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Abstract

In this paper, we derive generalization results for next-token risk minimiza-
tion in autoregressive processes of unbounded order. Our starting point is to
relate the empirical loss to the denoising loss, which requires no additional
assumptions compared to fixed-order Markovian models. We then show that,
under a mixing or rephrasability condition on the data-generating process
and assuming a stable hypothesis class, the out-of-sample generalization
error concentrates around the denoising error. These results characterize
sample complexity in terms of the number of tokens, rather than the num-
ber of i.i.d. sequences. As a primary application, we interpret in-context
learning as a special case of autoregressive prediction and derive sample
complexity bounds under similar conditions. Importantly, the properties
of individual in-context tasks determine the generalization rates, without
requiring assumptions on mixture processes. This perspective suggests that
in-context learning can exploit the task decomposition to learn efficiently.

1 Introduction

In-context learning—adapting to new tasks using a few input-output examples in the prompt
without updating model parameters—has attracted significant attention [Olsson et al.,
2022]. Recent work views models as performing inference over the prompt and focuses
on interpreting these implicit inference algorithms. Xie et al. [2022] posits that in-context
learning is an implicit form of Bayesian inference. While these perspective clarifies capabilities
and limitations, it sheds little light on generalization properties.
Statistical learning theory has traditionally focused on i.i.d. data [Vapnik and Chervonenkis,
2015]. Extensions to dependent data have mainly assumed stationary and mixing sequences
[Yu, 1994], leading to generalization bounds for non-i.i.d. settings [Mohri and Rostamizadeh,
2008, 2010]. However, these frameworks cannot accommodate autoregressive processes whose
order grows with sequence length. The recent work of Li et al. [2023] provides a first step in
this direction for in-context learning via stability [Bousquet and Elisseeff, 2002], but it is
limited to in-context tasks with i.i.d. data or simple first-order dynamical systems.
We address these gaps by developing a generalization framework for autoregressive models,
also accommodating in-context learning. Our theory allows for unbounded dependencies
under mixing or rephrasability condition on the data-generating process. Remarkably, for in-
context learning, such conditions are only needed at the task level, with no assumptions on the
training-induced mixture process. This reveals that autoregressive processes decomposable
into simple tasks can be learned efficiently with in-context learning, suggesting that it can
be seen as an efficient learning strategy for complex autoregressive tasks.
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2 Problem Setting
Function class. Let D = t1, . . . , td be a dictionary of discrete input tokens, where d ∈ N∗

denotes the number of distinct tokens. We consider learning autoregressive processes
over D⋆ := ∪∞

i=1Di and treat elements of D⋆ as vectors x⃗ = (x1, . . . , xk) ∈ Dk. Let
F := {fθ : D⋆ → Rd | θ ∈ Θ} be a class that maps sequences from D⋆ to an output logit
space in Rd. For each fθ and sequence x⃗ ∈ D⋆, let pθ(·|x⃗) = σ (fθ (x⃗)) ∈ P(D) denote the
probability distribution that is induced by fθ, where σ : Rd → Rd is the softmax activation
function. F then defines a class of autoregressive models: P := {pθ : D⋆ → P(D) | θ ∈ Θ}.
The classical example of such a class is ergodic Markov chains of order p where the predictions
at time t depend only on the previous p tokens. Transformers [Vaswani et al., 2017] or state
space models [Gu et al., 2021] are modern examples with full context dependency.
Empirical risk minimization. We assume the following data generation procedure for
the sequences. The sequences are initialized by sampling a prompt z⃗ = (z1, . . . , zP ) from a
distribution π⋆ over DP where P ∈ N is fixed. Then, full sequences are generated autore-
gressively by the ground truth p⋆: xt ∼ p⋆(· | x⃗t) , where x⃗t := (z1 , . . . , zP , x1 , . . . , xt−1).
We assume access to N training sequences of length T generated i.i.d. from π⋆ and p⋆:

∀n ∈ [N ] : z⃗(n) :=
(

z
(n)
1 , . . . , z

(n)
P

)
i.i.d∼ π⋆ , ∀n ∈ [N ], t ∈ [T ] : x

(n)
t ∼ p⋆(·|x⃗(n)

t ) ,

where x⃗
(n)
t := (z(n)

1 , . . . , z
(n)
P , x

(n)
1 , . . . , x

(n)
t−1). To learn an estimate pθ̂ of the ground truth

p⋆, we minimize the negative log likelihood Ltrain(θ) := 1
N

∑N
n=1 L(n)

train(θ) with L(n)
train(θ) :=

1
T

∑T
t=1 ℓθ(x⃗(n)

t ; x
(n)
t ) and ℓθ(x⃗; x) := − log pθ(x | x⃗)−H (p⋆(· | x⃗)) is the shifted cross entropy

loss. Given a minimizer θ̂ ∈ Θ that verifies Ltrain(θ̂) − infθ∈Θ Ltrain(θ) ≤ ϵopt for some ϵopt,
we are interested in the generalization error of the model θ̂.
Generalization errors. We are interested in in-sample or out-of-sample prediction error:

Lin(θ) := 1
N

N∑
n=1

L(n)
in (θ) := 1

N

N∑
n=1

1
T

T∑
t=1

E
x

(n)
t

[
ℓθ(x⃗(n)

t ; x
(n)
t )
]

, Lout(θ) := E
x⃗

(1)
T

[
L(1)

in (θ)
]

.

In-sample prediction error studied by Foster et al. [2020], Lotfi et al. [2024] measures the
denoising error over the training trajectories, while out-of-sample prediction error measures
the generalization error over all trajectories. If p⋆ has no specific structure, these two
generalization errors can differ significantly as the dynamics over the training trajectories
is not always informative about the dynamics of the test trajectories [Tsiamis et al., 2023].
Therefore, we expect the in-sample prediction error Lin to be small regardless of the properties
of p⋆ but Lout to be small only when the training set is representative of the test set.

3 Learning Autoregressive Processes
We assume all functions f ∈ F satisfy the boundedness condition:
Assumption 3.1 (Bounded logits). For all θ ∈ Θ, supz⃗∈supp(π⋆) supx⃗∈D⋆ ∥fθ(z⃗ ◦ x⃗)∥∞ ≤ B.

Proposition E.7 ensures that the loss at each step is controlled by B, which is standard in
the literature [Mohri and Rostamizadeh, 2008]. Furthermore, to derive fast rates, we use
how well the function class P uniformly approximates p⋆:
Definition 3.2 (Near well-specification). Let ϵapp be the the following constant

ϵapp := min
θ

sup
z⃗∈supp(π⋆)

sup
x⃗∈D⋆

∥p⋆(·|z⃗ ◦ x⃗) − pθ(·|z⃗ ◦ x⃗)∥TV .

Our results depend on the sequential metric entropy [Rakhlin and Sridharan, 2015, Bilodeau
et al., 2020, Jia et al., 2025] induced by the norm ∥f∥2,∞ := supu∈dom(f) ∥f(u)∥2:
Definition 3.3 (Sequential metric entropy). The sequential metric entropy is defined as:

H2,∞(F , ϵ, T ) := H2,∞(F|UT
, ϵ) , UT = ∪T

i=1Di and F|U := {f |U | f ∈ F} , (1)
where Hp(F , ϵ) is the metric entropy of F with norm p. For brevity, set C(ϵ) := H2,∞(F , ϵ, T ).

Lastly, we state our bounds in terms of ϵ that implicitly verifies a condition regarding the
metric entropy. We discuss the metric entropy and ϵ for various function classes in Section I.
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3.1 In-sample generalization
We first prove the in-sample generalization for the autoregressive setting:
Theorem 3.4 (In-sample generalization). Let Assumption 3.1 hold. With probability 1 − δ,

Lin(θ̂)−min
θ∈Θ

Lin(θ) = Õ

min


√√√√ B̃2C(ϵ) + log e

δ
NT

+ ϵopt, max

BC(ϵ) + log e

δ
NT

, Bϵapp + ϵopt



 .

Theorem 3.4 shows that as long as ϵopt is small, the generalization error is bounded by
the ratio of complexity of the class over the number of tokens. Notably, if Definition 3.2
holds with small constant, the rate matches the fast decay rate 1/NT up to logarithmic
factors, matching the i.i.d. discrete distribution setting. These decay rates do not rely on
assumptions on the data-generating process p⋆. Therefore, it applies to learning from any
class that verifies the mild condition in Assumption 3.1. In particular, it implies that over
the training trajectories, the temporal dependencies are not detrimental to learning, which
has crucial implications for memorization [Carlini et al., 2023].

3.2 Out-of-sample generalization

We start with the simplest i.i.d. rate based on the number of independent sequences:
Theorem 3.5 (i.i.d. rate). Let Assumption 3.1 hold. With probability 1 − δ,

sup
θ∈Θ

|Lout(θ) − Lin(θ)| = Õ

min


√√√√ B̃2C(ϵ) + log e

δ
N

,
B̃C(ϵ) + log e

δ
N

+ Bϵapp


 .

Theorem 3.5 does not yield an upper bound that accounts for T . In the context of pretraining
of language models, this is a huge inefficiency as T can be very large, e.g., a book or a long
piece of code. To make use of number of tokens in each sequence, we rely on the stability of
the function class and the mixing property of the data generation process.
Definition 3.6 (K-stability). Let X := {(x⃗, y⃗) | x⃗ ∈ DT , |x⃗| = |y⃗| , ∃!i ∈ [|x⃗|] : xi ≠ yi}. We
say that θ ∈ Θ is K-stable if supz⃗∈supp(π⋆) supx⃗,y⃗∈X̃

∑T
i=1 ∥fθ(z⃗ ◦ x⃗1:i) − fθ(z⃗ ◦ y⃗1:i)∥2 ≤ K.

Assumption 3.7 relates to the stability assumption in [Li et al., 2023], which itself connects
to the classical stability notion from [Bousquet and Elisseeff, 2002]. We require the estimator
and the minimizer to be in the K-stable set with high probability:
Assumption 3.7. Let ΘK := {θ ∈ Θ : θ is K − stable}. There exist a δ1 > 0 such that

P
(

{θ̂ ∈ ΘK}
)

≥ 1 − δ1 and argminθ L(θ) ⊂ ΘK .

Given a prompt z⃗, let Pk1:k2
z⃗ denote the law of the k1-th to k2-th token following z⃗, respectively.

Similarly, let Pk1:k2 denote the average laws induced by sampling of z⃗ ∼ π⋆. Finally, let Fk
z⃗

and Fk be σ-algebras of P1:k
z⃗ and P1:k, respectively.

Definition 3.8 (ϕ-mixing). Let ϕ(ϵ) be the smallest s ∈ N s.t. supz⃗∈supp(π⋆) ϕz⃗(s) ≤ ϵ where

ϕz⃗(s) := sup
k∈N

sup
A∈Fk

z⃗

∥Pk+s:∞
z⃗ (· | A) − Pk+s:∞(·)∥TV .

Definition 3.8 measures the memory of the process. A fast-decaying ϕ(ϵ) implies that the
process forgets its past quickly and we expect learning to happen closer to the i.i.d. setting.
A classical example of such processes is ergodic Markov chains with a fixed order. We obtain
the following out-of-sample generalization error:
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Theorem 3.9 (Out-of-sample generalization). Let Assumptions 3.1 and 3.7 hold. Let
ρ := minϵ∈[0,1] B̃T ϵ +

(
B̃ + K

)
ϕ(ϵ). With probability 1 − δ1 − δ2,

sup
θ∈ΘK

|Lout(θ) − Lin(θ)| = Õ

min


√√√√ρ2C(ϵ) + log 1

δ2
NT

,
ρC(ϵ)3/2 + log 1

δ2

N
√

T
+ Bϵapp


 .

For fast-mixing processes, ρ scales mildly with T , e.g., logarithmically for Markov chains with
finite mixing time, and Theorem 3.9 recovers the i.i.d. dependency in N as in Theorem 3.5
with an improvement over the T dependency. For non-mixing processes, ρ might scale with
T as ϕ(ϵ) is diverging for ϵ < 1 and the rate is vacuous. We work with a relaxation of mixing
in Section C.

4 Learning In-context Tasks
Assume that there is a set of tasks W and a prior distribution PW over the tasks. Given
a task w ∈ W, there is a prompt distribution π⋆

w and a conditional distribution p⋆
w that

generates data autoregressively as follows z⃗ ∼ π⋆
w , xt ∼ p⋆

w(· | x⃗t). The task is to learn a
model pθ̂ ∈ P given access to

∀n ∈ [N ] : wn ∼ PW , z⃗(n) i.i.d∼ π⋆
wn

, ∀n ∈ [N ], t ∈ [T ] : x
(n)
t ∼ p⋆

wn
(· | x⃗

(n)
t ) .

We denote training, in-sample, in-prompt and out-of-sample losses for a particular task n

by L(n)
train, L(n)

in and L(n)
out, respectively. By L̂train, L̂in and L̂out, we denote the average losses

over all tasks sampled. Similar to Section 2, the learner minimizes L̂train.
At first, this setting may appear more complex than the standard autoregressive setting, as
the learner must learn over a set of autoregressive tasks. However, it can be viewed as a
special case of the autoregressive setting. Define π⋆

∞, p⋆
∞ as follows:

π⋆
∞(z⃗) =

∫
w∈W

π⋆
w(z⃗)PW(w)dw , p⋆

∞(x | x⃗t) =
∫

w∈W
p⋆

w(x | x⃗t) PW(w | x⃗t) dw , (2)

where PW(w | x⃗t) ∝ PW(w) Pw(x⃗t) with Pw(x⃗t) := π⋆
w(z⃗)

∏t−1
i=1 p⋆

w(xi | x⃗i). The conditional
distribution p⋆

∞ captures optimal Bayesian inference over sequences. Up to differences in
the sampling scheme, we can now interpret the in-context learning as a special case of the
autoregressive setting, in which the learner observes samples from the mixture p⋆

∞ and prior
π⋆

∞. Therefore, it follows that Theorems 3.4 and 3.5 directly extend to the in-context learning
setting with π⋆ := π⋆

∞, p⋆ := p⋆
∞ and Lin(θ) := E[L̂in(θ)], Lout(θ) := E[L̂out(θ)].

What makes this setting interesting is that p⋆
∞ is a complicated mixture autogressive process,

possibly not satisfying the mixing properties of the individual tasks p⋆
w. Nevertheless, the

mixing properties of the individual tasks p⋆
w are sufficient to derive generalization bounds for

the mixture distribution p⋆
N that approximates p⋆

∞ with the training tasks, i.e., PW replaced
by P̂W :=

∑N
i=1 δwi

/N . In the following, set π⋆ := π⋆
N , p⋆ := p⋆

N .
Theorem 4.1 (Task-wise out-of-sample generalization). Let Assumptions 3.1 and 3.7 hold.
Let ρ be as in Theorem 3.9 where ϕ(ϵ) is replaced by max⌈ϕwi(ϵ)⌉. With probability 1−δ1 −δ2,

sup
θ∈ΘK

|L̂out(θ) − L̂in(θ)| = Õ

min


√√√√ρ2C(ϵ) + log 1

δ2
NT

,
ρC(ϵ)3/2 + log 1

δ2

N
√

T
+ Bϵapp


 .

Note that the quantity L̂out is precisely the loss defined by the out-of-sample generalization
error with ground truth p⋆ := p⋆

N in Section 3. This follows directly from the fact that
in-context sampling and p⋆

N induce the same joint distribution over the observed data.
Theorem 4.1 is a direct extension of Theorem 3.9 to the in-context learning setting. Remark-
ably, the rate is the same with the looser assumption of mixing properties for the individual
tasks. This suggests that in-context learning exploits the task decomposition, allowing for a
more efficient learning of the process p⋆

N than Theorem 3.5. Importantly, Theorem 4.1 is not
on the ground-truth process p⋆

∞ but on the process p⋆
N . We comment more in Section D.
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A Organization of the appendix

The appendix is organized as follows,

• In Section B, we review the related work.
• In Section C, we extend our results to rephrasability assumption which is looser

than mixing.
• In Section D, we discuss our findings in the context of related work.
• In Section E, we provide the preliminary concentration tools.
• In Section F, we prove Theorem 3.4 and its weaker version without Definition 3.2.
• In Section G, we establish the dependence of the rates on the number of sequences N .

This section provides concentration analysis over independent sequences assuming
sequence-level tail bounds.

• In Section H, we establish the dependence of the rates on the number of tokens per
sequence T . In particular, we establish the tail bounds needed in Section G by an
analysis of non-i.i.d. concentration within a single sequence.

• In Section J, we discuss mixing with rephrasability conditions more in detail.
• In Section K, we discuss the concentration of the training mixture for in-context

setting.

B Related Work

Generalization bounds for non-i.i.d. data were first studied in the context of stationary
β-mixing sequences [Yu, 1994, Meir, 2000, Vidyasagar, 2013]. The main technique is the
independent block method, introduced by Bernstein [1927], which reduces the problem to
the i.i.d. setting. Later analyses incorporated additional assumptions, such as ϕ-mixing and
algorithmic stability, or extended techniques like Rademacher complexity to the non-i.i.d.
setting [Mohri and Rostamizadeh, 2008, 2010, Fu et al., 2023, Chatterjee et al., 2025].
Similar to these previous works, our analysis relies on ϕ-mixing and stability assumptions,
and also uses the independent block technique. Our main technical improvements over this
body of work are threefold. First, our analysis handles autoregressive processes without
a fixed context size. Second, we apply localization [see, e.g., Wainwright, 2019] to obtain
faster rates. We build on self-concordance [Bach, 2010, Bilodeau et al., 2020, Ostrovskii
and Bach, 2021] arguments by Yüksel et al. [2025] to first concentrate the empirical loss
around the denoising loss, then introduce a star-shaped logit space to localize the problem.
Lastly, we borrow a notion of regularity for the data-generating process from Yüksel and
Flammarion [2025], which serves as the analog of the stability assumption for the hypothesis
class, but applied to the data generation process. This allows us to prove generalization
bounds without any explicit mixing assumptions.
Closely related is the recent work of Li et al. [2023], who study the sample complexity of
in-context learning in i.i.d. and stable first-order dynamical systems. We provide a more
general framework that incorporates autoregressive processes of arbitrary order and also
derive sharper rates in well-specified settings. Gong et al. [2025] also analyze the sample
complexity of in-context learning but do not rigorously track the mixing dependencies that
effectively cancel the token dependency, collapsing their rate to the i.i.d. case. Joshi et al.
[2025] studies sample complexity but only on the level of sequences, not individual tokens.
In-context learning has been interpreted as implicit Bayesian inference [Xie et al., 2022], but
this view has been challenged by Raventós et al. [2023], Falck et al. [2024]. A key criticism is
that such inference yields optimal generalization over training tasks, not over new test tasks
from the same distribution. However, transformers trained on a sufficiently large number of
in-context tasks often generalize well to unseen tasks, suggesting inference over the true task
distribution rather than just the training set. Recent work shows that this shift depends on
context length, data diversity, and model size [Raventós et al., 2023, Park et al., 2025].
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C Extension to Rephrasability

In Section 3.2, we assume that the data generation process p⋆ has a favorable mixing
properties such that it is possible to learn the whole dynamics from a single trajectory after
sufficiently many samples. However, these assumptions can be restrictive as autoregressive
processes of interest such as language are not necessarily mixing. Therefore, we consider an
additional intermediate notion of generalization based on fixed prompts:

Lppt(θ) := 1
N

N∑
n=1

L(n)
ppt(θ) , with L(n)

ppt(θ) := E
x⃗

(n)
P +1:P +T

[
L(n)

in (θ)
]

. (3)

The difference to Lout is that the expectation is taken only with respect to the sequence and
the prompts are kept fixed. The intuition behind Equation (3) is that after a prompt of
length P , the task is determined and the process associated with a single task may exhibit
regularity. Whereas, the joint process induced by the different tasks may not exhibit such
regularity as the task is changing with the input sequence.
Furthermore, learning-with-mixing usually leads to rates that are too pessimistic in practice,
as evidenced by the results on learning-without-mixing [Simchowitz et al., 2018]. These
results demonstrate linear dynamical systems that are non-mixing can be learned without
any major deflation in the sample size compared to the i.i.d. setting. To derive a result in a
similar direction, we adapt the coupling assumption by Yüksel and Flammarion [2025] to
our setting:
Definition C.1 (Couplings). Let D̃k be all pairs of sequences with the last token different:

D̃k := {(x⃗, y⃗) ∈ Dk × Dk | ∀i ∈ [k − 1] : xi = yi} .

Then, let Γz⃗(x⃗, y⃗) denote the couplings between the continuations after a shared prompt z⃗:

Γz⃗(x⃗, y⃗) := Γ
(

P1:T −k
z⃗◦x⃗ , P1:T −k

z⃗◦y⃗

)
.

Definition C.2 (r-rephrasability). We call the pair (π⋆, p⋆) r-rephrasable if for all z⃗ ∈
supp(π) and k ∈ [T ], the following holds:

sup
x⃗,y⃗∈D̃k

inf
γ∈Γz⃗(x⃗,y⃗)

Eµ⃗,ν⃗∼γ [dH(µ⃗, ν⃗)] ≤ r .

Intuitively, a small r-rephrasability states that the trajectories that differ by a single token
stay close to each other and can be rephrased to each other with a r number of token changes.
Notably, the change is not localized within the first r tokens, which would have implied
mixing. This is particularly appealing for the prompt-based setting as after the initial prompt,
the process has indexed a latent “task” that is shared within the context, whereas a difference
in the initial tokens can lead to a completely different task. Therefore, conditioned on the
prompt, we expect the data generation process to not bifurcate to completely different paths.
We provide a rate for prompt-based generalization that is based on the r-rephrasability
assumption:
Theorem C.3 (In-prompt generalization). Let Assumptions 3.1 and 3.7 hold. Let ρ :=(
B̃ + K

)
r. With probability 1 − δ1 − δ2,

sup
θ∈ΘK

|Lppt(θ) − Lin(θ)| = Õ

min


√√√√ρ2C(ϵ) + log 1

δ2
NT

,
ρC(ϵ)3/2 + log 1

δ2

N
√

T
+ Bϵapp


 .

D Discussion

In-context generalization. Raventós et al. [2023] describe a phase transition in trans-
former pretraining from learning the mixture process p⋆

N to the ground-truth process p⋆
∞.

Below a certain task diversity threshold, the model learns p⋆
N ; as diversity increases, it
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transitions to learn p⋆
∞. This transition depends on the number of optimization steps and the

context length [Boursier and Flammarion, 2024, Park et al., 2025]. However, the theoretical
understanding of this transition has remained limited.
We hypothesize that the inductive bias of the function class F play a key role in this
transition. As both the number of tasks N and the context length T increase, learning the
mixture process p⋆

N with a fixed-capacity model becomes increasingly difficult. The growing
complexity of p⋆

N may force the model to generalize across tasks and contexts, effectively
biasing it toward the underlying prior distribution and p⋆

∞. This is particularly relevant
for in-context learning with linear regression or Markov chain prediction tasks, where p⋆

∞
is shown to be approximately implementable by transformers and usually have a simple
structure, e.g., the counting estimator [Akyürek et al., 2023, Edelman et al., 2024].
Our results explain the statistical aspects of in-context generalization. Assuming that
optimization error ϵopt is small and the function class is near well-specified, ϵapp ≈ 0,
Theorems 3.4 and 4.1 show that the training mixture p⋆

N is learned with a rate that decays
with the number of tokens NT . If the function class is not well-specified, we obtain a
competitive bound. That is, θ̂ is competitive with the best within the class at generalizing
to the sequences generated by p⋆

N . On the other hand, Theorem 3.5 shows how fast p⋆
∞ is

learned with a rate that only depends on N , without depending on T . This is due to the fact
that L̂out(θ) converges around Lout(θ) := E[L̂out(θ)], and p⋆

N converges to p⋆
∞ as N → ∞.

Thus, for large N , learning p⋆
N is equivalent to learning p⋆

∞. We comment more on the speed
of convergence of p⋆

N to p⋆
∞ in Section K.

As per the discussion in previous paragraph, when optimization is done well and approxima-
tion of p⋆

N is possible, we learn p⋆
N and not p⋆

∞ for finite N . Hence, to obtain a rate for p⋆
∞

that decays with T , we have two alternatives: either there is an optimization bias such that
ϵopt is large, or, there is an inductive bias in the class, i.e., p⋆

N is best approximated by p⋆
∞

within F as N grows. For the former, our results are not applicable as they are conditioned
on a small optimization error. For the latter, our competitive bounds explain why it is
possible to generalize to p⋆

∞ with a rate that decays with NT . Therefore, we postulate that
the inductive bias of the function class is key to understanding generalization of in-context
learning. That is, we conjecture that not only growing N but also growing T for a fixed N
induces an inductive bias towards p⋆

∞ instead of p⋆
N .

Well-specification. The results in Sections 3 and 4 show different decay rates of general-
ization error in N . Granted Definition 3.2 with a small constant ϵapp, the rates are faster in
N . In order to obtain these faster rates, we develop a star-shaped function class around and
use localization techniques. This strategy does not incur any major additional complexity in
the sequential entropy of the function class. In contrast, the within-sequence concentration
relies on trajectory-dependent properties of the generative model where the martingale
variance is difficult to control, even under well-specification, limiting the achievable rate in
T .
However, when Definition 3.2 holds with a large constant ϵapp, these bounds may become
vacuous. This is when slower rates of order 1/

√
NT , matching with the rates of Li et al.

[2023], are tighter. Unlike their work, however, we study more general in-context learning
settings and do not impose restrictions on the target tasks, such as an i.i.d. structure or
first-order stable dynamical systems.

Stability. The K-stability in Definition 3.6, closely related to the point-wise stability of Li
et al. [2023], is key to extending Theorem 3.5 to Theorems C.3 and 3.9. Specifically, point-wise
stability of K

m , where m is the context size, yields a cumulative bound of
∑

m∈[T ]
K
m ∼ K log T

for any input. Li et al. [2023] show that transformers exhibit such stability, with the stability
error scaling 1

m as the context grows, which implies that our results apply in this setting with
at most a logarithmic slowdown in the full sequence length. In addition, they empirically
show instances of in-context learning that exhibit stability.
A limitation of such stability bounds are potentially large constants K, which can be
exponential in the number of transformer layers, as shown by Li et al. [2023]. This stems
from the “worst-case” nature of such stability assumptions, being uniform over all contexts
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and all functions in the class. Similarly, we require the learned estimator to be stable with
high probability instead of these worst-case bounds. In practice, such stability may arise
from the specific learning algorithm used, such as gradient descent.
Lastly, transformers trained with gradient descent often fail to learn long-range dependencies
that violate stability conditions, such as bit-string parity [Hahn and Rofin, 2024], highlighting
fundamental computational limitations [Merrill and Sabharwal, 2023]. This suggests that
some form of stability, perhaps relaxed, is essential for generalization theory.

Mixing and rephrasability. Our convergence rates depend on the regularity of the
generative model, as captured by either the ϕ–mixing constant (Definition 3.8) or the
r–rephrasability constant (Definition C.2). Both quantities reflect the number of token-level
edits required to transform one sequence into another. The r-rephrasability is less stringent,
since it considers only the total edit count, whereas ϕ–mixing additionally requires that
those edits occur within a fixed window after the two sequences diverge.
We argue that r–rephrasability is a more natural condition for language-modeling tasks,
since it formalizes the intuitive idea that two sequences differing by a single token can be
converted into each other with only a few edits. Moreover, we expect r to decrease as the
prompt length P increases, because a longer prompt serves as a richer shared context, making
rephrasing easier. Finally, this approach can be extended to structured prompts and to
generalization bounds beyond the fixed-prompt setting, which we defer to future work.
We present algorithmic tasks that fit in to the r-rephrasability framework that do not mix
in Section J. We also sketch how r-rephrasability can be estimated.

Autoregressive settings. Our autoregressive processes are over a discrete space, reflecting
the standard setting in practice. While our results are tailor for discrete sequences, they can
be extended to other autoregressive scenarios, such as continuous outputs or regression tasks
under mixing conditions. For example, in the continuous case, the model may predict the
mean of a Gaussian distribution over outputs, corresponding to the standard squared loss.
A natural application is in-context learning with i.i.d. regression observations.

Other generalization measures. We focus on sequential metric entropy as our complexity
measure. Although chaining methods can yield rates with improved logarithmic dependencies
[see, e.g., Wainwright, 2019], we do not pursue them here. A promising direction for future
work is to extend our results to other complexity measures, such as Rademacher complexity,
as explored by Mohri and Rostamizadeh [2008] for dependent variables.

E Preliminaries

We introduce additional notation for brevity. The elements of D are viewed as one-hot
vectors of length d with the i-th entry equal to 1 if the token is ti and 0 otherwise. log
denotes the natural logarithm.

E.1 Concentration inequalities

We use concentration inequalities to control tail deviations of empirical processes from their
mean. The first result is due to Hoeffding in i.i.d. case [Hoeffding, 1963], extended to the
sub-Gaussian case [Wainwright, 2019, Proposition 2.5.]:
Theorem E.1 (Hoeffding bound). Let X1, . . . , Xn be variables that are independent with
mean µi and sub-Gaussian parameter σi. Then, for all ϵ ≥ 0, we have

P

(
n∑

i=1
(Xi − µi) ≥ ϵ

)
≤ exp

(
− ϵ2

2
∑n

i=1 σ2
i

)
.

We need marginale versions of the Hoeffding bound. Azuma-Hoeffding inequality [Azuma,
1967] gives a concentration result when differences are bounded:
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Theorem E.2 (Azuma-Hoeffding). Let Y0, Y1, . . . , Yn be a real-valued martingale sequence
that is adapted to the filtration F1, . . . , Fn where Y0 = 0. Let X1, . . . , Xn be the martingale
difference sequence, i.e., Xi = Yi − Yi−1. The Azuma-Hoeffding inequality [Azuma, 1967]
states that if |Xi| ≤ B for all i, then for any ϵ > 0:

P (∃k ∈ [n] : |Yk| ≥ ϵ) ≤ 2 exp
(

− ϵ2

2nB2

)
.

An improvement of the Azuma-Hoeffding inequality is the Freedman’s inequality [Freedman,
1975], which gives a sharper bound when the martingale difference are bounded and has
bounded variance:
Theorem E.3 (Freedman’s inequality). Assume the setting of Theorem E.2. Let Zi be the
conditional variance of Xi given Fi−1, i.e., Zi = E[X2

i | Fi−1]. Let Wi =
∑i

j=1 Zj be the
cumulative variance. The Freedman’s inequality [Freedman, 1975] states that if |Xi| ≤ B for
all i, then for any ϵ > 0 and W > 0:

P (∃k ∈ [n] : |Yk| ≥ ϵ and Wk ≤ W ) ≤ 2 exp
(

− ϵ2

2Bϵ + 2W

)
.

Lastly, we need an extension of the Freedman’s inequality to the case where the martingale
difference sequence is not bounded:
Theorem E.4 (Freedman’s inequality with non-bounded differences). Assume the setting
of Theorem E.3. Let W R

i be the cumulative variance of the martingale difference sequence
Xi, augmented by the contribution of extremal values beyond R, i.e.,

W R
i =

i∑
j=1

Zj + 1{|Xj |>R}X2
j .

Then, Dzhaparidze and Van Zanten [2001] proves the following for any ϵ > 0 and W > 0:

P
(
∃k ∈ [n] : |Yk| ≥ ϵ and W R

k ≤ W
)

≤ 2 exp
(

− 3ϵ2

2(Rϵ + 3W )

)
.

E.2 Discretization

We use discretization arguments to derive tail bounds of supremum over the function class:
Proposition E.5 (Discretization). Assume that X(θ) := X(fθ) and Y (θ) := Y (fθ) are
random variables for any θ ∈ Θ and that we have the following pointwise bound some choice
of ϵ > 0, δ > 0:

P (|X(θ) − Y (θ)| ≥ ϵ) ≤ δ exp (−H2,∞ (F , ϵ, T )) .

Then, we have the supremum bound by discretization:

P
(

sup
θ∈Θ

|X(θ) − Y (θ)| ≥ (1 + 2L)ϵ
)

≤ δ ,

where L is the Lipschitz constant of X(fθ) and Y (fθ) with respect to fθ.
Remark E.6. All of the losses used in the paper are

√
2-Lipschitz in ℓ2 norm with respect

to logits fθ.

E.3 Propositions

Proposition E.7 (Bounded loss). Given Assumption 3.1, the following holds for all θ ∈ Θ:
sup

z⃗∈supp(π⋆)
sup

x⃗∈D⋆

sup
x∈D

− log pθ(x | z⃗ ◦ x⃗) ≤ B̃ ,

where B̃ := B + log d.
Proposition E.8 (Lipschitzness). Assume there exists a constant L such that for all
θ, θ′ ∈ Θ:

sup
z⃗∈supp(π⋆)

sup
x⃗∈D⋆

∥fθ(z⃗ ◦ x⃗) − fθ′(z⃗ ◦ x⃗)∥2 ≤ L∥θ − θ′∥q .

Then, H2,∞(F , ϵ, T ) ≤ Hq(Θ, ϵ/L).
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F In-sample generalization

Let θ̂ be any estimate that verifies optimality condition, i.e., ∀θ0 ∈ Θ:
Ltrain(θ̂) − Ltrain(θ0) ≤ ϵopt . (4)

We first prove the slow rate that decays with square root of NT without Definition 3.2:
Theorem F.1 (Slow in-sample generalization). Let Assumption 3.1 holds. For any 0 < δ < 1,
with probability at least 1 − δ, the following holds:

Lin(θ̂) − inf
θ∈Θ

Lin(θ) = O


√√√√ B̃

(
H2,∞(F , ϵ, T ) + log e

δ

)
NT

+ ϵopt

 ,

where ϵ > 0 is chosen such that

ϵ ≍

√√√√ B̃H2,∞(F , ϵ, T ) + log e

δ
NT

. (5)

Proof. A classical strategy to upper bound generalization error is based on the following
decomposition:
Lin(θ) − Lin(θ0) = (Lin(θ) − Ltrain(θ)) + (Ltrain(θ) − Ltrain(θ0)) + (Ltrain(θ0) − Lin(θ0)) .

By, Equation (4), we have ∀θ0 ∈ Θ:
Lin(θ̂) − Lin(θ0) ≤ ϵopt + 2 sup

θ∈Θ
|Lin(θ) − Ltrain(θ)| . (6)

A uniform concentration of Ltrain on Lin, combined with Equation (6), yields the desired
result. We first establish a pointwise concentration bound for the training loss:

Ltrain(θ) − Lin(θ) =
N∑

n=1

T∑
t=1

− log pθ(x(n)
t | x⃗

(n)
t ) +

N∑
n=1

T∑
t=1

d∑
i=1

p⋆(ei | x⃗
(n)
t ) log pθ(ei | x⃗

(n)
t ) .

(7)

Since, x
(n)
t ∼ p⋆(· | x⃗

(n)
t ), we have that

E
x

(n)
t

[
− log pθ(x(n)

t | x⃗
(n)
t )
]

=
d∑

i=1
p⋆(ei | x⃗

(n)
t ) log pθ(ei | x⃗

(n)
t ) .

That is, each of the entries of Equation (7) is a martingale difference sequence. Furthermore,
Proposition E.7 implies that the martingale difference sequence is bounded by B̃. We can
then apply the Azuma-Hoeffding inequality [Azuma, 1967] to obtain the following:

P (|Ltrain(θ) − Lin(θ)| ≥ ϵ) ≤ 2 exp
(

−NTϵ2

2B̃2

)
.

By setting ϵ =

√√√√2B̃2
(

H2,∞(F , ϵ, T ) + log e

δ

)
NT

, we obtain the following:

P (|Ltrain(θ) − Lin(θ)| ≥ ϵ) ≤ δ exp (−H2,∞ (F , ϵ, T )) .

By Proposition E.5, we obtain the uniform bound over the class F :

P
(

sup
θ∈Θ

|Ltrain(θ) − Lin(θ)| ≥
(

1 + 2
√

2
)

ϵ

)
≤ δ ,

Therefore, with probability at least 1 − δ:

Lin(θ̂) − inf
θ∈Θ

Lin(θ) = O


√√√√ B̃2

(
H2,∞(F , ϵ, T ) + log e

δ

)
NT

+ ϵopt

 .
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Next, we show that Definition 3.2 leads to an improved rate:
Theorem F.2 (Fast in-sample generalization). Let Assumption 3.1 and definition 3.2 hold.
For any 0 < δ < 1, with probability at least 1 − δ, the following holds:

Lin(θ̂) = Õ

B
(

H2,∞(F , ϵ, T ) + log e

δ

)
NT

+ Bϵapp + ϵopt

 ,

where ϵ is chosen such that:

ϵ ≍
B
(

H2,∞(F , ϵ, T ) + log e

δ

)
NT

.

Proof. Let hθ⋆(x⃗(n)
t ), h⋆(x⃗(n)

t ) denote the Hessian of the log-likelihood of the model pθ⋆(· |
x⃗

(n)
t ) and the target p⋆(· | x⃗

(n)
t ) with respect to their probabilities, respectively:

hθ⋆
(x⃗(n)

t ) = diag
(

pθ⋆
(· | x⃗

(n)
t )
)

− pθ⋆
(· | x⃗

(n)
t )pθ⋆

(· | x⃗
(n)
t )⊤ ,

h⋆(x⃗(n)
t ) = diag

(
p⋆(· | x⃗

(n)
t )
)

− p⋆(· | x⃗
(n)
t )p⋆(· | x⃗

(n)
t )⊤ .

Denote the following quantities:

Ztrain(θ) := 1
NT

N∑
n=1

T∑
t=1

〈
pθ⋆(· | x⃗

(n)
t ) − x

(n)
t , fθ(x⃗(n)

t ) − fθ⋆(x⃗(n)
t )
〉

,

Z⋆
train(θ) := 1

NT

N∑
n=1

T∑
t=1

〈
p⋆(· | x⃗

(n)
t ) − x

(n)
t , fθ(x⃗(n)

t ) − fθ⋆(x⃗(n)
t )
〉

,

Vtrain(θ) := 1
NT

N∑
n=1

T∑
t=1

∥fθ(x⃗(n)
t ) − fθ⋆(x⃗(n)

t )∥2
hθ⋆ (x⃗

(n)
t )

,

V⋆
train(θ) := 1

NT

N∑
n=1

T∑
t=1

∥fθ(x⃗(n)
t ) − fθ⋆(x⃗(n)

t )∥2
h⋆(x⃗

(n)
t )

.

Note that, by Assumption 3.1 and definition 3.2,
|Ztrain(θ) − Z⋆

train(θ)| ≤ 2Bϵapp ,

|Vtrain(θ) − V⋆
train(θ)| ≤ 8B2ϵapp .

By properties of the KL divergence [Yüksel and Flammarion, 2025, Proposition A.1.], we
can write:

Ltrain(θ) − Ltrain(θ⋆) + Ztrain(θ) = L̃in(θ) , where

L̃in(θ) = 1
NT

N∑
n=1

T∑
t=1

KL(pθ⋆(· | y⃗
(n)
t ) ∥ pθ(· | y⃗

(n)
t )) .

By self-concordance of the log likelihood with respect to the logits [Yüksel and Flammarion,
2025, Proposition A.5.], we have the following lower bound:

L̃in(θ) ≥ 5
36B

Vtrain(θ) .

Therefore, by Equation (4), we conclude that:

ϵopt + CBϵapp + Z⋆
train(θ̂) ≥ 5

36B
V⋆

train(θ̂) ,

for some constant C. Two different cases arise:
Z⋆

train(θ̂) ≤ ϵopt + CBϵapp and Z⋆
train(θ̂) > ϵopt + CBϵapp .
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The first case leads to the fast rate:
Z⋆

train(θ̂) = O (ϵopt + Bϵapp) .

The second case leads to the following basic inequality:

Z⋆
train(θ̂) ≥ 5

72B
V⋆

train(θ̂) .

This basic inequality is studied by Yüksel and Flammarion [2025, Appendix B] in the context
of Markov chains. Their results directly extend to our setting, by replacing their complexity
measure with the sequential metric entropy H2,∞(F , ϵ, T ). In particular, with probability
1 − δ, for all θ ∈ Θ:

Z⋆
train(θ) ≤ max

{
5

72B
V⋆

train(θ), α

}
, where α = Õ

B

(
H2,∞(F , ϵ, T ) + log 1

δ

)
NT

 .

G Generalization with independent sequences

We first give the corrected definition of the stability and the stability assumptions in the
main text:
Definition G.1 (K-stability). Let X be the following set of sequences:

X := {(x⃗, y⃗) | x⃗ ∈ DT , |x⃗| = |y⃗| , ∃!i ∈ [|x⃗|] : xi ̸= yi} .

We say that θ ∈ Θ is K-stable if:

sup
z⃗∈supp(π⋆)

sup
x⃗,y⃗∈X̃

|x⃗|∑
i=1

∥fθ(z⃗ ◦ x⃗1:i) − fθ(z⃗ ◦ y⃗1:i)∥2 ≤ K .

Assumption G.2. Let ΘK := {θ ∈ Θ : θ is K − stable}. There exist a δ1 > 0 such that

P
(

{θ̂ ∈ ΘK} ∩ {argminθ L(θ) ∈ ΘK}
)

≥ 1 − δ1 ,

where L is the generalization loss of interest.

In this section, we establish how the rates in Sections C, 3.2 and 4 depend on the number
of sequences N . We provide a unified treatment for all theorems by abstracting away the
details of per-sequence concentrations and assume a tail bound on the in-sample loss. These
tail bounds are established in Section H for the in-sample loss and tailored to specific
settings. Similar to Section F, we establish both a slow and a fast rate in N , depending on if
Definition 3.2 is granted.

Stability. We work conditionally on the event in Assumption G.2. This is why Theo-
rems C.3, 3.9 and 4.1 pay the constant that depends on the probability of this event. In the
discussion below, we take it granted that θ̂ ∈ ΘK and argminθ L(θ) ∈ ΘK .

Decomposition of loss. Our generalization results are given in terms of
sup

θ∈ΘK

|L(θ) − Lin(θ)| .

Recall that this controls the generalization error
L(θ̂) − inf

θ∈ΘK

L(θ) = L(θ̂) − inf
θ∈Θ

L(θ) ,

as the following decomposition relates the in-sample to any other generalization loss for
θ0 ∈ ΘK :

L(θ̂) − L(θ0) =
(

L(θ̂) − Lin(θ̂)
)

+
(

Lin(θ̂) − Lin(θ0)
)

+ (Lin(θ0) − L(θ0)) ,

≤
(

Lin(θ̂) − Lin(θ0)
)

+ 2 sup
θ∈ΘK

|L(θ) − Lin(θ)| .
(8)

The first term is bounded in Section F and we work only on the second term.
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Tail bound assumption. Let L(n)(θ), L(θ) denote the expected in-sample loss and its
average, respectively:

L(n)(θ) := E
[
L(n)

in (θ)
]

, L(θ) := 1
N

N∑
n=1

L(n)(θ) .

This expectation can be tailored to specific settings, such as the out-of-sample loss Lout,
prompt-based loss Lppt and in-context learning loss, which we comment in Section G.3. In
the following, we assume the sub-Gaussianity of the in-sample loss L(n)

in (θ) where we derive
the sub-Gaussianity parameter in Section H:

Assumption G.3. L(n)
in (θ) is sub-Gaussian with parameter σ2 for all θ ∈ ΘK .

G.1 Slow rate.

Theorem G.4 (Slow rate). Let Assumptions 3.1 and G.3 hold. With probability 1 − δ,

sup
θ∈ΘK

|L(θ) − Lin(θ)| = Õ

σ

√√√√H2,∞(F , ϵ, T ) + log e

δ
N

 ,

where ϵ is chosen such that:

ϵ ≍ σ

√√√√H2,∞(F , ϵ, T ) + log e

δ
N

.

By Theorem E.1, we have the following tail bound for any ϵ > 0:

P (|L(θ) − Lin(θ)| ≥ ϵ) ≤ 2 exp
(

−Nϵ2

2σ2

)
.

By setting ϵ = σ

√√√√(H2,∞(F , ϵ, T ) + log e

δ

)
2N

, we obtain

P (|L(θ) − Lin(θ)| ≥ ϵ) ≤ δ exp (−H2,∞(F , ϵ, T )) .

By Proposition E.5, we obtain the uniform bound over the class F :

P
(

sup
θ∈ΘK

|L(θ) − Lin(θ)| ≥
(

1 + 2
√

2
)

ϵ

)
≤ δ .

G.2 Fast rate for Theorem 3.9.

Theorem G.5 (Fast rate). Let Assumptions 3.1 and G.3 and definition 3.2 hold. With
probability 1 − δ,

sup
θ∈ΘK

|L(θ)−Lin(θ)| = Õ

max


σ
(

H2,∞(F , ϵ, T ) + log e

δ

)√
H2,∞(F , ϵ, T ) + log N + log e

δ

N
+ Bϵapp, Lin(θ)


 ,

where ϵ is chosen such that:

ϵ ≍
σ
(

H2,∞(F , ϵ, T ) + log e

δ

)√
H2,∞(F , ϵ, T ) + log N + log e

δ

N
.

17



We first enlarge the function class to be star-shaped around the target pθ⋆ . This is necessary
to obtain the fast decay in the number of tokens. Let K̃L : ∆d−1 × Rd → R be the following
function:

K̃L(p ∥ q) := KL(p ∥ σ(q)) .

K̃L is convex and differentiable in the second argument. Therefore, given two vectors
q1, q2 ∈ Rd, we have the following:

{KL(p ∥ σ(λq1 + (1 − λ)q2)) | λ ∈ [0, 1]}
⊆ [min{KL(p ∥ q1), KL(p ∥ q2)}, max{KL(p ∥ q1), KL(p ∥ q2)}] .

Moreover, for any λ ∈ [0, 1], there exist a λ⋆ ∈ [0, 1] such that

K̃L(p ∥ λ⋆q1 + (1 − λ⋆)q2) = λK̃L(p ∥ q1) + (1 − λ)K̃L(p ∥ q2) ,

Now, fix any prompt z⃗ ∈ supp(π) and context x⃗ ∈ D⋆ and θ ∈ ΘK . Let y⃗ := z⃗ ◦ x⃗ for brevity.
For any λ ∈ [0, 1], there exist a λ⋆ ∈ [0, 1] such that

K̃L(p⋆(· | y⃗) ∥ λ⋆fθ(y⃗) + (1 − λ⋆)fθ⋆(y⃗))
= λK̃L(p⋆(· | y⃗) ∥ fθ(y⃗)) + (1 − λ)K̃L(p⋆(· | y⃗) ∥ fθ⋆(y⃗)) ,

By using the above property, we define the following function:

fθ,λ(y⃗) = λ⋆fθ(y⃗) + (1 − λ⋆)fθ⋆(y⃗) .

Clearly, we have that

K̃L(p⋆(· | y⃗) ∥ fθ,λ(y⃗)) − K̃L(p⋆(· | y⃗) ∥ fθ⋆(y⃗))
= λ

(
K̃L(p⋆(· | y⃗) ∥ fθ(y⃗)) − K̃L(p⋆(· | y⃗) ∥ fθ⋆(y⃗))

)
.

By using the same construction point-wise for each y⃗ and θ ∈ ΘK , we can define the following
function class:

FΘK ×[0,1] = {fθ,λ | fθ ∈ FΘK
} .

We extend the definitions of loss functions Lin, L to the function class ΘK × [0, 1]. Let ∆in, ∆
be the shifted versions of the loss functions:

∆in(θ, λ) := Lin(θ, λ) − Lin(θ⋆) ,

∆(θ, λ) := L(θ, λ) − L(θ⋆) .

We are ready to state the localization lemma:
Lemma G.6 (Localization). Fix any r > 0. Let Θr, Sr and Br denote the following set,
supremum and event:

Θr := {(θ, λ) ∈ ΘK × [0, 1] | ∆(θ, λ) ≤ r} ,

Sr := sup
(θ,λ)∈Θr

|∆(θ, λ) − ∆in(θ, λ)| ,

Br := {∀(θ, λ) ∈ ΘK × [0, 1] : |∆(θ, λ) − ∆in(θ, λ)| ≤ 1
2 |∆(θ, λ)| + r

2} .

Then, we have the following relation:

P (Br) ≥ P(Sr ≤ r

2) .

Proof. We show that the following holds:

B(r)c ⊆ {Sr >
r

2} .

Assume that there exist a pair (θ, λ) ∈ ΘK × [0, 1] such that

|∆(θ, λ) − ∆in(θ, λ)| >
1
2 |∆(θ, λ)| + r

2
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We show that this implies that Sr >
r

2 .

If ∆(θ, λ) ≤ r, then we have:

Sr ≥ |∆(θ, λ) − ∆in(θ, λ)| >
r

2 .

Otherwise, ∆(θ, λ) > r. Setting λ′ := r

∆(θ, λ)λ, we have

∆(θ, λ′) = r and |∆(θ, λ′) − ∆in(θ, λ′)| >
r

2 .

Corollary G.7 (Misspecified localization). Let Definition 3.2 hold. Using the definitions in
Lemma G.6,

P
(

∀θ ∈ ΘK : |L(θ) − Lin(θ)| ≤ 3
2 (r + 3Bϵapp) , or |L(θ) − Lin(θ)| ≤ 3Lin(θ)

)
≥ P(Sr ≤ r

2) .

Proof. Assume that the event Sr ≤ r

2 holds. By Lemma G.6, we have that Br holds. Then,
we have the following by Definition 3.2:

|L(θ) − Lin(θ)| ≤ |L(θ⋆) − Lin(θ⋆)| + |∆(θ, 0) − ∆in(θ, 0)|

≤ 1
2 |∆(θ, 0)| + r

2 + Bϵapp

≤ 1
2L(θ) + r

2 + 3Bϵapp

2 .

If L(θ) ≤ 2 (r + 3Bϵapp), then we have

|L(θ) − Lin(θ)| ≤ (r + 3Bϵapp) + r

2 + 3Bϵapp

2 = 3
2 (r + 3Bϵapp) .

If L(θ) > 2 (r + 3Bϵapp), then we have

|L(θ) − Lin(θ)| ≤ 3
4L(θ) .

In this case, we have that L(θ) ≤ 4Lin(θ).

According to Lemma G.6 and Corollary G.7, we just need to lower bound P(Sr ≤ r

2) for a

suitable choice of r. We replace Sr ≤ r

2 with the event S̃r ≤ r

5 which is defined as follows:

S̃r := sup
(θ,λ)∈Θ̃r

|L(θ, λ) − Lin(θ, λ)| , where

Θ̃r := {(θ, λ) ∈ ΘK × [0, 1] | L(θ, λ) ≤ r} .

Note that P
(

S̃r ≤ r

5

)
is increasing in r and S̃r+Bϵapp ≤ r

2 − Bϵapp implies that Sr ≤ r

2
holds. For a suitable choice of r ≥ 4Bϵapp, we have that

P
(

Sr ≤ r

2

)
≥ P

(
S̃r+Bϵapp ≤ r

2 − Bϵapp

)
≥ P

(
S̃r+Bϵapp ≤ r + Bϵapp

5

)
≥ P

(
S̃r ≤ r

5

)
.

For r ≤ 4Bϵapp, we obtain the desired rate by resetting r = 4Bϵapp.
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We start by first establishing a point-wise bound. Consider the following decomposition:

L(θ, λ) − Lin(θ, λ) = 1
N

N∑
n=1

L(n)(θ, λ) − L(n)
in (θ, λ) .

This is a martingale sequence as each d(n)(θ, λ) := L(n)(θ, λ) − L(n)
in (θ, λ) has zero-mean. Let

W R
N (θ, λ) be the quadratic variation

W R
N (θ, λ) := 1

N2

N∑
n=1

E
[
d(n)(θ, λ)2

]
+ 1{ 1

N |d(n)(θ,λ)|>R}d(n)(θ, λ)2 .

By Theorem E.4, we obtain

P
(
|L(θ, λ) − Lin(θ, λ)| ≥ ϵ and W R

N (θ, λ) ≤ W
)

≤ 2 exp
(

− 3ϵ2

2(Rϵ + 3W )

)
.

Setting ϵ = c1
W

R
for some constant c1 > 0,

P
(

|L(θ, λ) − Lin(θ, λ)| ≥ c1
W

R

)
≤ 2 exp

(
−c2

W

R2

)
+ P

(
W R

N (θ, λ) > W
)

,

for some constant c2 > 0. Let Nϵ be an ϵ-net of F|UT
. Then, by the argument in Proposi-

tion E.5,

P
(

sup
θ∈Θr

|L(θ, λ) − Lin(θ, λ)| ≥ c1(1 + 2
√

2)W

R

)
≤ 2 exp

(
−c2

W

R2 + H2,∞(F , ϵ, T )
)

+
∑

θ∈Nϵ

P
(
W R

N (θ, λ) > W
)

.

The second term can be bounded by ensuring that ∀θ ∈ Nϵ:

P
(
W R

N (θ, λ) > W
)

≤ δ1 exp (−H2,∞(F , ϵ, T )) .

Assume that R is such that

P
(

sup
n

d(n)(θ, λ) > NR

)
≤ δ1 exp (−H2,∞(F , ϵ, T )) .

Then, we have the following conditional on the event {supn d(n)(θ, λ) ≤ NR}:

W R
N (θ, λ) = 1

N2

N∑
n=1

E
[
d(n)(θ, λ)2

]
≤ R

N

N∑
n=1

E
[
d(n)(θ, λ)

]
= Rr .

Therefore, we can choose W = Rr and R =
σ

√
2
√

H2,∞(F , ϵ, T ) + log N + log e

δ1

N
. The

first term can be bounded by ensuring that

ϵ = c1

c2
R

(
H2,∞(F , ϵ, T ) + log 2

δ2

)
.

Finally, we have the following bound:

P
(

sup
θ∈ΘK

|L(θ, λ) − Lin(θ, λ)| ≥ 5c1r

)
≤ δ1 + δ2 .

By choosing δ1, δ2 for the desired confidence interval and c1 = 1
25, we conclude the proof.
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G.3 Proofs of Theorems C.3, 3.9 and 4.1

In all theorems, the concentration with independent sequences rely on the same analysis.
Here, we clarify the applications of these results to Theorems C.3, 3.9 and 4.1:

• For out-of-sample generalization, the expectation is taken with respect to the
distribution of the sequence n and the prompt z⃗(n), leading to L(n)(θ) = Lout(θ).

• For in-prompt generalization, the expectation is taken with respect to the distribution
of the sequence n, leading to L(n)(θ) = Lppt(θ).

• For in-context generalization, the expectation is taken with respect to the distribution
of the sequence n and the prompt z⃗(n) for the task wn, leading to L(n)(θ) = L(n)

out(θ).

We explain the tail bounds for each setting in Section H.

H Generalization within a sequence

In this section, we establish how the rates in Sections C, 3.2 and 4 depend on the number
of tokens T in a single sequence for θ ∈ ΘK . In particular, we establish a tail bound,
which shows sub-Gaussian concentration of the in-sample loss L(n)

in (θ) around its expectation
E
[
L(n)

in (θ)
]
. Combined with Section G, this tail bound implies Theorems C.3 and 3.9. The

in-context setting of these two results are the same with no difference in the proof as we
only study a single task here, reducing to the same problem.

Note that for out-of-sample generalization Lout, the expectation E
[
L(n)

in (θ)
]

is taken over
the sequence of tokens and the prompt, whereas for in-prompt generalization Lppt, it is only
taken over the sequence of tokens.

H.1 Proof of Theorems 3.9 and 4.1

Let x⃗(n) :=
(

x
(n)
1 , . . . , x

(n)
T

)
be the full token sequence. We divide x⃗(n) into parts of size

ϕ := ϕ(ϵ) for Theorem 3.9 or ϕ := ϕW(ϵ) for Theorem 4.1. Denote the parts of x⃗(n) as
y⃗

(n)
1 , . . . , y⃗

(n)
M . We have the following decomposition of the difference of the in-sample and

the in-prompt loss:

L(n)
in (θ) − L(n)

out(θ) = 1
T

M∑
m=0

(
E
[
L(n)

in (θ) | F (n)
m

]
− E

[
L(n)

in (θ) | F (n)
m−1

])
,

where F (n)
m is the σ-algebra generated by the first m parts of the sequence and the prompt

with the convention E
[
L(n)

in (θ) | F (n)
−1

]
= L(n)

out(θ). It is clear that this is a martingale sequence
as

E
[
E
[
L(n)

in (θ) | F (n)
m

]
| F (n)

m−1

]
= E

[
L(n)

in (θ) | F (n)
m−1

]
.

We bound the differences at each step as follows. Moreover, we have the following by the
mixing property:∥∥∥Pmϕ:T

z⃗(n)

(
· | F (n)

m−1

)
− Pmϕ:T (·)

∥∥∥
TV

≤ ϵ ,
∥∥∥P(m+1)ϕ:T

z⃗(n)

(
· | F (n)

m

)
− P(m+1)ϕ:T (·)

∥∥∥
TV

≤ ϵ .

This implies that∥∥∥P(m+1)ϕ:T
z⃗(n)

(
· | F (n)

m−1

)
− P(m+1)ϕ:T

z⃗(n)

(
· | F (n)

m

)∥∥∥
TV

≤ 2ϵ , (9)

and that the difference is bounded by∣∣∣E [L(n)
in (θ) | F (n)

m

]
− E

[
L(n)

in (θ) | F (n)
m−1

]∣∣∣ ≤ 2ϵB̃
(

T − (m + 1)ϕ
)

︸ ︷︷ ︸
(A)

+ 2ϕ
(

B̃ +
√

2K
)

︸ ︷︷ ︸
(B)

.
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The first term (A) upper bounds the difference in loss by the maximum loss B̃×(T − (m + 1)ϕ)
when the conditional distributions do not match. The second term (B) upper bounds the
difference when the sequences generated match in indices between (m + 1)ϕ and T . In this
case, there are at most 2ϕ tokens in indices between (m − 1)ϕ and (m + 1)ϕ that differ in the
two continuations. This results at most 2ϕB̃ loss for these first 2ϕ tokens. By Definition G.1,
the differences in predictions in the logit space for positions between (m − 1)ϕ and T are
bounded by 2ϕ × K in ∥ · ∥2 norm. Since, the loss is

√
2-Lipschitz with respect to ∥ · ∥2 norm

in the logit space, the loss is bounded by 2ϕ
(
B̃ +

√
2K
)
.

We set ρ by minimizing the following upper bound on the differences:
ρ := inf

ϵ∈(0,1)
2ϵB̃ (T − (m + 1)ϕ) + 2ϕ(ϵ)

(
B̃ +

√
2K
)

.

Now, we have a martingale difference sequence with ρ

T
-bounded differences. By Theorem E.2,

we have the following for any ϵ > 0:

P
(∣∣∣L(n)

in (θ) − L(n)
out(θ)

∣∣∣ ≥ ϵ
)

≤ 2 exp
(

−Tϵ2

2ρ2

)
.

Therefore, sub-Gaussian concentration holds with σ2 = O
(

ρ√
T

)
.

H.2 Proof of Theorem C.3

We use a similar decomposition of the in-sample loss L(n)
in (θ) as in previous section:

L(n)
in (θ) − L(n)

ppt(θ) = 1
T

T∑
t=1

(
E
[
L(n)

in (θ) | F (n)
t

]
− E

[
L(n)

in (θ) | F (n)
t−1

])
,

where we use blocks of single-tokens instead of ϕ. Now, first note that∣∣∣E [L(n)
in (θ) | F (n)

t

]
− E

[
L(n)

in (θ) | F (n)
t−1

]∣∣∣ ≤ sup
F̃(n)

t

∣∣∣E [L(n)
in (θ) | F (n)

t

]
− E

[
L(n)

in (θ) | F̃t
(n)]∣∣∣ ,

where the supremum is taken over all σ-algebras F̃ (n)
t ⊂ F (n)

t−1 that are generated by the choice
of the token at position t. Let γ be a coupling between the two distributions Pt:T

z⃗(n)

(
· | F (n)

t

)
and Pt:T

z⃗(n)

(
· | F̃ (n)

t

)
, i.e.,

γ ∈ Γ
(

Pt:T
z⃗(n)

(
· | F (n)

t

)
, Pt:T

z⃗(n)

(
· | F̃ (n)

t

))
.

Let k be the following quantity:
k := Eµ⃗,ν⃗∼γ [dH(µ⃗, ν⃗)] .

k quantifies the number of distinct tokens in the two suffixes that complete the original
sequence at position t, measured by the coupling γ.
This implies that the difference is bounded by∣∣∣E [L(n)

in (θ) | F (n)
t

]
− E

[
L(n)

in (θ) | F̃ (n)
t

]∣∣∣ ≤ kB̃︸︷︷︸
(A)

+
√

2kK︸ ︷︷ ︸
(B)

.

The first term (A) upper bounds the difference in loss by the maximum loss B̃ ×k at positions
t to T when the sequences do not match. The second term (B) upper bounds the stability
differences in predictions in the logit space for positions between t and T that are bounded
by

√
2kK in ∥ · ∥2 norm.

By Definition C.2, we have that the number of distinct tokens in the two suffixes is bounded
by r + 1 for any r-rephrasable task. By Theorem E.2, we have the following for any ϵ > 0:

P
(∣∣∣L(n)

in (θ) − L(n)
ppt(θ)

∣∣∣ ≥ ϵ
)

≤ 2 exp
(

−Tϵ2

2ρ2

)
.

Therefore, sub-Gaussian concentration holds with σ2 = O
(

ρ√
T

)
.
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I Metric Entropy and ϵ

Yüksel and Flammarion [2025, Section 3.4.] provide metric entropies of general Markov
chains of order k and a single-layer self-attention. We recollect their main results below and
then comment about metric entropies of other function classes.
In addition, our results in Sections 3 and 4 depend on the optimal choice of ϵ which is
implicitly defined by a fixed point equation, e.g., Equation (5). We expect that H2,∞(F , ϵ, T )
scales with log 1

ϵ
and this choice of ϵ only adds logarithmic dependencies in the problem

parameters. We comment on the choice of ϵ in the examples below.

Discrete Markov chains. For general Markov chains of order k and size d, consider the
following function class:

F := {fθ := θ ◦ c : D⋆ → Rd | θ ∈ Θ} ,

where c(x1, . . . , xT ) is the function that takes the last k tokens and maps it to a one-hot
encoding in Rdk with 1 at the index corresponding to the last k tokens and 0 otherwise,
and θ ∈ Rd×dk is a matrix. Then, this function class induces the following data generation
processes:

P := {pθ := σ ◦ fθ : D⋆ → P(D) | θ ∈ Θ} .

Consider the following bounded matrices for the parameter space:

Θ := {θ ∈ Rd×dk

| ∥θ∥2 ≤ B} .

This models all Markov chains of order k and size d with some minimal probability mass on
each state, as determined by the choice of B.
Consider the following norm on the parameters:

∥θ∥2,∞ := max
i=1,...,dk

∥θi∥2 .

Then, the metric entropy of the function class Θ is given by:

H2,∞(Θ, ϵ) = O
(

dk+1 log B

ϵ

)
.

That is, the metric entropy scales linearly with the dimensionality of parameters and
logarithmically with the norm of the parameters. In particular, the dependency on the ϵ is
logarithmic. Since the class is Lipschitz with constant L = 1, we have that

H2,∞(F , ϵ, T ) = O
(

dk+1 log B

ϵ

)
.

The optimal choice of ϵ then depends at worst linearly on the problem parameters, leading
to at worst logarithmic dependencies in the problem parameters.

Single-layer self-attention. Let Q, K, V ∈ Rd×d be matrices. Let fQ,K,V be the following
map:

fQ,K,V (x⃗) =
|x⃗|∑
i=1

aQ,K(x⃗, |x⃗|)iV xi , where aQ,K(x⃗, t)i =


e⟨Qxt,Kxi⟩∑t

j=1
e⟨Qxt,Kxj ⟩ if i ≤ t ,

0 otherwise .
.

Then, let the function class be given by:

F := {fQ,K,V : D⋆ → Rd | Q, K, V ∈ Rd×d} .

Then, this function class induces the following data generation processes:

P := {pθ := σ ◦ fθ : D⋆ → P(D) | θ ∈ Θ} .
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Consider the following bounded matrices for the parameter space:
Θ := {θ = (Q, K, V ) ∈ Rd×d × Rd×d × Rd×d | ∥Q∥2 ≤ B, ∥K∥2 ≤ B, ∥V ∥2 ≤ B} .

This models all single-layer self-attention models with bounded weights.
Consider the following maximum norm on the parameters:

∥θ∥2,∞ := max(∥Q∥2, ∥K∥2, ∥V ∥2) .

Then, the metric entropy of the function class Θ is given by:

H2,∞(Θ, ϵ) = O
(

d2 log B

ϵ

)
.

Similarly, the metric entropy scales linearly with the dimensionality of parameters and
logarithmically with the norm of the parameters. We can use the fact that softmax is
Lipschitz with respect to ℓ2 norm to show that fQ,K,V is Lipschitz with constant L =
O(

√
TB supx⃗ ∥x⃗∥2). Therefore, we have that

H2,∞(F , ϵ, T ) = O

(
d2 log B2

√
T

ϵ

)
.

Again, the optimal choice of ϵ then incurs at worst logarithmic dependencies in the problem
parameters.

Complex function classes. In order to deal with more complex classes such as transform-
ers, we can use the fact that metric entropy scales additively with the number of layers. That
is, when we compose two hypotheses spaces, the metric entropy of the composition is the
sum of the metric entropies of the two spaces. In this way, one can incorporate multi-layer
perceptrons and other components within transformer blocks and any number of layers.
Overall, we expect the metric entropy to scale linearly with the number of total parameters
and logarithmically with the maximum activation norm. Without normalization layers
stabilizing the norms of activations, the term based on the input norm can yield a linear
dependency on the number of layers. This is due to the fact that the norm can grow
multiplicatively with the number of layers.

J Further Discussion on Assumptions

Mixing and Rephrasability. Mixing is a classical concept in problems with weak depen-
dence [Doukhan, 1995]. Behavior of the mixing coefficients are well-studied for Markov chains
and some non-Markovian processes [Bradley, 2005]. Therefore, we focus on the rephrasability
condition.
First, we explain how the rephrasability condition in Definition C.2 subsumes the mixing
condition in Definition 3.8. In particular, we have the following inequality:

sup
x⃗,y⃗∈D̃k

inf
γ∈Γz⃗(x⃗,y⃗)

Eµ⃗,ν⃗∼γ [dH(µ⃗, ν⃗)] ≤ min
ϵ∈(0,1)

ϕz⃗(ϵ) + Tϵ .

This is due to the fact that the coupling γ be chosen to verify these two conditions: (i)
coalesced sequences with weight at least 1 − ϵ after ϕ(ϵ) steps evolve together, and (ii) the ϵ
fraction that do not coalesce evolve independently which incurs at most Tϵ in the distance.
Note that the term ϕ(ϵ) + Tϵ is the same as the term ρ in Theorem 3.9 for the mixing
condition except the stability term. Therefore, if the mixing condition is satisfied with a good
constant, so is the rephrasability condition. In this sense, rephrasability is a generalization
of the mixing condition. However, the reverse is not true as the rephrasability condition is
not local.

Non-mixing Examples. Many algorithmic tasks are non-mixing as the output, which is
at the end of the sequence, is a deterministic function of the whole input. Consider the task
of parity computation given strings composed of zeros and ones. The data generation process

24



at the start is random, e.g., each digit is sampled with a Bernouilli distribution. The very
final token that is the output of the task is a function of the whole sequence. Therefore, there
is no mixing as any change in digits results in a change at the end of the sequence. However,
the rephrasability condition is verified with r = 1. Similarly, consider the task of addition.
Again, there is no mixing but the rephrasability condition is verified with r that captures the
maximum number of digit carries within the dataset. We expect language to have a similar
behavior as it has long-range dependencies, e.g., a character in a book. Therefore, bounds
based on rephrasability goes beyond the mixing results in terms of applicability.

Estimation of rephrasability. We discuss how to get empirical estimates of the
rephrasability condition when one has access to the ground-truth process or to a suffi-
cently accurate approximation thereof for sampling trajectories.g An interesting example is
a large-scale language model that serves as a proxy for natural language. In such cases, we
can estimate the rephrasability condition by solving a discrete optimal transport problem
over sampled trajectories as follows. Let H, M be fixed numbers.

1. Sample the prompt z⃗.
2. Sample two continuations x⃗, y⃗ ∈ D̃k of the prompt z⃗.
3. Sample H completions of z⃗ ◦ x⃗ to the full length T , denoted by x⃗1, . . . , x⃗H .
4. Sample H completions of z⃗ ◦ y⃗ to the full length T , denoted by y⃗1, . . . , y⃗H .
5. Solve the optimal transport problem of carrying the empirical distribution

{x⃗1, . . . , x⃗H} to the empirical distribution {y⃗1, . . . , y⃗H} with the Hamming distance
over the sequences, d(⃗a, b⃗) =

∑T
i=1 1a⃗i ̸=b⃗i

.
6. Repeat the above procedure M times.

The optimal transport problem can be solved with Sinkhorn-Knopp algorithm. The range of
the costs obtained gives us the plausible range for r. While the tractability of this approach
in realistic settings remains unclear, we view this as an exciting and promising research
direction that would require a dedicated empirical investigation.

K Concentration of training mixture

In this section, we explain how fast p⋆
N approximates p⋆

∞. In Section 4, we discussed the
how the following sampling procedure

w ∼ PW , z⃗ ∼ π⋆
w , ∀t ∈ [T ] : xt ∼ p⋆

w(· | x⃗t) ,

is equivalent to the following:
z⃗ ∼ π⋆

∞ , ∀t ∈ [T ] : xt ∼ p⋆
∞(x | x⃗t) .

More generally, for any prior distribution over the tasks P̂W , the following sampling procedure

w ∼ P̂W , z⃗ ∼ π⋆
w , ∀t ∈ [T ] : xt ∼ p⋆

w(· | x⃗t) ,

is equivalent to the following:
z⃗ ∼ π̂ , ∀t ∈ [T ] : xt ∼ p̂(x | x⃗t)

where π̂ and p̂ are defined as follows:

π̂(z⃗) =
∫

w∈W
π⋆

w(z⃗)P̂W(w)dw ,

p̂(x | x⃗t) =
∫

w∈W
p⋆

w(x | x⃗t) P̂W(w | x⃗t) dw ,

where P̂W(w | x⃗t) is the posterior distribution over tasks given the sequence x⃗t:

P̂W(w | x⃗t) ∝ P̂W(w)Pw(x⃗t) , with Pw(x⃗t) := π⋆
w(z⃗)

t−1∏
i=1

p⋆
w(xi | x⃗i) .
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It is easy to see this equivalence by an induction argument. The marginal distribution over
z⃗ clearly matches. Then, for any t ≥ 1, we have

p̂(xt ◦ x⃗t) = p̂(xt | x⃗t)p̂(x⃗t)

=
∫

w∈W
p⋆

w(x | x⃗t)P̂W(w | x⃗t)p̂(x⃗t)dw

=
∫

w∈W
p⋆

w(x | x⃗t)Pw(x⃗t)P̂W(w)dw

=
∫

w∈W
p⋆

w(x ◦ x⃗t)P̂W(w)dw .

The loss incurred by p̂ is given by:

Lout(p̂) = Ex⃗T +1 [− log p̂(x⃗T +1) + log p⋆
∞(x⃗T +1)] = KL(p⋆

∞ ∥ p̂) .

Let q⋆(w, x⃗T +1) = PW(w)Pw(x⃗T +1) and q̂(w, x⃗T +1) = P̂W(w)Pw(x⃗T +1). By the chain rule
of KL divergence,

KL(q⋆ ∥ q̂) = KL(p⋆
∞ ∥ p̂) + Ex⃗T +1

[
KL(PW(w | x⃗T +1) ∥ P̂W(w | x⃗T +1))

]
.

Note that the left-hand side is equal to KL divergence of the prior over the tasks:

KL(q⋆ ∥ q̂) =
∫

w∈W

∫
x⃗T +1

PW(w)Pw(x⃗T +1) log PW(w)Pw(x⃗T +1)
P̂W(w)Pw(x⃗T +1)

dx⃗T +1dw

=
∫

w∈W
PW(w) log PW(w)

P̂W(w)
dw

= KL(PW ∥ P̂W) .

Since KL is non-negative,

KL(q⋆ ∥ q̂) = KL(PW ∥ P̂W) ≥ KL(p⋆
∞ ∥ p̂) = Lout(p̂) .

Therefore, the loss of p̂ is controllable by the KL divergence of the prior over the tasks.
In order to turn the computations above into a result on p⋆

N , we need to smooth it so that it
is supported over all tasks. This is possible under a Lipschitzness assumption on Pw(x⃗T +1)
in the parameter space w ∈ W. That is, there must exist a constant L such that

Lout(p⋆
N ) ≤ Lout(p̂N ) + Lη ,

where p̂N is some smoothed version of p⋆
N with parameter η and kernel K, e.g.,

p̂N (·) =
∫

w∈W
p⋆

w(·)P̂W(w)dw , where P̂W(w) = 1
Nη

N∑
i=1

K

(
w − wi

η

)
.

Then, the speed in which p⋆
N approximates p⋆

∞ is simply the classical question of kernel
density estimation within the task space W. In particular, we have that

Lout(p⋆
N ) ≤ Lout(p̂N ) + Lη ≤ KL(p⋆

∞ ∥ p̂N ) + Lη .
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