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Abstract

Transcriptomic foundation models recently
demonstrated strong performances on down-
stream tasks but remain poorly understood due to
their high complexity. There is thus a growing
need for post-hoc interpretability at the intersec-
tion of deep learning and biology. Sparse auto-
encoders have recently been used to identify mil-
lions of meaningful concepts encoded in the latent
space of large language models and were success-
fully applied to protein language models. A main
challenge is the interpretation of these concepts,
which should both reflect the internal mechanisms
of the model and be comprehensible to domain
experts. We introduce two novel approaches to
interpret latent concepts from single-cell RNAseq
models. First, we identify a set of genes that
contribute to the concept activation, leveraging
counterfactual perturbations of gene expressions.
Second, we interpret the set of genes using tex-
tual gene descriptions from ontologies. We apply
our interpretability framework to the cell embed-
ding space of scGPT (Cui et al., 2024), focusing
on immune cells. The methodology shows great
promise in bridging the gap between deep learn-
ing experts and biology specialists.

1. Introduction

The development of high-throughput genomic technologies
has significantly increased the availability of large-scale bi-
ological datasets (Barrett et al., 2005; Regev et al., 2017).
This surge in data availability has enabled the application of
recent advances in deep learning, notably the Transformer
architecture (Vaswani et al., 2017) and unsupervised train-
ing strategies, to the field of biology (Consens et al., 2025;
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Wang et al., 2025). However, the inherent complexity of
these large models poses significant challenges for inter-
pretability, which limits their use in real-life and critical
settings. Several solutions have been proposed to better
understand deep learning models in general and in biol-
ogy (Zhou et al., 2023; Conard et al., 2023; Treppner et al.,
2022). In biology, some ante-hoc methods have been pro-
posed where prior knowledge available in ontologies (Fab-
regat et al., 2016; Ashburner et al., 2000) is used at training
time to obtain interpretable-by-design models (Bourgeais
et al., 2022; Zarlenga et al., 2024). Alternatively, post-hoc
explainability aims to explain a model once it is trained. For
example, attribution methods identify the most influential
genes for a prediction (Yap et al., 2021; Usman et al., 2025).

Recently, a large part of the community has focused on
concept-based explainability with a human knowledge per-
spective (Poeta et al., 2023). Among post-hoc concept-based
approaches, sparse dictionary learning demonstrated great
potential for identifying concepts in the latent space of deep
learning models (Sharkey et al., 2022; Huben et al., 2023;
Fel et al., 2023). By decomposing internal embeddings
into sparse representations, these approaches uncover con-
cepts encoded by the model and interpretable by users. One
such decomposition method, sparse auto-encoder (SAE),
has been successfully applied to deep models in bioinfor-
matics. Adams et al. (2025) demonstrated that the ESM-2
protein language model represents proteins using a combi-
nation of generic and family-specific concepts. Similarly,
Schuster (2024) extracted and biologically interpreted hun-
dreds of concepts from a generative transcriptomic model.

In this paper, we investigate the latent space of scGPT (Cui
et al., 2024), a transformer-based generative model for
single-cell RNAseq data commonly used in downstream
tasks and performing well in cell-type classification. Single-
cell RNAseq captures information about gene expression
within individual cells, providing detailed insights into cell
states and biological functions. A key question is what bio-
logical knowledge scGPT has encoded through its training.
To address this, we train a sparse auto-encoder on the cell
embeddings of 330k immune cells (Dominguez Conde et al.,
2022).

A principal challenge lies in interpreting the concepts ex-
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tracted by SAEs. In particular, the interpretation should
align with expert knowledge, but also reflect the mecha-
nism of the model. We propose two novel approaches to
address this. (1) For each concept, we identify the set of
genes contributing to its activation using attribution and
counterfactual gene expression perturbations. Compared
to traditional differential gene expression (DEG) analysis,
this method extracts genes that have an effect on the acti-
vation of the concept. (2) To further interpret these gene
sets, we leverage textual gene descriptions from biological
ontologies, extracting frequently occurring terms and visu-
alizing them via word clouds. This method complements
traditional gene set enrichment analysis (GSEA), which as-
sumes that the gene set underlying a concept aligns with
known biological pathways.

2. Methods

In this section, we introduce the methods used to extract
and interpret concepts from cell embeddings, as illustrated
in Figure 1.
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Figure 1. Methodology to extract and interpret biological concepts.
(1) In a first step, a SAE is trained on 330k cell embeddings from
the scGPT model to extract concepts. (2) In a second step, we
interpret a concept by (A) leveraging attribution and counterfactual
perturbations to identify a set of genes having an effect on the acti-
vation of the concept, and (B) including an expert in the loop and
ontologies to biologically describe the set of genes. Macrophage
icon provided by Servier Medical Art.

2.1. Model and dataset

We aim to analyze the cell embeddings produced by scGPT
(Cui et al., 2024) using the Cross-tissue Immune Cell At-
las dataset (Dominguez Conde et al., 2022), which in-
cludes 330K immune cells from 16 tissues and 12 patients,
with available cell type annotations. We follow the pre-
processing described in Cui et al. (2024): we bin the gene ex-
pressions per sample and select 2000 highly variable genes.
The model input only contains genes with non-zero expres-
sion. Given this preprocessed input cell, scGPT outputs a

cell embedding a € RY. Cell embeddings are shown in
Appendix A.2.

2.2. Concept extraction

SAE architecture We rely on an SAE to learn a sparse and
interpretable representation u € RS of the cell embedding
a € R%. As usual, the SAE is composed of an encoder f
and a decoder g. The encoder f maps the cell embedding a
to the concepts activation u with u = f(a) = ReLU((a —
ba)We + b.) (with by € R, b, € R®, W, € R¥*¢). The
decoder g then reconstructs the cell embedding via a linear
combination of the concept vectors in Wy € R*? with
a = g(u) = uWy + bg. The decoder weights W are
constrained to the unit norm. The training loss comprises
a reconstruction loss [, and a sparsity loss s with [ =
Ir(a,a") + Asls(u) = MSE(a,a’) + Ag||u||1 where MSE
is the mean squared error. Hyperparameters and metrics
are provided in the Appendix A.3. In particular, we use
¢ = 10000 concepts.

Active concepts Due to the sparsity constraint, some con-
cepts never activate. This means that their activation is equal
to zero for all cells in the dataset. After training the SAE,
5559 out of the 10000 concepts were active for at least one
cell. However, we observed that a large portion of these
concepts were active for a very small number of cells and
exhibited very low activation magnitude. Biologically, this
signal is most likely noise. Hence, we decided to filter out
concepts that activate for less than 0.01% of the cells of the
dataset, which corresponds to approximately 33 cells. This
post-processing has a very limited impact on the metrics.
Further details are provided in Appendix A.3.

2.3. Concept interpretation

A main challenge with SAEs is to link the extracted concepts
to their semantic meaning for human experts. In RNAseq
data, biological signals are typically defined by sets of genes
involved in the same biological pathways. A natural ap-
proach to interpret a concept is to first identify the set of
genes related to it, and then link this gene set to a biological
description.

Set of genes related to the concept Differential gene ex-
pression analysis (DGE) is a classic approach to identify
genes that are differentially expressed between two con-
ditions. Schuster (2024) leverage this method to identify
genes that are differentially expressed between samples that
highly activate a concept and those that weakly activate
it. Although differentially expressed genes provide a good
estimate of the signal encoded by a concept, the method
does not ensure that these genes have an effect on concept
activation.
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We propose instead to use attribution between a gene ex-
pression and the activation of the concept. For each cell, an
attribution score is computed for each gene, reflecting the
importance of that gene’s expression to the concept activa-
tion. We use Occlusion (Zeiler & Fergus, 2014), where the
attribution score corresponds to the difference in concept
activation before and after a gene expression perturbation.
We further divide the score by the original concept acti-
vation to compare between cells. Equations are given in
Appendix A.S.

To generate perturbations, we define two sets of cells. The
prototype cells are the cells that highly activate the con-
cept. The counterfactual cells are the closest cells to the
prototypes, given the Euclidean distance in the cell embed-
ding space, but having a concept activation equal to zero.
Then, for each gene, its expression is replaced by its mean
expression in counterfactual cells. This method avoids too
big perturbations that could completely alter the cell and
thus attribute high scores to genes that are not specific to the
concept activation.

In order to identify a set of important genes for the concept
activation, we compute attribution scores for 20 prototype
cells. We then select the genes that have an attribution score
higher than 0.05 (in absolute value) for at least 5 of the
prototypes.

Biological interpretation of the set of genes The set
of genes is most often not interpretable as is and should
be further analyzed to describe the underlying biological
processes. In the literature, this is usually done with gene
set enrichment analysis (GSEA), as in Schuster (2024). By
leveraging gene ontologies, in which gene sets have been
grouped together by their involvement in the same biological
pathway, one can automatically perform statistical tests to
identify which biological processes the genes are involved
in. However, this method relies on the assumption that
the genes identified as important to the model align with
biological processes already known and informed in the
ontology.

In this work, we propose an alternative to enrichment analy-
sis and interpret the genes by leveraging their textual gene
descriptions. We collect textual descriptions of genes from
the NCBI (Maglott et al., 2005) and process them to obtain
a list of unique words for each gene. We remove the most
common words that appear for at least 10% of the genes,
after verifying that they do not convey important biological
information. We then interpret a list of genes by identifying
the most frequent words in their descriptions. We display
them in a word cloud visualization.

3. Results

3.1. Interpretation of a megakaryocyte concept

To illustrate a concept interpretation, we analyzed the con-
cept 676 (Fig. 2a-b), which is specifically activated in
megakaryocytes (81% of the cells activating the concept
are megakaryocytes, and 86% of megakaryocytes activate
the concept).

We first performed a differential gene expression analysis
(Appendix A.7) between the prototype and counterfactual
cells, identifying numerous up- and down-regulated genes
between the two populations (Fig. 2¢). We used word clouds
depicting frequent words in the gene descriptions of the up-
regulated genes as a biological description of the concept
(Fig. 2d). Because platelets are produced by megakary-
ocytes, the word “platelet” refers directly to this cell type.
Additional words, including “alpha”, “beta”, “actin”, “sub-
unit”, and “chain” likely refer to the cell’s actin cytoskeleton.
Prior research has shown that mutations in genes encoding
myosin, a motor protein interacting the actin cytoskeleton,
could affect platelet production (Johnson et al., 2007), sug-
gesting a link between myosin and megakaryocytes.

Next, using the attribution method, we identified the genes
that participate in the activation of concept 676 (Fig. 2e). We
identified PPBP, which encodes a platelet-derived growth
factor in accordance with megakaryocytes biological func-
tion, and MYL9 which codes for a light chain of myosin, a
signal already identified in wordclouds from DGE.

We further analyzed the difference between attribution,
which selected a few genes, and DEG, which selected hun-
dreds of genes. We computed the variation of concept activa-
tion while progressively removing differentially expressed
genes from the cell sequences. The genes are deleted from
the most important to the least according to the attribution
scores, and from the least to the most important. The result-
ing curves (Fig. 2f) show that a large number of DEGs do
not have an effect on the activation of the concept.

3.2. Interpretation of macrophages and monocytes
concepts

Macrophages are tissue-resident immune cells from the
myeloid lineage, derived from monocytes, with improved
phagocytic and antigen-presenting capabilities. We iden-
tified several concepts that are specific to monocytes,
macrophages or shared by both. The visualizations of these
concepts in the cell embeddings space are in Appendix A.6.
Using the attribution method, we identified the genes af-
fecting the activation of concepts. The selected genes for
each concept, as well as their average attribution for 20
prototypes, are displayed in Figure 3. Despite some over-
lap, concepts are mostly linked to different sets of genes,
suggesting that they may represent independent biological
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Figure 2. Illustration of a concept interpretation with concept 676 which is specifically activated in megakaryocytes. (a) Distribution of
the concept 676 activations in the different cell types. (b) Prototypes and counterfactuals of concept 676 shown in the cell embedding
space (UMAP). (c) Genes differentially expressed in prototypes of concept 676 compared to counterfactuals. The fold change compares
the average expression of a gene in the two groups. The thresholds are adjusted p-value lower than le-5 and log2 fold change higher than
2 in absolute value. (d) Frequent words in the NCBI gene descriptions of up-regulated genes in prototypes. (e) Attribution scores of the
genes having an effect on the activation of concept 676 for 30 prototypes. (f) Deletion curves showing the effect of removing differentially
expressed genes on the activation of concept 676, sorted by average attribution score.

processes.

As an example, CTSD and CD163 genes, which are linked
to phagocytosis, and HLA-DRA, HLA-DPA1, HLA-DPBI,
which encode proteins crucially involved in antigen pre-
sentation on the class II major histocompatibility complex,
are contained in concept 2942, which is thus related to
the presentation of exogenous antigens by macrophages.
The increased transcriptional activity of mitochondria-
encoded genes, especially MT-ND2, MT-ND4, MT-ATP6,
could underline an enhanced oxidative phosphorylation in
macrophages in the concept 1274. In contrast, the concept
2337, which is rather activated in monocytes, is related to the
alarmins SIO0A8 and S100A9 whose expression is down-
regulated upon differentiation into macrophages. Finally,
concept 2337 is activated by alarmins SI00AS8 and S100A9,
but also by LYZ, which encodes an antimicrobial peptide.
Although this concept could be related with immune cell
activation by microbes, it is representative of a more vague
concept activated in both monocytes and macrophages.

Altogether, the concepts observed between monocytes and
macrophages appear relevant to well-known biological pro-
cesses.

4. Conclusion

We introduced a methodology to extract and interpret bio-
logical concepts encoded in the internal representations of
transcriptomic foundation models. By applying this method-
ology to cell embeddings from scGPT we discovered sev-
eral concepts interpretable in terms of established biological
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Figure 3. Genes identified by the attribution method for each mono-
cyte/macrophage concept. The first two lines are the ratio of
macrophages and monocytes among the samples that activate the
concept, from 0 (white) to 1 (dark red). The attribution score is the
average attribution among 20 prototypes of the concept.

processes, demonstrating the potential of post-hoc concept-
based explainability to explain deep learning models from
a user perspective. Our analysis also showed that other
concept interpretation methods, such as differential gene
expression analysis, do not always align with the internal
mechanisms of the model. While interpreting concepts is
still challenging and time-consuming for experts, we be-
lieve that more methods, such as the ones we proposed,



A framework to extract and interpret biological concepts from scRNAseq generative foundation models

will unlock faster and more accurate interpretations. Such
advances could enable the use of concepts in downstream
tasks such as generation conditioned on concepts, analogous
to steering approaches in large language models.
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A. Appendix

A.1. Cell types

Cell types used in this work are given in Table A.1.

Table 1. Cell types and their count in the Cross-tissue Immune Cell Atlas (Dominguez Conde et al., 2022).

Cell type (annotations) Cell type (mid-level) | Cell type (high-level) | Count
Progenitor Progenitor Progenitor 1518
Cycling Cycling Cycling 1161
Cycling T&NK Cycling Cycling 2126
MNP/T doublets Doublets Doublets 2508
T/B doublets Doublets Doublets 1458
MNP/B doublets Doublets Doublets 744
NK_CDI16+ ILC ILC 20591
NK_CD56bright_ CD16- ILC ILC 8902
ILC3 ILC ILC 1312
MAIT T_misc T 4849
T_CD4/CD8 T_misc T 5631
Tgd_CRTAM+ T_gamma_delta T 4690
Trm_Tgd T_gamma_delta T 6887
Trm_Th1/Th17 T_CD4 T 16099
Tfh T_CD4 T 15293
Teffector/EM_CD4 T_CD4 T 19869
Tnaive/CM_CD4 T_CD4 T 33865
Tnaive/CM_CD4 _activated T_CD4 T 3748
Tregs T_CD4 T 12143
Trm_gut_CD8 T_CD8 T 25519
Tem/emra_CD8 T_CDS8 T 14612
Tnaive/CM_CD8 T_CDS8 T 7801
Trm/em_CD8 T_CD8 T 12674
Naive B cells B_lymphocytes B 13998
ABCs B_lymphocytes B 1209
GCB (I) B_lymphocytes B 369
GC_B (II) B_lymphocytes B 203
Memory B cells B_lymphocytes B 28915
Pre-B B_lymphocytes B 75
Pro-B B_lymphocytes B 39
Plasma cells Plasma B 6270
Plasmablasts Plasma B 1710
migDC Dendritic Myeloblast 262
DC1 Dendritic Myeloblast 356
DC2 Dendritic Myeloblast 1147
pDC Dendritic Myeloblast 713
Intestinal macrophages Macrophages Myeloblast 599
Intermediate macrophages Macrophages Myeloblast 2236
Erythrophagocytic macrophages | Macrophages Myeloblast 2103
Alveolar macrophages Macrophages Myeloblast 17238
Nonclassical monocytes Monocytes Myeloblast 2420
Classical monocytes Monocytes Myeloblast 21847
Erythroid Erythrocytes Erythrocytes 445
Megakaryocytes Megakaryocytes Megakaryocytes 317
Mast cells Mast cells Mast cells 3291

we group cell types into mid-level categories and high-level categories.

As detailed in Appendix A.4,
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A.2. scGPT cell embeddings
Cell embeddings from scGPT are plotted in Figures 4 and 5.

Cell types (mid level)
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Figure 4. UMAP of scGPT cell embeddings, colored by cell types (mid-level aggregation)
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Figure 5. UMAP of scGPT cell embeddings, colored by cell types (high-level aggregation).

A.3. SAE

Hyperparameters We use ¢ = 10000, batch_size = 1024, learning_rate = le — 6, A; = be — 5, epochs = 1000.

Evaluation LetU € R’_LXC be the concept activations for n samples. We evaluate the sparse auto-encoder using classic
metrics from the SAE literature. The explained variance evaluates the ability to recover the original model’s activation
a from the concepts u. The number of active concepts provides insight into the diversity of concepts we can expect. A
concept i is active if |[UT'||o > 0. The concept activation sparsity indicates how specific to a few samples the concept is.
For a concept ¢, it is defined as 1 — %||U1T [|o. Finally, the number of concepts per sample indicates how many concepts are

8
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needed to explain a sample and should be low to remain interpretable. For a sample 7, it is defined as: 1 — %||Uj lo-

The metrics are provided in Table 2. Detailed metrics per sample are given in Figures 6 and 7.

Selection of concepts As detailed in Section 2.2, many concepts have a very low frequency. These concepts also exhibit
very low activation magnitude, as presented in Figure 8.

Table 2. SAE metrics on the training and validation sets.

Metric Training | Validation | Post-processed
Variance explained 0.86 0.86 0.87
Active concepts 5500 2361 304
Concepts per sample 35.7 35.7 35.5
Concept activation frequency | 0.006 0.015 0.006
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Figure 6. Distribution of the number of active concepts per cell.
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Figure 7. Distribution of the number of samples activating a concept.
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Figure 8. Frequency of activation of each concept and its maximal activation. Concepts with very low frequency (frequency < 0.0001)
are removed from the analysis.

A.4. Concepts and cell types

To further understand how concepts related to cell types, we analyzed the ratio of cell types among samples activating
a concept. For each concept, we computed the ratio of each cell type among the samples that activate the concept. We
observed that some concepts are activated by several cell types that could be grouped into meaningful categories. To easily
detect such patterns, we designed mid-level and high-level cell categories. For instance, the Myelobloid high-level category
contains Dendritic, Macrophages, and Monocytes mid-level categories. Then the Monocytes mid-level category contains
Nonclassical monocytes and Classical monocytes cell types. The cell types and categories are detailed in Appendix A.1. We
refer to the different annotations as low, mid, and high.

For each concept, we determined the main cell type or category. We first looked for a specific (ratio> 0.8) cell type at the
low level, then at the mid level, if not found, then at the high level. In Figure 9, we show the specificity and the sensitivity of
the main cell type for each concept. Additional figures are provided in Appendix A.4. From this analysis, we identified
three types of concepts. (1) 13 whole-cell-type concepts, for which the samples that activate them are from the same cell
type (speci ficity > 80%), and samples from this cell type almost always activate them (sensitivity > 80%). (2) 74
sub-cell-type concepts, for which samples that activate it are from the same cell type (speci ficity > 80%), but samples

from this cell type do not always activate it (sensitivity < 80%). (3) 217 cross-cell-type concepts that are shared across
several cell types.
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Figure 9. Specificity and sensitivity to the most common cell types among samples that activate a concept.

In Figure 10, we show the proportion of the main cell types among the cells activating the concept. Figures 11 and 12 show

the ratio of each cell type among the samples activating a concept. Figure 13 displays cell type distributions for 4 concepts
as well as their localization in the cell embedding space.
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Figure 10. Each dot is a concept. The position is determined by the concept vectors using UMAP. The size corresponds to the activation
frequency. The color corresponds to the main cell type among the cells activating the concept, and the transparency corresponds to the
ratio of this cell type.
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Figure 11. Ratio of a cell type (low-level) among the samples activating a concept.
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Figure 12. Ratio of a cell type (mid-level) among the samples activating a concept.
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Figure 13. Examples of four concepts with different cell type distribution. (Left) localization in the cell embedding space (UMAPs) of the
cells activating the concept, yellow color indicates high concept activation while dark blue indicates no concept activation. (Right) the

corresponding cell type distribution

A.5. Occlusion

In this section, we define the attribution score of a gene 7 to a concept j.
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Let ¢ be a single-cell RNAseq model which, given a sequence of N gene expressions x = [x1, 2, ..., zny] € RY, outputs
a cell embedding a € R?. Let f be the encoder of the trained SAE, which, given a cell embedding, outputs the concept
activations. Let 2} € R be the average expression of gene ¢ in counterfactual cells of concept j. The attribution score I;; of
gene ¢ to concept j is given in Equation 1.

f(6()); — fphi(a);

l;i = 1
j 16, M
o fa itk A
T\ ifk=i

A.6. Monocytes and macrophages concepts

Figure 14 shows the localization in the cell embedding space of the samples activating monocyte and macrophage concepts.

C2942 C2893 C4758 C2281

W W W W
C191 C1274 C2337 C1880

W L J L. ] L J
C4004 C2646 C2280 C443

X 2 S i &
“ =

Figure 14. UMAP visualizations of monocyte and macrophage concepts in the cell embedding space. Yellow color indicates high concept
activation while dark blue indicates no concept activation.

A.7. Differential gene expression analysis

The objective of differential expression analysis is to perform statistical analysis to discover changes in expression levels of
genes between groups. In this work, we consider two groups: cells that activate a concept and cells that do not activate it.
The fold change (Equation 2) compares the average expression of a gene in the first group with the average expression of
this gene in the second group.
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We use the scanpy implementation (Wolf et al., 2018) with the Wilcoxon non-parametric statistical test and the Benjamini-
Hochberg p-value correction method.

Due to the definition of fold change and the € in the implementation, we observed very large log2 fold changes for the

genes that are never expressed in one of the two groups. We removed them from the analysis after verifying that the mean
expression in the other group is low.
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