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ABSTRACT

Knowledge distillation has been used to overcome catastrophic forgetting in Con-
tinual Object Detection(COD) task. Previous works mainly focus on combining
different distillation methods, including feature, classification, location and rela-
tion, into a mixed scheme to solve this problem. In this paper, we propose a task
regularized hybrid knowledge distillation method for COD task. First, we pro-
pose an image-level hybrid knowledge representation by combining instance-level
hard and soft knowledge to use teacher knowledge critically. Second, we propose
a task-based regularization distillation loss by taking account of loss and cate-
gory differences to make continual learning more balance between old and new
tasks. We find that, under appropriate knowledge selection and transfer strategies,
using only classification distillation can also relieve knowledge forgetting effec-
tively. Extensive experiments conducted on MS COCO2017 demonstrate that our
method achieves state-of-the-art results under various scenarios. We get an abso-
lute improvement of 27.98 at RelGap under the most difficult five-task scenario.
Code is in attachment and will be available on github.

1 INTRODUCTION

The existing object detection models (Ge et al., 2021) mainly adopt overall learning paradigm, in
which the annotations of all categories must be available before learning. It assumes that data dis-
tribution is fixed or stationary (Yuan et al., 2021), while data in real-world comes dynamically with
a non-stationary distribution. When model learns from incoming data continually, new knowledge
interferes with the old one, leading to catastrophic forgetting (McCloskey & Cohen, 1989; Goodfel-
low et al., 2014). To solve this problem, continual learning is proposed in recent years and has made
progresses in image classification (Zeng et al., 2019; Qu et al., 2021). On the other hand, continual
object detection (COD) is rarely studied.

Knowledge distillation (Hinton et al., 2015) has been proved to be an effective method for COD task,
in which the model trained on old classes performs as a teacher to guide the training of student model
on new classes. There are four kinds of distillation schemes: feature, classification, location and
relation distillation. Most previous works combine feature distillation and classification distillation
to construct their distillation methods (Li & Hoiem, 2018; Li et al., 2019; Yang et al., 2022b), while
the latest work (Feng et al., 2022) combines classification distillation and location distillation to
construct a response-based distillation method. In addition, various distillation losses, based on KL
diversity, cross entropy and mean square error, are proposed for knowledge transfer. In summary,
the keys of knowledge distillation are what knowledge should be selected from teacher and how it is
transferred to student. The former question needs Knowledge Selection Strategy (KSS), while the
latter needs Knowledge Transfer Strategy (KTS).

Continual object detection face two problems. (1) Teacher outputs probability distributions as logits
and converts them into one-hot labels as final predictions. Logits and one-hot labels are regarded as
soft and hard knowledge, respectively. Soft knowledge contains confidence relations among cate-
gories, but brings knowledge fuzziness inevitably. While, hard knowledge has completely opposite
effects. Therefore, how to design KSS to keep balance between accuracy and ambiguity of knowl-
edge is a key problem. (2) Continual learning should maintain old knowledge during the learning of
new knowledge to overcome catastrophic forgetting, therefore how to design KTS to keep balance
between stability of old knowledge and plasticity of new knowledge is a key problem. This paper
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focuses on how to design effective KSS and KTS for COD task. We demonstrate that as long as
KSS and KTS are good enough, using only classification distillation can also significantly alleviate
catastrophic forgetting to improve performance.

Firstly, the max confidence value of logits is always lower than its corresponding one-hot value
(equal to 1), which brings knowledge ambiguity and reduces supervise ability of teacher. This means
soft knowledge is not completely reliable, which should be used critically. However, previous meth-
ods ignore this keypoint. Motivated by this insight, we propose an image-level hybrid knowledge
representation method, named as HKR, by combining instance-level soft and hard knowledge adap-
tively to improve the exploration of teacher knowledge. Secondly, new coming data contains mas-
sive labeled objects of new classes, while contains a few unlabeled objects of old classes, therefore
student trends to be dominated by new classes and falls into catastrophic knowledge. Thus it is very
important to balance the learning of old and new classes. We propose a task regularized distillation
method, named as TRD, by using losses difference between old and new classes to prevent student
from task over-fitting effectively. We first explore imbalance learning problem explicitly for COD.

Our contributions can be summarized as follows: (1) We propose a hybrid knowledge representation
strategy by combing logits and one-hot predictions to make a better trade-off and selection between
soft knowledge and hard knowledge. (2) We propose a task regularized distillation method as an
effective knowledge transfer strategy to overcome the imbalance learning between old and new
tasks, which relieves catastrophic forgetting significantly. (3) We demonstrate that, compared with
the composite distillation schemes, using only classification distillation with appropriate knowledge
selection and transfer strategies can also reach up to the state-of-the-art performance of COD task.

2 RELATED WORKS

Continual Object Detection. There are several schemes for COD task. Li & Hoiem (2018) first
proposed a knowledge distillation scheme by applying LWF to Fast RCNN (Girshick, 2015). Zheng
& Chen (2021) proposed a contrast learning scheme to strike a balance between old and new knowl-
edge. Joseph et al. (2021b) proposed a meta-learning scheme to share optimal information across
continual tasks. Joseph et al. (2021a) introduced the concept of Open World Object Detection, which
integrates continual learning and open-set learning simultaneously. In addition, Li et al. (2021) first
studied few-shot COD. Li et al. (2019) designed a COD system on edge devices. Wang et al. (2021)
presented an online continual object detection dataset. Recently, Wang et al. (2022) proposed a data
compression strategy to improve sample replay scheme of COD. Yang et al. (2022a) proposed a pro-
totypical correlation guiding mechanism to overcome knowledge forgetting. Cermelli et al. (2022)
proposed to model the missing annotations to improve COD performance.

Knowledge Distillation for Continual Object Detection. Knowledge distillation (Hinton et al.,
2015) is an effective way to transfer knowledge between models with KL diversity, cross entropy
or mean square error as the distillation loss. There are mainly four kinds of knowledge distillation
used in COD task: feature, classification, location and relation distillation. LwF was the first to
apply knowledge distillation to Fast RCNN detector (Li & Hoiem, 2018). RILOD designed feature,
classification and location distillation for RetinaNet detector on edge devices (Li et al., 2019). SID
combined feature and relation distillation for anchor-free detectors (Peng et al., 2021). Yang et al.
(2022b) proposed a feature and classification distillation by treating channel and spatial feature dif-
ferently. ERD is the latest state-of-the-art method, combining classification and location distillation
(Feng et al., 2022). Most of existing methods combine feature, classification and location distillation
in composite and complex schemes to realize knowledge selection and transfer.

3 OUR METHOD

3.1 OVERALL ARCHITECTURE

We build our continual object detector on the top of YOLOX (Ge et al., 2021). Fig1 shows its
overall architecture. YOLOX designs two independent branches as its classification and location
heads. Firstly, hybrid knowledge selection (HKS) module works after the classification head of
teacher to discover and select the valuable predictions for old classes. Secondly, task regularized
distillation (TRD) module works between the heads of teacher and student to transfer knowledge.
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Figure 1: The overall architecture of our continual detector ilYOLOX. Cls and Loc refer to classifi-
cation and location respectively. Hybrid Knowledge Representation (HKR, Eq.3) and Task Regular-
ized Distillation (TRD, Eq.10) refer to our proposed two components respectively. HKR and TRD
play roles of knowledge selection and knowledge transfer strategies respectively. During learning of
student on new task, teacher is frozen and outputs predictions of old task. ILYOLOX achieves SOTA
performance using only classification distillation without any feature and location distillation.

3.2 HYBRID KNOWLEDGE REPRESENTATION

Teacher outputs probability distribution as logits and converts them to one-hot labels as final predic-
tions. Logits are regarded as soft knowledge, while one-hot labels are regarded as hard knowledge.
Hinton et al. (2015) shows that soft knowledge is better than hard knowledge for classification
distillation. However, although soft knowledge reflects more between-class information than hard
knowledge, it also brings fuzziness to knowledge inevitably, which makes student confused during
distillation learning. Meanwhile, teacher confidence reflects knowledge quality. If teacher has high
confidence about its predictions, we should further strengthen this trend so that student can feel the
certainty of this knowledge. Conversely, if teacher has low confidence, we should not do that.

Therefore, the key problem is how to evaluate the quality of soft knowledge from teacher. We here
propose to evaluate soft knowledge according to the confidence difference between the maximum
value and the secondary maximum value of teacher logits. Given a batch of images, teacher outputs
a batch of logits for potential objects. For every logits in the batch, if the difference between the
maximum confidence and the secondary maximum confidence is larger than a threshold, the knowl-
edge quality of this logits will be regarded as high, otherwise as vanilla. High quality knowledge will
be represented as one-hot prediction, while vanilla knowledge will be represented as soft prediction.
We compute the mean value of the confidence differences across the entire batch as the threshold to
judge knowledge quality adaptively. We formulate the description above as follows:

ConfDiff = Confmax − Confsecondary max (1)

quality = ConfDiff >
1

N

N∑
i

ConfDiffi (2)

Hybrid = quality ·Onehot+ (1− quality) · Soft (3)

where, ConfN×C refers to a batch of logits predictions with batch size of N and categories of C.
ConfDiffN×1 refers to the confidence difference for every logits between its maximum confidence
and secondary maximum confidence. N and i refers to the total number of logits and the ith logit.
1
N

∑N
i ConfDiffi is the threshold to judge knowledge quality. quality defined in Eq.2 is a Boolean

vector to indicate knowledge quality. Then, Hybrid predictions can be computed in Eq.3 by com-
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bining Onehot predictions and Soft predictions. Obviously, our method combines soft knowledge
and hard knowledge dynamically to form a hybrid knowledge representation for every input image.

3.3 TASK REGULARIZED DISTILLATION

The learning loss of student in COD task can be defined as following equation Eq.6. New task
loss (Lossnew, Eq.5) refers to the loss supervised by the ground-truth of new classes. Old task loss
(Lossold, Eq.4) refers to the loss supervised by one-hot or soft targets from teacher. The Losscls and
Lossloc are the same as the official YOLOX, which are cross entropy loss and IoU loss respectively
with coefficients of α = 1 and β = 5. The task balance factor γ is set to be 1 by default.

Lossold = α · Losscls + β · Lossloc (4)
Lossnew = α · Losscls + β · Lossloc (5)
Losstotal = Lossnew + γ · Lossold (6)

Continual learning is easily affected by data proportion of old and new tasks. If the data proportion
of new task is too large, student will be dominated by new task loss and forget old knowledge.
Conversely, student will obtain much more stability to old knowledge and lack of plasticity to accept
new knowledge. Therefore, the key problem of distillation learning is to keep balance between old
and new tasks. Motivated by this insight, we propose a task regularized distillation method (TRD)
to solve the imbalance learning problem. TRD method consists of two parts: task equal loss and
task difference loss, which are formulated as follows:

Loss∗old =
2 · Lossnew

Lossold + Lossnew
· Lossold (7)

Loss∗new =
2 · Lossold

Lossold + Lossnew
· Lossnew (8)

Loss∗diff = (
Nnew

Nold
)2 · (Lossold − Lossnew)

2 (9)

Loss∗total = Loss∗new + Loss∗old + Loss∗diff (10)
Where, Lossold and Lossnew are defined in Eq.4 and Eq.5, Nold and Nnew refer to the number
of old and new classes, respectively.Loss∗old and Loss∗new are the newly defined losses for old and
new tasks, in which two dimensionless coefficients play a role of cross balancing factor. Obviously,
Loss∗old and Loss∗new will be always equal to each other during the entire continual learning,
which ensures a completely dynamic balance between old and new tasks regardless of their
data imbalance. Loss∗diff measures the loss difference and categories proportion between old and
new tasks, which can further contribute to their balance learning. Loss∗total is the final formulation
of TRD method. Compared with Eq.6, TRD emphasizes task balance explicitly by introducing a
task-balancing penalty item (Eq.9) and prevents student from over-fitting to any task. Fig.5 clearly
compares their loss curves.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We build our continual detector on the top of YOLOX (Ge et al., 2021). It is a typical one-stage
anchor-free detector among famous and widely used YOLO series, which can contribute to the
typical verification of our method. YOLOX uses CSPNet (Wang et al., 2020) as its backbone, which
needs to be trained from scratch along with detection heads for 300 epochs 1. In general COD
settings (Li et al., 2019), 1x training schedule with 12 epochs and frozen backbone are widely used.
So we replace CSPNet with ResNet backbone (He et al., 2016) for 12 epochs training, which is pre-
trained on ImageNet and frozen during continual learning. Official YOLOX adopts very strong data
augmentation, including Mosaic, MixUP, Photo Metric Distortion, EMA, Random Affine, etc., to
boost its performance, but we drop these tricks to reduce randomness. We keep the other components
and hyper parameters of YOLOX unchanged. The modified YOLOX, denoted as ilYOLOX, is used
for continual object detection. The ilYOLOX trained on old task is used as teacher to guide the next
step learning of student on new task.

1seen YOLOX in https://github.com/open-mmlab/mmdetection
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4.2 DATASETS AND EVALUATION METRICS

MS COCO2017 (Chen et al., 2015) is used to build benchmarks with the train set for training and the
minival set for testing. We split the dataset of total 80 categories into several subsets by its alphabetic
order. Each subset is a continual learning task. For example, the scenario of 40+20+20 means the
data is split into three subsets and each of them contains 40, 20 and 20 categories respectively. The
standard COCO protocols, including AP , AP50, AP75, APS , APM and APL, are used to evaluate
the detection performance.

In order to better evaluate the performance of COD task, we use following metrics. (1) AbsGap
and RelGap: the absolute gap and relative gap between the task-average mAP of continual learning
and the mAP of overall learning, respectively. The mAP of overall learning from baseline detector is
usually considered as Upper Bound mAP (denoted as Upper or Upper Bound) of continual learning.
RelGap equals to the ratio of AbsGap to Upper Bound mAP. (2) F1

b and F2
b , defined in Eq.11(a)

and Eq.11(b) respectively, are proposed to evaluate the balance ability between old and new tasks.
(3) Omega (Ω), defined in Eq.12 (Hayes et al., 2018), can evaluate the cumulative capability of
continual learning task by task. Similar to COCO protocols, Ω can be extended as Ωall, Ω50, Ω75,
ΩS , ΩM and ΩL. RelGap and Ω can eliminate the influence of upper bound from baseline
detectors, providing a fair comparison among different continual learning methods.

(a)F 1
b =

|mAPold −mAPnew|
mAPold +mAPnew

(b)F 2
b =

2
√
mAPold ×mAPnew

mAPold +mAPnew
(11)

Ω =
1

T

T∑
t=1

mAPcontinual,t

mAPoverall,t
(12)

where T and t is the number of total tasks and the tth task in continual learning. mAPcontinual,t

and mAPoverall,t means the task-average mAP and upper-bound mAP on all testing data containing
learned categories after task t, respectively. The larger the Ω metric is, the better the ability of
reducing cumulative knowledge forgetting would be.

4.3 EXPERIMENT SETUP

We design the following scenarios as benchmarks. (i)Two-Task scenarios: 40+40, 50+30, 60+20
and 70+10 settings. (ii)Three-Task scenario: 40+20+20 setting with 20 new classes added to the
previous learned classes at each learning step. (iii)Four-Task scenario: 20+20+20+20 setting with
20 new classes added to the previous learned classes at each learning step. (iiii)Five-Task scenario:
40+10+10+10+10 setting with 10 new classes added to the previous learned classes at each learn-
ing step. We denote A(a-b) as the first-step overall learning for classes a-b, while +B(c-d) as the
successive continual learning steps for classes c-d.

Given a scenario, we continually train ilYOLOX task by task (step by step) under the following
settings. Optimizer is SGD with warm-up iterations of 1500, a continual learning rate of 0.2 decayed
by 10% at the 8th and 11th epochs respectively, a momentum of 0.9 and a weight decay of 0.0005.
All experiments are performed on 8 NVIDIA 3090 GPUs with a total batch size of 16×8. All
images are randomly resized to [640×320, 640×640] by their short sides with content shape ratios
unchanged. Normalization and random horizontal flip with a probability of 50% are also used.

4.4 OVERALL PERFORMANCE

4.4.1 CONTINUAL LEARNING ABILITY

Table.1, Table.2 and Table.3 report the results of Two-Task, Three-Task and Five-Task respectively.
Compared with previous works, including LwF (Li & Hoiem, 2018), RILOD (Li et al., 2019), SID
(Peng et al., 2021) and the latest best method ERD (Feng et al., 2022), our method achieves best per-
formance under all scenarios and all evaluation metrics of continual learning. For the most difficult
scenario of Five-Task (40+10+10+10+10) in Table.2, our method shows overwhelming advantages
over ERD under final mAP (27.23% vs 20.70%), AbsGAP (7.03% vs 19.50%), RelGAP (20.53%
vs 48.51%, 27.98 absolute improvement) and Ωall (0.8893 vs 0.7961). Especially, though ERD has
a higher initial mAP for A(1-40) and a higher upper bound mAP, but the final mAP (marked by
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underline in Table.3 and Table.2) are reversed during continual learning. The results in Table.3 also
show the same trend. We further plot Ωall curves in Fig.2 to highlight our advantages. These results
fully demonstrate much better continual learning capacity of our methods. In order to analysis the
influence of upper bound mAP, we make extra experiments by using YOLOX-medium. Experiments
in Table.9 (seen in AppendixA) demonstrate that our method get much better performance with a
very large improvement under higher upper bound mAP. This further demonstrates its potential.

Table 1: Continual learning results under Two-Task scenarios. Our experiments are implemented
with YOLOX-small, while all the others are implemented with GFLv1.

Scenarios Method AbsGap↓ RelGap↓ Ωall ↑ Ω50 ↑ Ω75 ↑ ΩS ↑ ΩM ↑ ΩL ↑

40+40

LwF 23.00 57.21% 0.7139 0.7178 0.7133 0.6703 0.7086 0.7328
RILOD 10.30 25.62% 0.8719 0.8859 0.8670 0.8405 0.8741 0.8879

SID 6.20 15.42% 0.9229 0.9408 0.9163 0.8966 0.9354 0.9301
ERD 3.30 8.21% 0.9590 0.9674 0.9541 0.9591 0.9580 0.9550
Ours 1.86 5.42% 0.9729 0.9688 0.9728 0.9659 0.9766 0.9697

50+30

LwF 35.20 87.56% 0.5622 0.5815 0.5528 0.6078 0.5760 0.5546
RILOD 11.70 29.10% 0.8545 0.8705 0.8463 0.8319 0.8583 0.8640

SID 6.40 15.92% 0.9204 0.9374 0.9140 0.8793 0.9320 0.9320
ERD 3.60 8.96% 0.9552 0.9631 0.9461 0.9181 0.9580 0.9598
Ours 2.03 5.92% 0.9704 0.9642 0.9741 0.9886 0.9805 0.9674

60+20

LwF 34.40 85.57% 0.5721 0.5926 0.5608 0.5862 0.5964 0.5738
RILOD 14.80 36.82% 0.8159 0.8328 0.8073 0.7996 0.8288 0.8228

SID 7.50 18.66% 0.9067 0.9271 0.8968 0.8707 0.9263 0.9167
ERD 4.40 10.95% 0.9453 0.9537 0.9404 0.9440 0.9467 0.9454
Ours 2.49 7.25% 0.9637 0.9578 0.9687 0.9801 0.9688 0.9640

70+10

LwF 33.10 82.34% 0.5883 0.6063 0.5803 0.6034 0.6077 0.5958
RILOD 15.70 39.05% 0.8047 0.8250 0.7947 0.8060 0.8107 0.8209

SID 7.40 18.41% 0.9080 0.9202 0.9014 0.8685 0.9184 0.9262
ERD 5.30 13.18% 0.9341 0.9451 0.9289 0.9030 0.9399 0.9358
Ours 3.14 9.16% 0.9542 0.9532 0.9564 0.9517 0.9596 0.9539

Figure 2: The performance of multi-task
continual learning on MS COCO2017

Scenarios Method Old New F 1
b ↓ F 2

b ↑

40 + 40
ERD 41.60 32.10 0.1289 0.9917
Ours 30.70 34.12 0.0528 0.9986

50 + 30
ERD 38.00 34.30 0.0512 0.9987
Ours 31.14 34.06 0.0447 0.9990

60 + 20
ERD 39.80 37.10 0.0351 0.9994
Ours 31.02 34.07 0.0468 0.9989

70 + 10
ERD 35.70 28.80 0.1070 0.9943
Ours 30.40 36.20 0.0871 0.9962

Figure 3: The balance performance between
old and new tasks on MS COCO2017.

4.4.2 BALANCE LEARNING ABILITY

For continual learning, the balancing ability between stability of old knowledge and plasticity of new
knowledge is very important. Table.3 compares the results of ERD method and our method under
the metrics of F1

b and F2
b. Obviously, our method strikes a better balance between the mAP of old

and new tasks, reflecting its good balancing ability between stability of old knowledge and plasticity
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Table 2: Continual learning results under Five-Task scenario of 40+10+10+10. A(a-b) is the first-
step normal training for categories a-b and +B(c-d) is the successive continual training for categories
c-d. We use A(1-40) as the first step.

A(1-40)

+B(40-50) +B(50-60)
mAP AbsGap↓ RelGap↓ Ωall ↑ mAP AbsGap↓ RelGap↓ Ωall ↑

CF 5.80 32.20 84.74% 0.5763 5.70 34.10 85.68% 0.4319
RILOD 25.40 12.60 33.16% 0.8342 11.20 28.60 71.86% 0.6499

SID 34.60 3.40 8.95% 0.9553 24.10 15.70 39.45% 0.8387
ERD 36.40 1.60 4.21% 0.9789 30.80 9.00 22.61% 0.9106
Ours 32.47 1.69 4.94% 0.9753 29.56 4.10 12.17% 0.9430

+B(60-70) +B(70-80)
mAP AbsGap↓ RelGap↓ Ωall ↑ mAP AbsGap↓ RelGap↓ Ωall ↑

CF 6.30 29.40 82.35% 0.3681 3.30 36.90 91.79% 0.3109
RILOD 10.50 25.20 70.59% 0.5610 8.40 31.80 79.10% 0.4906

SID 14.60 21.10 59.10% 0.7313 12.60 27.60 68.66% 0.6477
ERD 26.20 9.50 26.61% 0.8664 20.70 19.50 48.51% 0.7961
Ours 27.59 5.94 17.72% 0.9129 27.23 7.03 20.53% 0.8893

of new knowledge. The ablation experiments and supplementary material show more analyses about
task-balancing learning.

4.4.3 KNOWLEDGE FORGETTING

Figure 4: The continual learning curves under Four-Task scenario (20+20+20+20), which shows that
knowledge forgetting of old tasks is always controlled to a limited range during learning process.

Fig.4 reports the results under Four-Task scenario, which clearly shows detailed continual learning
process of ilYOLOX in successive data streams. The AbsGap (plotted as white fluctuation columns
at each learning epoch) shows that our method reduces the performance gap between continual
learning and overall learning gradually and effectively. The mAP curves of each task (denoted as
Taski, i = 1, 2, 3, 4) reflect their knowledge forgetting process. On the whole, the knowledge
forgetting of old tasks is always controlled to a limited range during successive continual learning.
Meanwhile, the TaskAvg mAP after each learning step, marked on the corresponding light-blue
curve, also shows very good stability (28.71%, 28.20%, 28.16%, 28.11%). The results in Fig.4
further demonstrate good effectiveness of our method.

5 ABLATION STUDY

The Independence and Compatibility of HKR and TRD. Table.4 shows the results of ablation ex-
periments. The two baseline methods, denoted as Onehot and Soft, use one-hot predictions and soft
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Table 3: Continual learning results under Three-Task scenario of 40+20+20.
A(1-40)

+B(40-60) +B(60-80)
mAP AbsGap RelGap↓ Ωall ↑ mAP AbsGap RelGap↓ Ωall ↑

CF 10.70 29.10 73.38% 0.6344 9.40 30.80 76.62% 0.5009
RILOD 27.80 12.00 30.85% 0.8492 15.80 24.40 60.70% 0.6972

SID 34.00 5.80 15.42% 0.9271 23.80 16.40 40.80% 0.8154
ERD 36.70 3.10 7.79% 0.9611 32.40 7.80 19.40% 0.9094
Ours 32.26 1.39 4.13% 0.9793 31.24 3.02 8.82% 0.9568

Table 4: Continual learning results under Two-Task scenarios for ablation study. We equip YOLOX-
small with two knowledge selection methods (Onehot and Soft) as our baselines.

Scenarios 60 classes + 20 classes 70 classes + 10 classes

Methods AbsGap ↓ RelGap ↓ Ωall ↑ Ω50 ↑ Ω75 ↑ AbsGap ↓ RelGap ↓ Ωall ↑ Ω50 ↑ Ω75 ↑

Onehot 3.86 11.27% 0.9437 0.9477 0.9387 4.91 14.33% 0.9284 0.9367 0.9264

Soft 3.29 9.60% 0.9520 0.9505 0.9537 4.49 13.10% 0.9345 0.9385 0.9332

Soft+HKR 3.10 9.04% 0.9548 0.9514 0.9578 4.19 12.22% 0.9389 0.9422 0.9414

Soft+TRD 2.95 8.62% 0.9569 0.9541 0.9578 4.06 11.83% 0.9408 0.9431 0.9441

Soft+Both 2.49 7.26% 0.9637 0.9578 0.9687 3.14 9.16% 0.9542 0.9532 0.9564

predictions (logits) as teacher knowledge respectively. Then we add Hybrid Knowledge Selection
module and Task Regularized Distillation module to the Soft baseline respectively (seen in Fig.1),
whose results are denoted as Soft+HKR and Soft+TRD respectively. Finally, we add both HKR and
TRD to the Soft baseline simultaneously, whose results are denoted as Soft+Both. The results under
two scenarios all show that soft knowledge is better than hard knowledge, but both are inferior to
hybrid knowledge. Compared with the Soft baseline, TRD shows higher performance improvement
than HKR. This demonstrates that both HKR and TRD have their own effects as two independent
components. Meanwhile, the results of ’Soft+Both’ (means Soft+HKR+TRD) get further significant
improvement, demonstrating that HKR and TRD have good additivity and compatibility.

The HKR under Three-Task Scenario. In order to further analyze hybrid knowledge representa-
tion, we make additional ablation studies under Three-Task scenario. The results shown in Table.5
demonstrate the effectiveness of HKR clearly. It further reflects that hybrid knowledge can fully
utilize the advantages of both soft knowledge and hard knowledge in adaptive manner.

The Task Balance During Continual Learning. In order to further analyze the influence of task
balance on continual learning, we make experiments by changing the task balancing factor (γ in
Eq.6) from 0.2 to 3.0. The results of Table.6 show that our TRD method gets a medium mAP for
new task, but gets the highest performance under all other metrics. Brown-marked digits show the
sub-optimal results. When γ changes from 0.2 to 3.0, the mAP values in Table.6 shows noticeable
changes. A similar experiment is made on another small dataset (seen appendix) and shown in Fig.6.
It shows that even a very small change of γ from 1 to 0.9 can lead to dramatically descending of
the old task mAP curve (blue dotted line) and bring catastrophic knowledge forgetting. Obviously,
task balance factor (γ) has a significant influence on continual learning by controlling knowledge

Table 5: Continual learning results under Three-Task scenario (40+20+20) for ablation study.
Scenarios +B(40-60) +B(60-80)
methods mAP AbsGap RelGap↓ Ωall ↑ Ω50 ↑ Ω75 ↑ mAP AbsGap RelGap↓ Ωall ↑ Ω50 ↑ Ω75 ↑
Onehot 31.62 2.04 6.05% 0.9698 0.9721 0.9694 30.44 3.83 11.16% 0.9426 0.9453 0.9424
Soft 31.84 1.81 5.38% 0.9731 0.9712 0.9750 30.87 3.39 9.91% 0.9491 0.9453 0.9488

Hybrid 32.03 1.62 4.81% 0.9759 0.9703 0.9819 31.19 3.08 8.97% 0.9540 0.9478 0.9580
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transfer from teacher to student. Compared with different γ values, the mAP of old 70 classes
reflects that TRD relieves knowledge forgetting to the greatest extent. Meanwhile, TRD shows much
more balance learning ability between old and new tasks with the minimum F 1

b and the maxmum
F 2
b . Overall speaking, our TRD realizes dynamic balance knowledge transfer by introducing

task-based regularization. More over, TRD is a statistically adaptive method without hyper
parameters.

Table 6: Continual learning results under Two-Task scenario for ablation study. Hyper parameter γ
is the task balance factor (seen in Eq.6). TRD is task regularized distillation method (seen in Eq.10)

.

Methods mAP ↑
Ωall ↑ Ω50 ↑ Ω75 ↑ F 1

b ↓ F 2
b ↑Old 70 Classes New 10 Classes Final

γ = 0.2 27.00 37.41 28.30 0.9129 0.9257 0.9101 0.1617 0.9868
γ = 0.5 28.41 37.70 29.57 0.9315 0.9367 0.9305 0.1406 0.9901
γ = 0.6 28.37 38.02 29.58 0.9316 0.9358 0.9292 0.1453 0.9894
γ = 0.7 28.58 37.69 29.72 0.9336 0.9385 0.9319 0.1375 0.9905
γ = 0.8 28.92 37.48 29.99 0.9376 0.9394 0.9360 0.1289 0.9917
γ = 0.9 28.59 37.53 29.71 0.9335 0.9358 0.9332 0.1352 0.9908
γ = 1.0 28.72 37.14 29.78 0.9345 0.9385 0.9332 0.1278 0.9918
γ = 1.5 28.61 36.96 29.66 0.9328 0.9358 0.9292 0.1273 0.9919
γ = 2.0 28.37 36.04 29.33 0.9280 0.9312 0.9292 0.1191 0.9929
γ = 3.0 27.11 35.14 28.12 0.9103 0.9174 0.9074 0.1289 0.9917
TRD 29.24 36.97 30.21 0.9408 0.9431 0.9441 0.1167 0.9932

Figure 5: The training loss of old and new tasks
at γ = 0.8 and TRD for Table.6 respectively.

Figure 6: The catastrophic forgetting caused by
imbalance learning of old and new tasks.

6 CONCLUSION

In order to improve the performance of continual object detection, we propose a knowledge distilla-
tion method that combines knowledge selection strategy and knowledge transfer strategy effectively.
For the first strategy, hard knowledge and soft knowledge are dynamically and adaptively combined
to construct a kind of hybrid knowledge representation to use teacher knowledge critically and ef-
fectively. For the second strategy, loss difference and category proportion are combined to construct
task regularized distillation loss to enhance task balance learning. Extensive experiments under
different scenarios validate the effectiveness of our method. Most existing methods in COD task
adopt a mixed distillation scheme including feature, classification, location and relation to relieve
catastrophic forgetting. However, we demonstrate that as long as knowledge selection and transfer
strategies are appropriate, even single classification distillation can also achieve state-of-the-art per-
formance. In addition, our method has a good prospect to work together with feature and location
distillation for further improvements. More analyses and discussions are provided in Appendix A.
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A APPENDIX

A.1 COMPARED WITH KL DIVERGENCE LOSS

Kullback-Leibler Divergence loss (denoted as KLD loss) is used for knowledge distillation of image
classification (Hinton et al., 2015). YOLOX (Ge et al., 2021) uses cross entropy loss (denoted as CE
loss) for its classification head. Table.7 shows the comparison results of this two losses on continual
object detection. The experiments adopt the same loss weight setting with α = 1 and β = 5 (seen in
Eq.4 and Eq.5) for the two losses. T is temperature factor, a hyper parameter of KLD loss. When the
temperature T changes from 1 to 5, ilYOLOX gets its best performance (marked by brown color)
under the medium temperature of 3. However, CE loss has a much better performance than KLD
loss (marked by underline). Our TRD loss exceeds both KLD and CE loss. The use of KLD loss
usually requires careful adjustment of temperature factor T and loss weight α. However, the change
of α in Lossold will destroy the loss consistency about classification and location between old task
(Lossold, Eq.4) and new task (Lossnew, Eq.5), which will influence task balance during continual
learning. Based on this consideration and the experiment results in Table.7, we use cross entropy
loss as our fundamental knowledge transfer strategy.
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Table 7: The comparison with KL Divergence Loss
Scenarios 70 classes + 10 classes

Methods
mAP ↑

AbsGap ↓ RelGap ↓ Ωall ↑
Old 70 Classes New 10 Classes Final

KLD T=1 25.55 35.19 26.75 7.51 21.92% 0.8904
KLD T=2 26.36 35.87 27.55 6.71 19.59% 0.9021
KLD T=3 26.86 36.29 28.04 6.22 18.16% 0.9092
KLD T=4 26.84 35.96 27.98 6.29 18.35% 0.9083
KLD T=5 26.49 35.50 27.62 6.65 19.41% 0.9030
CE Loss 28.72 37.14 29.78 4.49 13.10% 0.9345

TRD Loss 29.24 36.97 30.02 4.24 12.38% 0.9381

A.2 EXPERIMENT DETAILS OF FIG.6

We describe the experiments in Fig.6 in detail as follows. It is made on a small dataset that consists
of 3800 images, 9 classes (commonly seen toys including car, truck, train, person and so on) and
have 400 ∼ 500 instances for every class with a relative balanced category distribution. We build
a Two-Task scenario of 5 classes + 4 classes as our continual object detection benchmark. The ex-
periment results are illustrated in Table.8. When the task balance factor (γ defined in Eq.6) changes
from 1.3 to 0.7, the mAP of old task (old 5 classes) drops from 54.24% to 5.10% quickly. It fully
demonstrates that the loss imbalance between old and new tasks can bring significant catastrophic
forgetting during continual leaning.

Table 8: Task balance experiment on a small dataset
Scenarios 5 classes + 4 classes

Methods
mAP↑

AbsGap↓ RelGap↓ Ωall ↑
Old 5 Classes New 4 Classes Final

γ = 0.7 5.16 58.73 28.97 32.31 52.73% 0.7364
γ = 0.9 5.10 59.20 29.14 32.14 52.44% 0.7378
γ = 1.0 54.24 60.18 56.88 4.40 7.18% 0.9641
γ = 1.1 54.34 59.98 56.84 4.44 7.25% 0.9638
γ = 1.3 53.58 59.05 56.01 5.27 8.60% 0.9570

TRD 54.46 64.18 58.78 2.50 4.08% 0.9796
TRD+HKR 54.66 64.63 59.09 2.19 3.58% 0.9821

A.3 DISCUSSION

Hybrid Knowledge Representation. Teacher outputs logits and one-hot representation as its pre-
dictions. Soft logits contains more information about between-class confidences and is regarded as
a kind of soft knowledge (Hinton et al., 2015; Yang et al., 2022c). Knowledge distillation meth-
ods are developed prosperously under this background in image classification and object detection
tasks. But there are significant difference between the two tasks. For image classification, since
an input image contains only one instance, the knowledge of the image is just the knowledge of its
instance. However, for object detection, one input image contains several instances, the knowledge
on an image is a collection of the knowledge of all instances on it. Instances on an image can be
regarded as entity nodes, so the overall image knowledge should be constructed based on the entity
nodes and their relations. In other words, image-level knowledge is the combination of instance-
level knowledge. Logits and One-hot predictions provide two kinds of instance-level knowledge
representation as soft and hard knowledge, respectively. Soft knowledge contains confidence re-
lations among categories, but brings knowledge fuzziness inevitably. While, hard knowledge has
completely opposite effects. By combining their advantages, we construct an image-level hybrid
knowledge representation (Eq.3) showing better performance on COD task in Table.4 and Table.5.
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Task Regularized Distillation. Regularization method is very import for statistical machine learn-
ing, which can prevent model from over-fitting to some part of data. Classical regularization methods
introduce a weight constraint in terms of p-Norm as model penalties. Other regularization methods
include stopping the training as soon as performance on a validation set starts to get worse and soft
weight sharing (Nowlan & Hinton, 1992). Dropout works by dropping some connections randomly
to prevent over-fitting of deep neural networks (Srivastava et al., 2014). In continual learning, model
needs to be trained task by task in the continuous data flow, therefore, bring task-based imbalance
learning and lead to catastrophic forgetting. A few previous works propose regularization-based
methods on continual image classification (Kirkpatrick et al., 2017; Li & Hoiem, 2018). We give
a solution by proposing task-based regularized distillation loss 10 for COD tasks. It explicitly uses
the loss and categories difference between old and new tasks as a model penalty to constraint op-
timization process. Experiments in Table.4, Table.6, Table.8, Fig.5 and Fig.6 all show its strong
effectiveness to prevent continual model from over-fitting to some task.

A.4 MORE DETAILS OF IMPLEMENTATION AND EXPERIMENTS

All the previous works, including Catastrophic Forgetting, RILOD (Li et al., 2019), SID (Peng et al.,
2021) and ERD (Feng et al., 2022) models, are implemented based on GFLv1 (Zheng et al., 2021)
with original image size of 1333×800. Since they use the same base detector, the upper bound mAP
of these previous models are all 40.20 for A(1-80), the overall training of total 80 categories. On
the other hand, our experiments are implemented based on YOLOX-small detector (Ge et al., 2021).
YOLOX is a typical one-stage anchor-free detector among famous and widely used YOLO series,
which can contribute to the typical verification of our method. The official YOLOX implementation
in MMDetection 2 adopts 300 epochs training schedule with strong data augmentation, including
Mosaic, MixUP, Photo Metric Distortion, EMA, Random Affine, Random Horizontal Flip, etc, to
boost its performance. We drop these tricks to reduce randomness for continual learning and for
better reproducibility. The modified YOLOX, denoted as ilYOLOX, is used for continual object
detection. Since our experiments are conducted for demonstration of model effectiveness, we ran-
domly resize all the images to [640× 320, 640× 640] by their short sides with content shape ratios
unchanged. The upper bound mAP of our model is therefore 37.13 for A(1-80).

Although different models have different baseline detectors, the evaluation metrics, like RelGap and
Ω, are used to fairly compare their continual learning capability. We also analyze the influence of
upper bound mAP by comparing different base detectors: YOLOX-small versus YOLOX-medium.
Experiments in Table.9 shows that higher upper bound mAP leads to better continual learning per-
formance, which further demonstrates the potential of our method. Here, we bring the continual
object detection research on widely used lightweight model YOLOX to reduce computing loads and
resource consumption, accelerating the researches of this topic and protecting our environment.

Table 9: Results on COCO benchmark with different upper bound mAP.
Scenarios Method AbsGap RelGap↓ Ωall ↑ Ω50 ↑ Ω75 ↑ ΩS ↑ ΩM ↑ ΩL ↑ mAP Upper

40 + 40
ilYOLOX-S 1.86 5.42% 0.9729 0.9688 0.9728 0.9659 0.9766 0.9697 32.41 34.26
ilYOLOX-M 1.11 2.99% 0.9849 0.9850 0.9887 0.9922 0.9915 0.9698 36.02 37.13

70 + 10
ilYOLOX-S 3.14 9.16% 0.9542 0.9532 0.9564 0.9517 0.9596 0.9539 31.13 34.26
ilYOLOX-M 2.62 7.04% 0.9648 0.9575 0.9699 0.9560 0.9732 0.9435 34.52 37.13

Algorithm 1 Algorithm of Hybrid Knowledge Representation
Input: Unlabeled image I , teacher detector θ′
Output: Hybrid predictions Hybrid of response

1: Inference I with θ′ yields the logits predictions Soft and one-hot predictions Onehot
2: Compute ConfDiff = Confmax − Confsecondary max

3: Compute quality = ConfDiff > 1
N

∑N
i ConfDiffi

4: Compute Hybrid = quality ·Onehot+ (1− quality) · Soft

2seen YOLOX in https://github.com/open-mmlab/mmdetection
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