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ABSTRACT

Molecular representation learning is a fundamental task for AI-based drug design
and discovery. Contrastive learning is an attractive framework for this task, as also
evidenced in various domains of representation learning, e.g., image, language,
and speech. However, molecule-specific ways of constructing good positive or
negative views in contrastive training under consideration of their chemical se-
mantics have been relatively under-explored. In this paper, we consider a molecule
as a bag of meaningful fragments, e.g., chemically informative substructures, by
disconnecting a non-ring single bond as the semantic-preserving transformation.
Then, we suggest to construct a complete (or incomplete) bag of fragments as
the positive (or negative) views of a molecule: each fragment loses chemical sub-
structures from the original molecule, while the union of the fragments does not.
Namely, this provides easy positive and hard negative views simultaneously for
contrastive representation learning so that it can selectively learn useful features
and ignore nuisance features. Furthermore, we additionally suggest to optimize
the torsional angle reconstruction loss around the fragmented bond to incorporate
with 3D geometric structure in the pretraining dataset. Our experiments demon-
strate that our scheme outperforms prior state-of-the-art molecular representation
learning methods across various downstream molecule property prediction tasks.

1 INTRODUCTION

Obtaining discriminative representations of molecules is a long-standing research problem in chem-
istry (Morgan, 1965). Such a task is critical for many applications such as drug discovery (Capecchi
et al., 2020) and material design (Gómez-Bombarelli et al., 2018), since it is a fundamental build-
ing block for various downstream tasks, e.g., molecule property prediction (Duvenaud et al., 2015)
and molecule generation (Mahmood et al., 2021). Over the past decades, researchers have focused
on handcrafting the molecular fingerprint representation which encodes the presence or absence of
chemically meaningful substructures, e.g., functional groups, in a molecule (Rogers & Hahn, 2010).

Recently, graph neural networks (GNNs) (Kipf & Welling, 2016) have gained much attention as a
framework to learn the molecular representation due to its remarkable performance for learning to
predict chemical properties (Wu et al., 2018). However, they suffer from overfitting without much
labeled training data (Rong et al., 2020b). To resolve this issue, researchers have investigated self-
supervised learning to generate supervisory signals from a large amount of unlabeled molecules.

A notable approach on this line of work is contrastive learning, which learns a discriminative rep-
resentation by maximizing the agreement of representations of “similar” positive views while mini-
mizing the agreement of “dissimilar” negative views (Chen et al., 2020a); it has widely demonstrated
its effectiveness for representation learning not only for molecules (Wang et al., 2021; 2022), but also
for other domains, e.g., image (Chen et al., 2020a; He et al., 2019), video (Pan et al., 2021), language
(Wu et al., 2020), and speech (Chung et al., 2021). Here, the common challenge for learning good
representation is how to construct effective positive and negative views in a self-supervised manner.

For molecule contrastive representation learning, most prior works have utilized graph-augmentation
techniques, e.g., edge/node drop, to produce positive views (You et al., 2020; 2021). However,
such augmentations often fail to generate proper positive views of molecule graph, losing impor-
tant chemical semantics from the anchor molecule, e.g., randomly inserting an edge of a graph may
generate a non-realistic molecule (Fang et al., 2021b). Thus, semantic-preserving transformation
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(a) Fragment-based contrastive learning (b) Torsion reconstruction from fragments

Figure 1: Illustration of FragCL: contrastive learning of molecular representation with fragmented
views. (a) Fragment-based view construction: We construct a bag of fragments from a molecule via
fragmentation. A complete (or incomplete) bag of fragments is regarded as a positive (or negative)
view of the original molecule. (b) Additionally, 3D contextual information can be learned by recon-
structing the torsional angle around the fragmented bond.

should be carefully designed on molecule space to produce a “confident (or easy) positive” view of
a molecule. On the other hand, despite the effectiveness of hard-to-discriminate negative samples has
been widely evidenced in the contrastive representation learning literature of other domains (Robin-
son et al., 2020; Lee & Shin, 2022), such “hard negative” view construction is also not well-explored
on molecule space yet.

Contribution. In this paper, we propose Fragment-based molecule Contrastive Learning (FragCL),
a novel contrastive learning method using fragments to simultaneously generate easy positive and
hard negative views of a molecule graph. FragCL consists of the following key ingredients with
overall illustration provided in Figure 1.

• Fragment-based positive view construction: We construct a new positive view of molecules
by decomposing it into a bag of meaningful fragments. We propose disconnecting a non-ring
single bond of a molecule in half as the semantic-preserving transformation, since such a trans-
formation preserves most of the chemically informative substructure, e.g., the number of het-
eroatoms and the existence of chemically informative substructures. Then, we suggest to regard
a complete bag of resulting fragments as an easy positive view of a molecule.

• Fragment-based negative view construction: For negative views of a molecule, we consider
(a) incomplete bag of fragments of its own and (b) complete bag of fragments of other molecules
(in a mini-batch). Here, (a) is of strikingly different choice from prior molecule contrastive
learning methods (You et al., 2020; Wang et al., 2021); existing works use the subgraphs of a
molecule only as positive views, while we use an incomplete bag of fragments, which is a special
kind of subgraph, as a negative view. Our intuition is that (a) becomes a hard-to-discriminate
negative view as we fragment a molecule in half and incomplete bag of fragments, i.e., roughly
half of important substructures of the anchor molecule are lost.

• Torsional angle reconstruction from fragments: We additionally propose a pretext task to
incorporate 3D geometric context with fragments. We note that torsional angle, i.e., the angle
between planes through two sets of three atoms having two atoms in common, defines several 3D
contextural properties, e.g., the energy surface around the fragmented bond (Smith, 2008). Thus,
the 2D graph encoder is able to learn meaningful 3D contextual information by reconstructing it
from the fragments during training.
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To demonstrate the effectiveness of FragCL, we extensively evaluate our method under various
downstream molecule property prediction tasks on widely-used MoleculeNet (Wu et al., 2018) and
ATOM3D (Townshend et al., 2020) benchmarks using 2D GNN pretrained by FragCL. Following
Stärk et al. (2022) and Liu et al. (2022), we consider the most practical scenario: we pretrain with
2D and 3D paired unlabeled molecule dataset, and fine-tune with 2D downstream labeled molecule
dataset.1 We observe that FragCL outperforms prior state-of-the-art molecular representation learn-
ing method. For example, fragment-based molecule contrastive learning achieves the state-of-the-art
performance in 7 out of 8 molecule property classification tasks on MoleculeNet, and all 7 molecule
property regression tasks on ATOM3D.

2 PRELIMINARIES

2.1 GRAPH NEURAL NETWORKS FOR MOLECULES

In this work, we use graph neural networks (GNNs) to obtain discriminative representations of
molecules. At a high-level, GNNs learn the molecular representation by applying (a) iterative neigh-
borhood aggregation to acquire node representations from the molecule graph and (b) readout func-
tion to create a graph representation from the node representations.

GNN for 2D molecule graphs. A molecule can be represented as a 2D topological graph G =
(V, E) associated with a set of nodes (atoms) V and a set of edges (bonds) E . Given a 2D graph G,
the ℓ-th iteration of the neighborhood aggregation scheme is formulated as follows:

h̃(ℓ)
v ← Aggregate

({
(h(ℓ−1)

u ,h(ℓ−1)
v , euv) : u ∈ N (v)

})
, (1)

h(ℓ)
v ← Combine(h̃(ℓ)

v ,h(ℓ−1)
v ). (2)

Here,N (v) is a set of adjacent nodes of v, and h
(ℓ)
v is the ℓ-th representation of node v where h(0)

v is
the atom attribute associated with node v. Next, euv is the bond attribute corresponding to the edge
{u, v} ∈ E . The Aggregate and Combine functions are GNN-specific components.

GNN for 3D molecule graphs. A molecule can be represented as a 3D geometric graph G = (V,R)
associated with a set of nodes (atoms) V and a set of 3D positions of atomsR. Given a 3D graph G,
the ℓ-th iteration of the neighborhood aggregation scheme is formulated as follows:

h̃(ℓ)
v ← Aggregate

({
(h(ℓ−1)

u ,h(ℓ−1)
v , ru, rv) : u ∈ V

})
, (3)

h(ℓ)
v ← Combine(h̃(ℓ)

v ,h(ℓ−1)
v ). (4)

Here, h(ℓ)
v is the ℓ-th representation of node v where h

(0)
v is the atom attribute associated with node

v. Next, ru and rv is the coordinate of u and v, respectively. The Aggregate and Combine functions
are GNN-specific components.

Molecular representation extraction. After L times of the neighborhood aggregation, the 2D or
3D graph representation can be extracted from the final node representation h

(L)
v as follows:

f(G) = Readout({h(L)
v }v∈V),

where Readout is a permutation invariant function such as node-wise mean-pooling.

2.2 CONTRASTIVE LEARNING

In general, contrastive learning aims to learn a meaningful data representation by minimizing its
distance to positive data representations and maximizing distance to negative data representations.
The key idea here is to incorporate the human prior in representation learning by carefully setting
the positive and the negative relation between representations.

To this end, a number of contrastive learning objectives have been proposed, e.g., max-margin con-
trastive loss (Hadsell et al., 2006), triplet loss (Weinberger & Saul, 2009), or metric maximization

1Since obtaining an exact 3D geometric structure of a molecule is costly due to iterations of quantum
calculations, it is highly likely that 3D information is not available in downstream tasks.
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of local aggregation (Zhuang et al., 2019). The normalized temperature-scaled cross entropy loss
(NT-Xent) (Chen et al., 2020a) is one of the widely used contrastive learning losses (Chen et al.,
2020a;b; You et al., 2020). In this work, we follow GraphCL (You et al., 2020), which uses a variant
of NT-Xent defined as follows:

LNT-Xent(z, z
+, {z−}; τ) = − log

exp(sim(z, z+)/τ)∑
z− exp(sim(z, z−)/τ)

, (5)

where sim(z, z̃) = z⊤z̃/∥z∥2∥z̃∥2 is the cosine similarity, τ is a temperature-scaling hyperparame-
ter, (z, z+) and (z, z−) are positive and negative pairs of latent representations, respectively.

3 FRAGCL: FRAGMENTATION-BASED MOLECULE CONTRASTIVE LEARNING

In this work, we propose FragCL: Fragment-based molecule Constrastive Learning, a novel self-
supervised learning framework for pretraining molecular representations. As mentioned in Section 1,
we train a 2D GNN f2D(·) as a molecular representation extractor by jointly training f3D(·) on a
pretraining dataset D containing both 2D and 3D molecule graphs.

Our key idea is to combine contrastive learning with molecule fragmentation: decomposing a
molecule into a bag of meaningful fragments, e.g., chemically informative substructures. We con-
struct a complete and incomplete bag of fragments as easy positive and hard negative views of a
molecule, respectively. Additionally, we propose torsional angle reconstruction pretext task around
the fragmented bond to further incorporate 3D geometric context in the pretraining dataset. The
overall description of FragCL is illustrated in Figure 1. For each training step, FragCL performs the
following operations:

1. Molecule fragmentation: Given a molecule G ∈ D, we obtain the ‘bag of fragments’ {G′,G′′}
by disconnecting a non-ring single bond whose absence is likely to preserve chemically infor-
mative substructures, i.e., G and {G′,G′′} shares chemically informative substructures.

2. Contrastive learning with bag of fragments: We optimize the 2D GNN f2D(·) and 3D GNN
f3D(·) along with the projection heads g2D(·) and g3D(·) via contrastive learning with our pro-
posed positive/negative views, while maintaining the consistency of the representations from
f2D(·) and f3D(·). To this end, we regard the complete (or incomplete) bag of fragments as a
positive (or negative) view of each molecule graph (see Figure 1a). Additionally, we use the
complete bag of fragments of other molecules in a mini-batch as negative views.

3. Torsional angle reconstruction from fragments: Given a bag of fragments {G′,G′′} obtained
by removing a non-ring single bond (u, v) from G with u ∈ G′ and v ∈ G′′, we reconstruct the
torsional angle defined by a quartet of atoms (s, u, v, t), linearly connected via covalent bonds
in order in G, to incorporate 3D contextual information of original molecule (see Figure 1b).

In the rest of this section, we provide details and rationale of our three components: molecule frag-
mentation in Section 3.1, contrastive learning with bag of fragments in Section 3.2, and torsional
angle reconstruction in Section 3.3.

3.1 MOLECULE FRAGMENTATION

Our FragCL crucially relies on the molecule fragmentation to generate a bag of fragments from a
molecule. While there exist various ways to break a molecule into disconnected components, we
consider removal of a bond that (a) has the bond order of one and (b) is not a member of any ring.
Note that double or higher-order bonds are capable of many reaction pathways such as nucleophilic
attack and hydrogen addition (Smith, 2008), i.e., they are directly involved in chemically informative
substructures. Thus, removing those bonds may alter the semantics of molecules seriously. On the
other hand, single bonds does not determine the core semantic of the functional groups in general.
For example, functional groups such as ketone, ester, and amide are categorized by the “carbonyl
group”, whose main functionalities are determined by C=O double bond. Also, the chemical func-
tionalities of the ether and thioether come from the electronegative oxygen and sulfur atoms (not
from the single bond), respectively (Smith, 2008). Thus, we choose only single bonds to fragment a
molecule, and it is verified to be effective empirically in Section 4.3. Also, further discussion about
the fragmentation strategy can be found in Appendix F.
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The fragmentation of a 2D molecule G2D = (V, E) by a single non-ring bond e ∈ E produces a
complete bag of fragments {G′2D,G′′2D} where G′2D and G′′2D are components2 in the graph induced on
the edge set E \ {e}. The edge e ∈ E is selected to minimize the difference of the number of atoms
in G′2D and G′′2D, i.e., we split the original molecule in half. This is to prevent one of the fragments
from containing almost all semantics of the original molecule because we consider an incomplete
bag of fragments as a negative pair of the original molecule in Section 3.2.

The fragments on 3D molecule graph G3D are defined by G′3D = (V ′,R′) and G′′3D = (V ′′,R′′), where
V ′ and V ′′ are the sets of nodes of G′2D and G′′2D, andR′ andR′′ are the corresponding coordinates of
V ′ and V ′′. When the context is clear, we drop the subscripts 2D and 3D.

3.2 CONTRASTIVE OBJECTIVE WITH BAG OF FRAGMENTS

We introduce a strategy to obtain positive and negative pairs of molecular representations and con-
trastive objectives based on the positive and negative pairs. In what follows, we describe the strategy
to construct the pairs given a training batch {Gi}ni=1 where n denotes the batch size.

Positive pairs. The key insight is that our fragmentation preserves chemically meaningful sub-
structures; for clarity, we denote F(G) as a set of all chemically informative substructures in G.
Then, each fragment G′ and G′′, from our fragmentation scheme described in Section 3.1, satisfies
F(Gi) = F(G′i)∪F(G′′i ) with a high probability. Based on this insight, we consider (Gi, {G′i,G′′i }) as
a positive pair, i.e., positive pair consists of the original molecule and its complete bag of fragments.
To facilitate the representation attraction of a molecule Gi and a bag of fragments {G′i,G′′i }, we use a
simple mixing strategy between r′i := f(G′i) and r′′i := f(G′′i ) as rmixi := 1

n′+n′′ (n
′× r′i +n′′× r′′i )

with n′ := |G′|, and n′′ = |G′′|; we attract ri := f(Gi) and rmixi .

Negative pairs. For a given molecule Gi, we construct negative pairs with (a) arbitrary complete
bag of fragments {G′j ,G′′j } with i ̸= j, and (b) its own incomplete bag of fragments {G′i}, {G′′i }.
Intuitively, the negative pairs constructed using (a) is dissimilar to each other since an arbitrary com-
plete bag of fragments {G′j ,G′′j } has similar semantics with Gj , which is distinct from the original
molecule Gi. Furthermore, we consider (b) as “hard” negative since deleting a large fragment sig-
nificantly modifies the molecular semantics. Also, this pair is hard-to-discriminate since G′i yields a
common substructure to its original molecule Gi.
Using positive and negative pairs, we train both 2D and 3D GNNs f2D(·) and f3D(·) along with
projection heads g2D(·) and g3D(·) using following contrastive loss:

L2D,con :=
1

n

n∑
i=1

LNT-Xent(z2D,i, z
mix
2D,i, {zmix2D,j}j ̸=i ∪ {z′2D,i, z′′2D,i}; τ), (6)

L3D,con :=
1

n

n∑
i=1

LNT-Xent(z3D,i, z
mix
3D,i, {zmix3D,j}j ̸=i ∪ {z′3D,i, z′′3D,i}; τ), (7)

where zi, z′i, z
′′
i , and zmixi denote latent representations projected by g(·) from ri, r′i, r

′′
i , and rmixi ,

respectively (Chen et al., 2020a; You et al., 2020). Namely, we plug in our proposed positive and
negative samples into the NT-Xent loss of equation 5.

To facilitate the representation learning on the multi-modality of 2D and 3D graphs of molecules,
we consider each 2D and 3D view of a molecule as a positive pair, following the common practice
to deal with the multi-modal representation learning (Radford et al., 2021; Stärk et al., 2022; Liu
et al., 2022):

L{2D,3D},con :=
1

2n

n∑
i=1

(
LNT-Xent(z2D,i, z3D,i, {z3D,j}nj=1; τ) + LNT-Xent(z3D,i, z2D,i, {z2D,j}nj=1; τ)

)
,

(8)
Finally, we obtain our contrastive objective combining above:

Lcon := L2D,con + L3D,con + L{2D,3D},con. (9)
After pretraining with the loss using (unlabeled) molecule dataset, we transfer pretrained 2D GNN
f2D(·) for fine-tuning to a downstream task; note that f3D(·), g2D(·), and g3D(·) are not transferred.

2A component of a graph is a connected subgraph that is not part of any larger connected subgraph.
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3.3 TORSIONAL ANGLE RECONSTRUCTION FROM FRAGMENTS

We propose an additional pretext task to incorporate the 3D contextual information into our 2D GNN
f2D(·). To this end, f2D(·) learns to reconstruct the torsional angle around the fragmented bond from
fragments of a 2D molecule graph G′2D and G′′2D.

Our reconstruction target, torsional angle, is defined by a quartet of atoms. Let (s, u, v, t) be a tuple
of vertices (atoms) in G, which is linearly connected via covalent bonds in order. The torsional
angle is defined by the angle between the planes defined by (s, u, v) and (u, v, t), and it encodes
important 3D contextual properties, e.g., energy surface around the atoms (Smith, 2008). Thus, by
the reconstruction of the torsional angle from fragments {G′,G′′} obtained by the removal of (u, v)
from G, the 2D GNN f2D(·) would learn the 3D contextual properties around the fragmented bond.
The loss function is defined as follows:

zrot,i(s, u, v, t) := grot([h2D,s,i;h2D,u,i;h2D,v,i;h2D,t,i]) (10)
zabs,i(s, u, v, t) := gabs([h2D,s,i;h2D,u,i;h2D,v,i;h2D,t,i]) (11)

Ltorsion :=
1

n

n∑
i=1

(
LBCE(zrot,i(s, u, v, t), yrot,i) + LCE(zabs,i(s, u, v, t), yabs,i) (12)

+LBCE(zrot,i(t, v, u, s), yrot,i) + LCE(zabs,i(t, v, u, s), yabs,i)
)
, (13)

where h2D,{s,u,v,t},i is the representation of {s, u, v, t}’th node from f2D(·), respectively. And yrot,i
is a binary label for the rotation direction of torsional angle, i.e., clockwise or counter-clockwise,
and yabs,i is a binned label for the absolute torsional angle value between 0 and π of i-th ground state
molecule. Also, grot and gabs are projection functions, and LBCE and LCE are binary cross-entropy
and cross-entropy loss function, respectively. Since the torsional angle defined by (s, u, v, t) and
(t, v, u, s) are the same, we learn to reconstruct the torsional angle from both tuples.

3.4 OVERALL TRAINING OBJECTIVE

From the discussion of Section 3.2 and 3.3, we finally propose our training loss function. In sum-
mary, we set (a) the complete bag of fragments as a positive view of molecule, (b) an incomplete
bag of its own and the complete bag of fragments of other molecules as negative views of molecule
while maximizing the consistency of the outputs of 2D and 3D GNNs. Additionally, we incorporate
3D contextual information by reconstructing the torsional angle around the fragmented bond. The
specific loss function is as follows:

LFragCL := Lcon + αLtorsion, (14)

where α is a hyperparameter to control the contribution of the torsion reconstruction objective, and
we simply use α = 1 for all experiments. The ablation study on α can be found in Appendix E.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our FragCL. To this end, we extensively compare
FragCL with the existing molecular graph representation learning methods. We evaluate FragCL and
baselines on various downstream molecule property prediction tasks after pretraining on (unlabeled)
molecule dataset. Also, we perform the extensive ablation study on FragCL to confirm that each of
our components plays an important role for effectively discriminating the molecules.

4.1 EXPERIMENTAL SETUP

In what follows, we describe our experimental setup, where we largely follow prior works (Hu et al.,
2019; Liu et al., 2022). Detailed information can be found in Appendix A.

Datasets. For self-supervised pretraining, we use a 50k unlabeled molecule dataset with 2D and
3D paired molecule graphs from GEOM (Axelrod & Gomez-Bombarelli, 2022). After pretraining,
transfer learning is performed on (a) binary classification tasks from MoleculeNet benchmark (Wu
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Table 1: Comparison of test ROC-AUC score on MoleculeNet downstream property classification
benchmarks. We report mean and standard deviation over 3 different seeds. We mark the best mean
score bold. Additionally, we mark the average scores within one standard deviation from the highest
average score to be bold. We remark by (*) when we use the score reported by Liu et al. (2022).
Otherwise, we reproduced scores under the same setup.

Methods BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace

- 65.4±2.4 74.9±0.8 61.6±1.2 58.0±2.4 58.8±5.5 71.0±2.5 75.3±0.5 72.6±4.9

Pretrained on 2D molecule graph

EdgePred* 64.5±3.1 74.5±0.4 60.8±0.5 56.7±0.1 55.8±6.2 73.3±1.6 75.1±0.8 64.6±4.7

AttrMask* 70.2±0.5 74.2±0.8 62.5±0.4 60.4±0.6 68.6±9.6 73.9±1.3 74.3±1.3 77.2±1.4

GPT-GNN* 64.5±1.1 75.3±0.5 62.2±0.1 57.5±4.2 57.8±3.1 76.1±2.3 75.1±0.2 77.6±0.5

Infomax* 69.2±0.8 73.0±0.7 62.0±0.3 59.2±0.2 75.1±5.0 74.0±1.5 74.5±1.8 73.9±2.5

ContextPred* 71.2±0.9 73.3±0.5 62.8±0.3 59.3±1.4 73.7±4.0 72.5±2.2 75.8±1.1 78.6±1.4

GraphLoG* 67.8±1.7 73.0±0.3 62.2±0.4 57.4±2.3 62.0±1.8 73.1±1.7 73.4±0.6 78.8±0.7

G-Contextual* 70.3±1.6 75.2±0.3 62.6±0.3 58.4±0.6 59.9±8.2 72.3±0.9 75.9±0.9 79.2±0.3

G-Motif* 66.4±3.4 73.2±0.8 62.6±0.5 60.6±1.1 77.8±2.0 73.3±2.0 73.8±1.4 73.4±4.0

GraphCL* 67.5±3.3 75.0±0.3 62.8±0.2 60.1±1.3 78.9±4.2 77.1±1.0 75.0±0.4 68.7±7.8

JOAO* 66.0±0.6 74.4±0.7 62.7±0.6 60.7±1.0 66.3±3.9 77.0±2.2 76.6±0.5 72.9±2.0

JOAOv2 67.2±3.6 75.0±0.7 63.5±0.3 60.6±0.4 77.1±3.9 73.4±3.4 77.7±1.1 71.7±0.5

MGSSL 67.3±0.9 74.5±0.2 63.6±0.4 58.4±0.2 75.4±3.8 73.9±1.4 77.2±2.5 76.2±1.3

MolCLR 67.6±0.6 74.4±1.3 62.9±0.2 58.7±1.1 57.9±3.0 70.8±2.8 75.4±1.2 74.6±3.5

2D-FragCL (Ours) 68.2±3.0 74.7±0.3 62.4±0.7 60.3±0.6 82.7±1.3 77.9±1.0 76.1±1.4 77.2±1.0

Pretrained on 2D and 3D molecule graph

GraphMVP* 68.5±0.2 74.5±0.4 62.7±0.1 62.3±1.6 79.0±2.5 75.0±1.4 74.8±1.4 76.8±1.1

GraphMVP-G* 70.8±0.5 75.9±0.5 63.1±0.2 60.2±1.1 79.1±2.8 77.7±0.6 76.0±0.1 79.3±1.5

GraphMVP-C* 72.4±1.6 74.4±0.2 63.1±0.4 63.9±1.2 77.5±4.2 75.0±1.0 77.0±1.2 81.2±0.9

3D-InfoMax 67.9±1.2 75.3±0.3 64.6±0.4 59.6±0.7 89.7±0.5 76.7±0.6 73.4±1.2 79.9±0.9

FragCL (Ours) 70.9±1.6 76.2±0.2 64.2±0.5 61.9±0.9 89.9±1.2 77.8±0.6 77.8±0.5 80.9±1.0

et al., 2018), and (b) regression tasks from ATOM3D benchmark (Townshend et al., 2020). Detailed
explanations for each downstream task can be found in Appendix D.

Baselines. We follow the baselines considered in GraphMVP (Liu et al., 2022), EdgePred (Hamil-
ton et al., 2017), AttrMask (Hu et al., 2019), GPT-GNN (Hu et al., 2020), Infomax (Sun et al.,
2019), ContextPred (Hu et al., 2019), GraphLoG (Xu et al., 2021), G-{Contextual, Motif} (Rong
et al., 2020a), GraphCL (You et al., 2020), and JOAO (You et al., 2021). Additionally, we com-
pare with newly-proposed 3D-Infomax (Stärk et al., 2022). GraphMVP, GraphMVP-{G,C}, and
3D-Infomax utilize both 2D and 3D molecule graphs in pretraining, while other baselines are based
on 2D molecule graph. Detailed information of baselines can be found in Appendix A. For more
comparison, we add 2D-FragCL, which is pretrained on only 2D molecule graphs with L2D,con in
equation 6. More comparison on 2D-FragCL and 2D molecule graph representation learning meth-
ods on ZINC15 (Sterling & Irwin, 2015) pretraining dataset can be found in Appendix B.

Experimental details. We consider 5-layer graph isomorphism network (GIN) (Xu et al., 2019)
and 6-layer SchNet (Schütt et al., 2017) with mean pooling as readout function of our 2D GNN
f2D(·) and 3D GNN f3D(·). The configuration is drawn from GraphMVP (Liu et al., 2022) for a fair
comparison. Note that we only transfer f2D(·) to fine-tune on 2D molecule graphs in the downstream
tasks. Further details can be found in Appendix A.

4.2 MAIN RESULTS

In our experiments, we achieve state-of-the-art performance in downstream molecule property pre-
diction tasks. In both MoleculeNet and ATOM3D downstream tasks, FragCL consistently achieves
the state-of-the-art ROC-AUC and MAE score, respectively.

MoleculeNet classification task. As reported in Table 1, FragCL achieves the best average test
ROC-AUC score when transferred to MoleculeNet (Wu et al., 2018) downstream tasks. Specifically,
our method achieves the state-of-the-art performance on 7 out of 8 downstream tasks. We emphasize
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Table 2: Comparison of test MAE score on ATOM3D downstream quantum property regression
benchmarks. We report mean and standard deviation over 3 different seeds. We mark the best mean
score bold. Additionally, we mark the average scores within one standard deviation from the highest
average score to be bold.

Methods ZPVE µ α Cv LUMO HOMO εgap R2 U0 U298 H298 G298

- 49.7±8.7 0.428±0.002 0.666±0.060 0.255±0.008 84.8±0.7 85.6±1.2 124±1 28.8±0.9 74.9±9.5 68.3±11.2 72.0±10.6 71.2±2.9
CP 30.7±2.1 0.416±0.002 0.633±0.032 0.219±0.005 85.6±0.9 86.7±0.9 124±2 25.4±0.3 60.0±6.1 60.8±10.1 65.2±11.1 60.8±10.1
GraphCL 27.2±0.5 0.419±0.005 0.589±0.039 0.225±0.002 85.0±0.5 85.3±0.3 121±1 25.1±0.4 57.2±4.2 58.9±3.9 55.1±2.7 59.9±4.5
GraphMVP-C 22.7±1.8 0.423±0.001 0.521±0.038 0.199±0.008 85.2±0.6 86.5±0.3 124±1 25.2±0.1 37.4±2.0 38.6±3.6 39.2±4.0 43.6±2.2
3D-Infomax 22.2±1.6 0.412±0.004 0.492 ±0.006 0.202±0.004 84.9±1.0 83.2±0.9 121±0 24.8±0.3 40.3±1.3 39.7±1.2 38.7±2.8 38.0±1.3

FragCL (Ours) 23.4±1.2 0.409±0.001 0.488±0.023 0.201±0.007 80.9±1.3 83.0±0.6 118±1 24.4±0.8 39.1±3.0 40.0±3.6 40.9±2.9 37.7±2.2

that the improvement of FragCL is consistent over downstream tasks. For example, 3D-InfoMax
(Liu et al., 2022) achieves the best performance on ToxCast, while it fails to generalize on Sider,
resulting in even lower ROC-AUC score compared to several baselines pretrained on 2D dataset.
On the other hand, FragCL shows the best average performance with no such failure case, i.e.,
FragCL learns well-generalizable representations over several downstream tasks. Also, 2D-FragCL
even performs better than GraphMVP (pretrained on both 2D and 3D dataset) on 4 out of 8 tasks.
This verifies the effectiveness of our proposed view construction strategy between a molecule and
its bag of fragments.

ATOM3D regression task. Table 2 shows the overall results of transfer learning on ATOM3D
(Townshend et al., 2020) molecule property regression benchmark. Overall, our FragCL outperforms
the baselines, achieving the state-of-the-art performance over all considered downstream tasks of
ATOM3D. We emphasize that our FragCL shows the best performance when fine-tuned on both
MoleculeNet and ATOM3D downstream dataset, which verifies that FragCL learns representations
generally applicable over distinct fine-tuning data distributions.

4.3 ABLATION STUDY

Fragment-based view construction. To recognize the effectiveness of our view construction strat-
egy, we conduct an ablation study on regarding the complete (incomplete) bag of fragments as a
positive (negative) view in Table 3. We start our ablation by considering an incomplete bag of frag-
ments, i.e., a subgraph, as a positive view of the original molecule, which is similar to the prior
methods (You et al., 2020; 2021; Wang et al., 2021). The improvement 70.4→ 71.7→ 72.1 is from
our careful easy positive and hard negative view construction strategy via molecule fragmentation
from its own molecule, which is different from existing molecular contrastive representation learn-
ing methods. Also, regarding the incomplete bag of fragments as a neutral view, i.e., complete bag
of fragments of other molecules as only negatives, greatly improves its non-pretraining counterpart
by 67.2→ 71.9 and it verifies the effectiveness of our negative view construction in a mini-batch.

Strategy to construct fragments. To verify the effectiveness of our bond-disconnecting strategy
to obtain the bag of fragments, we conduct experiments with an alternative strategy: cutting random
non-ring bonds, i.e., including single, double and triple bond. As shown in Table 3, our single-bond
disconnecting strategy improves disconnecting a random non-ring bond by 72.1→ 72.4 for L2D,con
and 73.3→ 74.0 for Lcon. Note that the margin is larger in Lcon since Lcon utilizes both 2D and 3D
fragments, while L2D,con is based on only 2D fragments. The results verify our semantic-preserving
transformation, i.e., disconnecting a non-ring single bond, successfully creates an easy positive view
by maintaining informative substructures of molecules.

The proposed loss. Our loss design LFragCL (equation 14) combines several components proposed
in Section 3, and here we validate that each of the components has an individual effect in improving
the performance. Table 3 shows that 2D-FragCL, trained with L2D,con as its loss function, effectively
learns discriminative representations from fragmented 2D views by obtaining 67.2→ 72.4 from its
non-pretraining counterpart. Also, jointly training 3D GNN with 2D GNN improves 2D-FragCL by
72.4→ 74.0, and incorporating 2D GNN with 3D torsional angle further boosts the performance by
74.0→ 75.0. This confirms that each component of our FragCL plays its role effectively. Also, the
effectiveness of the torsional angle reconstruction task is further verified in the advanced torsion-
aware architecture SphereNet (Liu et al., 2021), by improving the average performance by 74.4 →
75.1. The detailed results with SphereNet can be found in Appendix G.
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Table 3: Ablation of FragCL with the average ROC-AUC score of 8 downstream tasks on Molecu-
leNet. Detailed results can be found in Appendix E.

Complete bag Incomplete bag Disconnecting Pretraining
of fragments of fragments bond loss Avg

- - - - 67.2
Neutral Positive Random L2D,con 70.4
Positive Positive Random L2D,con 71.7
Positive Negative Random L2D,con 72.1
Positive Negative Single L2D,con 72.4

Positive Neutral Single L2D,con 71.9
Positive Negative Single L2D,con 72.4

Positive Negative Random Lcon 73.3
Positive Negative Single Lcon 74.0
Positive Negative Single LFragCL 75.0

5 RELATED WORKS

Molecular representation learning. Researchers have paid attention to learning molecular repre-
sentations for downstream tasks given a massive unlabeled molecule dataset. self-supervised molec-
ular representation learning. One of the self-supervised learning techniques for molecular repre-
sentation learning is generative learning. For example, those methods reconstruct the corrupted in-
put as pre-defined pretext tasks (Hamilton et al., 2017; Hu et al., 2019; Rong et al., 2020a; Zhang
et al., 2021). Another large portion of graph self-supervised learning consists of contrastive learn-
ing, which aims to learn a representation by pulling positive samples together and pushing negative
samples apart. Zhu et al. (2021a) considers SMILES 1D string and 2D molecule of a molecule as a
positive pair. You et al. (2020; 2021); Wang et al. (2021); Zhang et al. (2020) utilize augmentation
schemes to produce positive view of molecule graphs, Fang et al. (2021a); Sun et al. (2021); Wang
et al. (2022) mitigate the effect of semantically similar molecules in the negative samples (Zhu et al.,
2021b). Recently, there are pioneering attempts to incorporate 2D topology of molecule with paired
3D geometric structures (Stärk et al., 2022; Liu et al., 2022).

Molecule fragmentation. Recently, several machine learning researches for molecule generation
(Maziarz et al., 2021; Jin et al., 2018; 2020) regard a molecule as a combination of semantically
important pieces, e.g., fragment. Such approach is natural in chemical sense, since the property of a
molecule is largely determined by its chemically important substructures; not by atom-level features
(Smith, 2008). Zhang et al. (2021) has adapted this concept to molecular representation learning
by considering the reconstruction of substructures as a generative pretext task. However, there are
remaining challenges: since the dictionary of substructure grows as the size of pretraining dataset
increases, the reconstruction is infeasible in large scale pretraining dataset.

On the other hand, some research on contrastive molecular representation learning has utilized a sub-
structure of molecule in their training objective. For example, You et al. (2020); Wang et al. (2021);
Zhang et al. (2020) construct a positive view of a molecule as its substructure. These works differ
from ours such that they focus on maximizing similarity between representations of a molecule and
its single fragment, i.e., positive view, while FragCL considers a single fragment as the (hard) nega-
tive view. Such an opposite strategy is possible for FragCL as it instead considers a complete bag of
fragments as the (easy) positive view. In addition, Wang et al. (2022) contrasts the representations of
molecule-molecule and fragment-fragment pairs, while FragCL considers molecule-fragment pairs.

6 CONCLUSION

We present FragCL, a new contrastive molecular representation learning method based on chemical
prior: A molecule can be viewed as a “bag of fragments”, which consists of chemically meaningful
structure. Based on this insight, we regard the complete bag of fragment as an easy positive view of
a given molecule. Moreover, we set an incomplete bag of fragments to be a hard negative view of
its own molecule since they differ in chemical property, while sharing some chemical substructures.
Additionally, FragCL learns 3D contextual information by reconstructing the torsional angle around
the fragmented bond. Experiments show that FragCL outperforms in predicting molecule property
thanks to our pretraining strategy guided by clever fragment-based views of molecule graphs.
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ETHICS STATEMENT

This work will facilitate research in molecular representation learning, which can speed up the pro-
cessing of many important downstream tasks such as molecule property prediction and molecule
generation. However, malicious use of well-learned molecular expressions poses a potential threat
of creating hazardous substances, such as toxic chemical substances or biological weapons. On the
other hand, molecule representation is also essential for creating defense mechanisms against harm-
ful substances, so the careful use of our work, FragCL, can lead to more positive effects.

REPRODUCIBILITY STATEMENT

We describe the implementation details for self-supervised pretraining and fine-tuning in Ap-
pendix A, and provide our source code in the supplementary material. For 2D-FragCL, we use a
single NVIDIA GeForce RTX 2080 Ti GPU and 40 CPU cores (Intel(R) Xeon(R) CPU E5-2630
v4 @ 2.20GHz), and we use a single NVIDIA-A100-SXM GPU and 124 CPU cores (AMD EPYC
7542 32-Core Processor) for FragCL.
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Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
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Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions. Advances in neural information processing systems, 30, 2017.

Janice G Smith. Organic chemistry. McGraw-Hill, 2008.

Hannes Stärk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian Dallago, Stephan
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A EXPERIMENTAL DETAILS

Training details. We follow the training setup considered in GraphMVP (Liu et al., 2022): Specifi-
cally, we use a batch size of 256 and no weight decay. Also, we set the temperature τ in equation 5
as 0.1 for overall experiments. We use {Nodedrop, Attrmask, identity} randomly, i.e., 1

3
probability for each fragment and the original 2D molecule graphs, and Gaussian noise N (0, I) to
each coordinate of 3D molecule graphs. When pretraining, we excluded about 0.1% of molecules
that does not satisfy our fragmentation scheme (51 out of 50k molecules in GEOM 50k dataset.
When Nodedrop or Attrmask is used, we drop/mask the portion of 0.1 vertices from the total
vertices. For self-supervised pretraining, we train for 100 epochs using Adam optimizer (Kingma &
Ba, 2014) with a learning rate of 0.001 and no dropout. Our code is based on open-source codes of
GraphMVP3 and GraphCL4.

For 2D-FragCL and other reproduced 2D baselines, we exclude implicit hydrogens in molecule
graph, following the common frameworks of (You et al., 2020; 2021). For FragCL and 3D-InfoMax,
we include implicit hydrogens into molecule graph, following (Liu et al., 2022) that utilizes the 3D
coordinates of hydrogen atoms provided in GEOM dataset (Axelrod & Gomez-Bombarelli, 2022).
We exclude an incomplete bag of fragments G′ from the negative pair set of the anchor molecule G
when |G′| ≥ 0.7×|G|, to prevent the incomplete bag of fragments G′ from becoming a semantically
positive view. For torsional angle prediction task, we construct the quartet of atoms (s, u, v, t) for
the fragmented bond (u, v) so that s, t are non-hydrogen atoms, and the binning of yabs splits 0 to
π into 9 uniform bins. We use 2-layer and 3-layer MLP for grot(·) and gabs(·), respectively. Also,
grot(·) and gabs(·) shares the first layer of MLP.

Evaluation on MoleculeNet downstream tasks. Following the baselines, we use scaffold split
(Chen et al., 2012), which splits the molecules based on their substructures. We use the split ratio
train:validation:test = 80:10:10 for each downstream task dataset to evaluate the performance. For
the consistency of the input graphs in pretraining and fine-tuning, we exclude implicit hydrogen
atoms of molecules in fine-tuning dataset for 2D-FragCL and other reproduced 2D baselines and we
include implicit hydrogen atoms of molecules in fine-tuning dataset for FragCL and 3D-InfoMax.
Experimental detail follows GraphMVP (Liu et al., 2022); we fine-tune a pretrained 2D GNN with an
initialized linear projection layer for 100 epochs with Adam optimizer and a learning rate of 0.001,
and dropout probability of 0.5. Our results are calculated by the test ROC-AUC score of the epoch
with the best validation ROC-AUC score. Besides the ROC-AUC score of individual downstream
tasks, we also report the average ROC-AUC score across downstream datasets.

Evaluation on ATOM3D downstream tasks. Following (Townshend et al., 2020), we split the
molecules in ATOM3D SMP (Small Molecule Properties) dataset into 103,547 molecules for train-
ing, 12,943 molecules for validation, and 12,943 molecules for test. We normalize the regression
label by the mean and the standard deviation of the labels of training set. Our result is calculated
by the test MAE score of the epoch with the best validation MAE score. We pretrain on ATOM3D
training dataset and fine-tune a pretrained 2D GNN with an initialized linear projection layer for 100
epochs with Adam optimizer and Reduce-LR-On-Plateau scheduler with reduction parameter 0.7,
and patience 3, and initial learning rate 0.001.

Hardwares. For 2D-FragCL, we use a single NVIDIA GeForce RTX 2080 Ti GPU and 40 CPU
cores (Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz), and a single NVIDIA-A100-SXM GPU
and 124 CPU cores (AMD EPYC 7542 32-Core Processor) for FragCL. Experiments for ZINC15
dataset were performed using a single GPU (Tesla V100) and 32 CPU cores (Intel Xeon Gold 5120).

Baselines. We compare our method with an extensive list of baseline methods in the literature of
graph representation learning:

• No pretraining trains a model from scratch for downstream task.
• EdgePred (Hamilton et al., 2017) uses edge-reconstruction as a pretext task.
• AttrMask (Hu et al., 2019) learns representation by recovering the vertex features after masking

them.

3https://github.com/chao1224/GraphMVP
4https://github.com/Shen-Lab/GraphCL
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Table 4: Comparison of test ROC-AUC (%) score on downstream molecular property prediction
benchmarks when pretrained on ZINC15 dataset. Following the baselines, we report mean and stan-
dard deviation over 10 different seeds. We mark the best mean score bold. Additionally, we mark
the second-best score bold when its mean is within one standard deviation from the highest score.

Pretraining BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace Avg

- 65.8±4.5 74.0±0.8 63.4±0.6 57.3±1.6 58.0±4.4 71.8±2.5 75.3±1.9 70.1±5.4 67.0

Infomax 68.8±0.8 75.3±0.5 62.7±0.4 58.4±0.8 69.9±3.0 75.3±2.5 76.0±0.7 75.9±1.6 70.3
EdgePred 67.3±2.4 76.0±0.6 64.1±0.6 60.4±0.7 64.1±3.7 74.1±2.1 76.3±1.0 79.9±0.9 70.3
AttrMask 64.3±2.8 76.7±0.4 64.2±0.5 61.0±0.7 71.8±4.1 74.7±1.4 77.2±1.1 79.3±1.6 71.2
ContextPred 68.0±2.0 75.7±0.7 63.9±0.6 60.9±0.6 65.9±3.8 75.8±1.7 77.3±1.0 79.6±1.2 70.9
GraphCL 69.7±0.7 73.9±0.7 62.4±0.6 60.5±0.9 76.0±2.7 69.8±2.7 78.5±1.2 75.4±1.4 70.8
JOAO 70.2±1.0 75.0±0.3 62.9±0.5 60.0±0.8 81.3±2.5 71.7±1.4 76.7±1.2 77.3±0.5 71.9
JOAOv2 71.4±0.9 74.3±0.6 63.2±0.5 60.5±0.7 81.0±1.6 73.7±1.0 77.5±1.2 75.5±1.3 72.1

2D-FragCL (Ours) 67.6±1.7 76.1±0.7 63.6±0.3 61.3±0.9 80.0±2.1 75.4±1.6 78.1±1.3 81.2±1.2 72.9

• GPT-GNN (Hu et al., 2020) uses the graph generation task as a pretext task.
• Infomax (Sun et al., 2019) maximizes mutual information between global representations (i.e.,

graph representations) and local representations (i.e. path representation).
• ContextPred (Hu et al., 2019) learns representation by predicting surrounding subgraph of spe-

cific node edge.
• GraphLoG (Xu et al., 2021) discriminates graph and subgraph pairs from their opposing pairs

to preserve local similarity between various graphs, which leads to the embedding alignment of
correlated graphs.

• G-Contextual (Rong et al., 2020a) learns representations by randomly masking local subgraphs
of target nodes (or edges) and predicting these contextual properties from node embeddings.

• G-Motif (Rong et al., 2020a) predicts the occurrence of the semantic motifs extracted by using
chemical prior.

• GraphCL (You et al., 2020) is a generic graph contrastive learning method based on their graph-
agnostic augmentation schemes, which do not use any molecule-specific knowledge.

• JOAO (You et al., 2021) and JOAOv2 (You et al., 2021) propose min-max optimization processes
to learn optimal data augmentation strategies dynamically from a pre-fixed candidate set of aug-
mentations.

• MGSSL (Zhang et al., 2021) introduces a generative self-supervised objective to reconstruct a
motif-tree.

• MolCLR (Wang et al., 2021) performs a contrastive learning with NT-Xent (Chen et al., 2020a),
constructing positive views of a molecule by proposed molecule augmentation schemes.

• 3D-InfoMax (Stärk et al., 2022) proposes to consider 2D topological molecule graph and 3D
geometric molecule graph from the same molecule as a positive view of each other.

B ADDITIONAL RESULTS OF 2D-FRAGCL

To further emphasize the effectiveness of our view construction strategy, we report the performance
of 2D-FragCL on the several downstream tasks on MoleculeNet (Wu et al., 2018) when pretrained
on ZINC15 dataset with baselines. In Table 4, we observe that FragCL significantly improves non-
pretrained counterpart. Also, FragCL achieves at least the second-best ROC-AUC score for 5 out of
8 tasks, FragCL achieves an average ROC-AUC of 72.9, while second-best baseline (i.e., JOAOv2)
performs 72.1. As shown in Table 4, JOAOv2 (with respect to average ROC-AUC) often performs
even worse than the vanilla without using self-supervised pretraining, e.g., in the ToxCast task.
However, FragCL does not have such a failure case and achieves the robust performance across all
tested downstream tasks. Overall, FragCL achieves an average ROC-AUC of 72.9, while second-
best baseline (i.e., JOAOv2) performs 72.1, which indeed demonstrates the generalization ability of
our FragCL.
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C GRAPH NEURAL NETWORKS

Graph Isomorphism Network (GIN). We provide a detailed description of architecture of graph
isomorphism network (GIN) (Xu et al., 2019), which we mainly consider as the feature extractor
f2D(·) in this paper. Particularly, GIN learns representation h

(ℓ)
v by:

h(ℓ)
v = MLP(ℓ)

(
h(ℓ−1)
v +

∑
u∈N (v)

(
h(ℓ−1)
u + e(ℓ−1)

uv

))
, (15)

while e
(ℓ−1)
uv is the embedding corresponding to the attribute of edge {u, v} ∈ E .

SchNet. We consider SchNet (Schütt et al., 2017), which is a very strong 3D graph neural network
under fair comparison (Liu et al., 2022) as our f3D(·) in this paper.

D DATASET DETAILS

We pretrain our feature extractor on GEOM (Axelrod & Gomez-Bombarelli, 2022) and ZINC15
(Sterling & Irwin, 2015). Then, we perform transfer-learning on eight benchmark binary classi-
fication datasets from MoleculeNet (Wu et al., 2018). More information on downstream tasks is
described below, and the statistics are reported in Table 5 and 6.

• BBBP contains data on whether the compound is permeable to the blood-brain barrier.
• Tox21 measures the toxicity of a compound and was used in the 2014 Tox21 Data Challenge.
• ToxCast includes multiple toxicity annotations of compounds collected after performing high-

throughput screening tests.
• Sider refers to side effect resources, i.e., data on the marketed drugs and their side effects.
• Clintox is a dataset of comparison results between drugs approved through the FDA and drugs

removed because of toxicity during clinical trials.
• MUV is a validation dataset of virtual screening technology. Specifically, it is subsampled in the

PubChem BioAssay using refined nearest neighborhood analysis.
• HIV consists of data about capability to prevent HIV replication.
• Bace is collected dataset of compounds that could prevent (BACE-1).

Table 5: Pretraining dataset statistics

Dataset GEOM ZINC15

Number of molecules 50,000 2,000,000
Avg. Node 25.35 26.62
Avg. Degree 54.72 57.72

Table 6: MoleculeNet downstream classification dataset statistics

Dataset BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace

Number of molecules 2,039 7,831 8,575 1,427 1,478 93,087 41,127 1,513
Number of tasks 1 12 617 27 2 17 1 1
Avg. Node 24.06 18.57 18.78 33.64 26.15 24.23 25.51 34.08
Avg. Degree 51.90 38.58 38.52 70.71 55.76 52.55 54.93 73.71
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We also perform transfer-learning on seven benchmark binary classification datasets from ATOM3D
(Townshend et al., 2020). More information on downstream tasks is described below, and the statis-
tics are reported in Table 7 and 8.

Table 7: ATOM3D downstream regression tasks

Task Summary Unit

ZPVE Zero point vibrational energy meV
µ Dipole moment D
α Isotropic polarizability bohr3

Cv Heat capacity at 298.15K cal/mol · K
LUMO Lowest unoccupied molecular orbital energy meV
HOMO Highest occupied molecular orbital energy meV
εgap Gap between HOMO and LUMO meV
R2 Electronic spatial extent bohr2

U0 Internal energy at 0K meV
U298 Internal energy at 0K meV
H298 Enthalpy at 0K meV
G298 Gibbs energy at 0K meV

Table 8: ATOM3D downstream dataset statistics

Dataset ATOM3D

Number of molecules 129,433
Avg. Node 18.0
Avg. Degree 18.6

E ABLATION DETAILS

Table 9: Detailed results on ablation of α with the average score on MoleculeNet.

Complete bag Incomplete bag Disconnecting Pretraining Downstream tasks

of fragments of fragments bond loss BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace Avg

- - - - 65.8±4.5 74.0±0.8 63.4±0.6 57.3±1.6 58.0±4.4 71.8±2.5 75.3±1.9 70.1±5.4 67.0
Neutral Positive Random L2D,con 65.4±1.4 73.8±0.4 63.3±0.4 57.3±1.1 74.4±4.4 74.2±1.8 75.0±0.8 79.8±1.4 70.4
Positive Positive Random L2D,con 72.2±0.7 74.6±0.7 63.1±0.3 58.6±0.8 77.9±2.3 76.5±1.7 73.6±1.4 77.5±1.3 71.7
Positive Negative Random L2D,con 71.0±0.6 73.8±0.6 63.3±0.2 59.9±0.2 81.5±3.7 75.7±2.2 75.1±1.3 76.4±3.1 72.1
Positive Negative Single L2D,con 68.2±3.0 74.7±0.3 62.4±0.7 60.3±0.6 82.7±1.3 77.9±1.0 76.1±1.4 77.2±1.0 72.4

Positive Neutral Single Lcon 67.9±2.4 74.5±0.1 63.8±0.4 58.2±0.7 80.5±4.4 76.7±2.3 75.4±0.2 78.1±1.3 71.9
Positive Negative Single L2D,con 68.2±3.0 74.7±0.3 62.4±0.7 60.3±0.6 82.7±1.3 77.9±1.0 76.1±1.4 77.2±1.0 72.4

Positive Negative Random Lcon 66.4±1.6 75.7±1.6 63.7±0.5 60.7±1.1 89.6±3.1 73.8±1.1 76.1±1.2 80.6±2.0 73.3
Positive Negative Single Lcon 68.4±1.4 76.3±1.2 63.5±0.4 61.2±0.6 90.5±2.4 76.3±1.0 75.0±0.7 80.8±1.0 74.0
Positive Negative Single LFragCL 70.9±1.6 76.2±0.2 64.2±0.5 61.9±0.9 89.9±1.2 77.8±0.6 77.8±0.5 80.9±1.0 75.0

Table 10: Detailed results on ablation of FragCL with the average score on MoleculeNet.

α BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace Avg

0.0 68.4±1.4 76.3±1.2 63.5±0.4 61.2±0.6 90.5±2.4 76.3±1.0 75.0±0.7 80.8±1.0 74.0
0.5 69.1±0.5 76.0±0.2 63.5±0.2 60.2±0.9 92.4±1.2 77.3±1.5 77.6±1.7 80.1±0.9 74.5
1.0 70.9±1.6 76.2±0.2 64.2±0.5 61.9±0.9 89.9±1.2 77.8±0.6 77.8±0.5 80.9±1.0 75.0
2.0 69.2±0.2 75.3±0.7 64.0±0.3 60.3±0.1 92.0±2.7 76.6±1.4 77.2±0.6 79.6±0.5 74.3
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F DISCUSSION ABOUT THE FRAGMENTATION STRATEGY

The extent of semantic-preservation can be controlled by a more sophisticated fragmentation strat-
egy to control. In Table 11, we report the performance with the fragmentation strategy ‘disconnect a
non-ring C-C bond’ to prevent altering the named groups such as ether, ester, and amide. In the table
below, modified strategy obtains improvements on some downstream dataset (e.g., 89.9 → 92.1 in
Clintox). However, we note that our original (and extremely simple) strategy also shows comparable
performance for downstream tasks, verifying the validity of ‘disconnect a non-ring single bond’ as
a semantic-preserving transformation.

Table 11: Detailed results on the fragmentation strategy of FragCL with the average score on
MoleculeNet.

Fragmentation strategy BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace Avg

Single bond 70.9±1.6 76.2±0.2 64.2±0.5 61.9±0.9 89.9±1.2 77.8±0.6 77.8±0.5 80.9±1.0 75.0
C-C single bond 70.4±0.7 75.6±0.8 64.6±0.6 61.5±1.2 92.1±1.9 77.5±1.6 77.6±1.2 80.4±1.7 75.0

G RESULTS ON SPHERENET AS A 3D ENCODER

Our architectural choice of Table 1 is for the fair comparison with GraphMVP (one of our main
baselines). In Table 12, we verify our torsional angle reconstruction task is still meaningful even with
a torsion-angle-aware 3D encoder, i.e., SphereNet (Liu et al., 2021), by improving the performance
by 74.4→ 75.1.

Table 12: Detailed results on SphereNet as a 3D encoder of FragCL with the average score on
MoleculeNet.

Pretraining loss BBBP Tox21 ToxCast Sider Clintox MUV HIV Bace Avg

Lcon 69.8±1.3 75.6±0.3 64.9±0.6 62.0±1.1 89.9±1.7 75.9±0.4 76.4±0.3 80.3±0.9 74.4
LFragCL 71.5±1.4 75.7±0.7 65.7±0.3 61.3±1.0 91.4±1.4 78.1±2.2 76.1±1.6 80.7±0.6 75.1
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H TRAINING PROCEDURE OF FRAGCL

Algorithm 1 Fragment-based molecule Contrastive Learning (FragCL)
Input: Molecule graphs {G}Mi=1, a 2D GNN f2D(·), 3D GNN f3D(·), and projection heads g2D(·),
g3D(·), grot(·), and gabs(·).
1: for sampled mini-batch of N molecule graphs {Gi}Ni=1 do
2: for i = 1 to N do
3: {G′2D,i,G′′2D,i}, {G′3D,i,G′′3D,i} ← Fragmentation(Gi)
4: // Obtain 2D graph representations
5: r2D,i, r

′
2D,i, r

′′
2D,i,← f2D(G2D), f2D(G′), f2D(G′′),

6: rmix2D,i ← 1
n′
i+n′′

i
(n′

i × f2D(G′) + n′′
i × f2D(G′′))

7: z2D,i, z
′
2D,i, z

′′
2D,i, z

mix
2D,i ← g2D(r2D,i), g2D(r

′
2D,i), g2D(r

′′
2D,i), g2D(r

mix
2D,i)

8: // Obtain 3D graph representations
9: r3D,i, r

′
3D,i, r

′′
3D,i ← f3D(G3D), f3D(G′), f3D(G′′)

10: rmix3D,i ← 1
n′
i+n′′

i
(n′

i × f3D(G′) + n′′
i × f3D(G′′))

11: z3D,i, z
′
3D,i, z

′′
3D,i, z

mix
3D,i ← g3D(r3D,i), g3D(r

′
3D,i), g3D(r

′′
3D,i), g3D(r

mix
3D,i)

12: // Contrastive objectives
13: define L2D,con,i := LNT-Xent(z2D,i, z

mix
2D,i, {zmix2D,j}j ̸=i ∪ {z′2D,i, z′′2D,i})

14: define L3D,con,i := LNT-Xent(z3D,i, z
mix
3D,i, {zmix3D,j}j ̸=i ∪ {z′3D,i, z′′3D,i})

15: define L{2D,3D},con,i :=
1
2

(
LNT-Xent(z2D,i, z3D,i, {z3D,j}nj=1) + LNT-Xent(z3D,i, z2D,i, {z2D,j}nj=1)

)
16: define Lcon,i := L2D,con,i + L3D,con,i + L{2D,3D},con,i

17: // Torsional angle reconstruction of (s, u, v, t) around the fragmented edge (u, v)
18: zrot,i(s, u, v, t)← grot([h2D,s,i;h2D,u,i;h2D,v,i;h2D,t,i])
19: zabs,i(s, u, v, t)← gabs([h2D,s,i;h2D,u,i;h2D,v,i;h2D,t,i])
20: zabs,i(t, v, u, s)← gabs([h2D,t,i;h2D,v,i;h2D,u,i;h2D,s,i])
21: zabs,i(t, v, u, s)← gabs([h2D,t,i;h2D,v,i;h2D,u,i;h2D,s,i])
22: Lrot,i ← LBCE(zrot,i(s, u, v, t), yrot,i) + LBCE(zrot,i(t, v, u, s), yrot,i)
23: Labs,i ← LBCE(zabs,i(s, u, v, t), yrot,i) + LBCE(zabs,i(t, v, u, s), yrot,i)
24: define Ltorsion,i := Lrot,i + Labs,i

25: // Definition of FragCL loss
26: define LFragCL,i := Lcon,i + αLtorsion,i

27: endfor
28: define LFragCL :=

1
n

∑n
i=1 LFragCL,i

29: Update fθ(·) and gϕ(·) to minimize LFragCL

30: endfor
31: return fθ(·)
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I FRAGMENTATION EXAMPLES

We present several examples of fragmentation strategy based on our algorithm. Our fragmentation
scheme almost preserves the chemically informative substructures, keeping the semantics of the
original molecule.

Table 13: Fragmentation examples

Molecule Bag of Fragments
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