
Adaptive Transition State Refinement with
Learned Equilibrium Flows

Anonymous Author(s)
Affiliation
Address
email

Abstract

Identifying transition states (TSs), the high-energy configurations that molecules1

pass through during chemical reactions, is essential for understanding and designing2

chemical processes. However, accurately and efficiently identifying these states3

remains one of the most challenging problems in computational chemistry. In this4

work, we introduce a new generative AI approach that improves the quality of initial5

guesses for TS structures. Our method can be combined with a variety of existing6

techniques, including both machine learning models and fast, approximate quantum7

methods, to refine their predictions and bring them closer to chemically accurate8

results. Applied to TS guesses from a state-of-the-art machine learning model, our9

approach reduces the median structural error to just 0.088 Å and lowers the median10

absolute error in reaction barrier heights to 0.79 kcal mol−1. When starting from a11

widely used tight-binding approximation, it increases the success rate of locating12

valid TSs by 41% and speeds up high-level quantum optimization by a factor of13

three. By making TS searches more accurate, robust, and efficient, this method14

could accelerate reaction mechanism discovery and support the development of15

new materials, catalysts, and pharmaceuticals.16

1 Introduction17

The transition state (TS) plays a central role in elucidating reaction mechanisms and understanding18

the microkinetic behavior of chemical processes (Truhlar et al., 1996; Peng et al., 2016; Dewyer et al.,19

2018; von Lilienfeld et al., 2020; Unsleber and Reiher, 2020; Nandy et al., 2021; Jorner et al., 2021). A20

detailed knowledge of the underlying kinetics enables the rational design of catalysts, synthetic routes,21

and functional materials, driving progress toward more efficient, sustainable, and innovative chemical22

processes (Taylor et al., 2023; Chacko et al., 2024). Computationally, a TS corresponds to a first-order23

saddle point on the potential energy surface (PES). Classical algorithms exist to locate TSs (Jónsson24

et al., 1998), but when paired with high-level electronic structure methods, such as density functional25

theory (DFT) (Mardirossian and Head-Gordon, 2017), they become computationally prohibitive.26

This presents a major bottleneck for the scalable discovery of reaction mechanisms.27

To mitigate this, machine-learned potentials offer an efficient surrogate for the PES, enabling faster TS28

search (Yuan et al., 2024). As an alternative to iterative search algorithms, deep learning methods have29

emerged that aim to directly predict transition state structures. These approaches vary in form, from30

models that infer TS distance matrices (Choi, 2023) to generative frameworks that attempt to learn31

the joint distribution over reactants, products, and TSs (Duan et al., 2023). While generative models32

are promising, they can struggle to resolve fine-grained geometric details, sometimes producing33

unphysical features such as atomic collisions or distorted bond lengths (Peng et al., 2023; Williams34

and Inala, 2024; Vost et al., 2025; Wohlwend et al., 2025; Galustian et al., 2025). In contrast, TS35

guesses from approximate quantum chemical methods, like tight-binding, tend to be physically36
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plausible, but can systematically deviate from DFT-level structures (Rasmussen and Jensen, 2020).37

In both scenarios, the predicted TS structures function as low-fidelity approximations that, while38

providing valuable initial estimates for reaction exploration, may require further refinement to achieve39

the accuracy needed for quantitatively reliable kinetic analysis.40

To address this gap, we introduce Adaptive Equilibrium Flow Matching (AEFM), a structure-only41

refinement method that transforms low-fidelity TS guesses, regardless of their origin, into high-42

accuracy transition state geometries. AEFM learns to invert noise-injected perturbations of reference43

TS structures using a novel time-independent form of variational flow matching (VFM) (Amini44

et al., 2024). The model operates by predicting integration steps that iteratively refine the structure,45

converging toward a fixed-point solution. By additionally respecting the symmetry inherent in46

molecular structures, AEFM introduces a SE(3)-equivariant method that facilitates robust inference,47

adaptable to the quality of the initial TS structure. To further improve the chemical realism of refined48

structures, we incorporate a physics-inspired bond-based loss that guides the model toward physically49

plausible geometries.50

AEFM is particularly suited for high-throughput settings, where efficient and reliable refinement is51

essential to handle large numbers of candidates. Additionally, it benefits in-depth mechanistic studies52

by reducing the need for costly TS optimization steps. When used in conjunction with React-OT, a53

state-of-the-art ML-based model, AEFM reduces the median root-mean-square deviation (RMSD)54

of predicted TS structures to 0.088 Å and achieves a median absolute error in barrier heights of55

just 0.793 kcal mol−1, a 27% improvement over React-OT alone. Incorporating a physics-inspired56

bond-length loss further enhances structural realism, with the bonded distance distribution of AEFM-57

refined samples aligning 35% more closely to the ground truth distribution from the Transition1x58

dataset (Schreiner et al., 2022a).59

AEFM introduces several methodological innovations to enable efficient and accurate refinement of60

TS structures. Unlike standard FM, which relies on a time-dependent vector field and fixed integration61

schedules, AEFM learns a time-independent equilibrium flow field that supports adaptive fixed-point62

inference. To promote chemically realistic outputs, a physics-inspired bond-length loss that penalizes63

implausible bond distortions is incorporated.64

2 Related work65

Classical approaches. Algorithms for locating TSs fall into two broad categories, single-66

ended (Banerjee et al., 1985; Baker, 1986; Henkelman and Jónsson, 1999) and double-ended meth-67

ods (Jónsson et al., 1998; Henkelman et al., 2000; Peters et al., 2004). Single-ended methods refine68

an initial 3D structure using gradient and sometimes Hessian information, while double-ended ap-69

proaches construct a continuous path between reactant and product geometries to locate the TS along70

this path. Although effective, both classes of methods require repeated energy and force evaluations,71

which become computationally demanding when applied with accurate quantum chemical techniques72

such as DFT, limiting their scalability to large systems or reaction networks.73

Approximating the PES. Surrogate models, such as Gaussian process regressions (Pozun et al.,74

2012; Koistinen et al., 2016, 2017; Denzel and Kästner, 2018; Denzel et al., 2019; Garrido Torres et al.,75

2019; Heinen et al., 2022) or machine-learned interatomic potentials (Peterson, 2016; Schreiner et al.,76

2022b; Zhang et al., 2024; Wander et al., 2025; Yuan et al., 2024; Zhao et al., 2025), can approximate77

the PES, significantly accelerating TS searches when coupled with traditional optimization schemes.78

However, these approaches require high-quality non-equilibrium data, particularly around the TS79

region, which limits their scalability (Yuan et al., 2024).80

Predictive / generative models. Beyond surrogate-assisted optimization, other deep learning81

approaches aim to directly predict the transition state structure (Pattanaik et al., 2020; Jackson et al.,82

2021; Zhang et al., 2021; Choi, 2023). Many of these methods predict the TS distance matrix and then83

convert it into 3D coordinates. More recently, generative models have reframed TS prediction as a84

distribution learning problem, aiming to learn the distribution of TS geometries conditioned on given85

reactant and product structures (Makoś et al., 2021; Duan et al., 2023; Kim et al., 2024; Galustian86

et al., 2025; Duan et al., 2025; Hayashi et al., 2025). For instance, ReactDiff (Duan et al., 2023)87

models the joint distribution of reactant, TS, and product using denoising diffusion and inpainting to88

sample plausible TS candidates. Its successor, React-OT (Duan et al., 2025), leverages flow matching89
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(FM) (Lipman et al., 2022; Liu et al., 2022) and optimal transport to improve generation accuracy and90

efficiency. Other models bypass the need for 3D input entirely by generating TS geometries directly91

from 2D molecular graphs (Kim et al., 2024; Galustian et al., 2025).92

3 Background93

Flow Matching. FM is a generative modeling approach that learns a transformation from a simple94

base distribution q0 to a target distribution q1. The base distribution q0 is often referred to as the prior,95

and the target distribution q1 as the data distribution.96

To model this transformation, FM learns a continuous-time vector field vθ(xt, t). The point xt lies97

along a predefined interpolation path between samples x0 ∼ q0 and x1 ∼ q1. Therefore, an optimal98

transport probability path (Tong et al., 2024) with the interpolation variable t ∈ [0, 1] is defined as:99

pt(x | x0,x1) = N
(
x | (1− t)x0 + tx1, σ

2
FMI
)
, (1)

leading to samples:100

xt = (1− t)x0 + tx1 + σFMϵ. (2)
We set σFM to 0.5 in our experiment. The corresponding target velocity field is defined as:101

vt(xt;x0,x1) =
dxt

dt
= x1 − x0. (3)

In doing so, FM models how probability mass moves over time from the prior to the data distribution.102

To train the vector field vθ, the squared error between the predicted velocity and the target velocity is103

minimized. The training objective, known as the FM loss, is given by:104

LFM = Ex0,x1,t

[
∥vθ(xt, t)− (x1 − x0)∥2

]
, (4)

As an alternative loss formulation, the model ϕθ(xt, t) can be trained to directly predict x1 at time t105

instead of the velocity, a strategy that has demonstrated improved performance in practice (Stark et al.,106

2024). This approach is commonly referred to as variational flow matching (VFM) (Amini et al.,107

2024). Once ϕθ(xt, t) is trained, new samples can be generated by solving the following ordinary108

differential equation (ODE) forward in time:109

dxt

dt
=

ϕθ(xt, t)− xt

1− t
, x0 ∼ q0. (5)

This integration starts from a sample x0 drawn from the prior q0, and produces a sample x1 ∼ q1 at110

time t = 1, using any black-box ODE solver. Later, we will make ϕθ(xt, t) time-independent and111

use it to iteratively refine approximate solutions xk+1 = ϕθ(x
k).112

4 Adaptive Equilibrium Flow Matching113

AEFM refines low-fidelity TS structures into high-quality geometries by learning a flow field that114

maps noisy initial guesses back to reference TSs, as shown in Figure 1. It builds on FM, but115

replaces time-dependent integration with a time-independent, equilibrium formulation. This allows116

for iterative, fixed-point refinement that adapts to the quality of each input, allocating more steps to117

less accurate guesses. Training is guided by optimal transport, using noise-scaled perturbations of118

accurate TSs to simulate typical low-fidelity errors, enabling generalization across different prior119

methods.120

Adaptive Prior. A central component of AEFM is its adaptive behavior, which arises from the121

formulation of the source distribution p0 that we learn to map to the target distribution p1. In our case,122

the target distribution is determined by the high-fidelity TSs from the Transition1x dataset (Schreiner123

et al., 2022a). Given a sample x1 ∼ p1, we define the corresponding source sample x0 ∼ p0 as a124

noisy perturbation of x1:125

x0 = x1 + σϵ, ϵ ∼ N (0, I). (6)
The key parameter in this formulation is σ, which controls the extent to which the source distribution126

deviates from the target. We assume that the deviation of low-fidelity samples xw
1 from their127

corresponding high-fidelity TSs can be modeled as Gaussian noise.128
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Figure 1: AEFM pipeline for TS structure refinement. a The input consists of low-fidelity TS
samples, which may originate from various sources such as ML models or tight-binding approxima-
tions. These inputs are iteratively refined to produce high-fidelity, chemically valid TS geometries
near the DFT level. b Comparison between actual physical flow and the one learned by AEFM on the
Müller–Brown potential energy surface. Integrating the physical flow field requires multiple function
evaluations, which can become computationally expensive with methods such as DFT. In contrast,
AEFM learns a much simpler representation that captures the essential structure while requiring
significantly fewer and more efficient evaluations.

Under this assumption, we want to determine the noise scale σ such that the expected error from a129

Gaussian corruption process with variance σ2 matches the expected error between low-fidelity and130

reference TSs. Specifically, we set131

Ex1∼D,x0∼N (x1,σ2I)

[
∥x0 − x1∥2

N(x1)

]
= E(x1,x

w
1)∼D

[
∥xw

1 − x1∥2

N(x1)

]
, (7)

where N(x1) is the number of atoms involved. Since x0 = x1 − σϵ, the left-hand side simplifies to132

Eϵ

[
∥σϵ∥2

N(ϵ)

]
=

σ2

N(ϵ)
· 3N(ϵ) = 3σ2. (8)

Solving for σ, we obtain133

σ =

(
E(x1,xw

1)∼D

[
∥x1 − xw

1 ∥
2

3N(x1)

])1/2

. (9)

Thus, σ can be calculated using the mean RMSD of the low-fidelity samples. The source distribution134

in our setup is designed to model the expected deviation of the low-fidelity predictions from the135

reference TS. It captures the distribution of typical errors observed in the low-fidelity method and136

provides a learning signal during training. However, in contrast to the standard FM framework, we do137

not sample from the prior during inference. Instead, we start from the actual output of the low-fidelity138

model. As a result, the model learns from the prior during training, but at inference time, it needs to139

adapt to the specific error of each low-fidelity input. These errors can vary considerably, with some140

samples being very close to the true TS and others deviating more. Assigning a uniform time value141

of t = 0 to all such samples during inference, as done in conventional FM, may lead to over- or142

under-correction by the model. To address this, we remove explicit time conditioning during training,143

allowing the model to implicitly infer the quality of a given input xt. This helps the model estimate144

how far each sample is from the final prediction target. In practice, this behavior is encouraged145

through the use of a direct x1-prediction loss, as described earlier, while omitting time as an input to146

the network.147

LAEFM = Ex0,x1,t

[
∥x1 − ϕθ(xt)∥2

]
. (10)
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Fixed-point inference. Since we omit the concept of time, we no longer integrate the ODE from148

Equation 5. Instead, we train a neural network ϕθ to directly predict the endpoint x1 of a dynamical149

process starting from an initial point x0. This formulation aligns with the perspective of VFM,150

where learning a velocity field that matches trajectories between x0 and x1 can be reinterpreted as151

minimizing a divergence between model and reference endpoint distributions. In our case, although152

we do not instantiate or evaluate vθ(xt, t) directly at test time, the network’s prediction implicitly153

corresponds to the result of integrating such a field over time. In this sense, our model acts as a learned154

approximation of the ODE solution operator. To further refine predictions and ensure consistency155

with underlying dynamics, we employ a fixed-point iteration scheme at inference time:156

xk+1 = ϕθ(x
k), (11)

where the initial guess x0 is taken as the low-fidelity prediction, xw
1 . Conceptually, this mirrors the157

inference procedure in Deep Equilibrium Models (Bai et al., 2019, 2021), where a neural network158

is iterated to convergence at test time to find a fixed point x∗ satisfying x∗ = fθ(x
∗). To perform159

the iteration, one may employ any fixed-point solver, such as Broyden’s method (Broyden, 1965) or160

Anderson acceleration (Anderson, 1965). In this work, we use the latter, which enhances convergence161

by leveraging multiple previous iterates and their residuals to extrapolate a more accurate fixed point.162

Given m previous iterates xk−m, . . . ,xk and corresponding residuals g(xi) = ϕθ(x
i) − xi, the163

method solves a least-squares problem to find coefficients α such that the weighted sum of residuals164 ∑m
i=0 αig(x

k−m+i) is minizimed. Given α, the next iterate is computed as:165

xk+1 = β

m∑
i=0

αiϕθ(x
k−m+i) + (1− β)

m∑
i=0

αix
k−m+i, (12)

where β ∈ [0, 1] is a damping parameter and
∑

i αi = 1.166

Physical consistency loss. To address issues such as bond length inconsistencies and atomic clashes167

in generative models, we introduce an additional loss term focused on bonding (Peng et al., 2023;168

Williams and Inala, 2024; Wohlwend et al., 2025; Vost et al., 2025; Galustian et al., 2025). This is169

particularly important because the PES is highly sensitive to small geometric deviations. In some170

cases, accurately reproducing critical bond lengths is more important than minimizing the overall171

positional error. A prediction may yield a low RMSD while still introducing small but chemically172

significant distortions in key bonds, resulting in large energetic errors. To improve the chemical173

plausibility of generated structures, we compare the local environment of each atom within a cutoff174

radius rcut to that of the corresponding atom in the ground truth structure, as shown in Figure 2.175

Lb = E

[ ∑
(i,j)∈B(x1)

[dij(ϕθ(xt))− dij(x1)]
2

|B(x1)|

]
(13)

B(x1) := {(i, j) | ∥x1,i − x1,j∥ < rcut} (14)

with dij = ∥xi − xj∥ as the euclidian distance between atom i and j. Thus, the total loss used in176

training is:177

L = LAEFM + wbLb (15)

with wb as a hyperparameter to weight the bond loss influence during training.178

5 Experiments179

To evaluate AEFM, we use the Transition1x dataset (Schreiner et al., 2022a), which contains climbing-180

image nudged elastic band (CI-NEB) (Henkelman et al., 2000) calculations performed with DFT181

(ωB97x/6-31G(d) (Ditchfield et al., 1971; Chai and Head-Gordon, 2008)) for 10,073 organic reactions182

encompassing diverse reaction types. These reactions were sampled from an enumeration of 1,154183

reactants in the GDB7 dataset (Grambow et al., 2020), which includes molecules with up to 7 heavy184

atoms (C, N, and O) and a total of 23 atoms. We adopt the same random split as Duan et al. (Duan185

et al., 2023), using 9,000 reactions for training and 1,073 for testing.186
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Table 1: Performance of AEFM refinement. Structural and energetic errors of various low-fidelity TS
guesses before and after refinement with AEFM. The refinement consistently reduces both mean and
median deviations relative to the reference TS structures. In addition, average inference times per
sample are reported, showing that AEFM introduces only negligible computational overhead.

Approach RMSD (Å) |∆ETS| (kcal mol−1) Inference (s)

Mean Median Mean Median

xTB CI-NEB 0.312 0.179 10.426 2.673 9.23
xTB CI-NEB + AEFM 0.250 (↓20%) 0.119 (↓34%) 6.204 (↓40%) 1.090 (↓59%) +0.24
React-OT (xTB) 0.211 0.108 4.697 1.186 0.14
React-OT (xTB) + AEFM 0.214 (↑1%) 0.102 (↓6%) 4.153 (↓12%) 0.824 (↓31%) +0.12
React-OT 0.183 0.092 3.405 1.092 0.14
React-OT + AEFM 0.188 (↑3%) 0.088 (↓4%) 3.341 (↓2%) 0.793 (↓27%) +0.13
React-OT + AEFM a 0.176 (↓4%) 0.086 (↓7%) 3.158 (↓7%) 0.790 (↓27%) +0.13

a For 26 reactions, a different intended TS was selected if the RMSD between the low-fidelity sample and
this alternative TS was at least 30% lower than the RMSD to the originally intended TS.

5.1 Refining TS structures across fidelity scales187

AEFM is applied to refine prior low-fidelity TS structures toward valid TS geometries at the target188

level of theory. To assess the quality of the refined structures, we evaluate both the RMSD of atomic189

positions and the absolute error in the reaction barrier.190

To assess the effectiveness of AEFM, we consider React-OT (Duan et al., 2025) as the first low-fidelity191

source, a state-of-the-art generative model for TS prediction. React-OT achieves remarkable accuracy,192

producing samples with a mean RMSD of 0.18 Å and a median absolute error in barrier height of193

1.092 kcal mol−1. Applying AEFM to refine the React-OT samples yields a 27% improvement in the194

median barrier height error, requiring only 2 model calls in median and approximately 0.13 seconds195

per refinement on an Nvidia A40 GPU. Consequently, 69% of the TSs had a more accurate barrier196

height, achieving a median absolute error of 0.793 kcal mol−1.197

As a second low-fidelity source, we consider GFN2-xTB (Bannwarth et al., 2019), a tight-binding198

approximation that is commonly used as a starting point for elucidating reaction mechanisms.199

Tight-binding methods are approximately three orders of magnitude faster than DFT, enabling high-200

throughput reaction scans that would be otherwise computationally prohibitive. For the 1,073 test201

reactions, reactant and product geometries were first relaxed, followed by CI-NEB calculations using202

GFN2-xTB. Of these, 945 calculations converged successfully, yielding samples with a mean RMSD203

of 0.31 Å and a median absolute error in barrier height of 2.673 kcal mol−1. Applying AEFM204

improves the median absolute error in barrier height by 59%, reducing it to 1.090 kcal mol−1, while205

requiring only a median of 4 model calls. Analyzing the chemical accuracy of samples reveals206

that only 25% of the original GFN2-xTB-generated structures meet this threshold, whereas AEFM207

refinement increases this accuracy rate to 57%.208

To reduce the computational cost of generating DFT-quality reactant and product structures, we209

follow Duan et al. (Duan et al., 2025) and employ React-OT directly on xTB-optimized geometries.210

This approach enables rapid TS generation without requiring expensive DFT-level optimization of211

endpoints. React-OT can be reliably applied to xTB-level structures, yielding a mean RMSD of212

0.21 Å and a median absolute error in barrier height of 1.186 kcal mol−1. Building on this, we apply213

AEFM to refine the resulting TS guesses further, reducing the median absolute error by an additional214

31% with only a median of two model evaluations. The results of AEFM applied to each low-fidelity215

method are summarized in Table 1.216

Physics-Informed loss improves chemical validity217

To assess the impact of the bond loss term, we compare AEFM’s fine-tuning performance when218

including the term versus omitting it, using two representative low-fidelity sources, React-OT (Duan219

et al., 2025) and xTB (Bannwarth et al., 2019). For React-OT samples, incorporating the bond220

loss results in a 27% reduction in the median absolute error of barrier heights. In contrast, the221

same model without the bond loss achieves only a 3.5% improvement (Supplementary Table 6).222
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C−H C−N N−O

Figure 2: Bond length distributions. Distributions of C–H, C–N, and N–O bond lengths in the
Transition1x dataset compared to those in the React-OT and AEFM-refined structures.

To understand the source of this improvement, we analyze how the bond loss affects the model’s223

ability to recover chemically plausible local structures. Specifically, we evaluate whether the refined224

structures better match the bond length distributions within a 2 Å neighborhood of each atom present225

in the dataset. Interactions are categorized as either bonded or non-bonded based on threshold226

distances (Supplementary Table 5). With the bond loss, the average similarity to the reference bond227

length distributions improves by 35.7% for bonded interactions and by 6% for non-bonded ones, as228

illustrated for selected bonds in Figure 2. Given that bonded interactions dominate the intramolecular229

potential energy landscape, enhancing their accuracy is critical for reliable energy predictions. This230

effect is even more pronounced for xTB samples, which exhibit larger deviations from the target231

distribution. Here, the bond loss leads to a 57% improvement in bonded interaction similarity and a232

54% improvement for non-bonded ones (see Supplementary Table 7).233

Moreover, average displacement metrics such as RMSD often fail to reflect meaningful changes in en-234

ergy, underscoring their limited sensitivity, as shown in Supplementary Figure 3a and Supplementary235

Figure 4b. Notably, the fraction of samples that improve in both RMSD and energy is considerably236

smaller than the fraction that improve in energy alone (Supplementary Figure 3a). In line with this,237

the correlation between energetic and structural improvement is weak, with a Pearson coefficient of238

only 0.17 (Supplementary Figure 4b). A similarly weak relationship between RMSD and energy239

difference was also reported by Duan et al. (Duan et al., 2023). That highlights that generating240

realistic bond lengths in the refinement process is just as crucial as minimizing deviations in atomic241

positions. In many TS structures, the energetic accuracy is governed primarily by the reactive center.242

Consequently, even if the RMSD improves slightly for some atoms, introducing unrealistic bonds,243

such as excessively short ones, can severely degrade energetic similarity (Zhao et al., 2023). This244

effect is further illustrated by the distribution of C–H bond lengths, which, after refinement with245

AEFM, shows a 44% higher similarity to the dataset distribution compared to the original React-OT246

samples. While the refined C–H bond might not match the exact pose of the reference, its physically247

accurate length improves energetic similarity, even if the overall RMSD appears worse.248

This observation relates to a broader challenge in molecular generative modeling, generating chem-249

ically consistent bond geometries (Peng et al., 2023; Williams and Inala, 2024; Vost et al., 2025;250

Wohlwend et al., 2025; Galustian et al., 2025). Several recent works have proposed solutions to miti-251

gate this issue. For example, Boltz-1 (Wohlwend et al., 2025) biases generation toward low-energy252

configurations using physically inspired energy functions. While effective in diffusion-based genera-253

tion schemes, this approach is incompatible with our fixed-point inference method, which does not254

rely on stochastic sampling. Vost et al. (Vost et al., 2025) address the sensitivity of generative models255

to geometric distortions by augmenting training data with perturbed structures and conditioning the256

diffusion process on the distortion level. However, this requires training a diffusion model from pure257

Gaussian noise on distortion-conditioned data, whereas our method uses an adaptive prior. Williams258

et al. (Williams and Inala, 2024) propose a physics-informed diffusion model that decomposes the259

generative task into separate components for bonding, bending, torsion, and chirality, enabling more260

physically grounded predictions. This decomposition, however, depends on a specialized neural261

network architecture and limits the flexibility to choose general-purpose backbones. Finally, Falck et262

al. (Falck et al., 2025) analyze the influence of the noising schedule on the recovery of high-frequency263
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features, such as precise bond lengths. While theoretically insightful, their analysis was not conducted264

in the context of molecular modeling.265

These efforts highlight the importance of incorporating structural or energetic priors to improve the266

physical fidelity of generated molecules. In contrast to more complex solutions, AEFM addresses267

this issue with a simple yet effective bond loss term, which guides the model toward reproducing the268

bond distributions found in the underlying data.269

Convergence analysis270

As AEFM relies on fixed-point iteration, understanding its convergence behavior is critical. A stan-271

dard indicator of local convergence is the Lipschitz constant L, which quantifies how sensitively the272

model output responds to input perturbations. In practice, however, this condition is often evaluated273

via the spectral radius ρ(Jϕ), the largest absolute eigenvalue of the Jacobian Jϕ at a given point274

x. By Lyapunov’s linearization theorem, the condition ρ(Jϕ) < 1 suffices for convergence in the275

absence of advanced solvers. However, as Bai et al. (Bai et al., 2021) point out, this requirement can276

be overly conservative in practice. Methods like Broyden’s method (Broyden, 1965) or Anderson277

acceleration (Anderson, 1965) often succeed even when ρ(Jϕ) < 1, due to their ability to handle278

mild local non-contractive behavior. To assess aefm’s convergence characteristics, Supplementary279

Figure 5e displays the evolution of ρ(Jϕ) over refinement iterations on GFN2-xTB samples. Con-280

vergence is defined as the point where the RMSD between successive iterates falls below 0.01, as281

specified in Equation 16. If convergence is not achieved, inference is terminated after 100 iterations.282

The plot shows the median, along with the 25th and 75th percentiles, and overlays the cumulative283

convergence rate. Initially, the spectral radius drops sharply, reflecting strong local contractivity and284

rapid convergence. After iteration 4, the median convergence point begins to rise again. This increase285

does not signal failure but highlights that remaining unconverged samples tend to be more structurally286

complex and locally less stable. These more complicated cases dominate the later iterations, pushing287

the upper quantiles of ρ(Jϕ) upward. Still, even in these regions, the 75th percentile remains below288

1.3, indicating near-contractive dynamics. Out of 1073 React-OT and 945 xTB samples, only 6 and 3,289

respectively, failed to converge before reaching the iteration limit. Overall, AEFM achieves fast and290

stable convergence for the majority of samples, with early iterations characterized by low spectral291

radii and minimal computational overhead. Although convergence is slower for a few complex cases,292

they remain computationally manageable, with inference times not exceeding 1.6 seconds.293

6 Discussion294

AEFM addresses a core challenge in reaction mechanism elucidation by converting low-fidelity295

TS guesses into chemically accurate, DFT-quality structures with minimal computational cost.296

By learning a time-independent flow field, conditioned on a prior tailored to the systematic error297

distribution of approximate methods, AEFM provides a lightweight, physically informed correction298

mechanism that enhances fast TS generators like GFN2-xTB or React-OT.299

The physics-informed loss steers predictions toward chemically meaningful structures, addressing a300

core limitation of generative approaches. This makes AEFM well-suited for complex systems such301

as catalysis or enzymatic reactions, where high-quality initial guesses are hard to obtain and subtle302

geometric features are essential. Incorporating higher-order terms like angles or torsions, along with303

adaptive cutoffs, could further boost accuracy and extend applicability.304

Despite its robustness, AEFM is limited by the support of its training prior. For initial guesses that305

deviate substantially from typical training-time errors, performance degrades. One promising path306

forward involves a two-stage refinement strategy guided by model uncertainty. A specialized model,307

trained on broader structural deviations, could be applied when the primary model signals high308

uncertainty, enabling robust treatment of more strongly perturbed inputs.309

Finally, the principles behind AEFM generalize beyond TS refinement. In fields such as scientific310

machine learning, where coarse-grained simulations are used to accelerate predictions in high-311

dimensional systems, AEFM-like architectures could enhance the spatial and temporal resolution312

of neural PDE solvers. This may enable both more accurate forecasts and longer stable simulation313

horizons. Overall, AEFM offers a flexible and computationally efficient paradigm for lifting low-314

fidelity predictions to chemically and physically meaningful accuracy across a range of domains.315
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A Additional details on AEFM485

To respect molecular symmetries, such as rotation, translation, and atom index permutation, we486

employ the SE(3)-equivariant LEFTNet (Du et al., 2023) architecture as the backbone of our model.487

The cutoff radius in the physics-informed loss is set to 2 Å, based on the longest equilibrium bond488

lengths typically observed in C, N, O, and H chemistry, with an added margin to accommodate489

extended bond distances that may arise in transition state structures (R.Domingo, 2014). The weight490

of the loss is fixed to 1.0. During inference, the fixed-point iteration is terminated once the RMSD491

between successive iterates falls at or below a threshold of 0.01:492

∥xk+1 − xk∥√
N(xk)

≤ 0.01 (16)

If the convergence criterion is not satisfied, inference is terminated after a maximum of 100 iterations.493

The damping parameter β is set to 1.0 and the history size m to 5, based on a hyperparameter search.494

Table 2 summarizes the model hyperparameters and training configurations.495

Table 2: Hyperparameters and training configurations.

(a) Model hyperparameters

Parameter Value

Message passing layers 6
Equivariant readout layers 1
Hidden features 196
Radial basis functions 96
Cutoff radius 10 Å
Learning rate 1e-3
Batch size 64

(b) Training settings

Method σ Epochs

xTB CI-NEB 0.19 1000
React-OT (xTB) 0.12 600
React-OT 0.11 600
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B Additional experiments496

B.1 Performance summary497

xTB React-OT (xTB) React-OTa

b

Figure 3: Performance summary of AEFM across diverse low-fidelity sources. a Percentage of
test samples showing improvement in energy difference |∆E| relative to the reference TS (irrespective
of RMSD), in RMSD (irrespective of energy), and in both RMSD and energy difference (RMSD
∩ |∆E|). b Histogram (colored, left y-axis) and cumulative distribution (grey, right y-axis) of the
change in energy difference between the low-fidelity and AEFM fine-tuned samples, measured
relative to the reference TS. Negative |∆E| values indicate that the refined samples are energetically
improved.

B.2 Understanding refinement dynamics498

To further investigate the performance of AEFM, we conduct a detailed analysis across diverse499

scenarios, aiming to better understand the factors influencing its strengths and limitations.500

A first aspect we examine is the asymmetry in the distribution of barrier height errors, which is501

particularly evident for refined samples generated using React-OT as prior. Supplementary Figure 4a502

shows pre- and post-refinement energetic errors, where points below the bisecting line indicate503

improvement. An illustrative outlier contributing to the skewed mean is shown in Supplementary504

Figure 4c. For the particular reaction we consider four TS, the reference (intended) TS, the React-OT505

prediction, its fine-tuned version obtained via AEFM, and an alternative TS associated with a different506

but structurally similar reaction. The plot illustrates the structural deviation, measured as RMSD, to507

the intended TS on the y-axis and to the alternative TS on the x-axis, while the marker color encodes508

the relative energy with respect to the intended TS. The original React-OT prediction deviates notably509

from the intended TS, with an RMSD of 0.632 Å and an energy difference of 17.904 kcal mol−1.510

After fine-tuning, the sample shifts further away from the intended TS, reaching an RMSD of 0.793 Å511

and a significantly larger energy difference of 120.993 kcal mol−1. At first glance, this might appear512

to be a failure of the optimization process. However, comparison with the alternative TS reveals a513

different picture, the fine-tuned structure is nearly identical to this other TS, exhibiting an RMSD514

of just 0.048 Å and an energy deviation of merely 0.256 kcal mol−1. This behavior is explained515

by the initial proximity of the React-OT sample to the alternative TS, with an RMSD of 0.359 Å516

compared to the intended TS. Since AEFM operates purely on structural refinement and is trained on517

perturbed TS geometries without access to reactant-product context, it interprets the input as a noisy518

version of the alternative TS and converges accordingly. To further analyse this effect, all React-OT519
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a b

c

Intended TS

React-OT

AEFM
Other TS

d

Figure 4: Relationship between energetic and structural changes in AEFM refinements, with a
focus on outliers and correlation trends. a Energetic differences of AEFM-refined structures versus
initial React-OT predictions on the left y-axis. Points below the diagonal line indicate improved
agreement with the reference TS, while points above reflect increased deviation. On the right y-axis,
the KDE of improvement weighted by the improvement magnitude is shown. Additionally, an outlier
(top left) shows a nearly sixfold increase in error after fine-tuning. b Energetic vs. geometric changes
resulting from the application of AEFM. The bottom-left quadrant indicates improvements in both
structural and energetic similarity, while the bottom-right quadrant reflects improved energy alignment
accompanied by reduced structural similarity. Blue points indicate an energetic improvement, while
red points correspond to increased dissimilarity. c Structural analysis of the outlier. The x-axis
shows RMSD to the intended TS, and the y-axis shows RMSD to an alternative, structurally similar
TS. Displayed are the initial React-OT prediction, the fine-tuned sample, and both TS structures. d
Improvement rate (left y-axis in blue) and mean reduction in energy error (right y-axis in grey) as a
function of the initial React-OT RMSD.

samples were compared with similar other TS. To ensure that the alternative TSs are meaningfully520

closer to the sample, we only retain cases in which the RMSD to the alternative TS is at least 30%521

lower than the RMSD to the originally intended TS. The mean RMSD is now improved by 7%522

and the absolute energetic error by 5% compared to the initial analysis of fine-tuned samples. This523

example highlights an essential characteristic of the approach, in the absence of explicit reaction524

context, AEFM fine-tunes samples toward structurally and energetically valid TSs, which may not525

always correspond to the originally intended reaction. Such behavior is typical for surface walking526

algorithms, where the target is to find any nearby viable TS given an initial guess structure (Banerjee527

et al., 1985; Baker, 1986; Henkelman and Jónsson, 1999).528

A key element influencing the performance of AEFM is the quality of the initial guess. Figure 4c529

illustrates this by showing the percentage of energetically improved samples along the left y-axis, and530

the corresponding mean energy improvement along the right y-axis, both plotted against increasing531

RMSD thresholds applied to the initial React-OT samples. At each threshold, only those samples532

with an initial RMSD below the given value are included in the statistics. The results show a533

clear trend, with both the likelihood and magnitude of improvement being higher at lower RMSD534

thresholds. Specifically, for samples with RMSD below 0.2 Å, 73% of the reactions show an energetic535

improvement after fine-tuning, with a mean improvement of 0.15 kcal mol−1. In contrast, at higher536

thresholds, we have 69% improved reactions and a mean energetic improvement of 0.06 kcal mol−1.537
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B.3 Quantum chemical validation538

While the combination of tight-binding methods or generative models with AEFM enables fast and539

robust high-throughput TS screening, a full quantum mechanical treatment remains essential for540

detailed mechanistic studies (Peng et al., 2016; von Lilienfeld et al., 2020; Unsleber and Reiher,541

2020; Nandy et al., 2021; Jorner et al., 2021). In such cases, transition states must be refined using542

saddle point optimization at the DFT level (Lam et al., 2020). These optimizations typically require543

multiple evaluations of forces or even full Hessians, making them computationally demanding, even544

for small molecules (Koistinen et al., 2017; Yuan et al., 2024).545

To highlight the practical impact of AEFM on downstream applications, we evaluate its effect on546

the chemical validity of TS structures and the efficiency of DFT-based TS optimizations. For a547

representative set of 100 reactions, we compare three key metrics, namely the fraction of valid TS548

structures (a), identified by exactly one imaginary frequency in the Hessian, the convergence rate549

of DFT TS optimizations (b), and the number of optimization steps required (c). Each metric is550

assessed for both the raw input structures and the corresponding AEFM-refined samples. AEFM551

incurs minimal overhead, typically requiring only 2 to 5 model evaluations depending on the quality552

of the initial guess, as seen in Supplementary Figure 5d. In contrast, full DFT optimizations are553

significantly more expensive. Applied to GFN2-xTB initial guesses, AEFM increases the fraction554

of valid TS structures from 27% to 68%, a 41% absolute improvement (Supplementary Figure 5a).555

Moreover, AEFM improves the overall convergence rate of TS optimizations from 91% to 99%556

(Supplementary Figure 5b), further underscoring its robustness. Lastly, AEFM reduces the median557

number of DFT optimization steps by 10, corresponding to a threefold acceleration of CPU hours558

needed in the refinement process (Supplementary Figure 5c, Supplementary Table 2).559

a

d

b c

e

Figure 5: Chemical validation and fixed-point convergence analysis. a Fraction of valid TS
structures, defined by the presence of exactly one imaginary frequency in the Hessian. b Convergence
rate of DFT TS optimizations. c Boxplot of DFT optimization steps required to reach a converged
TS structure. d Number of iterations required by AEFM to reach a fixed point. Convergence is
defined by an RMSD below 0.01 between successive iterates; otherwise, inference is terminated
after 100 iterations. e Spectral radius of the model’s Jacobian with respect to the input structure,
shown as median (solid line) and interquartile range (shaded region) over iterations (left y-axis).
The percentage of converged samples is plotted on the right y-axis. Contractive behavior ensuring
convergence occurs when ρ(Jϕ) < 1.0, while advanced solvers still succeed beyond this threshold.

To compute the electronic energy of samples, we use ORCA5.0.4 (Neese, 2022) in combination560

with ASE (Larsen et al., 2017) at the same level of theory as the Transition1x dataset (Schreiner561

et al., 2022a) was generated with ωB97x/6-31G(d) (Ditchfield et al., 1971; Chai and Head-Gordon,562
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2008). To generate the GFN2-xTB (Bannwarth et al., 2019) TS guesses, CI-NEB (Henkelman et al.,563

2000) using ASE and the python interface tblite. For the CI-NEB computations, the same protocol564

is used as for Transition1x generation. The NEB calculation is first run until the maximum force565

perpendicular to the path falls below a threshold of 0.5 eVÅ
−1

. Subsequently, the CI-NEB refinement566

continues until convergence, defined as a maximum perpendicular force below 0.05 eVÅ
−1

or a567

maximum of 500 iterations. Reactions that do not meet this criterion are considered not converged.568

For TS optimization, the Sella package (Hermes et al., 2022) using the P-RFO (Banerjee et al., 1985;569

Baker, 1986) algorithm along with the ASE ORCA calculator is run until the maximum force of 0.001570

eVÅ
−1

is achieved with a maximum number of 300 iterations. Numerical Hessians are computed571

using finite central difference method with an δ of 0.01Å.572

Table 3: Total CPU hours required for TS refinement using the p-RFO algorithm implemented in the
Sella package with 48 CPU cores.

Method CPU Hours
xTB CI-NEB 1430
xTB CI-NEB + AEFM 506
React-OT 455
React-OT + AEFM 439

C Ablation studies573

C.1 Comparison to flow matching574

An alternative to AEFM is to apply flow matching (FM) using a Gaussian prior and the transition575

states as the target distribution. The initial time from which the ODE in FM is integrated is inferred576

based on the mean RMSD between the low-fidelity structures and the reference transition states,577

using the definition of the intermediate interpolants xt. Specifically, t0 is chosen such that the RMSD578

between the time interpolant xt and the target x1, ∥xt−x1∥/N, matches the average RMSD of the579

low-fidelity source. For GFN2-xTB samples, this yields t0 = 0.87, and for React-OT samples,580

t0 = 0.93. Table 4 reports the corresponding performance. These results are significantly worse than581

those obtained with AEFM, which can be attributed to the fact that FM must learn the flow field from582

a Gaussian prior, making the task considerably more complex compared to AEFM. Furthermore, to583

ensure a fair comparison with AEFM, the source and target molecules are not aligned, resulting in a584

non-linear vector field that is harder to integrate and leads to less accurate structures.585

Table 4: Performance using FM for refinement.

Approach RMSD (Å) |∆ETS| (kcal mol−1)

Mean Median Mean Median

xTB CI-NEB 0.312 0.179 10.426 2.673
xTB CI-NEB + FM 0.439 0.310 91.732 88.953
React-OT 0.183 0.092 3.405 1.092
React-OT + FM 0.252 0.167 34.723 34.265

C.2 Data efficiency586

To evaluate the data efficiency of AEFM, the model was trained using subsets of 2000, 4000, 6000,587

8000, and all 9000 training samples. Each trained model was then applied to the GFN2-xTB samples,588

and the resulting mean and median energetic differences to the ground truth transition states are589

compared in Supplementary Figure 6. The results reveal a clear trend of decreasing energetic590

difference with increasing training data. Notably, using only 4000 training samples, less than half591

of the whole dataset, already achieves a 24.6% reduction in mean absolute error in barrier height,592

compared to the 40% reduction obtained using the full 9000 samples.593
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Figure 6: Data efficiency of AEFM. Mean and median energy errors for models trained with different
sample sizes. Dashed lines show corresponding errors from GFN2-xTB.

C.3 Physics-Informed loss594

Supplementary Table 6 shows the Wasserstein-1 distance for each bonded interaction using the595

thresholds defined in Supplementary Table 5. Combining React-OT with AEFM results in consistently596

lower Wasserstein-1 distances across nearly all bonded and non-bonded interactions, indicating597

improved agreement with the underlying Transition1x dataset.598

Table 5: Threshold distances used to determine bonded atom pairs. To categorize into bonded and
non-bonded, an additional margin of 0.1 Å is added on top of the threshold values.

C–C C–H C–N C–O H–H H–N H–O N–N N–O

Bond Threshold (Å) 1.54 1.09 1.47 1.43 0.74 1.01 0.96 1.45 1.40

Table 6: Wasserstein-1 distance to bond distribution inherent in the test samples of the Transition1x
dataset for different bonded (bd) and non-bonded (nbd) atom pairs (lower is better).
Method C–C C–H C–N C–O H–H H–N H–O N–N N–O

xTB CI-NEB (bd) 0.0041 0.0058 0.0097 0.0065 0.0151 0.0046 0.0029 0.0085 0.0113
xTB CI-NEB + AEFM (bd) 0.0032 0.0015 0.0021 0.0018 0.0543 0.0063 0.0140 0.0116 0.0099
React-OT (bd) 0.0022 0.0019 0.0033 0.0019 0.0124 0.0035 0.0059 0.0080 0.0142
React-OT + AEFM (bd) 0.0011 0.0011 0.0023 0.0014 0.0081 0.0034 0.0061 0.0059 0.0110

xTB CI-NEB (nbd) 0.0067 0.0289 0.0192 0.0129 0.0082 0.0461 0.0913 – 0.0697
xTB CI-NEB + AEFM (nbd) 0.0046 0.0097 0.0138 0.0234 0.0027 0.0324 0.0416 0.0981 0.0466
React-OT (nbd) 0.0074 0.0068 0.0128 0.0115 0.0037 0.0088 0.0205 0.1957 0.0413
React-OT + AEFM (nbd) 0.0061 0.0065 0.0106 0.0122 0.0034 0.0139 0.0184 0.0851 0.0518
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Table 7: Performance using AEFM without bond loss for refinement.

Approach RMSD (Å) |∆ETS| (kcal mol−1)

Mean Median Mean Median

xTB CI-NEB 0.312 0.179 10.426 2.673
xTB CI-NEB + AEFM (wb=0.0) 0.249 0.103 10.405 1.518
React-OT 0.183 0.092 3.405 1.092
React-OT + AEFM (wb=0.0) 0.186 0.083 3.750 1.056

D Metrics599

The RMSD for molecules is determined by first aligning the molecules x1 and x2 using the Kabsch600

algorithm and then computing:601

RMSD(x1,x2) =

√∑N
i=1 ∥x1,i − x2,i∥2

N

=

√∑N
i=1

∑
j∈{x,y,z}(x1,i,j − x2,i,j)2

N

(17)

with N denoting the number of atoms. Note that this definition differs from the one used in React-602

OT, where the RMSD is normalized by 3N instead. To access the difference in barrier height, the603

electronic energy V of each sample TS structure is computed and the MAE is defined as604

MAE =
1

M

M∑
i

|V (xi)− V (x̂i)| (18)

with x̂i as the predicted TS and xi as the corresponding database TS and M as the total number605

of samples. To compare the distribution of bond lengths in the predicted structures with those606

in the reference data, we use the Wasserstein-1 distance. Given two one-dimensional empirical607

distributions p and q over bond lengths with cumulative distribution functions P and Q, respectively,608

the Wasserstein-1 distance is defined as:609

W1(p, q) =

∫ ∞

−∞
|P (x)−Q(x)| dx. (19)

The Wasserstein-1 distance is computed separately for each bond type in the dataset and subsequently610

averaged across all types. As a metric that quantifies the minimal effort required to transform one611

distribution into another, it is particularly well-suited for capturing differences in geometric structure612

distributions, such as bond lengths.613
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NeurIPS Paper Checklist614

1. Claims615

Question: Do the main claims made in the abstract and introduction accurately reflect the616

paper’s contributions and scope?617

Answer: [Yes]618

Justification: Yes. The abstract states the primary improvements achieved by AEFM, and619

the introduction summarizes the methodological contributions (equilibrium flow formu-620

lation, physics-informed bond loss, fixed-point refinement) and scope. These claims are621

supported by the experiments and analyses presented in the main text and the Supplementary622

Information.623

Guidelines:624

• The answer NA means that the abstract and introduction do not include the claims625

made in the paper.626

• The abstract and/or introduction should clearly state the claims made, including the627

contributions made in the paper and important assumptions and limitations. A No or628

NA answer to this question will not be perceived well by the reviewers.629

• The claims made should match theoretical and experimental results, and reflect how630

much the results can be expected to generalize to other settings.631

• It is fine to include aspirational goals as motivation as long as it is clear that these goals632

are not attained by the paper.633

2. Limitations634

Question: Does the paper discuss the limitations of the work performed by the authors?635

Answer: [Yes]636

Justification: The discussion section outlines the main limitations of the current AEFM637

implementation and suggests directions for future improvement. In addition, ablation studies638

on data efficiency and the impact of the physics-informed loss provide further insight into639

the method’s constraints.640

Guidelines:641

• The answer NA means that the paper has no limitation while the answer No means that642

the paper has limitations, but those are not discussed in the paper.643

• The authors are encouraged to create a separate "Limitations" section in their paper.644

• The paper should point out any strong assumptions and how robust the results are to645

violations of these assumptions (e.g., independence assumptions, noiseless settings,646

model well-specification, asymptotic approximations only holding locally). The authors647

should reflect on how these assumptions might be violated in practice and what the648

implications would be.649

• The authors should reflect on the scope of the claims made, e.g., if the approach was650

only tested on a few datasets or with a few runs. In general, empirical results often651

depend on implicit assumptions, which should be articulated.652

• The authors should reflect on the factors that influence the performance of the approach.653

For example, a facial recognition algorithm may perform poorly when image resolution654

is low or images are taken in low lighting. Or a speech-to-text system might not be655

used reliably to provide closed captions for online lectures because it fails to handle656

technical jargon.657

• The authors should discuss the computational efficiency of the proposed algorithms658

and how they scale with dataset size.659

• If applicable, the authors should discuss possible limitations of their approach to660

address problems of privacy and fairness.661

• While the authors might fear that complete honesty about limitations might be used by662

reviewers as grounds for rejection, a worse outcome might be that reviewers discover663

limitations that aren’t acknowledged in the paper. The authors should use their best664

judgment and recognize that individual actions in favor of transparency play an impor-665

tant role in developing norms that preserve the integrity of the community. Reviewers666

will be specifically instructed to not penalize honesty concerning limitations.667
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3. Theory assumptions and proofs668

Question: For each theoretical result, does the paper provide the full set of assumptions and669

a complete (and correct) proof?670

Answer: [Yes]671

Justification: The Methods section provides detailed derivations of all equations and clearly672

states the assumptions underlying the theoretical results.673

Guidelines:674

• The answer NA means that the paper does not include theoretical results.675

• All the theorems, formulas, and proofs in the paper should be numbered and cross-676

referenced.677

• All assumptions should be clearly stated or referenced in the statement of any theorems.678

• The proofs can either appear in the main paper or the supplemental material, but if679

they appear in the supplemental material, the authors are encouraged to provide a short680

proof sketch to provide intuition.681

• Inversely, any informal proof provided in the core of the paper should be complemented682

by formal proofs provided in appendix or supplemental material.683

• Theorems and Lemmas that the proof relies upon should be properly referenced.684

4. Experimental result reproducibility685

Question: Does the paper fully disclose all the information needed to reproduce the main ex-686

perimental results of the paper to the extent that it affects the main claims and/or conclusions687

of the paper (regardless of whether the code and data are provided or not)?688

Answer: [Yes]689

Justification: A link to a public GitHub repository is provided, including a README file690

that details the training and inference procedures.691

Guidelines:692

• The answer NA means that the paper does not include experiments.693

• If the paper includes experiments, a No answer to this question will not be perceived694

well by the reviewers: Making the paper reproducible is important, regardless of695

whether the code and data are provided or not.696

• If the contribution is a dataset and/or model, the authors should describe the steps taken697

to make their results reproducible or verifiable.698

• Depending on the contribution, reproducibility can be accomplished in various ways.699

For example, if the contribution is a novel architecture, describing the architecture fully700

might suffice, or if the contribution is a specific model and empirical evaluation, it may701

be necessary to either make it possible for others to replicate the model with the same702

dataset, or provide access to the model. In general. releasing code and data is often703

one good way to accomplish this, but reproducibility can also be provided via detailed704

instructions for how to replicate the results, access to a hosted model (e.g., in the case705

of a large language model), releasing of a model checkpoint, or other means that are706

appropriate to the research performed.707

• While NeurIPS does not require releasing code, the conference does require all submis-708

sions to provide some reasonable avenue for reproducibility, which may depend on the709

nature of the contribution. For example710

(a) If the contribution is primarily a new algorithm, the paper should make it clear how711

to reproduce that algorithm.712

(b) If the contribution is primarily a new model architecture, the paper should describe713

the architecture clearly and fully.714

(c) If the contribution is a new model (e.g., a large language model), then there should715

either be a way to access this model for reproducing the results or a way to reproduce716

the model (e.g., with an open-source dataset or instructions for how to construct717

the dataset).718

(d) We recognize that reproducibility may be tricky in some cases, in which case719

authors are welcome to describe the particular way they provide for reproducibility.720
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In the case of closed-source models, it may be that access to the model is limited in721

some way (e.g., to registered users), but it should be possible for other researchers722

to have some path to reproducing or verifying the results.723

5. Open access to data and code724

Question: Does the paper provide open access to the data and code, with sufficient instruc-725

tions to faithfully reproduce the main experimental results, as described in supplemental726

material?727

Answer: [Yes]728

Justification: A link to a public GitHub repository is provided, including a README file729

that details the training and inference procedures. Furthermore, a link to zenodo for the730

pretrained models and datasets is provided.731

Guidelines:732

• The answer NA means that paper does not include experiments requiring code.733

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/734

public/guides/CodeSubmissionPolicy) for more details.735

• While we encourage the release of code and data, we understand that this might not be736

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not737

including code, unless this is central to the contribution (e.g., for a new open-source738

benchmark).739

• The instructions should contain the exact command and environment needed to run to740

reproduce the results. See the NeurIPS code and data submission guidelines (https:741

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.742

• The authors should provide instructions on data access and preparation, including how743

to access the raw data, preprocessed data, intermediate data, and generated data, etc.744

• The authors should provide scripts to reproduce all experimental results for the new745

proposed method and baselines. If only a subset of experiments are reproducible, they746

should state which ones are omitted from the script and why.747

• At submission time, to preserve anonymity, the authors should release anonymized748

versions (if applicable).749

• Providing as much information as possible in supplemental material (appended to the750

paper) is recommended, but including URLs to data and code is permitted.751

6. Experimental setting/details752

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-753

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the754

results?755

Answer: [Yes]756

Justification: The Supplementary Information contains an extensive table listing all hyperpa-757

rameters used for training and inference.758

Guidelines:759

• The answer NA means that the paper does not include experiments.760

• The experimental setting should be presented in the core of the paper to a level of detail761

that is necessary to appreciate the results and make sense of them.762

• The full details can be provided either with the code, in appendix, or as supplemental763

material.764

7. Experiment statistical significance765

Question: Does the paper report error bars suitably and correctly defined or other appropriate766

information about the statistical significance of the experiments?767

Answer: [No]768

Justification: We report mean and median metrics to summarize model performance. Al-769

though we did not include multiple random seeds in the main experiments, we conducted770

additional tests training models with different seeds and observed consistent results. Be-771

cause our method is largely deterministic with minimal variability, traditional error bars or772

statistical significance tests are not applicable.773
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Guidelines:774

• The answer NA means that the paper does not include experiments.775

• The authors should answer "Yes" if the results are accompanied by error bars, confi-776

dence intervals, or statistical significance tests, at least for the experiments that support777

the main claims of the paper.778

• The factors of variability that the error bars are capturing should be clearly stated (for779

example, train/test split, initialization, random drawing of some parameter, or overall780

run with given experimental conditions).781

• The method for calculating the error bars should be explained (closed form formula,782

call to a library function, bootstrap, etc.)783

• The assumptions made should be given (e.g., Normally distributed errors).784

• It should be clear whether the error bar is the standard deviation or the standard error785

of the mean.786

• It is OK to report 1-sigma error bars, but one should state it. The authors should787

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis788

of Normality of errors is not verified.789

• For asymmetric distributions, the authors should be careful not to show in tables or790

figures symmetric error bars that would yield results that are out of range (e.g. negative791

error rates).792

• If error bars are reported in tables or plots, The authors should explain in the text how793

they were calculated and reference the corresponding figures or tables in the text.794

8. Experiments compute resources795

Question: For each experiment, does the paper provide sufficient information on the com-796

puter resources (type of compute workers, memory, time of execution) needed to reproduce797

the experiments?798

Answer: [Yes]799

Justification: The GPU hardware and the number of CPU nodes are reported in both the800

main text and the Supplementary Information.801

Guidelines:802

• The answer NA means that the paper does not include experiments.803

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,804

or cloud provider, including relevant memory and storage.805

• The paper should provide the amount of compute required for each of the individual806

experimental runs as well as estimate the total compute.807

• The paper should disclose whether the full research project required more compute808

than the experiments reported in the paper (e.g., preliminary or failed experiments that809

didn’t make it into the paper).810

9. Code of ethics811

Question: Does the research conducted in the paper conform, in every respect, with the812

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?813

Answer: [Yes]814

Justification: The research conducted in this paper conform, in every respect, with the815

NeurIPS Code of Ethics.816

Guidelines:817

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.818

• If the authors answer No, they should explain the special circumstances that require a819

deviation from the Code of Ethics.820

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-821

eration due to laws or regulations in their jurisdiction).822

10. Broader impacts823

Question: Does the paper discuss both potential positive societal impacts and negative824

societal impacts of the work performed?825
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Answer: [Yes]826

Justification: The introduction discusses the broader impact of improved transition state827

prediction for advancing sustainable chemistry and accelerating reaction discovery. Potential828

negative societal impacts are minimal given the foundational nature of the work, though829

misuse in designing harmful compounds is conceivable.830

Guidelines:831

• The answer NA means that there is no societal impact of the work performed.832

• If the authors answer NA or No, they should explain why their work has no societal833

impact or why the paper does not address societal impact.834

• Examples of negative societal impacts include potential malicious or unintended uses835

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations836

(e.g., deployment of technologies that could make decisions that unfairly impact specific837

groups), privacy considerations, and security considerations.838

• The conference expects that many papers will be foundational research and not tied839

to particular applications, let alone deployments. However, if there is a direct path to840

any negative applications, the authors should point it out. For example, it is legitimate841

to point out that an improvement in the quality of generative models could be used to842

generate deepfakes for disinformation. On the other hand, it is not needed to point out843

that a generic algorithm for optimizing neural networks could enable people to train844

models that generate Deepfakes faster.845

• The authors should consider possible harms that could arise when the technology is846

being used as intended and functioning correctly, harms that could arise when the847

technology is being used as intended but gives incorrect results, and harms following848

from (intentional or unintentional) misuse of the technology.849

• If there are negative societal impacts, the authors could also discuss possible mitigation850

strategies (e.g., gated release of models, providing defenses in addition to attacks,851

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from852

feedback over time, improving the efficiency and accessibility of ML).853

11. Safeguards854

Question: Does the paper describe safeguards that have been put in place for responsible855

release of data or models that have a high risk for misuse (e.g., pretrained language models,856

image generators, or scraped datasets)?857

Answer: [NA]858

Justification: The work focuses on a specialized scientific model for transition state predic-859

tion in chemistry, which has no foreseeable high-risk misuse potential. Therefore, safeguards860

are not applicable.861

Guidelines:862

• The answer NA means that the paper poses no such risks.863

• Released models that have a high risk for misuse or dual-use should be released with864

necessary safeguards to allow for controlled use of the model, for example by requiring865

that users adhere to usage guidelines or restrictions to access the model or implementing866

safety filters.867

• Datasets that have been scraped from the Internet could pose safety risks. The authors868

should describe how they avoided releasing unsafe images.869

• We recognize that providing effective safeguards is challenging, and many papers do870

not require this, but we encourage authors to take this into account and make a best871

faith effort.872

12. Licenses for existing assets873

Question: Are the creators or original owners of assets (e.g., code, data, models), used in874

the paper, properly credited and are the license and terms of use explicitly mentioned and875

properly respected?876

Answer: [Yes]877

Justification: All prior work and datasets are cited accordingly.878
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• The answer NA means that the paper does not use existing assets.880

• The authors should cite the original paper that produced the code package or dataset.881

• The authors should state which version of the asset is used and, if possible, include a882

URL.883

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.884

• For scraped data from a particular source (e.g., website), the copyright and terms of885

service of that source should be provided.886

• If assets are released, the license, copyright information, and terms of use in the887

package should be provided. For popular datasets, paperswithcode.com/datasets888

has curated licenses for some datasets. Their licensing guide can help determine the889

license of a dataset.890

• For existing datasets that are re-packaged, both the original license and the license of891

the derived asset (if it has changed) should be provided.892

• If this information is not available online, the authors are encouraged to reach out to893

the asset’s creators.894

13. New assets895

Question: Are new assets introduced in the paper well documented and is the documentation896

provided alongside the assets?897

Answer: [Yes]898

Justification: Pretrained models and low-fidelity datasets are publicly available on Zenodo,899

accompanied by thorough documentation. Additionally, a detailed README on GitHub900

guides users on how to utilize these assets.901

Guidelines:902

• The answer NA means that the paper does not release new assets.903

• Researchers should communicate the details of the dataset/code/model as part of their904

submissions via structured templates. This includes details about training, license,905

limitations, etc.906

• The paper should discuss whether and how consent was obtained from people whose907

asset is used.908

• At submission time, remember to anonymize your assets (if applicable). You can either909

create an anonymized URL or include an anonymized zip file.910

14. Crowdsourcing and research with human subjects911

Question: For crowdsourcing experiments and research with human subjects, does the paper912

include the full text of instructions given to participants and screenshots, if applicable, as913

well as details about compensation (if any)?914

Answer: [NA]915

Justification: The paper does not involve crowdsourcing nor research with human subjects.916

Guidelines:917

• The answer NA means that the paper does not involve crowdsourcing nor research with918

human subjects.919

• Including this information in the supplemental material is fine, but if the main contribu-920

tion of the paper involves human subjects, then as much detail as possible should be921

included in the main paper.922

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,923

or other labor should be paid at least the minimum wage in the country of the data924

collector.925

15. Institutional review board (IRB) approvals or equivalent for research with human926

subjects927

Question: Does the paper describe potential risks incurred by study participants, whether928

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)929

approvals (or an equivalent approval/review based on the requirements of your country or930

institution) were obtained?931
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Answer: [NA]932

Justification: The paper does not involve crowdsourcing nor research with human subjects933

Guidelines:934

• The answer NA means that the paper does not involve crowdsourcing nor research with935

human subjects.936

• Depending on the country in which research is conducted, IRB approval (or equivalent)937

may be required for any human subjects research. If you obtained IRB approval, you938

should clearly state this in the paper.939

• We recognize that the procedures for this may vary significantly between institutions940

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the941

guidelines for their institution.942

• For initial submissions, do not include any information that would break anonymity (if943

applicable), such as the institution conducting the review.944

16. Declaration of LLM usage945

Question: Does the paper describe the usage of LLMs if it is an important, original, or946

non-standard component of the core methods in this research? Note that if the LLM is used947

only for writing, editing, or formatting purposes and does not impact the core methodology,948

scientific rigorousness, or originality of the research, declaration is not required.949

Answer: [NA]950

Justification: The core method development in this research does not involve LLMs as any951

important, original, or non-standard components.952

Guidelines:953

• The answer NA means that the core method development in this research does not954

involve LLMs as any important, original, or non-standard components.955

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)956

for what should or should not be described.957
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