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Abstract
Recently, denoising diffusion models have led
to significant breakthroughs in the generation of
images, audio and text. However, it is still an
open question on how to adapt their strong mod-
eling ability to model time series. In this paper,
we propose TimeDiff, a non-autoregressive dif-
fusion model that achieves high-quality time se-
ries prediction with the introduction of two novel
conditioning mechanisms: future mixup and au-
toregressive initialization. Similar to teacher forc-
ing, future mixup allows parts of the ground-truth
future predictions for conditioning, while autore-
gressive initialization helps better initialize the
model with basic time series patterns such as
short-term trends. Extensive experiments are per-
formed on nine real-world datasets. Results show
that TimeDiff consistently outperforms existing
time series diffusion models, and also achieves the
best overall performance across a variety of the
existing strong baselines (including transformers
and FiLM).

1. Introduction
Time series prediction has been applied to many real-world
applications such as economics (Henrique et al., 2019),
transportation (Sapankevych & Sankar, 2009), and en-
ergy (Wang et al., 2011). As time series prediction can
be regarded as a conditional generation task, it is natural
to use diffusion models (Rasul et al., 2021). By generating
data through iterative denoising, diffusion models present
a strong ability for data generation and have led to break-
throughs in synthesizing images (Rombach et al., 2022),
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audio (Chen et al., 2020) and text (Gong et al., 2023; Li
et al., 2022a). However, it is still an open question on how
to build a strong diffusion model for time series prediction.
A key challenge is that time series data usually involve
complex dynamics, nonlinear patterns, and long temporal
dependencies. Time series prediction is thus challenging,
especially when the prediction horizon is long (Zhou et al.,
2022a).

Existing time-series diffusion models can be roughly di-
vided into two categories based on the decoding strategy.
The first one is autoregressive (Rasul et al., 2021; Yang et al.,
2022), in which future predictions are generated one by one
over time. However, it has limited long-range prediction
performance due to error accumulation and slow inference
speed. To alleviate these problems, the second category
of diffusion models is non-autoregressive, such as CSDI
(Tashiro et al., 2021) and SSSD (Alcaraz & Strodthoff,
2022). They perform conditioning in the denoising net-
works’ intermediate layers and introduce inductive bias into
the denoising objective. However, as will be shown empiri-
cally in Section 4.2, their long-range prediction performance
is still inferior to other time-series prediction models such as
Fedformer (Zhou et al., 2022b) and NBeats (Oreshkin et al.,
2019). This may be due to that their conditioning strate-
gies are borrowed from image or text data, but not tailored
for time series data. Only using the denoising objective to
introduce inductive bias may not be sufficient to guide the
conditioning network in capturing helpful information from
the lookback window, leading to inaccurate predictions.

In this paper, we propose TimeDiff, a conditional non-
autoregressive diffusion model that is effective for long
time series prediction. Unlike CSDI and SSSD, it intro-
duces additional inductive bias in the conditioning module
that is tailor-made for time series. Specifically, TimeDiff
introduces two conditioning mechanisms: (i) future mixup,
which randomly reveals parts of the ground-truth future pre-
dictions during training, and (ii) autoregressive initialization,
which better initializes the model with basic components
in the time series. Experimental results on nine real-world
datasets demonstrate superiority of TimeDiff over existing
time series diffusion models and other recent strong base-
lines (such as time series transformers (Nie et al., 2023;
Zhou et al., 2022b; Wu et al., 2021; Liu et al., 2021; Zhou
et al., 2021), DLinear (Zeng et al., 2023) and FiLM (Zhou
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et al., 2022a)).

2. Preliminaries
2.1. Diffusion Models

Diffusion models consist of a forward diffusion process
and a backward denoising process. A well-known diffu-
sion model is the denoising diffusion probabilistic model
(DDPM) (Ho et al., 2020). By gradually adding noise, the
forward diffusion process transforms an input x0 to a white
Gaussian noise vector xK in K diffusion steps. At step
k ∈ [1,K], the diffused sample xk is obtained by scaling
xk−1 with

√
1− βk and adding i.i.d. Gaussian noise, as:

q(xk|xk−1) = N (xk;
√

1− βkx
k−1, βkI),

where βk ∈ [0, 1] is the noise variance following a prede-
fined schedule. It can be shown that

q(xk|x0) = N (xk;
√
ᾱkx

0, (1− ᾱk)I), (1)

where αk := 1− βk and ᾱk := Πk
s=1αs. Thus, xk can be

directly obtained as

xk =
√
ᾱkx

0 +
√
1− ᾱkϵ, (2)

where ϵ is sampled from N (0, I). Note that (2) also allows
x0 to be easily recovered from xk.

The backward denoising process is a Markovian process:

pθ(x
k−1|xk) = N (xk−1;µθ(x

k, k),Σθ(x
k, k)). (3)

In practice, Σθ(x
k, k) is often fixed at σ2

kI, and µθ(x
k, k)

is modeled by a neural network parameterized by θ.

To train the diffusion model, one uniformly samples k
from {1, 2, . . . ,K} and then minimizes the following KL-
divergence

Lk = DKL

(
q(xk−1|xk)||pθ(xk−1|xk)

)
. (4)

For more stable training, q(xk−1|xk) is often replaced by

q(xk−1|xk,x0) = N (xk−1; µ̃k(x
k,x0, k), β̃kI), (5)

where β̃k = 1−ᾱk−1

1−ᾱk
βk and

µ̃k(x
k,x0, k) =

√
ᾱk−1βk

1− ᾱk
x0 +

√
αk(1− ᾱk−1)

1− ᾱk
xk.

The training objective in (4) is then transformed as

Lk =
1

2σ2
k

∥µ̃k(x
k,x0, k)− µθ(x

k, k)∥2. (6)

In (6), µθ(x
k, k) can be defined in two ways (Benny & Wolf,

2022): (i) µϵ(ϵθ) or (ii) µx(xθ). In the former case, µϵ(ϵθ)
is computed from a noise prediction model ϵθ(xk, k):

µϵ(ϵθ) =
1

√
αk

xk − 1− αk√
1− ᾱk

√
αk

ϵθ(x
k, k). (7)

Ho et al. (2020) show that optimizing the following simpli-
fied training objective leads to better generation quality:

Lϵ = Ek,x0,ϵ

[
∥ϵ− ϵθ(x

k, k)∥2
]
, (8)

where ϵ is the noise used to obtain xk from x0 in (2) at
step k. Alternatively, µx(xθ) can be obtained from a data
prediction model xθ(x

k, k) as

µx(xθ)=

√
αk(1− ᾱk−1)

1− ᾱk
xk+

√
ᾱk−1βk

1− ᾱk
xθ(x

k, k). (9)

The corresponding simplified loss is

Lx = Ek,x0,ϵ

[
∥x0 − xθ(x

k, k)∥2
]
. (10)

Note that the noise prediction model ϵθ(xk, k) in (8) and the
data prediction model xθ(x

k, k) in (10) are both conditioned
on the diffusion step k only. When an additional condition
input c is available, this can be injected into the backward
denoising step (3) as

pθ(x
k−1|xk, c) = N (xk−1;µθ(x

k, k|c), σ2
kI). (11)

We can then obtain conditional extensions of (7)-(10) by
replacing ϵθ(x

k, k) (resp. xθ(x
k, k)) with ϵθ(x

k, k|c) (resp.
xθ(x

k, k|c)). For example, using the data prediction model,
we have

µx(xθ) =

√
αk(1− ᾱk−1)

1− ᾱk
xk +

√
ᾱk−1βk

1− ᾱk
xθ(x

k, k|c).

(12)

2.2. Conditional DDPMs for Time Series Prediction

In time series prediction, we aim to predict the future values
x0
1:H ∈ Rd×H of a time series given its past observations

x0
−L+1:0 ∈ Rd×L. Here, d is the number of variables in the

possibly multivariate time series, H is the length of forecast
window, and L is the length of lookback window.

Conditional DDPMs perform time series prediction by mod-
eling the distribution

pθ(x
0:K
1:H |c)=pθ(x

K
1:H)

K∏
k=1

pθ(x
k−1
1:H |xk

1:H , c),

where xK
1:H ∼ N (0, I), c = F(x0

−L+1:0) is the output of
the conditioning network F that takes the past observations
x0
−L+1:0 as input, and
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pθ(x
k−1
1:H |xk

1:H , c) = N (xk−1
1:H ;µθ(x

k
1:H , k|c), σ2

kI).

It is still an open question how to design an efficient denois-
ing network µθ and conditioning network F in time series
diffusion models.

TimeGrad (Rasul et al., 2021) is a recent denoising diffusion
model for time series prediction. It generates future values in
an autoregressive manner by modeling the joint distribution
pθ(x

0:K
1:H), where x0:K

1:H = {x0
1:H}

⋃
{xk

1:H}k=1,...,K :

pθ
(
x0:K
1:H |c = F(x0

−L+1:0)
)

=

H∏
t=1

pθ
(
x0:K
t |c = F(x0

−L+1:t−1)
)

=

H∏
t=1

pθ(x
K
t )

K∏
k=1

pθ
(
xk−1
t |xk

t , c = F(x0
−L+1:t−1)

)
.

In TimeGrad, F is a recurrent neural network that uses its
hidden state ht as c. Similar to (8), its training objective is

Lϵ = Ek,x0,ϵ

[
∥ϵ− ϵθ(x

k
t , k|ht)∥2

]
.

TimeGrad has been successfully used for short-term time
series prediction. However, with its use of autoregressive
decoding, error can accumulate and inference is also slow.
These are particularly problematic for long-range prediction.

Another denoising diffusion model for time series prediction
is CSDI (Tashiro et al., 2021). Instead of training a shared
diffusion model across time steps as in TimeGrad, CSDI
avoids autoregressive inference on future values by diffusing
and denoising the whole time series x0

−L+1:H . During train-
ing, the denoising model takes x0

−L+1:H and a binary mask
m ∈ {0, 1}d×(L+H) as input, where mi,t = 0 if position
i is observed at time t, and 1 otherwise. A self-supervised
strategy is also introduced by further masking some input
observations. The following loss is used during training:

Lϵ = Ek,x0,ϵ

[
∥ϵ− ϵθ(x

k
target, k|c = F(xk

observed))∥2
]
,

where xk
target = m ⊙ x0

−L+1:H is the masked part of the
time series, and xk

observed = (1 − m) ⊙ x0
−L+1:H is the

observed part.

Although directly generating the future time series in this
non-autoregressive manner avoids the error accumulation
issue in TimeGrad, CSDI is still limited in two aspects: (i)
CSDI’s denoising network is based on two transformers,
whose complexity is quadratic in the number of variables
and length of time series. This can easily run out of mem-
ory when modeling long multivariate time series. (ii) Its
conditioning is based on masking, similar to inpainting in
computer vision. However, it is shown that this may cause

disharmony at the boundaries between masked and observed
regions (Lugmayr et al., 2022).

SSSD (Alcaraz & Strodthoff, 2022) replaces the transform-
ers in CSDI by a structured state space model, thus avoiding
the quadratic complexity issue. However, it still uses the
same non-autoregressive strategy as CSDI, and can still have
deteriorated performance due to boundary disharmony.

There are some recent attempts in the NLP community to
develop sequence diffusion models with non-autoregressive
decoding over time, e.g., DiffuSeq (Gong et al., 2023). Un-
like natural language generation, time series prediction is
more challenging as this requires modeling temporal depen-
dencies on irregular, highly nonlinear, and noisy data.

3. Proposed Model
While conditional diffusion models have been widely used,
they usually focus on capturing the semantic similarities
across modalities (e.g., text and image) (Choi et al., 2021;
Kim et al., 2022). However, to model real-world non-
stationary time series, capturing the complex temporal de-
pendencies maybe even more important. In this section, we
propose TimeDiff, with novel conditioning mechanisms that
are tailored for time series data. Figure 1 shows an overview
of the proposed model.

3.1. Forward Diffusion Process

In TimeDiff, the forward diffusion process is straightfor-
ward. Based on (2), we obtain the diffused xk

1:H by

xk
1:H =

√
ᾱkx

0
1:H +

√
1− ᾱkϵ,

where ϵ is sampled from N (0, I) with the same size as x0
1:H .

The recent D3VAE (Li et al., 2022b) also uses the same
forward diffusion process on the lookback window x0

−L+1:0.
However, strictly speaking, D3VAE is not a diffusion model
as the diffused xk

1:H is produced by a deep variational auto-
encoder (VAE) (Kingma & Welling, 2014) with xk

−L+1:0

(instead of xk
1:H ) as input and does not denoise from random

noise. This makes the denoising process more difficult.

3.2. Conditioning the Backward Denoising Process

At the kth denoising step, xk
1:H is denoised to xk−1

1:H . In
order to well predict the future time series segment x0

1:H ,
useful information needs to be extracted from the lookback
window x0

−L+1:0 to guide the denoising of xk
1:H to x0

1:H

(Figure 1, left).

The proposed inductive bias on the conditioning network is
specific to time series prediction. Specifically, Section 3.2.1
proposes the use of mixup (Zhang et al., 2018) to combine
the past and future time series information into zmix (in (14)).
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xk−11:H = αk(1 − ᾱk−1)
1 − ᾱk

xk1:H + ᾱk−1 βk

1 − ᾱk
xθ(xk1:H, k |c) + σkϵxk−11:H = αk(1 − ᾱk−1)

1 − ᾱk
xk1:H + ᾱk−1 βk

1 − ᾱk
xθ(xk1:H, k |c) + σkϵ 

lookback window forecast window

kk 

Input projection

Encoder

AR model

x0−L+1:0x0−L+1:0 

xk1:Hxk1:H 

zarzar

denoising

diffusion

diffusion step

zk1zk1
pkpk

zk2zk2

Decoder

mk ⊙ ℱ(x0−L+1:0)mk ⊙ ℱ(x0−L+1:0)

x01:Hx01:H

(1 − mk) ⊙ x01:H(1 − mk) ⊙ x01:H

zmixzmix

ccconcatenation

xk1:H = ᾱkx01:H + 1 − ᾱkϵxk1:H = ᾱkx01:H + 1 − ᾱkϵ

Figure 1. An illustration of the proposed TimeDiff. x0
−L+1:0 contains the past observations and x0

1:H contains the future ground-truth
outputs.

Section 3.2.2 proposes an autoregressive model to produce
a crude approximation zar (in (16)) of x0

1:H . Finally, these
two are concatenated along the channel dimension to form
the condition

c = concat([zmix, zar]) ∈ R2d×H . (13)

3.2.1. FUTURE MIXUP

Since the goal is to predict x0
1:H , the ideal condition to

guide the denoising process is x0
1:H itself. While obviously

x0
1:H cannot be accessed on inference, it is available during

training. Inspired by mixup (Zhang et al., 2018), we propose
a simple yet effective mechanism called future mixup. It
combines the past information’s mapping F(x0

−L+1:0) and
the future ground-truth x0

1:H . During training, at diffusion
step k, it produces the conditioning signal

zmix = mk ⊙F(x0
−L+1:0) + (1−mk)⊙ x0

1:H . (14)

Here, mk ∈ [0, 1)d×H is a mixing matrix with each element
randomly sampled from the uniform distribution on [0, 1),
and ⊙ is the Hadamard product. We use a convolution
network as F , which is commonly used for the modeling
of local temporal patterns and long-range dependencies in
time series (Wang et al., 2017; Li et al., 2019). On inference,

x0
1:H is no longer available, and we simply set

zmix = F(x0
−L+1:0). (15)

Future mixup is similar to teacher forcing (Williams &
Zipser, 1989) and scheduled sampling (Bengio et al., 2015),
which also introduce ground-truth observation as input dur-
ing training but only use the model’s prediction during in-
ference. However, future mixup is for non-autoregressive
conditional generation in time series diffusion models, while
teacher forcing and scheduled sampling are for autore-
gressive decoding of recurrent networks. Moreover, fu-
ture mixup mixes the past observations’ embedding and
future time series (which is also similar to the bidirectional
LSTM (Graves et al., 2013)), while teacher forcing and
scheduled sampling replace the model’s prediction at the
previous step by the ground-truth past observation.

3.2.2. AUTOREGRESSIVE MODEL

In image inpainting applications, non-autoregressive mod-
els often produce disharmony at the boundaries between
masked and observed regions (Lugmayr et al., 2022). In the
context of time series prediction, this translates to dishar-
mony between the history and forecast segments, as will
also be empirically demonstrated in Section 4.2.
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Algorithm 1 Training.
Require: Number of diffusion steps K; pretrained AR

model Mar.
1: repeat
2: Sample x0

1:H from the training set;
3: k ∼ Uniform({1, 2, . . . ,K});
4: ϵ ∼ N (0, I);
5: generate diffused sample xk

1:H (as in (2)) by
xk
1:H =

√
ᾱkx

0
1:H+

√
1− ᾱkϵ;

6: obtain diffusion step k’s embedding pk using (17);
7: randomly generate a matrix mk in (14);
8: obtain zmix by future mixup using (14);
9: obtain zar by (16);

10: obtain condition c based on zmix and zar by (13);
11: use the denoising network to generate denoised sam-

ple xk−1
1:H by (18);

12: calculate the loss Lk(θ) in (19);
13: take gradient descent step on ∇θLk(θ);
14: until converged.

To alleviate this problem, we use a linear autoregressive
(AR) model Mar to provide an initial guess zar ∈ Rd×H

for x0
1:H . Let x0

i be the ith column of x0
−L+1:0. We define

zar =

0∑
i=−L+1

Wi ⊙X0
i +B, (16)

where X0
i ∈ Rd×H is a matrix containing H copies of x0

i ,
and Wi’s ∈ Rd×H , B ∈ Rd×H are trainable parameters.

The AR model Mar is pretrained on the training set by
minimizing the ℓ2-distance between zar and the ground-
truth x0

1:H . The number of pretraining epochs can be few
(in the experiments, it is set to 20).

While obviously this simple AR model cannot accurately
approximate a complex nonlinear time series in general, it
can still capture simple patterns, such as short-term trends
(Lai et al., 2018). Moreover, note that though Mar is an
autoregressive model, it does not require autoregressive de-
coding. In other words, all columns of zar are obtained
simultaneously, instead of obtaining them one by one se-
quentially. This avoids the error accumulation and slow
inference problems in TimeGrad.

3.3. Denoising Network

The denoising network is shown in red in Figure 1. When
denoising xk

1:H ∈ Rd×H , the diffusion-step embedding pk

is first combined with the diffused input xk
1:H ’s embedding

zk1 ∈ Rd′×H , where zk1 is obtained by an input projection
block consisting of several convolution layers. As in (Rasul
et al., 2021; Tashiro et al., 2021; Kong et al., 2020), we
obtain the representation pk ∈ Rd′

of diffusion step k using

Algorithm 2 Inference.
Require: Trained denoising network xθ; trained condition-

ing network F ; pretrained AR model Mar.
1: xK

1:H ∼ N (0, I);
2: for k = K, . . . , 1 do
3: ϵ ∼ N (0, I), if k > 1, else ϵ = 0;
4: obtain diffusion step k’s embedding pk using (17);
5: obtain zmix by (15);
6: obtain zar by (16);
7: obtain condition c based on zmix and zar using (13);
8: sample x̂k−1

1:H by (18);
9: xk−1

1:H = x̂k−1
1:H ;

10: end for
11: return x̂0

1:H .

the transformer’s sinusoidal position embedding (Vaswani
et al., 2017). Specifically, we first have

kembedding = [sin(10
0×4
w−1 t), . . . , sin(10

w×4
w−1 t),

cos(10
0×4
w−1 t), . . . , cos(10

w×4
w−1 t)],

where w = d′

2 , and then use two fully-connected (FC) layers
both with default hidden dimensions of 128 on kembedding to
obtain

pk = SiLU(FC(SiLU(FC(kembedding)))) ∈ Rd′×1, (17)

where SiLU is the sigmoid-weighted linear unit (Elfwing
et al., 2018).

For the concatenation, pk is broadcasted over length to
form [pk, . . . ,pk] ∈ Rd′×H , and then concatenated with
zk1 along the channel dimension. The concatenated result is
a tensor of size 2d′×H . A multilayer convolution-based en-
coder is then used to obtain the representation zk2 ∈ Rd′′×H .

A decoder is used to fuse c and zk2 . First, we concatenate
c and zk2 along the variable dimension to generate an input
of size (2d + d′′) × H . The decoder consists of multiple
convolution layers. Its output xθ(x

k
1:H , k|c) is of size d×H ,

the same as xk
1:H . Finally, we generate the denoised output

x̂k−1
1:H as in (12):

x̂k−1
1:H =

√
αk(1−ᾱk−1)

1−ᾱk
xk
1:H+

√
ᾱk−1βk

1−ᾱk
xθ(x

k
1:H , k|c)

+ σkϵ, (18)

where ϵ ∼ N (0, I).

Note that we predict the data xθ(x
k
1:H , k) for denoising,

rather than predicting the noise ϵθ(x
k
1:H , k). As time se-

ries data usually contain highly irregular noisy components,
estimating the diffusion noise ϵ can be more difficult.
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Table 1. Summary of dataset statistics, including dimension, total
observations, sampling frequency, and prediction length used in
the experiments.

dataset dim #observations freq. H (steps)

NorPool 18 70,128 1 hour 1 month (720)
Caiso 10 74,472 1 hour 1 month (720)

Weather 21 52,696 10 mins 1 week (672)
ETTm1 7 69,680 15 mins 2 days (192)
Wind 7 48,673 15 mins 2 days (192)
Traffic 862 17,544 1 hour 1 week (168)

Electricity 321 26,304 1 hour 1 week (168)
ETTh1 7 17,420 1 hour 1 week (168)

Exchange 8 7,588 1 day 2 weeks (14)

3.4. Training

The training procedure is shown in Algorithm 1. For
each x0

1:H , we first randomly sample a batch of diffusion
steps k’s, and then minimize a conditioned variant of (10):
minθ L(θ) = minθ Ex0

1:H ,ϵ∼N (0,I),kLk(θ), where

Lk(θ) = ∥x0
1:H − xθ(x

k
1:H , k|c)∥2. (19)

3.5. Inference

During inference (Algorithm 2), we first generate a noise
vector xK

1:H ∼ N (0, I) of size d×H . By repeatedly running
the denoising step (18) till k equals 1 (ϵ is set to zero when
k = 1), we obtain the time series x̂0

1:H as final prediction.

4. Experiments
In this section, we perform extensive experiments to com-
pare the proposed TimeDiff with a variety of time series
prediction models on nine real-world datasets.

4.1. Setup

Experiments are performed on nine real-world time series
datasets (Table 1) (Zhou et al., 2021; Wu et al., 2021; Fan
et al., 2022): (i) NorPool1, which includes eight years of
hourly energy production volume series in multiple Euro-
pean countries; (ii) Caiso2, which contains eight years of
hourly actual electricity load series in different zones of
California; (iii) Traffic3, which records the hourly road occu-
pancy rates generated by sensors in the San Francisco Bay
area freeways; (iv) Electricity4, which includes the hourly
electricity consumption of 321 clients over two years; (v)

1https://www.nordpoolgroup.com/
Market-data1/Power-system-data

2http://www.energyonline.com/Data
3http://pems.dot.ca.gov
4https://archive.ics.uci.edu/ml/datasets/

ElectricityLoadDiagrams20112014

Weather5, which records 21 meteorological indicators at
10-minute intervals from 2020 to 2021; (vi) Exchange(Lai
et al., 2018), which describes the daily exchange rates of
eight countries (Australia, British, Canada, Switzerland,
China, Japan, New Zealand, and Singapore); (vii)-(viii)
ETTh1 and ETTm1, which contain two years of electricity
transformer temperature data (Zhou et al., 2021) collected in
China, at 1-hour and 15-minute intervals, respectively; (ix)
Wind, which contains wind power records from 2020-2021
at 15-minute intervals (Li et al., 2022b).

For NorPool, following (Fan et al., 2022), the training set
covers observations before April 1, 2020, the validation set
is from April 1 to October 1, 2020, while the test set is
for after October 1, 2020. For Caiso, following (Fan et al.,
2022), the training set covers observations before January 1,
2020, the validation set is for January 1 to October 1, 2020,
while the test set is for after October 1, 2020. For the other
datasets, we follow (Wu et al., 2021; Zhou et al., 2022b)
and split the whole data dataset into training, validation, and
test sets in chronological order with the ratio of 6:2:2 for
ETTh1 and ETTm1, and 7:1:2 for Weather, Wind, Traffic,
Electricity, and Exchange.

As can be seen in Table 1, all the datasets used are multi-
variate. Besides running the models directly on these mul-
tivariate datasets, we also convert them to univariate time
series for performance comparison. For NorPool and Caiso,
the univariate time series are extracted from all variables as
in (Fan et al., 2022). For the other datasets, we follow (Wu
et al., 2021; Zhou et al., 2022b) and extract the univariate
time series by using the last variable only. Further details
and example visualizations are in Appendix A.

A variety of baselines are compared, including: (i) Time se-
ries diffusion models, including TimeGrad (Rasul et al.,
2021), CSDI (Tashiro et al., 2021), SSSD (Alcaraz &
Strodthoff, 2022), and D3VAE (Li et al., 2022b); (ii) SOTA
time series prediction methods, including FiLM (Zhou
et al., 2022a), Depts (Fan et al., 2022) and NBeats (Ore-
shkin et al., 2019); (iii) Time series transformers, includ-
ing PatchTST 6 (Nie et al., 2023), Fedformer (Zhou et al.,
2022b), Autoformer (Wu et al., 2021), Pyraformer (Liu et al.,
2021), Informer (Zhou et al., 2021) and the standard Trans-
former (Vaswani et al., 2017); and (iv) DLinear (Zeng et al.,
2023) and LSTMa (Bahdanau et al., 2015), an attention-
based LSTM (Hochreiter & Schmidhuber, 1997). For all
methods, the history length is selected from {96, 192, 720,

5https://www.bgc-jena.mpg.de/wetter/
6PatchTST uses a channel-independence setup, in which each

variate of the multivariate time series is predicted independently.
However, this then cannot assess the model’s ability to capture
multivariate dependencies and may not be fair to the other models.
Thus, we follow the traditional setup and does not use channel-
independence in PatchTST. Additional experiments on using the
channel-independence setup can be found in Appendix C.
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Table 2. Testing MSE in the univariate setting. Number in brackets is the rank. The best is in bold, while the second best is underlined.

NorPool Caiso Weather ETTm1 Wind Traffic Electricity ETTh1 Exchange avg rank

TimeDiff 0.636 (2) 0.122 (3) 0.002 (2) 0.040 (2) 2.407 (9) 0.121 (1) 0.232 (1) 0.066 (1) 0.017 (3) 2.7

TimeGrad 1.129 (15) 0.325 (15) 0.002 (2) 0.048 (6.5) 2.530 (12) 1.223 (16) 0.920 (16) 0.078 (8) 0.041 (13.5) 11.6
CSDI 0.967 (14) 0.192 (9) 0.002 (2) 0.050 (10) 2.434 (10.5) 0.393 (13) 0.520 (12) 0.083 (11) 0.071 (16) 10.8
SSSD 1.145 (16) 0.176 (7) 0.004 (6) 0.049 (8.5) 3.149 (15) 0.151 (6) 0.370 (5) 0.097 (14) 0.023 (10.5) 9.8

D3VAE 0.964 (13) 0.521 (16) 0.003 (4.5) 0.044 (4) 2.679 (13) 0.151 (6) 0.535 (13) 0.078 (8) 0.019 (7) 9.4

FiLM 0.707 (5) 0.185 (8) 0.007 (10) 0.038 (1) 2.143 (1) 0.198 (10) 0.260 (3) 0.070 (2.5) 0.018 (5.5) 5.1
Depts 0.668 (3) 0.107 (1) 0.024 (13) 0.046 (5) 3.457 (16) 0.151 (6) 0.380 (8) 0.070 (2.5) 0.020 (8.5) 7.0

NBeats 0.768 (6) 0.125 (4) 0.137 (15) 0.048 (6.5) 2.434 (10.5) 0.142 (4) 0.378 (7) 0.095 (13) 0.016 (1) 7.4

PatchTST 0.595 (1) 0.193 (10) 0.026 (14) 0.052 (12) 2.698 (14) 0.177 (9) 0.450 (11) 0.106 (15) 0.020 (8.5) 10.5
FedFormer 0.891 (9) 0.164 (5) 0.005 (7.5) 0.065 (15) 2.351 (8) 0.173 (8) 0.376 (6) 0.076 (5) 0.050 (15) 8.7
Autoformer 0.946 (12) 0.248 (11) 0.003 (4.5) 0.051 (11) 2.349 (7) 0.473 (14) 0.659 (15) 0.081 (10) 0.041 (13.5) 10.9
Pyraformer 0.933 (11) 0.165 (6) 0.020 (12) 0.054 (13) 2.279 (3) 0.136 (2) 0.389 (9) 0.076 (5) 0.017 (3) 7.1
Informer 0.804 (7) 0.250 (12.5) 0.007 (10) 0.049 (8.5) 2.297 (4) 0.213 (11) 0.363 (4) 0.076 (5) 0.023 (10.5) 8.1

Transformer 0.928 (10) 0.250 (12.5) 0.007 (10) 0.058 (14) 2.306 (6) 0.238 (12) 0.430 (10) 0.092 (12) 0.018 (5.5) 10.2

DLinear 0.671 (4) 0.118 (2) 0.168 (16) 0.041 (3) 2.171 (2) 0.139 (3) 0.244 (2) 0.078 (8) 0.017 (3) 4.8
LSTMa 0.836 (8) 0.253 (14) 0.005 (7.5) 0.091 (16) 2.299 (5) 1.032 (15) 0.596 (14) 0.167 (16) 0.031 (12) 11.9

Table 3. Testing MSE in the multivariate setting. Number in brackets is the rank. The best is in bold, while the second best is underlined.
CSDI runs out of memory on Traffic and Electricity.

NorPool Caiso Weather ETTm1 Wind Traffic Electricity ETTh1 Exchange avg rank

TimeDiff 0.665 (2) 0.136 (2) 0.311(1) 0.336 (1) 0.896 (1) 0.564 (3) 0.193 (1) 0.407 (1) 0.018 (3) 1.7

TimeGrad 1.152 (15) 0.258 (14) 0.392 (10) 0.874 (14) 1.209 (15) 1.745 (15) 0.736 (15) 0.993 (15) 0.079 (13) 13.9
CSDI 1.011 (14) 0.253 (13) 0.356 (5) 0.529 (11) 1.066 (5) - - 0.497 (4) 0.077 (12) 10.6
SSSD 0.872 (8) 0.195 (6) 0.349 (4) 0.464 (9) 1.188 (13) 0.642 (6) 0.255 (7) 0.726 (12) 0.061 (9) 8.1

D3VAE 0.745 (5) 0.241 (12) 0.375 (7) 0.362 (4) 1.118 (11) 0.928 (12) 0.286 (10) 0.504 (5) 0.200 (15) 8.9

FiLM 0.723 (4) 0.179 (4) 0.327 (2) 0.347 (3) 0.984 (3) 0.628 (5) 0.210 (3) 0.426 (3) 0.016 (1.5) 3.2
Depts 0.662 (1) 0.106 (1) 0.761 (14) 0.380 (6) 1.082 (8) 1.019 (14) 0.319 (12) 0.579 (9.5) 0.020 (4) 7.7

NBeats 0.832 (6) 0.141 (3) 1.344 (16) 0.391 (7) 1.069 (6) 0.373 (1) 0.269 (8) 0.586 (11) 0.016 (1.5) 6.6

PatchTST 0.851 (7) 0.193 (5) 0.782 (15) 0.372 (5) 1.070 (7) 0.831 (11) 0.225 (5) 0.526 (7) 0.047 (7) 7.7
FedFormer 0.873 (9) 0.205 (7) 0.342 (3) 0.426 (8) 1.113 (10) 0.591 (4) 0.238 (6) 0.541 (8) 0.133 (14) 7.6
Autoformer 0.940 (10) 0.226 (10) 0.360 (6) 0.565 (12) 1.083 (9) 0.688 (10) 0.201 (2) 0.516 (6) 0.056 (8) 9.0
Pyraformer 1.008 (13) 0.273 (15) 0.394 (11) 0.493 (10) 1.061 (4) 0.659 (7) 0.273 (9) 0.579 (9.5) 0.032 (6) 9.4
Informer 0.985 (11) 0.231 (11) 0.385 (8) 0.673 (13) 1.168 (12) 0.664 (8) 0.298 (11) 0.775 (14) 0.073 (11) 10.9

Transformer 1.005 (12) 0.206 (8) 0.388 (9) 0.992 (15) 1.201 (14) 0.671 (9) 0.328 (13) 0.759 (13) 0.062 (10) 11.3

DLinear 0.670 (3) 0.461 (16) 0.488 (12) 0.345 (2) 0.899 (2) 0.389 (2) 0.215 (4) 0.415 (2) 0.022 (5) 5.3
LSTMa 1.481 (16) 0.217 (9) 0.662 (13) 1.030 (16) 1.464 (16) 0.966 (13) 0.414 (14) 1.149 (16) 0.403 (16) 14.2

1440} by using the validation set.

For the proposed TimeDiff, the data is preprocessed with
instance normalization (Kim et al., 2021) as in (Zhou et al.,
2022a). Specifically, we subtract the mean value in the
lookback window from each time series variable, and then
divide it by the lookback window’s standard deviation. On
inference, the mean and standard deviation are added back
to the final prediction. For the transformer baselines, series
stationarization (Liu et al., 2022) is used as in (Liu et al.,
2022).

We train the proposed model using Adam (Kingma & Ba,
2015) with a learning rate of 10−3. The batch size is 64, and
training with early stopping for a maximum of 100 epochs.
K = 100 diffusion steps are used, with a cosine variance
schedule (Rasul et al., 2021) starting from β1 = 10−4 to
βK = 10−1. To accelerate the inference of diffusion models,
many learning-free efficient samplers have been developed,
such as DDIM (Song et al., 2021), Analytic-DPM (Bao
et al., 2022), and DPM-Solver (Lu et al., 2022). In this
work, we use the DPM-Solver. Empirically, the number of
denoising steps can be reduced to below 20.
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(a) CSDI. (b) SSSD. (c) TimeDiff.

Figure 2. Visualizations on ETTh1 by CSDI, SSSD and the proposed TimeDiff.

The mean squared error (MSE) is used for performance eval-
uation. As in (Rasul et al., 2021; Tashiro et al., 2021), the
time series diffusion models are evaluated by averaging over
10 predictions. All experiments are run on a Nvidia RTX
A6000 GPU with 40GB memory. More implementation
details can be found in Appendix B.

4.2. Results

Tables 2 and 3 show the testing MSEs in the univariate and
multivariate settings. As can be seen, the proposed method
consistently outperforms existing time series diffusion mod-
els (TimeGrad, CSDI, SSSD, and D3VAE). It also achieves
the best overall performance across all the baselines. Note
that CSDI can easily run out of memory on long multivariate
time series (Table 3) due to its use of transformers.

Figure 2 compares the predictions obtained by the three non-
autoregressive diffusion models CSDI, SSSD, and the pro-
posed TimeDiff on a randomly selected (univariate) ETTh1
sample. As can be seen, while CSDI and SSSD provide
good prediction in the very short-term (from steps 192-200),
their longer-term predictions differ significantly from the
ground-truth. On the other hand, TimeDiff better captures
both the trend and periodic patterns.

4.3. Ablation Studies

In this section, we study the effectiveness of the various pro-
posed components. Four representative univariate datasets
in Table 1 are used: Caiso and Electricity, which contain
obvious periodic patterns; and Exchange and ETTh1, which
are nonstationary (as discussed in Appendix A).

4.3.1. CONDITIONING MECHANISM

In this experiment, we study the effectiveness of future
mixup (section 3.2.1) and autoregressive model (AR) (sec-
tion 3.2.2). We consider the four combinations when each of
these is used or not used in the conditioning network. When

Table 4. MSEs by different variants of the conditioning network.

future mixup AR Caiso Electricity Exchange ETTh1

✓ ✓ 0.122 0.232 0.017 0.066
✓ ✗ 0.149 0.328 0.020 0.086
✗ ✓ 0.160 0.295 0.022 0.162
✗ ✗ 0.170 0.340 0.024 0.182

neither is used, we set the condition c to F(x0
−L+1:0).

Table 4 shows the testing MSE. As can be seen, both future
mixup and AR model lead to improved performance. In
particular, the performance on ETTh1 degrades significantly
when future mixup is not used.

4.3.2. MIXUP STRATEGIES IN FUTURE MIXUP

Recall that in future mixup, elements of mk are randomly
sampled from the uniform distribution on [0, 1). In this
experiment, we compare this strategy (which will be called
soft-mixup) with two variants: (i) Hard-mixup: The sampled
values in mk are binarized by a threshold τ ∈ (0, 1) and
(ii) Segment-mixup: The mask mk is generated by the
procedure in (Zerveas et al., 2021). Each masked segment
has a length following the geometric distribution with a
mean of 3. This is then followed by an unmasked segment
with mean length 3(1− τ)/τ .

Results are shown in Table 5. Note that soft-mixup does
not require the extra hyper-parameter τ . As can be seen,
soft-mixup has the best prediction performance. On the
other hand, hard-mixup is sensitive to the setting of τ .

4.3.3. PREDICTING xθ VS PREDICTING ϵθ

In this experiment, we compare with the more common
denoising strategy that is based on noise prediction µϵ(ϵθ)
(Rasul et al., 2021). Here, the architecture of noise predic-
tion network ϵθ is the same as that of the denoising network
xθ in previous sections. The only difference is that they have
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Table 5. MSEs of different mixing strategies in future mixup.

τ Caiso Electricity Exchange ETTh1

soft-mixup - 0.122 0.232 0.017 0.066

hard-mixup

0.1 0.146 0.289 0.031 0.161
0.3 0.123 0.318 0.021 0.143
0.5 0.118 0.260 0.018 0.081
0.7 0.122 0.255 0.017 0.074
0.9 0.124 0.264 0.018 0.074

segment-mixup

0.1 0.152 0.335 0.032 0.172
0.3 0.121 0.323 0.020 0.132
0.5 0.119 0.285 0.018 0.079
0.7 0.124 0.254 0.018 0.072
0.9 0.125 0.253 0.018 0.075

Table 6. MSEs of two denoising strategies: Predicting xθ vs pre-
dicting ϵθ .

denoising strategy Caiso Electricity Exchange ETTh1

xθ 0.122 0.232 0.017 0.66
ϵθ 0.134 0.317 0.021 0.077

different objectives: predicting noise or predicting data.

Results are shown in Table 6. As can be seen, predicting
the data xθ directly is more effective. This might be due to
that real-world time series usually contains highly nonlinear
noise, which can be easily confused with the noise generated
from the diffusion process.

4.4. Integration into Existing Diffusion Models

The proposed future mixup and autoregressive initializa-
tion are general techniques and can be used with existing
non-autoregressive time series diffusion models. In this sec-
tion, we integrate them into two non-autoregressive diffu-
sion models: CSDI and SSSD. Specifically, we concatenate
the conditioning network’s outputs with their conditioning
masks along the channel dimension. Experiment is per-
formed on the univariate ETTh1 and ETTm1.

Table 7 shows the results. As can be seen, using future
mixup and autoregressive initialization leads to improved
performance. Note, however, that even with these enhance-
ments, CSDI still falls short of the performance achieved by
the proposed TimeDiff. Moreover, while the enhanced vari-
ant of SSSD achieves comparable performance as TimeDiff
on ETTm1, it is still outperformed by TimeDiff on ETTh1.

4.5. Inference Efficiency

In this experiment, we compare the inference efficiency of
the proposed TimeDiff with the other time series diffusion
model baselines (TimeGrad, CSDI, SSSD). Table 8 shows
the inference time on the univariate ETTh1 with different

Table 7. MSEs of CSDI and SSSD with and without future mixup
/ autoregressive (AR) initialization.

future mixup AR ETTh1 ETTm1

CSDI

✗ ✗ 0.083 0.050
✓ ✗ 0.078 0.045
✗ ✓ 0.088 0.054
✓ ✓ 0.075 0.043

SSSD

✗ ✗ 0.097 0.049
✓ ✗ 0.077 0.044
✗ ✓ 0.084 0.052
✓ ✓ 0.071 0.040

values of the prediction horizon H . As can be seen, the
proposed TimeDiff is significantly faster than the others
across all the H values. In particular, TimeGrad is the
slowest due to its use of auto-regressive decoding.

Table 8. Inference time (ms) on the univariate ETTh1 with different
prediction horizon H .

H = 96 H = 168 H = 336 H = 720

TimeDiff 16.2 17.2 26.5 34.6

TimeGrad 870.2 1579.2 3119.7 6724.1
CSDI 90.41 127.2 398.9 513.1
SSSD 418.6 595.0 1054.2 2516.9

5. Conclusion
In this paper, we propose TimeDiff, a novel diffusion model
for time series prediction. By using two conditioning mech-
anisms (future mixup and autoregressive initialization), use-
ful inductive bias is added to the conditioning network’s
outputs and helps the denoising process. Results on a num-
ber of real-world datasets show that the proposed method
produces better prediction results than existing time series
diffusion models. The proposed method also achieves the
best overall performance across existing strong baselines.
Besides, ablation studies demonstrate the effectiveness of
each component in the proposed model.

One limitation of TimeDiff is that it has difficulties in learn-
ing the multivariate dependencies when the time series has
a large number of variables (e.g., Traffic). To alleviate this
problem, in the future we will consider capturing the depen-
dencies by integrating with graph neural networks.
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A. Time Series Datasets
Since different datasets have different sampling interval lengths (see Table 1), using the same set of prediction horizons {96,
192, 336, 720} as in (Zhou et al., 2021; Wu et al., 2021) for all datasets may not be appropriate. For example, the Exchange
dataset contains daily exchange rates. A prediction horizon of 720 corresponds to predicting two years into the future.
Instead, we set the prediction horizon H to 14, which corresponds to 2 weeks into the future, which is more reasonable.
Similarly, we have H = 168 for ETTh1 (corresponding to 1 week into the future), H = 720 for NorPool (corresponding to
1 month into the future), and so on as shown in Table 1. Note that some papers also choose the prediction length based on
the dataset’s sampling frequency. For example, Liu et al. (2021) and Zhang & Yan (2023) also use 168 (instead of 192) for
ETTh1, ECL, and Traffic.

Figure 3 shows examples of the time series data used in the experiments. Since all of them are multivariate, we only show
the last variate. As can be seen, these datasets have different temporal dynamics. Moreover, Caiso, Traffic and Electricity
show abundant periodic behaviors.

(a) NorPool. (b) Caiso.

(c) Weather. (d) ETTm1.

(e) Wind. (f) Traffic.

(g) Electricity. (h) ETTh1.

(i) Exchange.

Figure 3. Visualization of the time series datasets.

As in (Liu et al., 2022), we use the Augmented Dick-Fuller (ADF) test statistic (Elliott et al., 1996) to evaluate if they are
non-stationary. The null hypothesis is that the time series is not stationary (has some time-dependent structure) and can be
represented by a unit root. The test statistic results are shown in Table 9. As can be seen, with a threshold of 5%, Caiso,
ETTm1, ETTh1, and Exchange are considered non-stationary.
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Table 9. Evaluation of non-stationarity by the Augmented Dick-Fuller (ADF) test.

NorPool Caiso Weather ETTm1 Wind Traffic Electricity ETTh1 Exchange

ADF statistic -6.862 -2.218 -4.371 -1.734 -6.658 -2.801 -2.797 -2.571 -0.001
p-value 0 0.2 0 0.414 0 0.005 0.006 0.099 0.095

B. Implementation Details
B.1. Network Architecture

The proposed diffusion model has several subnetworks: the conditioning network F , and the denoising network’s encoder/de-
coder. Table 10 shows the subnetwork’s input and output sizes, where d is the number of variables, and d′ = d′′ = 256.
Each subnetwork is constructed by stacking a number of convolutional blocks. The configuration of each convolutional
block is shown in Table 11.

Table 10. Input and output sizes of the subnetworks.

input size output size

F d× L d×H

encoder 2d′ ×H d′′ ×H

decoder (2d+ d”)× L d×H

Table 11. Configuration of the convolutional block.

layer operator default parameters

1 Conv1d in channel=256, out channel=256, kernel size=3, stride=1, padding=1
2 BatchNorm1d number of features=256
3 LeakyReLU negative slope=0.1
4 Dropout dropout rate=0.1

B.2. Baselines

Code for the baselines are downloaded from the following. (i) TimeGrad: https://github.com/ForestsKing/
TimeGrad; (ii) CSDI: https://github.com/ermongroup/CSDI; (iii) SSSD: https://github.com/
AI4HealthUOL/SSSD; (iv) D3VAE: https://github.com/ramber1836/d3vae; (v) FiLM: https://
github.com/DAMO-DI-ML/NeurIPS2022-FiLM; (vi) Depts: https://github.com/weifantt/DEPTS;
(vii) NBeats: https://github.com/ServiceNow/N-BEATS; (viii) PatchTST: https://github.com/
yuqinie98/PatchTST/tree/main/PatchTST_self_supervised; (ix) Fedformer: https://github.
com/DAMO-DI-ML/ICML2022-FEDformer; (x) Autoformer: https://github.com/thuml/Autoformer;
(xi) Pyraformer: https://github.com/ant-research/Pyraformer; (xii) Informer: https://github.
com/zhouhaoyi/Informer2020; (xiii) Transformer: https://github.com/thuml/Autoformer/blob/
main/models/Transformer.py; (xiv) DLinear: https://github.com/ioannislivieris/DLinear;
(xv) LSTMa: https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.
html.
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C. Using Channel-Independence on Multivariate Time Series Datasets
Recall from Section 4.1 that channel-independence is not used on PatchTST for the experiments in Section 4. In this section,
we compare the proposed TimeDiff with PatchTST, FedFormer, Autoformer and Informer under the channel-independence
setup. In other words, each variate of the multivariate time series is predicted independently. Table 12 shows the testing
MSEs. As can be seen, TimeDiff still outperforms the other baselines most of the time under this setup.

Table 12. Testing MSEs under the channel-independence setup. Results on PatchTST, FedFormer, Autoformer and Informer are from
Table 15 in (Nie et al., 2023). The best is in bold, while the second best is underlined.

ETTh1 ETTm1
H = 96 H = 192 H = 336 H = 720 H = 96 H = 192 H = 336 H = 720

TimeDiff 0.371 0.405 0.430 0.437 0.287 0.327 0.368 0.414
PatchTST 0.375 0.414 0.431 0.449 0.290 0.332 0.366 0.420
FedFormer 0.387 0.439 0.479 0.485 0.408 0.445 0.476 0.533
Autoformer 0.414 0.453 0.496 0.662 0.455 0.598 0.566 0.680

Informer 0.590 0.677 0.710 0.777 0.383 0.42 0.465 0.529
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