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ABSTRACT

In this paper, we introduce Watch-And-Help (WAH), a challenge for testing so-
cial intelligence in agents. In WAH, an AI agent needs to help a human-like agent
perform a complex household task efficiently. To succeed, the AI agent needs to i)
understand the underlying goal of the task by watching a single demonstration of
the human-like agent performing the same task (social perception), and ii) coordi-
nate with the human-like agent to solve the task in an unseen environment as fast
as possible (human-AI collaboration). For this challenge, we build VirtualHome-
Social, a multi-agent household environment, and provide a benchmark including
both planning and learning based baselines. We evaluate the performance of AI
agents with the human-like agent as well as with real humans using objective
metrics and subjective user ratings. Experimental results demonstrate that the
proposed challenge and virtual environment enable a systematic evaluation on the
important aspects of machine social intelligence at scale.1

1 INTRODUCTION

Humans exhibit altruistic behaviors at an early age (Warneken & Tomasello, 2006). Without much
prior experience, children can robustly recognize goals of other people by simply watching them act
in an environment, and are able to come up with plans to help them, even in novel scenarios. In
contrast, the most advanced AI systems to date still struggle with such basic social skills.

In order to achieve the level of social intelligence required to effectively help humans, an AI agent
should acquire two key abilities: i) social perception, i.e., the ability to understand human behavior,
and ii) collaborative planning, i.e., the ability to reason about the physical environment and plan its
actions to coordinate with humans. In this paper, we are interested in developing AI agents with
these two abilities.

Towards this goal, we introduce a new AI challenge, Watch-And-Help (WAH), which focuses on
social perception and human-AI collaboration. In this challenge, an AI agent needs to collaborate
with a human-like agent to enable it to achieve the goal faster. In particular, we present a 2-stage
framework as shown in Figure 1. In the first, Watch stage, an AI agent (Bob) watches a human-like
agent (Alice) performing a task once and infers Alice’s goal from her actions. In the second, Help
stage, Bob helps Alice achieve the same goal in a different environment as quickly as possible (i.e.,
with the minimum number of environment steps).

This 2-stage framework poses unique challenges for human-AI collaboration. Unlike prior work
which provides a common goal a priori or considers a small goal space (Goodrich & Schultz, 2007;
Carroll et al., 2019), our AI agent has to reason about what the human-like agent is trying to achieve
by watching a single demonstration. Furthermore, the AI agent has to generalize its acquired knowl-

1Code and documentation for the VirtualHome-Social environment are available at https://
virtual-home.org. Code and data for the WAH challenge are available at https://github.com/
xavierpuigf/watch_and_help. A supplementary video can be viewed at https://youtu.be/
lrB4K2i8xPI.
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WATCH stage: Bob watches Alice’s behaviors and infers her goal

HELP stage: Bob works with Alice to achieve her goal

Bob’s task: guess Alice’s goal and help herAlice’s task: set up a dinner table

to set up a
Alice may want

dinner table

Figure 1: Overview of the Watch-And-Help challenge. The challenge has two stages: i) in the
Watch stage, Bob will watch a single demonstration of Alice performing a task and infer her goal; ii)
then in the Help stage, based on the inferred goal, Bob will work with Alice to help finish the same
task as fast as possible in a different environment.

edge about the human-like agent’s goal to a new environment in the Help stage. Prior work does not
investigate such generalization.

To enable multi-agent interactions in realistic environments, we extend an open source virtual plat-
form, VirtualHome (Puig et al., 2018), and build a multi-agent virtual environment, VirtualHome-
Social. VirtualHome-Social simulates realistic and rich home environments where agents can inter-
act with different objects (e.g, by opening a container or grabbing an object) and with other agents
(e.g., following, helping, avoiding collisions) to perform complex tasks. VirtualHome-Social also
provides i) built-in agents that emulate human behaviors, allowing training and testing of AI agents
alongside virtual humans, and ii) an interface for human players, allowing evaluation with real hu-
mans and collecting/displaying human activities in realistic environments (a functionality key to
machine social intelligence tasks but not offered by existing multi-agent platforms). We plan to
open source our environment.

We design an evaluation protocol and provide a benchmark for the challenge, including a goal in-
ference model for the Watch stage, and multiple planning and deep reinforcement learning (DRL)
baselines for the Help stage. Experimental results indicate that to achieve success in the proposed
challenge, AI agents must acquire strong social perception and generalizable helping strategies.
These fundamental aspects of machine social intelligence have been shown to be key to human-
AI collaboration in prior work (Grosz & Kraus, 1996; Albrecht & Stone, 2018). In this work, we
demonstrate how we can systematically evaluate them in more realistic settings at scale.

The main contributions of our work are: i) a new social intelligence challenge, Watch-And-Help, for
evaluating AI agents’ social perception and their ability to collaborate with other agents, ii) a multi-
agent platform allowing AI agents to perform complex household tasks by interacting with objects
and with built-in agents or real humans, and iii) a benchmark consisting of multiple planning and
learning based approaches which highlights important aspects of machine social intelligence.

2 RELATED WORK

Human activity understanding. An important part of the challenge is to understand human activi-
ties. Prior work on activity recognition has been mostly focused on recognizing short actions (Sig-
urdsson et al., 2018; Caba Heilbron et al., 2015; Fouhey et al., 2018), predicting pedestrian trajec-
tories (Kitani et al., 2012; Alahi et al., 2016), recognizing group activities (Shu et al., 2015; Choi
& Savarese, 2013; Ibrahim et al., 2016), and recognizing plans (Kautz, 1991; Ramırez & Geffner,
2009). We are interested in the kinds of activity understanding that require inferring other people’s
mental states (e.g., intentions, desires, beliefs) from observing their behaviors. Therefore, the Watch
stage of our challenge focuses on the understanding of humans’ goals in a long sequence of actions
instead. This is closely related to work on computational Theory of Mind that aims at inferring
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ON(plate, table): 2
ON(glass, table): 1
ON(fork,  table): 1

Ground-truth Goal VirtualHome-Social

Task Demonstration

Environment
(Unseen in demonstration)

Alice’s action

Bob’s action
Bob’s Model

Built-in Alice
or Human

Alice’s observation

Bob’s observation

WATCH stage HELP stage

Figure 2: The system setup for the WAH challenge. An AI agent (Bob) watches a demonstration of
a human-like agent (Alice) performing a task, and infers the goal (a set of predicates) that Alice was
trying to achieve. Afterwards, the AI agent is asked to work together with Alice to achieve the same
goal in a new environment as fast as possible. To do that, Bob needs to plan its actions based on i)
its understanding of Alice’s goal, and ii) a partial observation of the environment. It also needs to
adapt to Alice’s plan. We simulate environment dynamics and provide observations for both agents
in our VirtualHome-Social multi-agent platform. The platform includes a built-in agent as Alice
which is able to plan its actions based on the ground-truth goal, and can react to any world state
change caused by Bob through re-planning at every step based on its latest observation. Our system
also offers an interface for real humans to control Alice and work with an AI agent in the challenge.

humans’ goals by observing their actions (Baker et al., 2017; Ullman et al., 2009; Rabinowitz et al.,
2018; Shum et al., 2019). However, in prior work, activities were simulated in toy environments
(e.g., 2D grid worlds). In contrast, this work provides a testbed for conducting Theory-of-Mind type
of activity understanding in simulated real-world environments.

Human-robot interaction. The helping aspect of the WAH challenge has been extensively studied
in human-robot interaction (HRI). However, prior work in HRI has been mainly restricted in lab
environments (Goodrich & Schultz, 2007; Dautenhahn, 2007; Nikolaidis et al., 2015; Rozo et al.,
2016), and the goals in the collaborative tasks were either shared by both agents or were defined in a
small space. The setup in WAH is much more challenging – the goal is sampled from a large space,
needs to be inferred from a single demonstration, and must be performed in realistic and diverse
household environments through a long sequence of actions.

Multi-agent virtual environments. There has been a large body of platforms for various multi-
agent tasks (Jaderberg et al., 2019; Samvelyan et al., 2019; OpenAI, 2018; Lowe et al., 2017; Resnick
et al., 2018; Shu & Tian, 2018; Carroll et al., 2019; Suarez et al., 2019; Baker et al., 2019; Bard et al.,
2020). However, these multi-agent platforms can only simulate simple or game-like environments
and do not support for human-AI collaborations on real-life activities. Existing platforms for real-
istic virtual environments mainly focus on single agent settings for tasks such as navigation (Savva
et al., 2019; Xia et al., 2018; Brodeur et al., 2017; Zhu et al., 2017; Xia et al., 2018) , embodied
question answering (Gordon et al., 2017; Wijmans et al., 2019; Das et al., 2018), or single agent task
completion (Puig et al., 2018; Shridhar et al., 2019; Misra et al., 2018; Gao et al., 2019). In contrast,
the proposed VirtualHome-Social environment allows AI agents to engage in multi-agent household
activities by i) simulating realistic and interactive home environments, ii) incorporating humanoid
agents with human-like behaviors into the system, iii) providing a wide range of commands and an-
imations for navigation and object manipulation, and iv) allowing human participation. Because of
these features, VirtualHome-Social can serve as a testbed for complex social perception and human-
AI collaboration tasks, which is complementary to existing virtual environments.

3 THE WATCH-AND-HELP CHALLENGE

The Watch-And-Help challenge aims to study AI agents’ ability to help humans in household ac-
tivities. To do that, we design a set of tasks defined by predicates describing the final state of the
environment. For each task, we first provide Bob a video that shows Alice successfully performing
the activity (Watch stage), and then place both agents in a new environment where Bob has to help
Alice achieve the same goal with the minimum number of time steps (Help stage).
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Figure 2 provides an overview of the system setup for the Watch-And-Help challenge. For this chal-
lenge, we build a multi-agent platform, VirtualHome-Social (Section 4), that i) supports concurrent
actions from multiple agents and ii) provides observations for the agents. Alice represents a built-in
agent in the system; she plans her actions based on her own goal and a partial observation of the
environment. Bob serves as an external AI agent, who does not know Alice’s ground-truth goal and
only has access to a single demonstration of Alice performing the same task in the past. During the
Help stage, Bob receives his observation from the system at each step and sends an action command
back to control the avatar in the environment. Alice, on her part, updates her plan at each step based
on her latest observation to reflect any world state change caused by Bob. We also allow a human to
control Alice in our system. We discuss how the system and the built-in agent work in Section 4.

Problem Setup. Formally, each task in the challenge is defined by Alice’s goal g (i.e., a set of goal
predicates), a demonstration of Alice taking actions to achieve that goalD = {stAlice, a

t
Alice}Tt=1 (i.e.,

a sequence of states stAlice and actions atAlice), and a new environment where Bob collaborates with
Alice and help achieve the same goal as quickly as possible. During training, the ground-truth goal
of Alice is shown to Bob as supervision; during testing, Bob no longer has access to the ground-truth
goal and thus has to infer it from the given demonstration.

Goal Definitions. We define the goal of a task as a set of predicates and their counts, which describes
the target state. Each goal has 2 - 8 predicates. For instance, “ON(plate, dinnertable):2;
ON(wineglass, dinnertable):1” means “putting two plates and one wine glass onto the
dinner table.” The objects in a predicate refer to object classes rather than instances, meaning that
any object of a specified class is acceptable. This goal definition reflects different preferences of
agents (when setting up a dinner table, some prefer to put water glasses, others may prefer to put
wine glasses), increasing the diversity in tasks. We design five predicate sets representing five types
of household activities: 1) setting up a dinner table, 2) putting groceries / leftovers to the fridge, 3)
preparing a simple meal, 4) washing dishes, and 5) reading a book while having snacks or drinks.
In total, there are 30 different types of predicates. In each task, the predicates of a goal are sampled
from one of the five predicate sets (as a single household activity). More details about the predicate
sets and goal definitions are listed in Appendix B.1.

4 VIRTUALHOME-SOCIAL

Building machine social intelligence for real-life activities poses additional challenges compared to
typical multi-agent settings, such as far more unconstrained goal and action spaces, and the need to
display human actions realistically for social perception.

With that in mind, we create VirtualHome-Social, a new environment where multiple agents (includ-
ing real humans) can execute actions concurrently and observe each other’s behaviors. Furthermore,
we embed planning-based agents in the environment as virtual humans that AI agents can reason
about and interact with.

In the rest of this section, we describe the observations, actions, and the built-in human-like agent
provided in VirtualHome-Social. Appendix A includes more information.

Observation space. The environment supports symbolic and visual observations, allowing agents
to learn helping behaviors under different conditions. The symbolic observations consist on a scene
graph, with nodes representing objects and edges describing spatial relationships between them.

Action space. Agents can navigate in the environment and interact with objects in it. To interact
with objects, agents need to specify an action and the index of the intended object (e.g., “grab 〈3〉”
stands for grabbing the object with id 3). An agent can only interact with objects that are within its
field of sight, and therefore its action space changes at every step.

Human-like agents. To enable a training and testing environment for human-AI interactions, it is
critical to incorporate built-in agents that emulate humans when engaging in multi-agent activities.
Carroll et al. (2019) has attempted to train policies imitating human demonstrations. But those
policies would not reliably perform complex tasks in partially observable environments. Therefore,
we devise a planning-based agent with bounded rationality, provided as part of the platform. This
agent operates on the symbolic representation of its partial observation of the environment. As
shown in Figure 3, it relies on two key components: 1) a belief of object locations in the environment
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Planner

Goal Observation

Belief

Environment
Action

Figure 3: Overview
of the human-like
agent.

Figure 4: The overall design of the baseline models. A goal inference
model infers the goal from a demonstration D and feeds it to a helping pol-
icy (for learning-based baselines) or to a planner to generate Bob’s action.
We adopt a hierarchical approach for all baselines.

(Figure 13 in Appendix A.3), and 2) a hierarchical planner, which uses Monte Carlo Tree Search
(MCTS) (Browne et al., 2012) and regression planning (RP) (Korf, 1987) to find a plan for a given
goal based on its belief. At every step, the human-like agent updates its belief based on the latest
observation, finds a new plan, and executes the first action of the plan concurrently with other agents.
The proposed design allows agents to robustly perform tasks in partially observable environments
while producing human-like behaviors2. We provide more details of this agent in Appendix A.3.

5 BENCHMARK

5.1 EVALUATION PROTOCOL

Training and Testing Setup. We create a training set with 1011 tasks and 2 testing sets (test-1,
test-2). Each test set has 100 tasks. We make sure that i) the helping environment in each task is
different from the environment in the pairing demonstration (we sample a different apartment and
randomize the initial state), and ii) goals (predicate combinations) in the test set are unseen during
training. To evaluate generalization, we also hold out 2 apartments for the Help stage in the test sets.
For the training set and test-1 set, all predicates in each goal are from the same predicate set, whereas
a goal in test-2 consists of predicates sampled from two different predicates sets representing multi-
activity scenarios (e.g., putting groceries to the fridge and washing dishes). Note that during testing,
the ground-truth goals are not shown to the evaluated Bob agent. More details can be found in
Appendix B. An episode is terminated once all predicates in Alice’s goal are satisfied (i.e., a success)
or the time limit (250 steps) is reached (i.e., a failure).

Evaluation Metrics. We evaluate the performance of an AI agent by three types of metrics: i)
success rate, ii) speedup, and iii) a cumulative reward. For speedup, we compare the episode length
when Alice and Bob are working together (LHelp) with the episode length when Alice is working
alone (LAlice), i.e., LAlice/LBob − 1. To account for both the success rate and the speedup, we define
the cumulative reward of an episode with T steps as R =

∑T
t=1 1(s

t = sg)− 0.004, where st is the
state at step t, sg is the goal state. R ranges from -1 (failure) to 1 (achieving the goal in zero steps).

5.2 BASELINES

To address this challenge, we propose a set of baselines that consist of two components as shown in
Figure 4: a goal inference model and a goal-conditioned helping planner / policy. In this paper, we
assume that the AI agent has access to the ground-truth states of objects within its field of view (but
one could also use raw pixels as input). We describe our approach for the two components below.

Goal inference. We train a goal inference model based on the symbolic representation of states in
the demonstration. At each step, we first encode the state using a Transformer (Vaswani et al., 2017)
over visible objects and feed the encoded state into a long short-term memory (LSTM) (Hochreiter
& Schmidhuber, 1997). We use average pooling to aggregate the latent states from the LSTM over
time and build a classifier for each predicate to infer its count. Effectively, we build 30 classifiers,
corresponding to the 30 predicates in our taxonomy and the fact that each can appear multiple times.

2We conducted a user study rating how realistic were the trajectories of the agents and those created by hu-
mans, and found no significant difference between the two groups. More details can be found in Appendix D.4.
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Helping policy/planner. Due to the nature of the tasks in our challenge – e.g., partial observability,
a large action space, sparse rewards, strict preconditions for actions – it is difficult to search for a
helping plan or learn a helping policy directly over the agent’s actions. To mitigate these difficulties,
we propose a hierarchical architecture with two modules for both planning and RL-based approaches
as shown in Figure 4. At every step, given the goal inferred from the demonstration, ĝ, and the
current observation of Bob, a high-level policy or planner will output a predicate as the best subgoal
to pursue for the current step; the subgoal is subsequently fed to a low-level policy or planner which
will yield Bob’s action atBob at this step. In our baselines, we use either a learned policy or a planner
for each module. We use the symbolic representation of visible objects as Bob’s observation otBob
for all models. We summarize the overall design of the baseline models as follows (please refer to
Appendix C for the details of models and training procedures):

HP: A hierarchical planner, where the high-level planner and the low-level planner are implemented
by MCTS and regression planning (RP) respectively. This is the same planner as the one for Alice,
except that i) it has its own partial observation and thus a different belief from Alice, and ii) when
given the ground-truth goal, the high-level planner uses Alice’s plan to avoid overlapping with her.

Hybrid: A hybrid model of RL and planning, where an RL policy serves as the high-level policy and
an RP is deployed to generated plans for each subgoal sampled from the RL-based high-level policy.
This is to train an agent equipped with basic skills for achieving subgoals to help Alice through RL.

HRL: A hierarchical RL baseline where high-level and low-level policies are all learned.

Random: A naive agent that takes a random action at each step.

To show the upper bound performance in the challenge, we also provide two oracles:

OracleB: An HP-based Bob agent with full knowledge of the environment and the true goal of Alice.

OracleA, B: Alice has full knowledge of the environment too.

5.3 RESULTS

We evaluate the Watch stage by measuring the recognition performance of the predicates. The pro-
posed model achieves a precision and recall of 0.85 and 0.96 over the test-1 set. To evaluate the
importance of seeing the full demonstration, we test a model that takes as input the graph represen-
tation of the last observation, leading to a precision and recall of 0.79 and 0.75. When using actions
taken by Alice as the input, the performance increases to a precision and recall of 0.99 and 0.99.
The chance precision and recall is 0.08 and 0.09.

We report the performance of our proposed baselines (average and standard error across all episodes)
in the Help stage in Figure 5. In addition to the full challenge setup, we also report the performance
of the helping agents using true goals (indicated by the subscript TG) and using random goals (by RG),
and the performance of Alice working alone. Results show that planning-based approaches are the
most effective in helping Alice. Specifically, HPTG achieves the best performance among non-oracle
baselines by using the true goals and reasoning about Alice’s future plan, avoiding redundant actions
and collisions with her (Figure 6 illustrates an example of collaboration). Using the inferred goals,
both HP and Hybrid can offer effective help. However, with a random goal inference (HPRG), a
capable Bob agent becomes counter productive – frequently undoing what Alice has achieved due
to their conflicting goals (conflicts appear in 40% of the overall episodes, 65% for Put Groceries
and Set Meal). This calls for an AI agent with the ability to adjust its goal inference dynamically
by observing Alice’s behavior in the new environment (e.g., Alice correcting a mistake made by
Bob signals incorrect goal inference). HRL works no better than Random, even though it shares
the same global policy with Hybrid. While the high level policy selects reasonable predicates to
perform the task, the low level policy does not manage to achieve the desired goal. In most of
the cases, this is due to the agent picking the right object, but failing to put it to the target location
afterwards. This suggests that it is crucial for Bob to develop robust abilities to achieve the subgoals.
There is no significant difference between Random and Alice baselines (t(99) = −1.38, p = 0.17).

We also evaluate the baselines in the test-2 set, containing tasks with multiple activities. The goal
inference model achieves a precision and recall of 0.68 and 0.64. The performance gap from test-1
indicates that the model fails to generalize to generalize to multi-activity scenarios, overfitting to
predicate combinations seen during training. For the Help stage, we evaluate the performance of
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a b

Figure 5: a) Success rate (x axis) and speedup (y axis) of all baselines and oracles. The performance
of an effective Bob agent should fall into the upper-right side of the Alice-alone baseline in this plot.
b) Cumulative reward in the overall test set and in each household activity category (corresponding
to the five predicate sets introduced in Section 3).

Alice alone Bob helps Alice

Alice’s plan:
ON(cupcake, table)
ON(cupcake, table)
ON(pudding, table)
ON(poundcake, table)

Alice’s plan:
ON(cupcake, table)
ON(cupcake, table)

ON(pudding, table)
ON(poundcake, table)

Bob’s plan:

Figure 6: Example helping plan. The arrows indicate moving directions and the circles with black
borders indicate moments when agents interacted with objects. When working alone (left), Alice
had to search different rooms; but with Bob’s help (right), Alice could finish the task much faster.

d

ca bBob and Alice both try to grab the fork Bob avoids conflict Bob’s actions change Alice’s belief

Bob blocks Alice eBob’s actions cause false belief for Alice

Both Alice and Bob 
head towards the fork.

They both try to grab the 
fork.

Alice grabs the fork while 
Bob looks elsewhere. Alice is looking for wine.

Bob opens the cabinet 
revealing the wine bottle.

Alice walks to the cabinet 
and finds the wine.

Bob blocks the room. Bob blocks the fridge.
Alice sees the apple in 
the cabinet. and puts it on the table.

When Alice comes back, the 
apple is not there anymore.

Bob later comes in
to grab the apple.

Figure 7: Example helping behaviors. We show more examples in the supplementary video.

Alice alone, as well as the best performing baseline, HP. Alice achieves a success rate of 95.40 ±
0.01, while the HP baseline achieves a success rate of 88.60 ± 0.02 and a speedup of 0.21 ± 0.04.
Compared to its performance in the test-1 set, the HP baseline suffers a significant performance
degradation in the test-2 set, which is a result of the lower goal recognition accuracy in the Watch
stage.

To better understand the important factors for the effectiveness of helping, we analyze the helping
behaviors exhibited in our experiments and how they affect Alice from the following aspects.

Predicting Alice’s Future Action. When coordinating with Alice, Bob should be able to predict
Alice’s future actions to efficiently distribute the work and avoid conflicts (Figure 7ab).

Helping Alice’s Belief’s Update. In addition to directly achieving predicates in Alice’s goal, Bob
can also help by influencing Alice’s belief update. A typical behavior is that when Bob opens
containers, Alice can update her belief accordingly and find the goal object more quickly (Figure 7c).
This is the main reason why Bob with random actions can sometimes help speed up the task too.

Multi-level Actions. The current baselines do not consider plans over low-level actions (e.g.,
pathfinding). This strategy significantly decreases the search space, but will also result in inefficient
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b ca

Figure 8: a) Success rate (x axis) and speedup (y axis). b) Cumulative reward with real humans or
with the human-like agent. c) Subjective ratings from Exp. 2. Here, Alice refers to humans or the
human-like agent acting alone, whereas HP, Hybrid, and HPRG indicate different AI agents helping
either humans or the human-like agent. All results are based on the same 30 tasks in the test set.

pathfinding and inability to predict other agents’ future paths. Consequently, Bob agent sometimes
unintentionally blocks Alice (Figure 7d). A better AI agent should consider actions on both levels.

False Belief. Actions taken by an agent may cause another agent to have false beliefs (Figure 7e).

6 HUMAN EXPERIMENTS

Our ultimate goal is to build AI agents that can work with real humans. Thus, we further conduct
the following two human experiments, where Alice is controlled by a real human.

Experiment 1: Human performing tasks alone. In this experiment, we recruited 6 subjects to
perform tasks alone by controlling Alice. Subjects were given the same observation and action space
as what the human-like agent had access to. They could click one of the visible objects (including all
rooms) and select a corresponding action (e.g., “walking towards”, “open”) from a menu to perform.
They could also choose to move forward or turn left/right by pressing arrow keys. We evaluated 30
tasks in the test set. Each task was performed by 2 subjects, and we used the average steps they took
as the single-agent performance for that task, which is then used for computing the speedup when
AI agents help humans. The performance of a single agent when being controlled by a human or by
a human-like agent in these 30 tasks is shown in Fig. 8ab with the label of Alice. Human players are
slightly more efficient than the human-like agent but the difference is not significant, as reported by
the t-test over the number of steps they took (t(29) = −1.63, p = .11).

Experiment 2: Collaboration with real humans. This experiment evaluates how helpful AI agents
are when working with real humans. We recruited 12 subjects and conducted 90 trials of human-AI
collaboration using the same 30 tasks as in Exp. 1. In each trial, a subject was randomly paired with
one of three baseline agents, HP, Hybrid, and HPRG, to perform a task. After each trial, subjects
were asked to rate the AI agent they just worked with on a scale of 1 to 7 based on three criteria
commonly used in prior work (Hoffman, 2019): i) how much the agent knew about the true goal (1
- no knowledge, 4 - some knowledge, 7 - perfect knowledge), ii) how helpful you found the agent
was (1 - hurting, 4 - neutral, 7 - very helpful), and iii) whether you would trust the agent to do its
job (1 - no trust, 4 - neutral, 7 - full trust). For a fair comparison, we made sure that the random goal
predictions for HPRG were the same as the ones used in the evaluation with the human-like agent.

As shown Figure 8, the ranking of the three baseline AI agents remains the same when the human-
like agent is replaced by real humans, and the perceived performance (subjective ratings) is consis-
tent with the objective scores. We found no significant difference in the objective metrics between
helping humans and helping the human-like agent; the only exception is that, when paired with real
humans, HPRG had a higher success rate (and consequently a higher average cumulative reward).
This is because humans recognized that the AI agent might have conflicting subgoals and would
finish other subgoals first instead of competing over the conflicting ones with the AI agent forever,
whereas the human-like agent was unable to do so. Appendix D.3 shows an example. This adaption
gave humans a better chance to complete the full goal within the time limit. We provide more details
of the procedures, results, and analyses of the human experiments in Appendix D.
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7 CONCLUSION

In this work, we proposed an AI challenge to demonstrate social perception and human-AI collab-
oration in common household activities. We developed a multi-agent virtual environment to test an
AI agent’s ability to reason about other agents’ mental states and help them in unfamiliar scenarios.
Our experimental results demonstrate that the proposed challenge can systematically evaluate key
aspects of social intelligence at scale. We also show that our human-like agent behaves similarly to
real humans in the proposed tasks and the objects metrics are consistent with subject ratings.

Our platform opens up exciting directions of future work, such as online goal inference and direct
communication between agents. We hope that the proposed challenge and virtual environment can
promote future research on building more sophisticated machine social intelligence.
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A VIRTUALHOME-SOCIAL

A.1 COMPARISON WITH EXISTING PLATFORMS

There have been many virtual environments designed for single-agent and multi-agent tasks. Table 1
summarizes the key features of the proposed VirtualHome-Social in comparison with existing virtual
platforms. The key features of our environment include i) multiple camera views, ii) both high-level
and low-level actions, iii) humanoid avatars with realistic motion simulations, iv) built-in human-like
agents emulating human behaviors in household activities, and v) multi-agent capacities.

Critically, VirtualHome-Social enables collecting and displaying human activities in realistic envi-
ronments, which is a key function necessarily for social perception and human-AI collaboration. In
contrast, existing multi-agent platforms do no offer such functionality.

Table 1: We compare VirtualHome-Social with existing embodied single-agent and multi-agent
platforms on the following aspects: 1) action space (high-level actions and/or low-level actions),
2) views (3rd person and/or egocentric views), 3) realistic environments, 4) humanoid agents, 5)
human-like built-in agents that other agents can interact with, and 6) multi-agent capabilities.

Platform Action Views Realistic Humanoid Human-like Agent Multi-agent
Overcooked (Carroll et al., 2019) High/Low 3rd Person No No Yes Yes

Malmo (Johnson et al., 2016) High/Low 3rd Person/Ego No No No Yes
ThreeDWorld (Gan et al., 2020) High/Low 3rd Person/Ego Yes No No Yes
VRKitchen (Gao et al., 2019) High/Low 3rd Person/Ego Yes Yes No No

AI2-THOR (Kolve et al., 2017) High/Low Ego Yes No No Yes
House3D (Wu et al., 2018) Low Ego Yes No No No

HoME (Brodeur et al., 2017) Low Ego Yes No No No
Gibson (Xia et al., 2018) Low Ego Yes No No No

AI Habitat (Savva et al., 2019) Low Ego Yes No No No
VirtualHome-Social High/Low 3rd Person/Ego Yes Yes Yes Yes

A.2 ENVIRONMENT DESCRIPTION

The environment is composed of different apartments with objects that can be placed to generate
diverse scenes for the Watch and Help stages. Each object contains a class name, a set of states, 3D
coordinates and an index for identification, which is needed for action commands that involve object
interaction. The object indices are unique and consistent in the scene so that an agent can track the
identities of individual objects throughout an episode.

A.2.1 APARTMENTS

Training Apartments Testing Apartments

Figure 9: Apartments used in VirtualHome-Social. The last two apartments are uniquely used as
helping environments during the testing phase.

We provide 7 distinctive apartments in total as shown in Figure 9. For the purpose of testing agents’
generalization abilities, in the Watch-And-Help challenge, the last two apartments are held out for
the helping environments in the testing set exclusively.
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Figure 10: Avatars available in VirtualHome-Social.
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Figure 11: a) VirtualHome-Social provides egocentric views, third-person views and scene graphs
with symbolic state representations of objects and agents. It also offers multi-modal inputs (RGB,
segmentation, depth, 3D boxes and skeletons). b) Illustration of the action space at one step.

A.2.2 AVATARS

VirtualHome-Social provides a pool of diverse humanoid avatars (see Figure 10). This allows us to
randomly sample different avatars for both agents in the Watch-And-Help challenge. We hope this
can help reduce the biases in the environment. The supplementary video shows an example of this,
where the clothing color indicates the role of each agent. For the public release of the platform, we
intend to further increase the diversity of the avatar pool.

A.2.3 OBSERVATION

The environment supports symbolic and visual observations (Figure 11a), allowing agents to learn
helping behaviors under different conditions. The visual observations provide RGB, depth, semantic
and instance segmentation, albedo and luminance, normal maps, 3D skeletons and bounding boxes.
Building upon Liao et al. (2019), we represent the symbolic observations as a state graph with each
node representing the class label and physical state of an object, and each edge representing the
spatial relation of two objects. The environment also provides multiple views and supports both full
observability and partial observability settings.

We show examples of the observations in the supplementary video. In addition to the world states,
our system also allows users to include direct messages from other agents as part of the observation
for an agent.

A.2.4 ACTION SPACE

As shown in Figure 11b, agents in VirtualHome-Social can perform both high-level actions, such as
navigating towards a known location, or interacting with an observed object, and low-level actions,
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Sampled State
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Observation Environment

Hierarchal Planner

MCTS

ON(12, 31) ON(52, 31)

plate.12

plate.52

dinnertable.31

plate.12

RP

1. walk <12>
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3. walk <103>
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High-level Plan

Low-level Plan

Figure 12: Schematic of the human-like agent. Based on the state graph sampled from the belief,
the hierarchical planner searches for a high-level plan over subgoals using MCTS; then RP searches
for a low-level plan over actions for each subgoal. The first action of each plan is sent back to the
environment for execution.

+ apple.2

radio.1

cabinet.3

Observation

Drawer Fridge Counter Cabinet

Location distribution of wine glass
Posterior

Posterior
fork wine glass apple: in cabinet

Drawer Fridge Counter Cabinet

Location distribution of wine glass
Prior
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fork wine glass apple

Figure 13: The agent’s belief is represented as the location distribution of objects, and is updated at
each step based on the previous belief and the latest observation. In the example, the open cabinet
reveals that the wine glass can not be in there, and that there is an apple inside, updating the belief
accordingly.

such as turning or moving forward for a small step. For actions involving interactions with entities
(objects or other agents), an agent needs to specify the indices of the intended entities (e.g., “grab
〈3〉” stands for grabbing the object with id 3). An agent can only interact with objects that are within
its field of sight, and therefore its action space changes at every step. When executing navigation
actions, an agent can only move 1 meter towards the target location within one step. On average, an
agent’s action space includes 167 different actions per step.

A.3 HUMAN-LIKE AGENT

We discuss how the human-like agent works in more details here. The agent pipeline can be seen in
Figure 12. The agent has access to a partial observation of the environment, limited to the objects
that are in the same room and not in some closed container. The agent is equipped with a belief
module (Figure 13), that gives information about the unseen objects, under the assumption that the
existence of objects in the environment is known, but not their location. For each object in the
environment, the belief contains a distribution of the possible locations where it could be. We adopt
uniform distributions as the initial belief when the agent has not observed anything.

At each time, the agent obtains a partial observation, and updates its belief distribution accordingly.
Then, the belief module samples a possible world state from the current distribution. To ensure
that the belief state is consistent between steps, we only resample object locations that violate the
current belief (e.g. an object was believed to be in the fridge but the agent sees that the fridge is in
fact empty).

Based on the sampled state, a hierarchical planner will search for the optimal plan for reaching the
goal, based on the goal definition. Specifically, we use MCTS to search for a sequence of subgoals
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(i.e., predicates), and then each subgoal is fed to a regression planner (RP) that will search for an
action sequence to achieve the subgoal. For the high-level planner, the subgoal space is obtained
by the intersection between what predicates remained to be achieved and what predicates could
be achieved based on the sampled state. Note here each subgoal would specify an object instance
instead of only the object class defined in the goal so that the low-level planner will be informed
which object instances it needs to interact with. For instance, in the example illustrated in Figure 12,
there are two plates (whose indices are 12, 52) and the dinner table’s index is 31 according to the
sampled state. There are two unsatisfied goal predicates (i.e., two ON(plate, dinnertable)),
then a possible subgoal space for the high-level planner would be {ON(12, 31), ON(52, 31)}.
For RP, it starts from the state defined by the subgoal and searches for the low-level plan backward
until it finds an action that is part of the current action space of the agent.

To mimic human behaviors in a home setting, we also expect the human-like agent to close contain-
ers unless it needs to look inside or put objects into them. For that, we augment the MCTS-based
high-level planner with heuristics for the closing behavior – the agent will close an container when
it finds no relevant goal objects inside or has already grabbed/put in the all target objects out of that
container. We find that this augmentation makes the overall agent behaviors closer to what a real
human would do in a household environment.

Thanks to the hierarchical design, the planner for the human-like agent can be run in real-time
(on average, replanning at each step only takes 0.05 second). This also gives the agent a bounded
rationality, in that the plan is not the most optimal but is reasonably efficient. The optimality of the
planner can be further tuned by the hyper-parameters of MCTS, such as the number of simulation,
the maximum number steps in the rollouts, and the exploration coefficients.

A.4 SPECIFICATIONS

The environment can be run in a single or multiple processes. A single process runs at 10 actions
per second. We train our models using 10 processes in parallel.

B MORE DETAILS ON THE CHALLENGE SETUP

B.1 PREDICATE SETS FOR GOAL DEFINITIONS

Table 2: Predicate sets used for defining the goal of Alice in five types of activities.
Set up a dinner table ON(plate,dinnertable), ON(fork,dinnertable),

ON(waterglass,dinnertable), ON(wineglass,dinnertable)
Put groceries IN(cupcake,fridge), IN(pancake,fridge), IN(poundcake,fridge),

IN(pudding,fridge), IN(apple,fridge),
IN(juice,fridge), IN(wine,fridge)

Prepare a meal ON(coffeepot,dinnertable), ON(cupcake,dinnertable),
ON(pancake,dinnertable), ON(poundcake,dinnertable),
ON(pudding,dinnertable), ON(apple,dinnertable),
ON(juice,dinnertable), ON(wine,dinnertable)

Wash dishes IN(plate,dishwasher), IN(fork,dishwasher),
IN(waterglass,dishwasher), IN(wineglass,dishwasher)

Read a book HOLD(Alice,book), SIT(Alice,sofa), ON(cupcake,coffeetable),
ON(pudding,coffeetable), ON(apple,coffeetable),
ON(juice,coffeetable), ON(wine,coffeetable)

Table 2 summarizes the five predicate sets used for defining goals. Note that VirtualHome-Social
supports more predicates for potential future extensions on the goal definitions.

B.2 TRAINING AND TESTING SETUP

During training, we randomly sample one of the 1011 training tasks for setting up a training episode.
For evaluating an AI agent on the testing set, we run each testing task for five times using different
random seeds and report the average performance.
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Figure 14: Initial location distributions of all objects in the environment. Rows are objects and
columns are locations. The color indicates the frequency.

For training goal inference, we also provide an additional training set of 5303 demonstrations (with-
out pairing helping environments) synthesized in the 5 training apartments. Note that these demon-
strations are exclusively used for training goal inference models and would not be used for helping
tasks.

B.3 DISTRIBUTION OF INITIAL OBJECT LOCATIONS

Figure 14 shows the initial location distribution of all objects in the helping environments sampled
for the challenge, and Figure 15 shows the initial location distributions for only the objects involved
in the goal predicates.

C IMPLEMENTATION DETAILS OF BASELINES

C.1 GOAL INFERENCE MODULE

Figure 16 shows the architecture of the goal inference model described in the paper, where d = 128
indicates the dimension of vectors. In this network, the LSTM has 128 hidden units and the MLP
units are comprised of two 128-dim fully connected layers. For both node embeddings and the latent
states from the LSTM, we use average pooling.
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Figure 16: Network architecture of the goal inference model, which encodes the symbolic state
sequence in demonstrations and infers the count for each predicate.
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Figure 17: Network architecture of the low-level policy in the HRL baseline. Note that the object
selection policy also considers “Null” as a dummy object node for actions that do not involve an
object, which is not visualized here.

C.2 HIERARCHICAL PLANNER

The hierarchical planner (HP) baseline is similar to the planner designed for the human-like agent
(Section A.3) but has its own observation and belief. When given the ground-truth goal of Alice, the
MCTS-based high-level planner will remove the subgoal that Alice is going to pursue from its own
subgoal space.

C.3 GENERAL TRAINING PROCEDURE FOR RL-BASED APPROACHES

We train the high-level RL policy by giving ground-truth goals and by using RP as the low-level
planner to reach the subgoals sampled from the high-level policy. Whenever a goal predicate is
satisfied (either by Alice or by Bob), Bob will get a reward of +2; it will also get a -0.1 penalty after
each time step. We adopt the multi-task RL approach introduced in Shu et al. (2017) to train the low-
level policy in a single-agent setting, where we randomly sample one of the predicates in the goal
in each training episode and set it to be the objective for Bob. This is to ensure that Bob can learn
to achieve subgoals through the low-level policy by himself. The HRL baseline is implemented by
combining the high-level and low-level policies that are trained separately.

C.4 LOW-LEVEL POLICY

Figure 17 illustrates the network architecture for the low-level policy. We use the symbolic obser-
vation (only the visible object nodes) as input, and encode them in the same way as Figure 16 does.
We encode two object classes in the given subgoal sg (i.e., a predicate) through word2vec encod-
ing yielding two 128-dim vectors. We then concatenate these two vectors and feed them to a fully
connected layer to get a 128-dim goal encoding. Based on the goal encoding, we further get two
attention vectors, σobject and σtype. Each element of the attention vectors ranges from 0 to 1. For
each object node, we use the element-wise product of σobject and its node embedding to get its re-
shaped representation. Similarly, we can get the reshaped context representation by an element-wise
product of the context embedding and σtype. This is inspired by a common goal-conditioned policy
network architecture (Chaplot et al., 2018; Shu et al., 2017), which helps extract state information
relevant to the goal. From each reshaped node representation, we can get a scalar for each object
representing the log-likelihood of selecting that object to interact with for the current action. After a
softmax over all the object logits, we get the object selection policy πobject(k|ot, sg), where k is the
index of the object instance selected from all visible objects (which also includes “Null” for actions
that do not involve an object). For encoding the history, we feed the reshaped context representation
to an LSTM with 128 hidden units. Based on the latent state from the LSTM, we get i) the action
type policy πtype(a|ot, sg), which selects an action type (i.e., “open,” “close,” “grab,” “put,” “walk,”
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Figure 18: Network architecture the high-level policy for the Hybrid and the HRL baselines.

or “follow”), and ii) the value function V (ot, sg). The sampled k and a jointly define the action for
the AI agent. Note that some sampled combinations may not be valid actions, which will not be
executed by the VirtualHome-Social environment.

In addition to the policy and value output, we also build a binary classifier for each visible node to
predict whether it is close enough for the agent to interact with according to the symbolic graphs.
This closeness prediction serves an auxiliary prediction which helps the network learn a better state
representation and consequently greatly improves the sample efficiency.

In each training episode, we randomly sample a predicate from the complete goal definition as the
final goal of the agent. The agent gets a reward of 0.05 for being close to the target object and/or
location, and a reward of 10.0 when it grabs the correct object or puts it to the correct location. Note
that when training the low-level policy, we set up a single-agent environment to ensure that the AI
agent can learn to achieve a predicate by itself.

We adopt a 2-phase curriculum learning similar to Shu et al. (2017): In the first phase, we train
a policy for grabbing the target object indicated in the goal. During this phase, a training episode
terminates whenever the agent grabs the correct type of object. In the second phase, we train another
policy which learns to reuse the learned grabbing policy (which is deployed whenever the “grab”
action type is sampled) to get the goal object and then put the grabbed object to target location
specified in the goal.

We use off-policy advantage actor-critic (A2C) (Mnih et al., 2016) for policy optimization. The
network is updated by RMSprop (Tieleman & Hinto, 2012) with a learning rate of 0.001 and a batch
size of 32. The first phase is trained with 100,000 episodes and the second phase is trained with
26,000 episodes.

C.5 HIGH-LEVEL POLICY

As Figure 18 depicts, the high-level policy (used by Hybrid and HRL baselines) has a similar
architecture design as the low-level policy. Compared with the low-level policy, it does not need to
define object selection policy; instead, based on the latent state from the LSTM, it outputs the policy
for selecting the first and the second object class in a predicate to form a subgoal3. It also augments
the goal encoder in the low-level policy with a sum pooling (i.e., Bag of Words) to aggregate the
encoding of all predicates in a goal, where predicates are duplicated w.r.t. their counts in the goal
definition (e.g., in Figure 18, ON(plate, dinnertable) appears twice, which means there are

3Note that this is different from the subgoals generated from the high-level planner (Section A.3), which
would specify object instances.
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Figure 19: Success rate (x axis) and speedup (yaxis) of all the baselines and oracles

should be 2 plates on the dinnertable). Similar to the low-level policy, we get an attention vector σg
from the goal encoding to reshape the state representation. In total, the network has three outputs:
the object subgoal policy for sampling the object class name in the subgoal, the location subgoal
policy for sampling the target location class name in the subgoal, and a value function.

The high-level policy is trained with a regression planner deployed to find a low-level plan for
reaching that subgoal. Note that the regression planner searches for a plan based on a state sampled
from the agent’s belief maintained by a belief module discussed in Section A.3. It will also randomly
select object instances from the sampled state that fit the defined object classes in the subgoals
sampled from the high-level policy.

Similar to the low-level policy, we use off-policy A2C for policy optimization, and the network is
updated by RMSprop with a learning rate of 0.001 and a batch size of 16. We first train the high-
level policy in a single-agent setting where the AI agent is trained to perform a task by itself; we then
finetune the high-level policy in the full training setting where the human-like agent is also present
and works alongside with the AI agent. During training, we always provide the ground-truth goal of
Alice to the AI agent.

D ADDITIONAL DETAILS OF HUMAN EXPERIMENTS

D.1 HUMAN SUBJECTS

Both the collection of human plans as well as the evaluations in our user studies were conducted by
recruited participants, who gave informed consent.

D.2 PROCEDURE FOR COLLECTING HUMAN PLANS

To collect the tasks for both experiments, we built a web interface on top of VirtualHome-Social,
allowing humans to control the characters in the environment. Specifically, the subjects in our human
experiments were always asked to control Alice. At every step, humans were given a set of visible
objects, and the corresponding actions that they could perform with those objects (in addition to
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the low-level actions), matching the observation and action space of the human-like agent. When
working with an AI agent, both the human player and the AI agent took actions concurrently.

In both experiments, human players were given a short tutorial and had a chance to get familiar with
the controls. They were shown the exact goals to be achieved, and were instructed to finish the task
as fast as possible. For each task, we set the same time limit, i.e., 250 steps. A task is terminated
when it exceeds the time limit or when all the goals specified have been reached.

The 30 tasks used in the human experiments were randomly sampled from the test set and were
evenly distributed across 5 task categories (i.e., 6 tasks for each category).

In Experiment 2, each subject was asked to perform 7 or 8 trials. We made sure that each subject
got to play with all three baseline AI agents in at least 2 trials.

D.3 EXAMPLE OF HUMAN ADAPTING TO AI AGENTS WITH CONFLICTING GOALS

The main reason why real humans work better than the human-like agent when paired with an AI
agent that has a conflicting goal (in particular, the HPRG baseline), is that they can recognize the
conflicting goal, and avoid competing over the same objects forever. Figure 20 depicts an example
of this adaptive behavior from a real human player in Experiment 2, which results in the completion
of the task within the time limit. Note that in our experiments, a task is considered successful and
terminated once all the predicates in a goal have been achieved.

This also calls for an AI agent with the ability to adjust its goal inference dynamically by observing
Alice’s behavior in the new environment (e.g., Alice correcting a mistake made by Bob signals
incorrect goal inference).

D.4 SUBJECTIVE EVALUATION OF SINGLE AGENT PLANS

To evaluate whether people think the human-like agent behaves similarly to humans given the same
goals, we recruited another 8 subjects. We showed each subject 15 videos, each of which is a video
replay of a human or the human-like agent performing one of the 30 tasks (we randomly selected
one human video and one built-in agent video for each task). For each video, subjects were given the
goal and asked to rate how much they agreed with the statement, “the character in the video behaves
similarly to a human given the same goal in this apartment,” on a Likert scale of 5 (1 is “strongly
disagree,” 3 is “neutral,” and 5 is “strongly agree”)4. The average ratings for the characters controlled
by the human-like agent and by the real humans are 3.38 (±0.93) and 3.72 (±0.92) respectively. We
found no significant difference between the ratings for the human-like agent’s plans and the ratings
for the real humans’ plans in our tasks, as reported by a paired, two-tailed t-test (t(29) = −1.35,
p = .19). This demonstrates that the proposed human-like agent can produce plans that are similar
to real humans’ plans in our challenge.

Based on the free responses collected from the subjects who rated these videos, human plans look
slightly more efficient sometimes since they do not look for objects in unlikely places and avoid
moving back and forth between rooms frequently. The human-like agent behaves similarly in most
of the time but would occasionally search through the rooms in a counter-intuitive order due to its
bounded rationality and the fact that plans are sampled stochastically.

D.5 ADDITIONAL QUANTITATIVE ANALYSES OF HUMAN EXPERIMENT RESULTS

To evaluate whether the performance of a baseline AI agent helping the human-like agent reflects the
performance of it helping real humans, we conduct paired, two-tailed t-test for the three baselines in
Experiment 2 based on their cumulative rewards. For HPRG, there is a significant difference between
helping the human-like agent and helping real humans (t(29) = −2.36, p = .03) as discussed in
Section 6 and Appendix D.3. However, there is no significant difference for HP (t(29) = −1.78,
p = .1) and Hybrid ((t(29) = −0.5, p = .62)). This validates that, in general, collaboration with

4Since we focus on the agents’ plans in this work, users were instructed to focus on the actions taken by the
agents, rather than the graphical display of their body motion.
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Alice grabs a wine glass And puts it on the table
Bob immediately grabs the 
wine glass goes to the dishwasher and puts it there.

Bob immediately grabs it Goes to the dishwasher and puts it there

Instead of getting back the 
glass, Alice focuses on 
other subgoals first

After finishing the other
subgoals, she goes to get
the wine glass

Alice finds out
So she gets the glass out 
of the dishwasher 

and puts it back to the 
table

Bob sees that the glass 
has been put to the table

So he puts the glass back 
to the dishwasher again

After Alice puts the wine 
glass to the table

and puts it back to the 
table, completing the task.

Ground-truth goal:
ON(plate, dinnertable): 1
ON(waterglass, dinnertable): 2
ON(wineglass, dinnertable): 1
ON(fork, dinnertable): 2

A random goal sampled by Bob (HPRG):
IN(wineglass, dishwasher): 1
ON(poundcake, dinnertable): 2
IN(pancake, fridge): 2
ON(wine, dinnertable): 1

The human-like agent and HPRG

A real human player and HPRG

Figure 20: An example of how real human differs from the human-like agent when working with
an AI agent (i.e., HPRG) with a conflicting goal. In this example, Bob incorrectly thinks that Alice
wants to put the wine glass to the dishwasher whereas Alice actually wants to put it to the dinner
table. When controlled by a human-like agent, Alice enters into a loop with Bob trying to change
the location of the same object. The real human player, on the other hand, avoids this conflict by
first focusing on other objects in the goal, and going back to the conflicting object after all the other
goal objects have been placed on the dinner table. Consequently, the real human completes the full
task successfully within the time limit.

the human-like agent is comparable to collaboration with real humans. Given these analyses, the
training and evaluation procedure5 presented in this paper is both scalable and comprehensive.

5I.e., i) training AI agents with the human-like agent, and then ii) evaluating them both with the human-like
agent (in a larger test set), and with real humans (in a smaller but representative test set).
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