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ABSTRACT

Attribution-based and concept-based methods dominate the area of post-hoc ex-
plainability for vision classifiers. While attribution-based methods highlight cru-
cial regions of the input images to justify model predictions, concept-based meth-
ods provide explanations rooted in high-level properties that are generally more
understandable for humans. In this work, we introduce “Conceptualize Any
Network™” (CAN), a comprehensive post-hoc explanation framework that com-
bines the wide scope of feature attribution methods and the understandability of
concept-based methods. Designed to be model agnostic, CAN is capable of ex-
plaining any network that allows for the extraction of feature attribution maps,
expanding its applicability to both CNNs and Vision Transformers (ViTs). More-
over, unlike existing concept-based methods for vision classifiers, CAN extracts
a set of concepts shared across all classes, enabling a unified explanation of the
model as a whole. Extensive numerical experiments across different architec-
tures, datasets, and feature attribution methods showcase the capabilities of CAN
in Conceptualizing Any Network faithfully, concisely, and consistently. Further-
more, we manage to scale our framework to all of ImageNet’s classes which has
not been achieved before.

1 INTRODUCTION

The recent developments in Computer Vision improve the prediction accuracy of the new models
for increasingly sophisticated tasks. However, it comes with the cost of less transparent architec-
tures that are not fully understandable even by experts, leading to concerns about the usage of such
models (Zhao et al.,[2023; [Hamon et al., 2020) which necessitate the introduction of new legislation
(Kaminski & Urban, 2021; Veale & Zuiderveen Borgesius, |2021)).

To alleviate these concerns, researchers have developed different methods to explain decisions of
given pretrained models, collectively termed as post-hoc explainability methods. The most promi-
nent of these are feature attribution approaches (Selvaraju et al., 2017; |Sundararajan et al., 2017;
Shrikumar et al.| 2017; Ribeiro et al.,[2016; Binder et al.,|2016)) that output an importance map over
the space of input features, i.e. pixels. However, the use of pixel space for generating visual saliency
maps has been criticized for multiple reasons. Specifically, saliency methods are criticized for only
highlighting “where” a model focuses and poor at identifying “what” features the model extracts i.e.
the underlying semantic patterns (Colin et al., 2022). Moreover, they locally interpret a model and
are incapable of deriving a global understanding of the decision-making process.

These limitations have led to the growing prominence of concept-based interpretability approaches
that aim to extract and interpret the given model via a dictionary of high-level concept representa-
tions (Kim et al., 2018} |Ghorbani et al., 2019} |Vielhaben et al., 2023)). While a variety of methods
have been proposed to this end, they explicitly make assumptions about the model architecture (Fel
et al.,[2023} |Vielhaben et al., |2023) and rely on both, selecting and accessing, the right internal rep-
resentations of the given model (Ghorbani et al.,[2019). Thus, the prior methods generalize poorly
in terms of the architectures they apply to, as evidenced by the vast majority of prior approaches
only being applied to CNNs.
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In this paper, we propose a novel generic framework to “Conceptualize Any Network” (CAN).
Our framework makes no prior assumption about the model architecture and can be generalized
to any network. It relies on a feature attribution algorithm to extract information relevant to the
given model. This information is clustered in the activation space of a fixed encoder to discover
the concept dictionary. Unlike many of the previous approaches (Kim et al., [2018}; |(Ghorbani et al.,
2019; Fel et al.,2023) that extract concept dictionaries for each class separately, our method extracts
a shared concept dictionary across all classes, thus providing a holistic understanding of the model’s
decisions. Our key contributions can be summarized as:

* We present a novel post-hoc interpretability method able to extract a dictionary of concepts
from any feature attribution map defined from a pretrained model. This versatility allows
to cope with arbitrary model architectures (CNNs, ViTs, etc.).

* Our method provides a holistic view of the model by extracting a single concept dictionary
shared between all classes. We demonstrate this capability at scale by extracting dictionar-
ies for all ImageNet classes. To the best of our knowledge, among the similar methods,
ours is the first approach applied to this scale.

* We extensively validate our approach quantitatively and demonstrate that it extracts faith-
ful, concise and relevant explanations. Our experiment to demonstrate the relevance of
the concept dictionaries to model’s output also provides a principled way of selecting the
concept dictionary size.

2 RELATED WORK

Besides post-hoc interpretation, feature attribution is also commonly used as a means of interpreta-
tion for networks interpretable by design, such as for Contextual Explanation Networks (Al-Shedivat
et al.}2020) and B-cos Networks (Bohle et al.l 2024). In contrast to feature attribution approaches,
our method is a concept based interpretability approach that uses outputs of an underlying feature
attribution method to build its concept dictionary.

Concept activation vector (CAV) approaches |Kim et al.| (2018) first proposed the notion of con-
cept activation vectors (CAVs) to represent concepts in the activation space of a deep neural network
classifier. The concepts are defined as a set of user-provided examples. They propose to represent the
concept in the activation space of a neural network by finding a hyperplane in a given layer that sep-
arates the specified set of examples from a random set, defined as the CAV. |Ghorbani et al.| (2019)
proposed ACE, that further built on this approach by automating the concept extraction process.
They build a concept dictionary for a given class by extracting superpixels at various resolutions for
a given set of samples (from the class), and clustering them in the activation space. The centroids of
the clusters represent the different CAVs. |Fel et al.| (2023)) instead proposed to decompose activations
from image crops of a class with NMF, to learn a dictionary of CAVs, termed as CRAFT. Concept-
SHAP (Yeh et al., [2020) introduced the notion of completeness score that estimates the extent to
which extracted concepts explain the prediction of the classifier. MCD (Vielhaben et al.,[2023)) also
introduces another version of the completeness score based entirely on the model parameters. A
unifying framework for concept extraction covering most of the prior CAV-based approaches was
presented by [Fel et al.| (2024), which essentially considers all the approaches as instantiation of a
dictionary learning problem.

All the prior approaches however make assumptions about the underlying architecture of the clas-
sifier and inherently rely on the internal representations. Moreover, in practice, almost all are only
applied on convolutional neural networks (CNNs), with the exception of MCD which can also be
applied for certain vision transformers not using a CLS token (Vielhaben et al.| 2023)). In contrast,
we make no assumption about the internal architecture of the visual classifier. We assume that we
have access to the output of a feature attribution method. If the classifier is differentiable, various
candidates for such feature attribution methods exist. Even if not, a black-box feature attribution
method could be used. Our method can be particularly useful to understand proprietary models via
concept based explanations if a feature attribution output is accessible via an API. We also design
our method to extract a shared concept dictionary for all classes simultaneously, an aspect that has
been experimentally explored very briefly in prior CAV-based approaches. These differences with

prior works are summarized in|lable 1
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ACE CRAFT ConceptSHAP MCD CAN (Ours)

Multi-class X X v v v
Multi-architecture X X X - v

Table 1: Summary of concept discovery methods in the litterature with their limitations.
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Figure 1: A high-level overview of concept discovery in CAN framework. A set of discovery images
and their feature attribution maps are divided into patches. Guided by the feature attribution maps,
the most important patches, whose accumulated weighted sum is below a threshold, are extracted
and passed through an encoder. The embedded patches are then clustered to extract concepts.

3 METHODS

This section presents our concept-based framework CAN. We are interested in explaining a given
pre-trained classification model f : R% — {1,...,1}. In our framework, the explainability task
is divided into two steps. At discovery time, the concept discovery algorithm, D, extracts a set
of concepts from the predictive model at hand, f, and a “training” dataset Xg;s. dedicated to the
discovery task. At testing time, the concept assignment algorithm, A, leverages the set of discovered
concepts to identify for each input image of a “test” dataset Xiest the concepts important to the
prediction provided by f.

In the next two sections, we describe each algorithm and their components.

3.1 CONCEPT DISCOVERY

Define the discovery dataset as Xqise = {(x;,9;) € R4 x {1,..., l}}fvzdl" of Nyjsc images along
with their class labels. The goal of concept discovery D is to extract a joint set of k concepts
Daise = {c, € R¥%}F_,  that will constitute our concept dictionary to explain f, and a class-
concept importance matrix W4s¢ € [0, 1]"* from the dataset Xgsc.

Note that we are interested in extracting relevant concepts for f that are shared between all classes,
instead of extracting concepts for each class separately. In this work, we define concepts c,, as
centroids of clusters, computed from relevant parts of inputs, here patches cropped from the original

images, embedded in a lower-dimensional representation space R, dy < d;.

As illustrated in Figure[I] we further define the concept discovery function D as the composition of
three functions, patch extraction &1, patch embedding E> and concept clustering Ds, that each have
their own hyperparameters. We describe each of these functions below.

3.1.1 PATCH EXTRACTION

The goal of patch extraction is to first find which parts of each input image are relevant for f.
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Patching Since we are working with images throughout this work, we separate each of them
into a grid of n, x n, patches. Patches have been a common way in the literature to tokenize
images (Dosovitskiy et al. 2021} [Tolstikhin et al.l 2021} [Trockman & Kolter, 2023)), as they allow
to preserve the locality between pixels, a key property in the vision domain. Thus, from each input

x; € Xgisc, We obtain a set P; := {p; ; € R" ”1 ofn patches.

Local importance score from any feature attribution function Then, we want to identify and
select which patches of x; are relevant for f. To do so, we rely on a feature attribution method
op R4 — [0,1]%, that will attribute a score to each pixel of the image in the form of a feature at-
tribution map s; = o ¢(x;). This feature attribution method can be chosen among the abundant liter-
ature on attribution-based methods. For instance, we used GradCAM (Selvaraju et al., 2017) and B-
cos (Bohle et al.,[2024)) versions of the models in the experiments to extract feature attribution maps.

More details on Bcos implementation can be found in[Appendix D] By replicating the separatlon into

2
patch for s;, we also obtain the set of saliency maps of each patch S; = {s; ; € [0,1] "% } . From
the patch-level saliency maps S;, we then compute a local importance score v; ; € [0,1] for patch J
of image ¢ defined as

dy
2
3 n,

7lp
. n=15i,5,n .
0157, 81) = —2= 7, such that > i8S = 1. (1)

n?

Y ome 12;:13”7171 =1

For each patch j of image 1, its local importance score v; ; represents the contribution of the patch
to the model’s decision, according to the feature attribution method.

Important patches Using v; ;, we extract the most important patches from PP;, by selecting those
whose accumulated local importance scores, in a decreasing order, reaches a given local importance
threshold Migcal € [0, 1], to obtain P} := & (f, x5 np, Si, Mocal)-

This patch extract process &£; is then repeated on all images, and we extend the notation to the whole
dataset Xg;sc Such that:

I[Ddlbc = 51(f, Xdlsm Np, 0, nlocal) = {P*}Ndma 2

with the number of patches within each image n,,, the feature attribution method o ¢ and the threshold
on local importance score 7jocal, being hyperparameters.

3.1.2 PATCH EMBEDDING

From the global set of important patches IP’dISC, we want to summarize them into a smaller number
of concepts. Since the patches still reside in a high-dimensional space d;, we rely on an encoder
model g : R% — R? to reduce their dimensionality in order to cluster them in a meaningful way.
The choice of the encoder g is vital as it should put similar patches closer together in the latent space
and this closeness should be acceptable for humans.

Methods like ACE (Ghorbani et al., [2019) and CRAFT (Fel et al.l [2024) utilize the network that
they explain to extract a lower dimension representation for concepts. It is based on prior works
(Zhang et al.| |2018) showing that the Euclidean distance of the representations in the final layers of
a deep Convolutional Neural Network is a good perceptual similarity metric. Following the advent
of Vision Transformers and foundation models, and their performance that surpasses CNNs, it has
been shown that they can be a good choice to measure perceptual similarity as well (Chan et al.|
2022).

In this work, we use Dreamsim (Fu et al., 2023)) as our encoder g, as it has shown superior perfor-
mance in measuring perceptual similarities that aligns with human perception. There are different
flavors of Dreamsim. The most performant combines an ensemble of DINO (Caron et al., [2021)),
CLIP (Radford et al., 2021}, and OpenCLIP (Cherti et al.| [2023) as the backbone, which makes it
computationally expensive. For this work, we chose the flavor that uses OpenCLIP as backbone,
since it is a good compromise between computation complexity and perceptual similarity. Using
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a similar encoder for different architectures, instead of using the network we are explaining as an
encoder, unifies the way we measure perceptual similarity among different architectures and allows
our framework to have a consistent performance among different architectures irrespective of the
performance of the model to measure the perceptual similarity of the patches.

Thus, we embed each important patch p; ; € Pg,. into e7 ; = g(p;j) € R? by passing them
through ¢ after being reshaped to the appropriate size. This gives us our set of embedded patches
Ejisc» that will be used for clustering and extracting concepts in the next stage. The patch embedding
subpart can then be written as

IEjiisc = EQ(PSisc;g) = {e;j = g(p;,j%vl):{,j € ]P)Zisc}’ (3)

where the encoder model g is taken as parameter.

3.1.3 CONCEPTS CLUSTERING AND IMPORTANCE

From the set of important embedded patches, the last
remaining subtask of concept discovery consists in
summarizing them into concepts to create our con-
cept dictionary, and linking them to actual classes
learned by f.

Clustering The first step of this subtask is to clus-
ter the embedded patches into a smaller set of con-
cept vectors. For this, we rely on the k-means al-
gorithm C for clustering, for its simplicity and effi-
ciency, but any kind of clustering algorithm could be ‘ .

considered. We cluster the embedded patches [, . %
found in the previous step, such that: ; : : ; ° E g

— * _ k
Caise := C(Egise, k) = {Cn}tn=1, “4) Figure 2: UMAP of the patches embedded

. . in the Dreamsim latent space. Each shape
to obtain the set of k clusters Cg;sc. [Figure 2| shows represents a class, and each color is a cluster
a UMAP (MclInnes et al, 2018) plot of the em- of concept extracted after clustering.

beddings of patches extracted in Dreamsim latent

spaces, along with the clusters obtained and the orig-

inal class they belong to. We used a subset of ImageNet, described in[Section 4] to extract the patches
and concepts. We can see that clusters of concept can span multiple classes, which is consistent with
our intuition of having concepts shared between classes. Then, we define our concepts c,, as the
prototypes of each cluster C,,, i.e., the average of all embedded patches €] ; € R? within each
cluster, that we group into a global dictionary of concept Dg;s. as follows

k

1 *
]D)disc = Cpn = Z ei’j . (5)

e;j eC,

n=1

Importance matrix In order to link the k concepts extracted to the set of [ classes, we additionally
compute an importance matrix W3¢ € [0, 1]'¥¥. Bach entry (m,n) € {1,...,1} x {1,...,k}is
obtained by counting the number of embedded patches in cluster C,, belonging to class m normal-
ized by the number of patches from images of class m, as follows

Wdisc - | {e;j € (C"‘yl - m} |
m,n *
| {e;j € ]E:;isc|yi = m} |

€ 10,1]. (6)

In other words, W?,;Sfl gives us the proportion of important patches from class m that has been

associated to concept n, such that Vm € {1,... 1}, Zi’:l W?,;S,CL = 1. The concept clustering part
D3 can then be summarized as

Ddisc; Wdisc = D3 (]Ezisc; k) (7)
= (DS052OEl)(faxdisc;np7o-fvnagak)7 (8)
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with k the number of concepts considered in the clustering. The extracted concept dictionary Dygjsc
and the importance matrix WS¢ are the outputs that will be used during concept assignment A.

3.2 CONCEPT ASSIGNMENT

At testing time, the concept assignment algorithm A, explains the decision of the model f under
investigation from the concept dictionary Dyjs. and the class-concept importance matrix W45 ex-
tracted in the first phase. The goal of concept assignment is to explain the prediction of f on new
unseen data. We first describe the overall algorithm for a single test sample Xg € R%, je. for
local interpretation, and then its extension to a whole dataset X¢esr = {x € R% }f.v:t;“, i.e. for
global interpretation. Here again, we decompose the assignment task into three subtasks (functions),
with the first two ones being shared with the concept discovery, namely patch extraction &1, patch
embedding &5, and then concept assignment Az. We detail these functions below.

3.2.1 PATCH EXTRACTION AND EMBEDDING

To be able to find and assign concepts in X to the ones discovered in our concept dictionary D g,
we need first to extract and embed patches, and thus follow the same process of decomposing Xies
into n, x n, patches. However, to alleviate the requirement of feature attribution map at test time
and to avoid discarding useful information, we extract all patches and postpone the selection of
important ones in the next step. One should note that this is equivalent to considering a feature
attribution function 1 : R% — {1}% that assigns the score of 1 to every pixel, along with a local
importance threshold 7.,y = 1. The patch extraction during concept assignment can then be written
as

2

4
P;s[ == Ptest = 51(f7 Xtest) npa ]la 1) = {ptesl,j S Rn% ;Lil' (9)

Then, we apply the same patch embedding process, using the same encoder g as in the concept
discovery phase, as follows

Eiest := &2 (Ptest; g) = {etesl,j = g(ptesl,j) € RdQ;vplesl,j € Ptesl}; (10)
to obtain our set of embedded patches E, lying in the same space R% as our concepts.

3.2.2 CONCEPT ASSIGNMENT

Now, the goal of concept assignment is to find important concepts within X, i.e. concepts useful
for prediction. Given an embedded patch ey, ; € Eies, we compute the Euclidean distances to all
concepts in our dictionary c,, € Dyjsc, to find the closest one 7 such that

o= i i —cnlla. 11
ni=arg min ll€est.; — Cnll2 an
cp, EDgisc
Then, we consider both the embedded patch e ; and its assigned concept c; as important for
prediction, if they fulfill both of the following conditions:

* e, resides within the hypersphere of cluster Cj, whose radius Ry > 0 is defined by the
distance to its furthest embedded patch:

2= Ra, (12)

[ees,; — €callz < max. le;; —ca

i, n

o the number of important patches within cluster C; and associated to the predicted class
§ = f(Xeest) is higher than a given global importance threshold Tglobal > 0:

i Tlglobal
wdise > S— (13)
T {er € B lyi = 9} |
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We reproduce this process for each embedded patch e, ; € Eiest, and group important patches and

which concepts they are assigned to, respectively into E and Cf,, such that
EX .= c | ) <R wdise > Tglobal 14
est 7= 9 Cest,j € Erest | ([[€eest,j — €alla < Ra) A g.n = ; " - (14)
[{e; € Elisclyi = 9} |
k
C?esl = (C[f‘:m = q Ctest,j € ]E;kest | n= arg min Hetest,j - Cn||2 (15)
ne{l,...,k},
¢, €Dgisc A=1

We additionally extract a relevance score w'®t € [0, 1]* for each concept, defined as the proportion
of important patches assigned to each concept, as follows

test ‘ th:st‘
wott . =21 16

test

Finally, the concept assignment for a single test sample can be summarized as

Ergis Croto W i= A3 (Eiest; Daise, Caise, Edises Ngtobal) (17
= (Az 0 & 0 &) (f, Xiests npy 1,1, g, Daises Caise, Eise Metobat) - (18)

In the next section, we describe the extension to a fest dataset Xiest for global interpretation.

3.2.3 GLOBAL INTERPRETATION

Similarly to the concept discovery phase, we extend the notation of patch extract £; to process the
whole dataset X;ogr = {x € R% }Ntest such that

Plosy = Prest i= E1(f, Xeesti np, 1, 1) = {PF := E1(f, % mp, 1, 1)} 05 19)

From there, as for a single test sample, we extract the set of all embedded patches Eiot =
E2(Prest; 9) = {€ij = g(pi,j) € R%,Vp; ; € Pyest} from all images, and find important patches
E;..; and their assigned concepts C}., that fulfill both conditions described in and
from all the embedded patches. Instead of a single vector of relevance scores, we
extract a relevance matrix W't € [0, 1)"*¥, that aggregates the relevance scores of each concept
for each predicted class 7 = f(x) of samples X € Xyest, defined as follows

test .__ ‘{ei,j c C%e% | f(XPest) —
,f [{ei; € Bt | f(xEY) =

(2

— > 20
m}| (20)

where Cies* e Cj, corresponds the set of embedded patches from E;,, assigned to cluster Cy.
Concept assignment for the whole dataset X5t can then be summarized as

Efestr Crosts W' i= (A3 0 & 0 &) (f, Xiest; nps 1, 1, 9, Daise, Caises Efiges Melobat)- 2n

Finally, to explain a classifier f, we can analyze the important patches extracted for each sample
Pies if we want to understand the predictions locally, analyze the global class-concept relevance
matrix W** to understand their relationships, and also interpret the meaning of each concept in
our dictionary Dy by visualizing the patches within each cluster. In the next section, we present ex-
perimental results, both quantitative and qualitative, when extracting concepts to explain pretrained
classifiers f after concept assignment. We describe the experimental settings considered below.
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4 EXPERIMENTAL RESULTS

In this section, we study CAN through various numerical experiments and compare it with two other
post-hoc concept extraction methods, namely ACE (Ghorbani et al., [2019) and MCD (Vielhaben
et al., 2023). We consider two datasets, ImageNet (Deng et al., 2009) and CUB (Wabh et al.,[2011])).
For the former, we extract concepts on a subset of ten classes that roughly aligned with CIFAR-
10 classes (Krizhevsky et al., [2009) as introduced in (Vielhaben et al.| 2023), and on a subset of
ten random classes for the latter. Results on CUB dataset can be found in We have
selected Resnet (He et al., [2016), and ViT¢ (Xiao et all [2021) as architectures to showcase the
versatility of CAN. Indeed, our framework can be applied to either CNNs (LeCun et al., [1989) or
ViTs (Dosovitskiy et al.l [2021)), as long as a method to extract feature attribution maps is available.
Typically, we rely here on GradCAM (Selvaraju et al.,|2017) and B-cos (Bohle et al.,[2024) versions
of the models to extract the salient regions of input images. Furthermore, we also include results
using all ImageNet classes with CAN.

4.1 QUANTITATIVE RESULTS

Faithfulness Faithfulness measures the importance of concepts in two complementary ways. First
how important the concepts are to the model by measuring the drop in accuracy when removing
concepts, a setting called Smallest Destroying Concept (SDC), and, second, how accurate the model
is when given images representing only few important concepts as input, called Smallest Sufficient
Concept (SSC) (Ghorbani et al.| [2019). In SDC, we remove all the pixels belonging to a concept,
from the most important to the least important one. The importance of each concept is defined
differently for each method considered. ACE uses the TCAV score (Kim et al.| |2018), MCD uses
local concept importance (Vielhaben et al.,2023), whereas we look at entries in our global relevance
matrix Wt computed during concept assignment. For SSC, we start with a black image and add
concepts following their order of importance, from highest to lowest, and then measure the accuracy
of the model at each step. As concepts can have different sizes depending on the methods, we
plot faithfulness with respect to percentage of concepts’ pixels, similarly to|Vielhaben et al.[(2023)).
Results from show that concepts discovered by CAN are generally more faithful to the

tage of removed pixels

(a) SDC (b) SSC (c) Visualization of SDC and SSC

Figure 3: Drop in accuracy (a) and increase in accuracy (b) when adding or removing concepts one
by one, depending on the accumulated percentage of pixels, for concepts extracted from CIFAR-10
classes of Imagenet. (c) Visualization of patches associated to concepts removed (for SDC) or added
(SSC) using CAN on an example image.

model. On SDC (and resp. SSC) experiments, we can see that removing (resp. adding) concepts
with lower size leads to a higher decrease (resp. increase) of accuracy. Notably, MCD assigns on
average more than 87% of pixels of each image to only a single concept. This behavior prevents
from dividing input images into multiple concepts. Furthermore, ACE, by-design, finds concepts per
class. We also measure the faithfulness of CAN on a Resnet-50 and ViT¢ for all classes in ImageNet,
with results shown in As in the previous case, using Bcos as a feature attribution method
allows for finding more faithful concepts to remove, whereas in SSC, on the other hand, GradCAM
finds more important concepts to add first.

Conciseness Conciseness can be defined as the number of concepts required to explain a class
(Vielhaben et al.| [2023; [Parekh et al.l 2021)). In practice, we are interested in concise explanations,
i.e., using fewer concepts to explain the model. However, very low values of conciseness are not
desirable, as we still want a detailed explanation including multiple concepts (Vielhaben et al.,[2023)).
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(a) SDC (b) SSC

Figure 4: Drop in accuracy (a) and increase in accuracy (b) when adding or removing concepts one
by one, depending on the accumulated percentage of pixels, for concepts extracted from all classes
of Imagenet.

Table 2: (a) Comparison of conciseness of different post-hoc concept extraction methods, depending
on the architectures. (b) Consistency (accuracies in %) of concept dictionary, depending on the
number of clusters (i.e. number of concepts) considered in concept discovery, for Resnet-50 and
ViT¢, on ImageNet.

(a) Conciseness of explanation (b) Consistency of concept dictionary
Arch. Method Conciseness Nb concepts  Resnet-50 ViT¢
MCD 1 1000 8.20 7.12
R 50 ACE 11.6 2000 9.72 8.61
esnet- CAN - GradCAM 2.8 3000 1022 9.64
CAN - Bcos 2.8 4000 10.49 10.04
ViTc CAN - Beos 28 5000 10.63 10.92

From|Table 2a] we can see that CAN uses on average 2.8 concepts for each class, which lies between
values of MCD and ACE, 1 and 11.6 concepts per class respectively.

4.2 QUALITATIVE RESULTS

The Concept Assignment algorithm can be used to extract where a given concept is located and what
is the meaning of that concept, for a given image. The meaning of the concepts can be inferred from
the closest patches to the center of the concept’s cluster. Here we have shown the 5 closest patches
to each concept for this purpose. shows the visualization of the concept assignment for
an image from the class Airliner for different architectures and feature attribution methods. It can
be seen that the concepts extracted by CAN are semantically similar for different architectures and
feature attribution methods.

4.3 CONCEPT DICTIONARY CONSISTENCY

Since our method allows for extracting concepts among a dictionary shared for all classes, we pro-
pose a novel experimental protocol to evaluate the consistency of the concept dictionary, over a test
dataset Xtqst. Given a number k of clusters, we obtain our corresponding dictionary of concepts
Dgisc from concept discovery, and find the important patches E} . their assigned concepts Cf
and the class-concept relevance matrix W't from concept assignment on Xies. Then, for each

image x}eSt € Xiest, W& compute a concept distance feature vector ¢; from the sum of Euclidean

2
distance of all the important patches {e; ; € Ef.; }:ﬁl of this image to all concepts c,, € Dgisc,
weighted by their class-concept relevance in W't as follows:
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Figure 5: Visualization of the extracted patches after Local Concept Assignment for a sample image
from class Airliner for two architectures, Resnet-50 and ViT, and GradCAM and Bcos as feature
attribution methods.

n2 g
Gi= > Wistlei; —cklla, where 1= f(x}*"). (22)

j=1n=1
Finally, we train a simple decision tree classifier on a random training subset of {¢; }Xs**, and
evaluate its accuracy on the remaining test subset. The consistency of the concept dictionary is
then defined as the accuracy of the classifier on the test subset. We present results in of
consistency for different number & of concepts in our dictionary, on ImageNet. We can see that
increasing the value of k improves the consistency, as we are introducing more information in our
feature vector. However, since we are also interested in having a concise dictionary, we recommend
selecting k where the consistency starts to plateau.

5 CONCLUSION

To summarize, we present a novel post-hoc concept-based interpretability method, CAN, that can
be applied to arbitrary visual classifiers. CAN uses attribution map information as an intermediate
signal. Through patching and clustering in the embedding space of a fixed encoder it extracts a
concept dictionary using this intermediate signal. Through extensive experiments spanning multiple
datasets, architectures and attribution algorithms, we demonstrated the versatility of our method and
showed its ability to generate highly faithful and concise interpretations. Moreover, CAN is also
capable to provide a holistic understanding with a shared concept dictionary for all classes that can
easily scale even to the whole ImageNet dataset. Future works concern the association of patches-
based concepts with textual concept descriptions, and the extension of this framework to non-visual
modalities.

REPRODUCIBILITY STATEMENT

Throughout the paper, we made sure that all our experiments were fully reproducible, describing in
details all datasets, classes and architectures considered in[Section 4] and checkpoints and hyperpa-

rameters in[Appendin &
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A  ALGORITHMS

The pseudo-code of different algorithms developed for CAN can be found here. [Algorithm T]is used
to extract concepts as described in[Section 3.1} [Algorithm 2|is used to assign the extracted concepts
locally to a single image. Finally, [Algorithm 3|is used to explain the model globally.

Algorithm 1 Concept Discovery D

Inputs: model to explain f, concept discovery set Xqjsc, number of patches n,,, feature attribution
function o ¢, local importance threshold 7ica1, perceptual similarity encoder g, number of clusters
k
leisc — 9

for Vx; € Xgjsc do

si = 0¢(x;)

P! := &1 (f, Xi5 M, Si, Mocal) {Extract important patches}
Py — Pl UB]

end for

Ejie = E2(Pis; 9) {Embed patches into lower dimensional space}

Daise, W3¢ := D3(E%. ., k) {Cluster embedded patches}

Outputs: concept dictionary Dgjsc, importance matrix Wdise,

Algorithm 2 Concept Assignment .4 - local interpretation

Inputs: model to explain f, test sample X5, number of patches n,, global importance threshold
Tglobal> perceptual similarity encoder g, concept dictionary Dyg;s., concept clusters Cygjsc, important

embedded patch E};_ .
Prest 1= E1(f, Xtest; 1p, 1, 1) {Extract all patches}
Erest := E2(Prest; 9) {Embed patches into lower dimensional space }

Efgs Criges W = Ag(Eiest; Caisc; Edjees Melobal) {Find closest clusters to embedded patches}

Outputs: Important patches EZ,, assigned concepts C;-,, relevance score w'™"

Algorithm 3 Concept Assignment A - global interpretation

Inputs: model to explain f, test dataset Xcs¢, number of patches 7n,,, global importance threshold
Tglobal, perceptual similarity encoder g, concept dictionary Dy;sc, concept clusters Cagjsc, important
embedded patch 3, .
Ptest — 9
for V' € Xjest do
P;eSt = 51 (f, Xtiest; Np, ]17 1) {Extract all patches}
]P)test — ]Ptest U ]p;esl
end for
Eiest = E2(Pest; 9) {Embed patches into lower dimensional space}
Ef st Ciosts WSt = As(Egest; Caise, Efjoes Matobat) {Find closest clusters to embedded patches }

* *

Outputs: Important patches Ef, ., assigned concepts C},;, relevance matrix W test

B CONCEPT ASSIGNMENT

A high-level overview of concept-assignment algorithm introduced in is shown in

C FAITHFULNESS AND CONCISENESS OF A MODEL TRAINED ON CUB
DATASET

Figure 7| shows the faithfulness of CAN to explain the Resnet-50 trained on CUB dataset, Bcos.
Like the case with Imagenet, MCD assigns a large portion of the input image to only one concept

14
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Figure 6: A high-level overview of concept Assignment in CAN framework. A single image is
divided into n,, X n,, patches. These patches are passed through an encoder and the distance between
each patch and each concept is calculated. Finally, the patches are assigned to the closest concept
that has been found in Concept Discovery.

Arch. Method Conciseness
MCD 1
Resnet-50 CAN - Bcos 4

Table 3: Conciseness of explanation of MCD and CAN to explain Resnet-50.

that is not favorable, whereas CAN assigns multiple concepts to each class that can lead to more
fine-grained concepts. The conciseness of CAN and MCD is also reported in[Table 3]

D ADOPTING Bcos To CAN

Bcos networks (Bohle et al, [2024) are inherently explainable by design. However, they possess
a unique property, making them a perfect alternative to replace the feature attribution method in
CAN. In a Bcos network, the model’s operations can be replaced by a linear transform W_,, €
RIXCXHXW that summarizes the operations from the first layer to the last layer, with / the number
of classes. To adopt Bcos to CAN we can safely use the spatial contribution map corresponding to
prediction § := f(x;), computed from W _, , as our feature attribution map s; of input x;:

C
S; = Z ([Wl_}L(Xl)];— ® Xi)c . (23)

c=1

—o— CAN_Bcos_Resnet-50 —o— CAN_Bcos_Resnet-50
—e— MCD_Kmeans_Resnet-50 0.7 —#— MCD_Kmeans_Resnet-50

Accuracy
Accuracy

0.0 0.1 0.2 03 0.4 0.0 0.1 0.2 0.3 0.4

Percentage of removed pixels Percentage of added pixels
(a) SDC (b) SSC

Figure 7: Drop in accuracy (a) and increase in accuracy (b) when adding or removing concepts one
by one, depending on the accumulated percentage of pixels, for concepts extracted from 10 random
classes of CUB.
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E IMPLEMENTATION DETAILS

For this work, we used the pretrained Resnet-50 from the Torchvision library, and the pre-trained
Bcos versions of Resnet-50 and ViT¢ provided by the authors in their official github repository
(https://github.com/B-cos/B-cos-v2?tab=readme-ov-file). For experiments
over CUB dataset, we changed the classifier head of the model to the appropriate dataset size, 200,
and retrained the model following the procedure defined to train Bcos networks. We chose the
number of patches, n,, equal to 4, hence dividing each image into 16 patches. 1;,cq: 1S set to 0.5 so
that )~ v; ;(7,S;) > 0.5, and 1)410pa; is set to 2.
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