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Abstract

Recent empirical studies show three phenomena with increasing size of language1

models: compute-optimal size scaling, emergent capabilities, and performance2

plateauing. We present a simple unified mathematical framework to explain all of3

these language model scaling phenomena, building on recent skill-text bipartite4

graph frameworks for semantic learning. Modeling the learning of concepts from5

texts as an iterative process yields an analogy to iterative decoding of low-density6

parity check (LDPC) codes in information theory. Thence, drawing on finite-size7

scaling characterizations of LDPC decoding, we derive the compute-optimal size8

scaling (Chinchilla rule) for language models. Further, using tools from random9

network theory, we provide a simple explanation for both emergence of complex10

skills and plateauing of performance as the size of language models scale. We see11

multiple plateaus.12

1 Introduction13

To optimally use computational resources when training language models, several recent studies14

have empirically investigated how model size and dataset size should scale with compute budget15

[12, 9], finding a certain allometric rule much like in mathematical biology [24, 8]. As the sizes of16

language models continue to increase, large improvements in performance have been observed in17

certain complex tasks with only a small improvement in the model’s loss [25] (but see [21]). The18

larger language models are therefore said to exhibit emergent capabilities on complex tasks. More19

recently, there has been prevalent discourse in the AI community that further increases in language20

model size lead to plateauing of performance [6, 20]. Although, there have been attempts to explain21

one or two of these empirical phenomena, a unified mathematical framework that explains all three22

of these empirically observed phenomena is lacking.23

To provide simple and insightful explanations of empirical phenomena, several abstract frameworks24

have been proposed [2, 15, 17], all based on a skill-text bipartite graph that operates at a semantic25

level and captures key real-world properties [26]. Arora and Goyal [2] explain emergent phenomena26

by assuming a compute-optimal size scaling rule (Chinchilla allometry rule) [9]. Liao et al. [15] also27

assume compute-optimal (Chinchilla) size scaling to explain emergence. Michaud et al. [17] assume28

power-law scaling and that each text piece contains only one skill, which may be very different than29

real-world scenarios. These existing frameworks explain neither the Chinchilla rule nor the plateau30

phenomenon. These three frameworks abstract the gradient dynamics of language model training31

[2]; an alternate mathematical framework considers dynamics to explain the Chinchilla rule and loss32

function plateaus but does not consider emergence [5].33

Here we take an approach that builds on information and coding theory [16] that does so, and also34

predicts multiple plateaus. In particular, we draw on mathematical ideas around low-density parity35

check (LDPC) codes (which achieve Shannon optimality) [23, 19] and random graph theory [3].36
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Though statistical language modeling and information theory were introduced in the same paper [22],37

modern connections between the two are still fairly limited, cf. [4].38

Our information-theoretic approach is inspired by skill-text bipartite graph frameworks of [2, 15, 17]39

and is closest to [15]. We make a small modification by separating notions of concepts and skills,40

as in well-established human cognitive architectures [18] that have simple hierarchies [14, 1, 13].41

The key difference in our work is to have much more detailed and expressive analysis using non-42

asymptotic techniques rather than asymptotic ones [7]. Indeed, such finitary analysis is necessary43

to even consider size scaling. Recall that [2, 15] assume Chinchilla scaling, whereas we derive it44

without it being built into our framework. Further, with the help of random network theory, we45

provide a simple explanation for emergent abilities of language models in complex tasks when46

their sizes exceed a certain threshold. We show that plateauing of performance with size-scaling47

is just a consequence of diversity of skills required for a task. Moreover, plateauing indicates the48

possibility of multiple emergences as language models continue to scale further. Our work is a step49

in the direction of grounding empirical phenomena observed due to scaling of language models on50

a rigorous mathematical footing. Since our work provides a mathematical explanation for scaling51

laws and emergent abilities, it also helps in policy making by providing insight into the relationship52

between capabilities and resources such as data and compute [10].53

2 Graph-based framework54

Our framework is based on the notion of learning as two levels. First, a set of concepts are learnt55

from a set of texts with each text involving one or more skills. Second, learning concepts enables the56

language model to acquire skills, and after encountering a sufficient number of texts with co-occurring57

pairs of skills, it eventually acquires compositional abilities resulting in emergent phenomena in58

various complex tasks. The framework naturally leads to information-theoretic analysis in Section 3.59

2.1 Texts, concepts, and skills60

A set of tokens constitute a text piece from which a language model can learn a wide variety of61

concepts. This is modeled as a concept-text bipartite graph similar to the skill-text bipartite graph in62

[15]. In a given training session (single epoch training), a language model chooses to learn only a63

subset of concepts from a text piece. The total number of skills a model can learn depends on its size.64

Here we consider a hierarchy of skills: basic skills in the first layer and multiple layers of advanced65

skills. Basic skills are easily acquired from concepts, whereas acquiring advanced skills additionally66

requires certain prerequisite skills. We formalize the above notions in the subsequent sections.67

2.2 Notation68

Let T be a subset of text pieces from a set T, and let R be a subset of concepts from a set R. Let69

the model size N (number of parameters) be proportional to the number of concepts R = |R|, i.e.,70

N = ςR, for some ς > 0.1 Similarly, let τ be the number of tokens in a text piece t ∈ T with71

T = |T |, implying that the dataset size D = τT . For a given compute budget C,2 a language model72

of size N can be trained using a dataset of size D so the constraint 6ND ≤ C is satisfied (see [9]).73

Correspondingly, for a given compute budget, G(C)
1 = (T ∪R, ET R) denotes a concept-text bipartite74

graph, where an edge etr ∈ ET R indicates that the language model can learn concept r from text75

t. Let the degrees of text pieces (number of skills required to understand a text) be binomially76

distributed with a fixed mean degree dt, i.e., PR = Binomial(n, p) = Binomial(R, dt/R). The77

corresponding generating function is PR(x) =
∑

i Pix
i. Let the degree distribution of concepts78

be LT = Binomial(T, dr/T ), where dr = dtT/R. Note that dt/R = dr/T =: p. There is an79

alternate point of view: If we assume that there exists an edge between a text piece and a concept80

with probability dt/T , then a typical graph will have text and concept degree distributions close to81

PR and LT , respectively. It is generally useful to view degree distribution from an edge-perspective,82

which is λT (x) = L′
T (x)/L

′
T (1) and ρR(x) = P ′

R(x)/P
′
R(1) [19].83

1Here, a concept is similar to a skill quantum in [17].
2Compute budget is measured in number of floating point operations or FLOPs [9].
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Figure 1: A unified graph-based framework of learning concepts and skills by language models.

Let G2 = (R ∪ S, ERS) be a skill-concept graph, where S = ∪lS(l) denotes a set of hierarchical84

skills, with finite number S(l) of skills in each level l. Each concept is connected to a unique skill85

at every level l, i.e., each concept enables learning of one skill at each level, and each skill s(l) is86

connected to σl prerequisite skills at level l − 1. Our unified framework is represented by the graph87

G(C) = G
(C)
1 ∪G2 as shown in Figure 1.88

2.3 Learning concepts from text pieces89

Following the approach described in [15], we assume that a language model learns concepts from text90

pieces as an iterative peeling process. Let R(u)
+ denote the set of concepts learnt, and R(u)

− denote91

the set of concepts not learnt in peeling iteration u. Initially, all the concepts are unlearned, i.e.,92

R(0)
− = R and R(0)

− = ∅. Next, a language model learns a concept r ∈ R(0)
− if a text piece t ∈ T is93

uniquely connected to r yielding R(1)
+ = {r} and R(1)

− = R(0)
− \ {r}. Before the next iteration, the94

edge etr and concept node r from the graph are removed. The next iteration starts by finding another95

text piece uniquely connected to a concept in R(1)
− , and the process continues until there is either no96

more text piece/s connected to a unique concept in R− or all the concepts are learnt, i.e., R+ = R.97

2.4 Acquisition of skills and composition of skills98

A skill s(l+1) at level l+1 is considered acquired when two conditions hold: 1) all the σl+1 prerequisite99

skills at the lower level l are learnt, and 2) at least one concept associated with s(l+1) is learnt. A100

pair of concepts (r1, r2) is considered connected (denoted by r1 − r2) if there is a path r1 − t− r2101

through at least one text t ∈ T . Then, for a fixed level l, a skill-graph G
(l)
2 = (S(l), ES(l)×S(l)) is102

constructed as follows: A pair of skills s1 and s2 in S(l) has a direct link (i.e., es1s2 ∈ ES(l)×S(l))103

if there are at least ηl distinct paths s(l)1 − r1 − r2 − s
(l)
2 (with at least ηl distinct pairs of concepts104

(r1, r2)), and all the 2σl prerequisite skills required for both skills are acquired. The intuition behind105

this construction is that a pair of skills is connected (and therefore can be composed) if they co-occur106

sufficiently many times through distinct pairs of concepts in the training data, and all prerequisite107

skills of both skills are already acquired. Further, since more advanced skills are generally hard to108

learn, skills at higher levels (larger values of l) need larger values of ηl.109

2.5 Defining emergence110

As the model size increases there is a sharp increase in performance (e.g. accuracy) of the language111

model on certain complex tasks which the model was not trained on known as emergent phenomena112

in language models [25]. In this context, there are several definitions of skill emergence in the113

literature [2, 15, 21, 17]. In our framework, advanced skills (larger l) are acquired from concepts114

and more basic skills, rather than directly from text pieces. To describe the composition of skills not115
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seen in training, we begin by asserting transitivity of skill composition for a fixed skill level l: if the116

training data contains enough text pieces with composition of both pairs (s(l)1 , s
(l)
2 ) and (s

(l)
2 , s

(l)
3 ),117

then a language model is capable of composing skill s(l)1 and s
(l)
3 . Consequently, a language model118

successfully performs a sub-task requiring a composition of a set of skills S(l)
θ ⊆ S(l) if there is a119

path between every pair of skills belonging to S(l)
θ in graph G

(l)
2 . For small compute budgets, dataset120

size corresponding to compute-optimal performance is small, in which case the training data contains121

composition of only a small number of skill pairs. As compute budget increases, the size of the122

training data increases, and therefore the number of composed skill pairs seen by the language model123

during training increases. Beyond a certain compute-budget threshold and due to skill composition124

transitivity, the ability of the language model to compose most skill pairs emerges, appearing as a125

phase transition around this compute-budget threshold, which we call as skill emergence. As we will126

see in Section 3.3, this phase transition is related to the appearance of a giant connected component127

(GCC) in random graphs with increasing edge probability. Our definition of emergence exhibits phase128

transition as empirically observed in language models, and our finitary analysis helps in conforming129

to the definition of emergence in [25].130

3 Explaining all three phenomena131

Using the framework in Section 2, we aim to explain the compute-optimal (Chinchilla) scaling rule132

by applying non-asymptotic information-theoretic tools to the bipartite graph G
(C)
1 , and explain133

emergence and plateauing phenomena based on the density of connections in the skill-graphs {G(l)
2 }l.134

3.1 Compute-optimal scaling rule135

Let R+ ⊆ R denote the set of concepts learnt after the peeling process terminates. The goal of the136

language model is to maximize the number of concepts learnt under the compute budget constraint137

C, which yields the following constrained optimization problem.138

maximize
R,T

E
G

(C)
1 ∼(λT ,ρR)

[R+] (1)

s.t. RT ≤ C ′,

where the number of model parameters N = ςR, number of tokens in a text piece is τ , C ′ = C
6 ς τ ,139

and (R∗, T ∗) is the maximizer of the objective function in (1). For a bipartite graph sampled140

from a degree distribution pair (λT , ρR), computing the exact number of learned concepts is141

computationally expensive. Fortunately, the observation that the peeling process is equivalent142

to iterative decoding of LDPC codes when the codeword symbols are corrupted by erasure, al-143

lows us to sidestep this difficulty. Before providing an expression for the objective function,144

some notations are as follows: let f(x, ϵ) = ϵλT (1 − ρ̃R(1 − x)), then the decoding threshold145

ϵ∗ = inf{ϵ ∈ [0, 1] : x = f(x, ϵ) has a solution in x ∈ (0, 1]}, x∗ be a critical point satisfying146

x∗ = f(x∗, ϵ∗), ν∗ = ϵ∗ LT (1 − ρ̃R(1 − x∗)). The objective function in (1) is given by (see147

Appendix C.2 for more details):148

E
G

(C)
1 ∼(λT ,ρR)

[R+] = R

(
1−

Pb,λT ,ρ̃R

ϵ

)
≈ R

(
1− ν∗

ϵ
Q

(√
R

ϵ

(ϵ∗ − ϵ)

α

))
, (2)

where α depends on (λT , ρ̃R), and Q(·) is the complementary Gaussian cumulative distribution149

function.150

Compute optimal size scaling of model size and dataset size with increasing compute budget obtained151

by numerically solving (1) is shown in Figure 2(a) (also see Appendix A for more insights). The152

curves being parallel in logarithmic scale indicates that N and D must scale equally with C. In this153

figure, we set ς = 2× 105, τ = 8× 105, and dt = 6. Our finitary analysis also allows us to prove154

the optimality of the Chinchilla rule (see Appendix B).155

3.2 Scaling of excess entropy156

Under finitary analysis, for every compute budget C, there is an associated error rate Pb,λT ,ρ̃R
/ϵ157

which indicates a fraction of concepts not learnt even after the peeling process is complete. Similar158
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Figure 2: (a) Model and dataset size pair (N∗, D∗) as a function of compute budget C. The markers
correspond to the Chinchilla model [9] with a compute budget of 5.76× 1023 FLOPs; (b) Scaling of
the lower bound of excess entropy with model size N∗.

to [2], we consider the cloze questions associated with text pieces connected to unlearnt concepts159

are incorrectly answered. Therefore, the training error is equivalent to the probability that a check160

node (text piece) is connected to the stopping set (unlearnt concepts) at least twice. Refer to [19]161

on stopping sets. The training error corresponding to (N,D) given a compute budget C is (see162

Appendix D for the calculation):163

Pe,train = 1−
(
1− dtPb

R

)R−1

− dtPb

(
1− dtPb

R

)R−1

≈ 4d2t ϵ
−2P 2

b,λT ,ρ̃R
. (3)

Using Pinsker’s inequality DKL(P ||Q) ≥ 1
2 ||P −Q||21, and the equivalence between total variation164

distance and error rate on cloze questions [2], we obtain the following lower bound on excess entropy165

(also shown in Figure 2(b)):166

Excess entropy ≥ 1

2
P 2
e,train ≈ 2d4t ϵ

−4P 4
b,λT ,ρ̃R

. (4)

3.3 Emergence and plateauing167

We aim to provide a simple explanation to these empirical phenomena using random graph theory.168

Let pl denote the probability there is a direct link between any two pairs of skills at level l. For a169

fixed (R, T ), pl evaluates as (see Appendix E for the derivation):170

pl ≥

(1− g(R, prr, ηl)) γ
2σl

l−1 if ηl ≤
(
R
2

)
prr

1√
8ηl(1−ηl/(R2))

g(R, prr, ηl)γ
2σl

l−1 otherwise, (5)

where g(R, prr, ηl) = exp

(
−
(
R
2

)
DKL

(
ηl

(R2)
||prr

))
, prr is the probability that a pair of concepts171

occur in at least one text piece, and γl−1 is the probability that a skill belongs to GCC of G(l)
2 (which172

we show next). Note that the skill graph G
(l)
2 is equivalent to an Erdös-Rényi (ER) random graph173

with S(l) nodes and edge probability pl. A pair of skills in level l can be composed if there is a path174

between them in G
(l)
2 , and both skills being in GCC of G(l)

2 is a sufficient condition. Suppose γl is175

ratio of the size of GCC in G
(l)
2 to S(l), and is equivalent to the probability that a skill at level l is in176

GCC. For an ER graph with edge probability pl, solution to γl = 1− exp
(
−plS

(l)γl
)

yields γl [3]:177

γl = 1 +
1

plS(l)
W0

(
−plS

(l) exp
(
−plS

(l)
))

, (6)

where W0(·) is the upper branch of the Lambert W function. The ratio γl has a phase transition at178

pl = 1/S(l). To see this, note that W0(xe
x) = x for x < −1. Therefore, whenever pl < 1/S(l), γl179

is identically zero. As pl increases beyond 1/S(l), |W0(·)| starts decreasing and γl increases.180

For a particular skill level l, γl and pl can be computed recursively using (6) and (5), with the181

following initial conditions: γ0 = 1 and σl = 0 (no prerequisite skill is required to learn basic skills,182
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i.e., skills at l = 1). Consider a complex task consisting of subtasks requiring m skills at level l with183

probability q(l,m). The model performs the subtask successfully only if there is a path between184

every pair of those skills in G
(l)
2 . The accuracy of the task is:185

Accuracy ≥
∑
l,m

q(l,m)γm
l . (7)

Next, we demonstrate numerically fast emergence (similar to phase transition), slow emergence, and186

plateauing (multiple emergences) are consequences of tasks with different choices of q(m, l). For187

illustration, let q(m, l) = q(m)q(l), and q(m) = 1/6 for all m ∈ {2, . . . , 7}, number of skill levels188

L = 100, S(l) = 103, ηl = exp(7l/L), σl = log2(l) for all l ∈ {1, . . . , L}. Consider a homogeneous189

task requiring skills at only one level, say l = 10, then the accuracy (according to (7)) exhibits a190

step phase transition with increasing model size (black curve in Figure 3(a)). However, empirically191

observed accuracy curves exhibit smoother phase transitions [25]. To demonstrate this, consider a192

heterogeneous task with binomial distribution over the skill levels, i.e., q(l) =
(
L
l

)
( 12 )

L (red curve193

in Figure 3(b)). The corresponding accuracy is shown by the red curve in Figure 3(a). In general, a194

smooth single phase transition can be obtained by a unimodal distribution over skill levels with a195

sufficiently large variance. Finally, consider a heterogeneous task with diverse tasks characterized196

by a mixture of binomial distributions over the skill levels, i.e., q(l) =
∑

i wiBinomial(L, πi), with197

(wi)i ∈ (2/5, 2/5, 1/5) and (πi)i = (0.2, 0.6, 0.95) (blue curve in Figure 3(b)). The blue curve198

in Figure 3(a) shows the corresponding accuracy. In general, a multimodal distribution over skill199

levels results in emergence at multiple scales and plateaus between them. Our framework yields an200

interesting trend associated with the plateauing of performance: plateauing indicates the possibility201

of one (or more) upcoming emergent phenomenon (phenomena), which one would encounter with202

further scaling.203

4 Conclusion204

We presented a simple unified framework to explain all three empirical phenomena observed with size205

scaling of language models. Existing frameworks assume compute-optimal scaling rule to explain206

emergent phenomena. We use non-asymptotic information theory to explain both compute-optimal207

size scaling and emergent abilities of language models. Moreover, we explain more recent empirical208

phenomenon of plateauing of performance using random network theory, and also predict that209

plateauing implies the possibility of multiple emergent phenomena with further size scaling.210

There are some open questions and considerations worth exploring. Since, we do not consider training211

time in our framework, we do not explain other empirical phenomena such as double descent or212

grokking [11]. Perhaps future work can either extend our framework or propose a different framework213

to explain them. Even though the sequential learning of concepts through peeling yields a certain214

ordering to concepts, there is no inherent ordering and we do not consider concept hierarchies [27, 28].215

One can explore the advantages of doing so. Evidently, the degree distribution of texts is related to the216

model’s architecture. Therefore, optimizing the degree distribution enables a language model to learn217

more concepts from text pieces. Further, the quality of the training data is related to text-to-concept218

edge deletions in sequential concept learning, which can be incorporated into our framework. This219

is a line of future work that has natural analogues in optimization of communication systems and220

fault-tolerant computation.221
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5 Appendix293

A IsoFLOP curves294
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Figure 4: IsoFLOP curves: (left) Number of concepts learnt as a function of R for different compute
budget; (right) Block erasure threshold as a function of the number of concepts R for different
compute budget. In both subfigures, solid black markers indicate the points corresponding to R∗.
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In Figure 4, the objective function in (1) is plotted against the number of concepts R for multiple295

compute budgets. In the left subfigure, each curve corresponds to a fixed compute budget. Note296

that smaller values of R correspond to smaller language model sizes, in which case the dataset size297

(number of texts T ) is more than necessary for the model to learn all the skills. Contrarily, for large298

model sizes, the smaller dataset size is insufficient to learn the concepts well. There is an optimum299

model size and dataset size pair (equivalently R and T ) such that the number of concepts learnt is300

maximized, as indicated by a solid black marker for each compute budget C. This figure is analogous301

to isoFLOP curves in [9, Figure 2], where training loss is plotted against model size for different302

compute budgets.303

B Optimality of Chinchilla scaling rule304

Proposition 1. Compute-optimal scaling rule: For compute-optimal performance of a language305

model, the dataset size (D) and model size (N ) must scale equally with the increasing compute306

budget C (or FLOPs).307

Proof. The approach is to prove that neither T/R = o(1) nor R/T = o(1) maximizes the objective308

function in (1). This implies that R/T must be a constant, i.e., R and T must scale equally with309

compute budget C.310

Denote ϵ∗ be the decoding threshold corresponding to the degree distribution pair (λT , ρ̃R). From311

the matching condition [19], we have312

ϵ∗ ≤
∫
ρ̃R∫
λT

=: ϵ∗ub

(a) If T
R = o(1) (i.e., T

R decays as C → ∞), then313

ϵ∗ub − ϵ ≤ ϵ

((
1− e−d/ϵ +

d2

ϵR

)(
1

d
+

T

R

)
− 1

)
C→∞−−−−→ ϵ

(
(1− e−d/ϵ)

d
− 1

)
< 0,

which implies that Pb,λT ,ρ̃R
→ 1. Therefore, number of skills learnt vanishes for large C.314

(b) Consider R
T = o(1). From the fixed point characterization of decoding threshold of LDPC315

codes, we have316

f(x, ϵ∗) = ϵ∗λT (1− ρ̃R(1− x)),

= ϵ∗(1− (1− xp)
R
ϵ −1p)T−1, (8)

where p = dt/R. Since R/T = o(1), the number of text pieces T grows strictly faster317

than R with respect to compute budget C, implying that the second term in (8), i.e.,318

(1 − (1 − xp)
R
ϵ −1p)T−1 → 0 for large C. Therefore, for a non-trivial solution, i.e.,319

x = f(x, ϵ∗) ∈ (0, 1], the decoding threshold ϵ∗ must be very large. As a result, the320

post-decoding bit erasure rate Pb,λT ,ρ̃R
vanishes for large C.321

Suppose, (R∗
C , T

∗
C) such that R∗

C/T
∗
C = o(1) minimizes (1). Now, consider R̂C = R∗

C(1 +322

δ) and T̂C = T ∗
C/(1+ δ). Note that R̂C/T̂C = (1+ δ)2R∗

C/T
∗
C = o(1). Therefore, for any323

δ′ ∈ (0, δ), there exists C0 such that for all C ≥ C0 the bit erasure rate ϵ−1Pb,λT̂C
,ρ̃R̂C

≤324

δ′/(1 + δ′). Now consider the ratio of number of concepts learnt:325

R̂C(1− ϵ−1Pb,λT̂C
,ρ̃R̂C

)

R∗
C(1− ϵ−1Pb,λT∗

C
,ρ̃R∗

C
)
≥

R∗
C(1 + δ)

(
1− δ′

1+δ′

)
R∗

C

=
1 + δ

1− δ′
> 1, (9)

where the first inequality is by substitution and using the fact that ϵ−1Pb,λT∗
C
,ρ̃R∗

C
is non-326

negative, and the second inequality is because δ′ < δ. Therefore, (R∗
C , T

∗
C) is not a327

maximizer, which is a contradiction. Therefore, R/T cannot be o(1).328

Therefore, R/T must asymptotically be a constant. In other words, the model size N and dataset size329

D must scale equally with compute budget C.330

331
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C Solving (1): Maximizing concept learning under compute budget constraint332

C.1 A brief summary of belief propagation decoding of LDPC codes under erasure333

Low-density parity check (LDPC) codes are a family of error-correction codes, whose noisy code-334

words can be decoded in a computationally efficient manner using belief propagation. Before getting335

into deriving the probability that a concept is learnt from text pieces, we provide a very short summary336

of belief propagation decoding of LDPC codes when codeword symbols are corrupted by erasure. An337

LDPC code can be graphically represented by a Tanner graph, which is a bipartite graph with a set of338

variable nodes (codeword symbols) and check nodes (parity checks). Each codeword satisfies all the339

parity checks. Given a degree distribution pair (for variable and check nodes), there is a channel noise340

threshold ϵ∗ above which the decoder fails to decode the transmitted codeword. Consider a noisy341

version of a transmitted codeword with ϵ < ϵ∗ fraction of the symbols are erased. Belief propagation342

decoding starts by finding a check node where all except one symbol are recieved correctly (not343

erased). Then the erased symbol is determined as the one satisfying the parity. The next iteration344

starts by finding another check node with only one erased codeword symbol. This process continues345

until either all the codeword symbols are decoded or the decoder gets stuck with no parity checks346

containing only one erased symbol. The latter is declared as a decoding failure.347

C.2 Computing E
G

(C)
1 ∼(λT ,ρR)

[R+]348

The objective function in (1) can be rewritten as:349

E
G

(C)
1 ∼(λT ,ρR)

[R+] = R(1− Pr{r /∈ R+|R, T}). (10)

where Pr{r /∈ R+|R, T}) is the probability that a concept r is remains unlearnt after peeling.350

Learning concepts from texts by the peeling process described in Section 2.3 is identical to belief351

propagation decoding of an LDPC code when the channel noise is erasure. To see this, treat352

R concepts as erased codeword symbols (subset of variable nodes), and T text pieces as parity353

checks. To obtain one-to-one correspondence, we need un-erased symbols (the remaining subset354

of variable nodes). Therefore, we choose (arbitrarily) a channel noise parameter ϵ ∈ (0, 1), add355
1−ϵ
ϵ R nodes (dummy nodes) to the set of variable nodes, and treat them as un-erased symbols. Next,356

add edges between every pair of dummy variable node and a parity check node with probability357

p = dt

R . Consequently, the degree distribution of the parity check nodes (text pieces) is modified,358

i.e., its degree distribution is binomial with parameters R/ϵ (instead of R) and dt/R, but the degree359

distribution of variable nodes remains unchanged. Let us call the resulting parent graph G̃1
3 (see360

Figure 5) with the following text and concept degree distributions,361

P̃R = Binomial(R/ϵ, p), and (11)

L̃T = LT = Binomial(T, p), (12)

respectively. Here, for a compute budget C, we set T = C
6ςτR .362

3In this section, we omit superscript (C) in G̃
(C)
1 for brevity.
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Figure 5: Bipartite graph G̃1.

In belief propagation decoding (peeling) of a codeword affected by erasures, the post-decoding bit363

erasure rate depends only on the residual graph consisting only variable nodes corresponding to erased364

symbols, parity checks connecting those variable nodes, and edges between them. Therefore, the365

post-decoding bit erasure rate is invariant to the choice of ϵ.4 Therefore, we can make the following366

equivalence between concept learning and bit erasure rate:367

Pr{r /∈ R+|R, T} =
Pb,λT ,ρ̃R

ϵ
, (13)

where Pb,λT ,ρ̃R
is the post-decoding bit erasure rate, and λT (x) =

L′
T (x)

L′
T (1) and ρ̃R(x) =

P̃ ′
R(x)

P̃ ′
R(1)

368

are variable and check node degree distributions from edge perspective, respectively. To compute369

Pb,λT ,ρ̃R
we need the following ingredients: degree distributions λT and ρ̃R, decoding threshold ϵ∗,370

and scaling factors ν∗ and α which depend on degree distributions. Degree distribution of text pieces371

from the node perspective is372

PR(x) =
∑
i

(
R

i

)
pi(1− p)R−ixi, (14)

P̃R(x) =
∑
i

(
R/ϵ

i

)
pi(1− p)(R/ϵ)−ixi, (15)

which gives the following text degree distribution from the edge perspective:373

ρ̃R(x) =
P̃ ′
R(x)

P̃ ′
R(1)

=

∑
i i
(
R/ϵ
i

)
pi(1− p)(R/ϵ)−ixi−1∑

i i
(
R/ϵ
i

)
pi(1− p)(R/ϵ)−i

. (16)

Noting that i
(
R/ϵ
i

)
= R

(
R/ϵ−1
i−1

)
we obtain the degree distribution of text pieces from edge perspective:374

ρ̃R(x) =

∑(R/ϵ)−1
j=0

R
ϵ p
(
R/ϵ−1

j

)
pi−1(1− p)(R/ϵ)−ixi−1

R
ϵ p

(17)

= (px+ (1− p))
R
ϵ −1. (18)

Similarly, the degree distribution of concepts (remains unchanged for a fixed R, T ) from the edge375

perspective is376

λT (x) = (px+ (1− p))T−1. (19)

Next the belief propagation decoding threshold ϵ∗ is obtained from its fixed point characterization377

[19, Section 3.12]:378

ϵ∗ = inf{ϵ ∈ [0, 1] : x = f(x, ϵ) has a solution in x ∈ (0, 1]}, (20)

4Here we choose ϵ = 0.5 (instead of close to 0 or 1) for numerical convenience.
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where f(x, ϵ) = ϵλT (1− ρ̃R(1− x)), and the critical point x∗ satisfies x∗ = f(x∗, ϵ∗).379

From finite-length scaling law of error rates in belief propagation decoding [19, Section 3.23], we380

have the following (approximate) closed-form expression for post-decoding bit erasure rate:381

Pb,λT ,ρ̃R
≈ ν∗Q

(√
R

ϵ

(ϵ∗ − ϵ)

α

)
, (21)

where ν∗ = ϵ∗ LT (1 − ρ̃R(1 − x∗)), Q(·) is the complementary standard Gaussian cumulative382

distribution function, and the scaling parameter α is given by [19, Section 3.23]383

α =

(
ρ(x̄∗)2 − ρ((x̄∗)2) + ρ′(x̄∗)(1− 2x∗ρ(x̄∗))− (x̄∗)2ρ′((x̄∗)2)

L′
T (1)λT (y∗)2ρ′(x̄∗)2

+ (22)

(ϵ∗)2λ(y∗)2 − (ϵ∗)2λT ((y
∗)2)− (y∗)2(ϵ∗)2λ′

T ((y
∗)2)

L′
T (1)λ(y

∗)2

)1/2

, (23)

where x∗ is the unique critical point, x̄∗ = 1− x∗, and y∗ = 1− ρ̃R(1− x∗).384

D Calculation of Pe,train385

Recall that the training error is equivalent to finding the probability that a text piece is connected to386

an unlearnt concept, i.e.,387

Pe,train = Pr
(
|{etr ∈ G

(C)
1 }r∈R− | ≥ 2

)
, for any t ∈ T , (24)

=

R∑
k≥2

Pr
(

degree(t) = k, {|{etr ∈ G
(C)
1 }r∈R− | ≤ 1}c

)
, (25)

=

R∑
k≥2

(
R

k

)
pk(1− p)R−k

(
1− (1− Pb)

k − kR(1− Pb)
k−1
)
, (26)

where the edge probability p = dt/R and Pb = ϵ−1Pb,λT ,ρ̃R
. The last equation simplifies to:388

Pe,train = 1−
(
1− dtPb

R

)R−1

− dtPb

(
1− dtPb

R

)R−1

, (27)

which is obtained by computing the expectation of each of the three terms within the summation in389

(26) and substituting p = dt/R. Further using the approximations (1−x)n ≈ 1−nx and R−1 ≈ R390

for large R, the training error is approximately Pe,train ≈ 4d2tP
2
b .391

E Calculation of pl392

Recall that pl is the probability that the composition of a pair of skills in level l is seen at least ηl393

times in the training data. For a fixed pair of skills (s1, s2), the probability there is a path between394

the pair of skills through some pair of concepts (r1, r2) is395

Pr(s1 − r1 − r2 − s2) = Pr(s1 − r1, r1 − r2, r2 − s2),

= Pr(s1 − r1) Pr(r1 − r2) Pr(r2 − s2),

=
1

S(l)

(
1−

(
1− d2t

R2

)T
)

1

S(l)
=: prr,

where the second inequality is due to independence of s1 − r1, r1 − r2 and r2 − s2. Let X be a396

random variable indicating the number of distinct paths s1 − r1 − r2 − s2 between s1 and s2. Now,397

Pr (composition of(s1, s2) in training data) =: pl is398

pl = Pr(X ≥ ηl, all prerequisite skills of s1 and s2 are acquired),
≥ Pr(X ≥ ηl) Pr(all prerequisite skills of s1 and s2 are acquired).
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Note that the total number of distinct paths between s1 and s2 equals the total number of concept399

pairs (r1, r2) which is
(
R
2

)
, each with probability prr. Therefore, X follows a binomial distribution,400

i.e., Binomial
((

R
2

)
, prr

)
. From Chernoff’s bound for binomial distribution, we obtain the following401

lower bounds:402

Pr(X ≥ ηl) ≥



(
1− exp

(
−
(
R
2

)
DKL

(
ηl

(R2)
||prr

)))
if ηl ≤

(
R
2

)
prr

1√√√√8ηl

(
1− ηl

(R2)

) exp

(
−
(
R
2

)
DKL

(
ηl

(R2)
||prr

))
otherwise. (28)

The probability of acquiring prerequisite skills of both skills s1 and s2 is (assuming R ≫ σl),403

Pr(all prerequisite skills of s1 and s2 are acquired) ≥ Pr(all σl prerequisites ∈ GCC)2,

= γ2σl

l−1.
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