪→
↪→
"comment": "variable_start set to on, variable_power set to

100"}↪→

(7) turn dial actions must match both direction and effect. If turn dial affects different
variables in different directions, distinguish them (e.g., clockwise for time, anticlockwise
for power).

feature_list["adjust_time"] = [{"step": 1, "actions":
["turn_dial_clockwise"], "variable": "variable_time"}]↪→

feature_list["adjust_power"] = [{"step": 1, "actions":
["turn_dial_anticlockwise"], "variable": "variable_power"}]↪→

(8) To compactly describe appliance features that input values via number pads, you can use
the given meata actions on numbers to refer all the number pads, and track them with
meta actions dict. Make a comment beside the variable whose value assignment re-
quires parsing from input string.

# Predefined
meta_actions_on_number = [

"press_number_0_button", "press_number_1_button", ...,
"press_number_9_button"↪→

]
meta_actions_dict = {

"0": "press_number_0_button",
"1": "press_number_1_button",
...

}

# Example usage
feature["set_timer"] = [
{"step": 1, "actions": ["press_timer_button"],},
{"step": 2, "actions": meta_actions_on_numbers, "variable":

"variable_timer",↪→
"comment": "requires parsing from variable_input_string"}]

Prompt 7: Extract Appliance Model

You are given a user manual, a list of action names, variables, features, and a predefined Appliance()
class in Python. Your task is to implement a Simulator() object as an instance of the predefined
Appliance() object that models all action effects of the appliance.

Definition: The Simulator() object inherits from Appliance() and implements three components:
(1) reset() method that assigns:

• self.feature, initialized as simulator feature.
• self.variable x, initialized from predefined variables.
• self.variable input string, self.meta actions dict, etc., if appliance in-

cludes number pads.
(2) Action functions that define effects on variables and features. Valid action effects include:
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• Advance the current feature step or switch features by calling
self.feature.update progress(action name). Current feature and step
index can be accessed by self.feature.current value.

• Get active variable via self.get current variable(action name).
• Conditionally update variable value ranges or step size.
• Update variable value with variable x.set current value(),
self.assign variable to next(variable x), or
self.assign variable to prev(variable x).

def press_a_button(self):
self.feature.update_progress("press_a_button")
current_feature = self.feature.current_value[0]
variable = self.get_current_variable(action_name)
if current_feature == "feature_a":

variable.set_current_value("on")
elif current_feature in ["feature_b", "feature_c"]:

self.assign_variable_to_next(variable)

(3) run action(action name, ...) is a wrapper that enforces global execution conditions
before running an action. Specifically:

• Prevents action execution when the appliance is locked or powered off, unless the ac-
tion is to unlock or power on.

• Clears the input buffer (i.e., self.variable input string) if the action is unrelated
to input via number pads.

• After passing precondition checks, invokes the corresponding action method to per-
form its effect.

def run_action(self, action_name, execution_times=1, **kwargs):
if action_name not in self.meta_actions_dict.values():

self.variable_input_string.input_string = ""
if self.variable_lock.get_current_value() == "locked" and

"unlock" not in action_name:↪→
self.display = "child lock: locked"
return self.display

return super().run_action(action_name, execution_times,
**kwargs)↪→

Example Output:

class Simulator(Appliance):

def reset(self):
self.feature = simulator_feature
self.variable_clock_setting_hour = variable_clock_setting_hour
self.variable_clock_setting_minute =

variable_clock_setting_minute↪→

def press_clock_button(self):
...

def press_up_arrow_button(self):
...

def press_down_arrow_button(self):
...

def run_action(self, action_name, execution_times=1, **kwargs):
...
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Other Valid Action Function Formats:
(1) For hold <element name> actions, the duration needs to be included.

def press_and_hold_lock_button(self, duration=3):
if duration >= 3:

self.feature.update_progress("press_and_hold_lock_butt ⌋
on")↪→

...

(2) If the action changes a program choice (e.g. microwave menu, washing machine
program), sometimes the available program settings will change (e.g. pizza program
requires setting cooking weight, but soup program requires setting soup volume (ex-
plained in extract variable). Update the variable program setting accordingly.

def press_menu_button(self):
...
self.variable_program_setting = self.program_setting_dict[ ⌋

self.variable_program_index.get_current_value()]↪→

(3) If an action involves pressing number pads, follow this structure.
• Define a press number button method to model number pad action effects. Use this

method to instantiate specific number pad actions.

# number pad action effects.
def press_number_button(self, action_name, digit):

self.feature.update_progress(action_name)
self.variable_input_string.add_digit(digit)
variable = self.get_current_variable(action_name)
value = self.process_input_string(current_feature,

variable_name)↪→
variable.set_current_value(value)

# instantiate specific number pad actions.
def press_number_2_button(self):

self.press_number_button("press_number_2_button", "2")

• Define a process input string to convert inputs via number pads (e.g. "1", "6",
"0", "0") to valid variable values (e.g. clock time of "16:00").

# converts time inputs of minute:second format to
hour:minute:second format↪→

def process_input_string(self, feature, variable_name):
raw_input = self.variable_input_string.input_string
if feature == "clock_setting" and variable_name ==

"variable_clock_time":↪→
time_string = "00" + str(raw_input).zfill(4)
return f"{time_string[:2]}:{time_string[2:4]}:{ti ⌋

me_string[4:]}"↪→

• Define a get original input to convert target variable values (e.g. clock time of
"16:00") to required inputs via number pads (e.g. "1", "6", "0", "0").
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# converts target time value of hour:minute:second format
to required inputs of minute:second format↪→

def get_original_input(self, goal, feature, variable_name):
digits_only = ''.join(char for char in str(goal) if

char.isdigit())↪→
if feature == "clock_setting" and variable_name ==

"variable_clock_time":↪→
return digits_only[2:].lstrip("0") or "0"

• In reset() method, add the following content.

def reset(self):
... (the aforementioned variable assignments)
self.variable_input_string = VariableInputString()
self.meta_actions_dict = meta_actions_dict
self.meta_actions_on_number =

self.meta_actions_on_number↪→
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Prompt 8: Generate Task Policy and Goal State

You are given a user manual, a list of features, a list of variables, and a user instruction. Your task is to
determine which features need to be executed and how variables should be set to fulfill the instruction.

Output Formats
(1) a Python list task policy which defines the minimal ordered list of features needed to

fulfill the user instruction. Use the following rules:
• Every selected feature must set at least one variable required in the user instruction.
• Exclude features whose variables are all covered by previous features.
• Include the feature to turn on the device and let it start running.

(2) a string policy choice reason that explains why each feature was selected. If multiple
features are needed, explain what each contributes.

(3) a changing variables list that includes all variables in the feature sequence, in order of
appearance. Only include listed variables.

(4) a goal state = Simulator() object. For each variable in changing variables, assign
its target value following this structure:

• Use set current value() for direct assignment.
• Use set value range() or set step value() if the variable’s default configuration

changes.
• Do not modify variable names. Use the exact names from changing variables.
• For ContinuousVariable and TimeVariable, add a Python comment indicating

unit (e.g., seconds, minutes, hours).

Example Output:

# User Instruction: Defrost chicken meat for 5 minutes at 50% power in
3 hours time.↪→

task_policy = ["cook", "preset", "start"]
policy_choice_reason = "Firstly adjust cook settings then set preset

hours."↪→
changing_variables = ["variable_microwave_cooking_power",

"variable_microwave_cooking_time", "variable_preset_time",
"variable_start"]

↪→
↪→
goal_state = Simulator()
goal_state.variable_microwave_cooking_power.set_current_value("P50")
goal_state.variable_microwave_cooking_time.set_current_value("00:05:0 ⌋

0") # 5
minutes

↪→
↪→
goal_state.variable_preset_time.set_current_value(3) # hour
goal_state.variable_start.set_current_value("on")

Handle Program Choices: An appliance may allow choosing different programs (e.g. microwave
menu, washing machine program), and each program has different settings (e.g. pizza program re-
quires setting cooking weight, but soup program requires setting soup volume (explained in ex-
tract variable). In this case, variable program setting will be initialized with None in reset().
Therefore in goal state, firstly assign it to an existing defined variable (e.g., from a mapping dictio-
nary), and set its value accordingly.
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# Given variables
variable_program_index = DiscreteVariable(["popcorn", "pizza",
"soup"], "popcorn"),
variable_program_setting = None

variable_program_setting_popcorn = DiscreteVariable(["1 cup",
"2 cup"], "1 cup"),
variable_program_setting_pizza = DiscreteVariable(["250g",
"350g", "450g"], "250g"),
variable_program_setting_soup = DiscreteVariable(["200ml",
"300ml", "400ml"], "200ml"),

program_setting_dict = {
"popcorn": variable_program_setting_popcorn,
"pizza": variable_program_setting_pizza,
"soup": variable_program_setting_soup
}

# Given feature
feature_list["set_program"] = [

{"step": 1, "actions": ["press_program_button"], "variable":
"variable_program_index"},↪→

{"step": 2, "actions": ["press_up_arrow_button",
"press_down_arrow_button"], "variable":
"variable_program_setting"}

↪→
↪→

]

# User Instruction: Set the microwave to cook 1 cup of popcorn...
task_policy = ["set_program"]
policy_choice_reason = "This feature contains variable_program_index

and variable_program_setting".↪→
changing_variables = ["variable_program_index",

"variable_program_setting"]↪→
goal_state = Simulator()
goal_state.variable_program_index.set_current_value("popcorn")
goal_state.variable_program_setting = variable_program_setting_popcorn
goal_state.variable_program_setting.set_current_value("1 cup")
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Prompt 9: Compare Goal State with Feedback

You are given the appliance model, together with two strings in the format variable name:
variable value, representing the goal state and the real-world feedback, respectively. Your task
is to determine whether the feedback indicates the goal is reached.

Comparison Rules:
(1) Allow equivalent variable-value meaning. E.g. variable menu = "Popcorn" vs.

mode popcorn = "on" ⇒ True; variable power = "On" vs. variable on off =
"On"⇒ True

(2) If values contain both numbers and text, remove text and compare numbers. Ignore casing
or formatting if numerically identical. E.g. "0g" vs. "0" ⇒ True; "100cm" vs. "100" ⇒
True; "1 cup" vs. "1 serving"⇒ True

(3) Ensure the match is the closest in the value range. E.g. program="wash" v.s
program="wash, dry", both values exist in value range ⇒ False

Output Format:
• reason: a string explaining your judgment.
• goal reached: either True or False.

Example Output:

# goal: popcorn setting = 100g;
# feedback: popcorn: 100
reason = "Both values represent 100g, ignoring unit suffix."
goal_reached = True

Prompt 10: Diagnose Incorrect Variable Definition

You are given:
• A list of defined variable names in the appliance model.
• A variable name variable x suspected to be incorrectly defined.
• A full step-by-step execution record starting from the first observed change in that vari-

able’s value. Each record includes the action taken and the observed result in the format:
variable name = variable value.

Your Tasks:
(1) Identify the root variable:

• Match the observed variable name to the closest name in the given variable list. If the
mismatch is caused by this variable itself, return that name as variable name.

• If the variable is conditioned on a program choice (e.g.,
variable program setting), and the mismatch is due to a sub-variable (e.g.,
variable program setting popcorn), return the name of the sub-variable.

(2) Determine if the variable is continuous:
• Return variable is continuous = True if the values are numeric and increase/de-

crease regularly.
• Else return variable is continuous = False.

(3) Extract the variable values as a list:
• Extract all values of the observed variable in order from the record.
• Store them in record sequence.
• Use int/float for continuous variables and str for discrete ones.

Output Format: Return the following Python variables:
• variable name
• variable is continuous
• record sequence

Example:
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# inputs given
defined_variables = [

"variable_wash_time",
"variable_spin_speed",
"variable_temperature"

]

execution_record = [
{step_index: 1, action: ("turn_dial", 1), observation: wash_time =

6},↪→
{step_index: 2, action: ("turn_dial", 1), observation: wash_time =

9},↪→
{step_index: 3, action: ("turn_dial", 1), observation: wash_time =

12},↪→
...

]

# Expected Output
variable_name = "variable_wash_time"
variable_is_continuous = True
record_sequence = [6, 9, 12, ...]

Prompt 11: Update Variable Definition from Observed Values

You are given the following inputs:
• variable name: the variable that has been confirmed to be incorrectly defined.
• variable is continuous: whether the variable is continuous or discrete.
• record sequence: the list of observed values of the variable over time.
• The current implementation of the variable.
• The user manual and a guide for valid variable definitions.

Your Task: Update the variable definition by modifying its current value, value range, step size, or
value order to match all values in record sequence.

Instructions:
(1) Paste the reasoning trace: Insert the provided record sequence as Python comments to

justify your updates.
(2) Update the variable: Modify the definition of the chosen variable to match observed be-

havior. Keep the same name. Valid modifications include:
(a) Change variable type according to observation.
(b) Change current value to match with the last observed value.
(c) Adjust value range or step size if the record shows regular repetition. Use piecewise

ranges if steps skip sections.
(d) Change value order for discrete variables if observed cycling order differs.

(3) Copy related data structures: If the variable is part of a program-conditioned setting (e.g.,
variable program setting, explained in extract variables), also update the program dic-
tionary:

program_setting_dict["menu_x"] = variable_x

(4) Align with real-world units. For example, if feedback is in cm, don’t define value ranges
in m. For continuous variables representing time or weight, indicate the unit in a Python
comment (e.g., seconds, minutes, grams).

Example Output:
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# given inputs
variable_name = "variable_program_setting_popcorn"
variable_is_continuous = True
record_sequence = [0, 100, 200, 300, 400, 0]

# record_sequence = [0, 100, 200, 300, 400, 0]
# Step size = 100; values loop back to 0
# Range spans 0 to 400 with step 100
variable_program_setting_popcorn = ContinuousVariable(

value_ranges_steps=[(0, 400, 100)],
current_value=0

) # in grams
program_setting_dict["popcorn"] = variable_program_setting_popcorn

Prompt 12: Update Appliance Model After Updating Variable

You are given:
• The original simulator implementation.
• The incorrect variable name, variable x.
• The corrected variable definition.

Your Task: Update the Simulator() class so that all references to variable x reflect its corrected
definition.

Instructions:
(1) For Simulator(), edit only affected action methods. Keep unrelated parts of the simulator

unchanged. Do not modify or omit the reset() method.
(2) Exclude code outside Simulator(), such as class definitions (Appliance(),

Variable()), variables and simulator feature.

Example Output:

# variable_power was changed from ContinuousVariable to
DiscreteVariable. The valid value ranges change from float (e.g.
100) to string (e.g. "100").

↪→
↪→
class Simulator(Appliance):

def reset(self):
...

def press_start_button(self):
self.feature.update_progress("press_start_button")
current_feature = self.feature.current_value[0]
if current_feature == "speed_cook":

self.assign_variable_to_next(self.variable_cooking_time)
# updated line
self.variable_power.set_current_value("100")

Prompt 13: Update Goal Value After Variable Definition Change

You are given a user instruction, an appliance model, a goal state object
• a user instruction.
• the implemented appliance model, i.e., a Simulator() object.
• A goal state = Simulator() object specifying target variable values that achieves the

instruction.
• The updated variable name, variable x.
• A goal-setting guide for reference.
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Your Task: Update the goal value of variable x in the goal state to match the new definition.

Instructions:
(1) Ensure the new value assignment aligns with both the the updated definition variable x

and the user instruction.
(2) Do not rename variable x. Do not modify any other variables in the goal state.
(3) Do not return any other content (e.g., comments, reasoning, variable definitions, or unrelated

goal assignments).

Output Format: A single line of valid Python code that updates goal state.variable x to the
correct value.

Example Output:

# updated timer to ContinuousVariable, previously was DiscreteVariable
goal_state.variable_microwave_timer.set_current_value(3) # minutes

Prompt 14: Check if Bounding Box Contains Control Panel Element

Task: Given an image labeled with a bounding box, determine whether the bounding box contains a
control panel element.

Definition of Control Panel Element: Control panel elements include:
• Physical components: buttons, dials.
• Soft pads: labels printed directly on the control surface that respond to touch input. These

labels might include printed symbols and icons, such as: ”+”, ”-”, ”start”, ”on/off”, and
numeric digits.

Instructions:
(1) Review the region circled by the bounding box.
(2) If the bounding box contains any of the valid elements listed above, reply with "Yes". Oth-

erwise reply with "No".
(3) In both cases, provide a reason by naming the object being circled by the red bounding box.

Output Format:

Yes
Reason: The red box surrounds the "+" symbol on the soft pad region.

Prompt 15: Map Bounding boxes to Control Panel Element Names

You are given:
• A list of control panel element names including buttons, dials, and soft-labeled pads.
• Three images:

(1) Full view of the control panel.
(2) Zoomed-in region with a red bounding box and several green bounding boxes.
(3) Same zoomed-in region without bounding boxes.

• A bounding box index referring to the red box.

Your Task:
(1) Determine whether the red bounding box encloses a listed control element. Be lenient: if the

red box contains any label, symbol, or visible control region, attempt to match. If multiple
names match the red box, include them all.

• For dials: Only bounding boxes covering the knob are valid. Ignore labels around the
dial.

• For buttons: Only bounding boxes that cover the physical, pressable area are valid.
Boxes that only enclose external labels are invalid.

• For soft-labeled pads: If the label itself is the interactive surface (i.e., no visible border
or physical button), bounding boxes over the label region are valid.

(2) If (1) is true, check if the red box is a better match than any green box for the same element.
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• It is okay for red box to partially enclose the object.
• If red box is clearer or more precise than all green boxes, accept it as the match.

Output Format:
• If both conditions are met, output the matched control element(s) in format below. Use exact

names from the provided list.

<control_element_name> : <index>
<control_element_name> : <index>
...

• If no valid match is found, output None.

Example Output:

temperature dial : 1
power dial: 2
None
temperature dial: 3
power dial: 3

Prompt 16: Remove Duplicate Bounding Boxes for Control Panel Ele-
ments

You are given an appliance type, which contains a control panel element name. Control panel
elements are components responsible for operating the appliance, such as buttons, dials and soft touch
pads. You are given:

• A photo of the appliance to identify control panel element name.
• A sequence of images showing bounding box options around potential regions for
control panel element name. Each box has a visible index at its bottom-right corner.

Your Task: Select one bounding box index that best matches the control panel element name. If
none of the bounding boxes is valid, return response index = -1.

Selection Criteria:
• Dial: Choose the bounding box that covers the knob. Ignore boxes that only include labeling

or surrounding text.
• Button:

– If the label is printed directly on the button, a box selecting either the full button or
label area is valid, even if the coverage is partial.

– If the label is outside a physical button, select the bounding box around the physical
(extruded) button, not just the label.

• Soft Pad: When the label text or icon is the button (i.e., not physically extruded), select the
box that covers any part of that label or symbol.

Output Format: Return two variables in Python format:

response_index = 3
response_reason = "The bounding box covers the soft pad label text of

the button."↪→

If no bounding box fits the criteria:

response_index = -1
response_reason = "None of the boxes select the physical button or

label. The target is a circular dial knob near the bottom left
corner."

↪→
↪→
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Prompt 17: Ground Actions

You are given a list of action names and a list of control panel element names. Your task is to ground
each action to a control panel element name and a valid action type. Valid action types include press,
hold, turn dial clockwise, turn dial anti clockwise.

Output Format: Return a Python list of dictionaries. Each dictionary contains a grounded action,
with the following keys:

(1) "action": a string from the given action list (e.g., "press max crisp button").
(2) "bbox label": a list of strings from the given control element names.

• For standard actions, this is a single-element list (e.g., ["max crisp button"]).
• For simultaneous actions (e.g., hold wash button and rinse button), include

both elements (e.g., ["wash button", "rinse button"]).
(3) "action type": inferred from the action name string using the following rules:

• Contains "hold"⇒ "hold button"
• Contains "press"⇒ "press"
• Contains "turn dial clockwise"⇒ "turn dial clockwise"
• Contains "turn dial anti clockwise"⇒ "turn dial anti clockwise"

Example Output:

[
{

"action": "press_max_crisp_button",
"bbox_label": ["max_crisp_button"],
"action_type": "press_button"

},
{

"action": "press_and_hold_cancel_button_and_stop_button",
"bbox_label": ["cancel_button", "stop_button"],
"action_type": "press_and_hold_button"

}
]

Prompt 18: Visual Feedback Parsing

You are given:
• A user command describing the task.
• The most recent action applied and the target variable being adjusted.
• The valid value range of the target variable.
• An image of the appliance control panel after the action.
• Relevant user manual text describing the display panel.

Your Task:
• Interpret the display image to infer the current appliance state, especially the value of the

target variable.
• Use the user manual to explain display symbols if needed.

Output Format:

variable_description = "<Concise interpretation of the current state,
focusing on the target variable.>"↪→

Example:
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# Task: Set temperature to 98°C. Action: 'press_temp_clean_button'.
# Display shows a triangle under 85°C.

variable_description = "The triangle under '85°C' indicates the
current selection. variable_temperature = 85."↪→
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Select the HotPot mode and set power to 2000 W.

Select the Milk mode.

Select the HotPot mode and set power to 1600 W.

Set the insulation temperature to 98°, then pour the water.

Set the insulation temperature to 85°, then pour the water.

Set the insulation temperature to 65°, then pour the water.

Hold at slow speed for 10 seconds.

Hold at slow speed for 15 seconds.

Hold at turbo speed for 10 seconds.

Figure 18: Snapshots of our system performing various tasks on real appliances. Each row shows
execution steps for one task.
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