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ABSTRACT

Training Deep Neural Networks (DNNs) places immense compute requirements
on the underlying hardware platforms, expending large amounts of time and energy.
We propose LoCal+SGD, a new algorithmic approach to accelerate DNN train-
ing by selectively combining localized or Hebbian learning within a Stochastic
Gradient Descent (SGD) based training framework. Back-propagation is a compu-
tationally expensive process that requires 2 Generalized Matrix Multiply (GEMM)
operations to compute the error and weight gradients for each layer. We alleviate
this by selectively updating some layers’ weights using localized learning rules
that require only 1 GEMM operation per layer. Further, since the weight update is
performed during the forward pass itself, the layer activations for the mini-batch
do not need to be stored until the backward pass, resulting in a reduced memory
footprint. Localized updates can substantially boost training speed, but need to be
used selectively and judiciously in order to preserve accuracy and convergence. We
address this challenge through the design of a Learning Mode Selection Algorithm,
where all layers start with SGD, and as epochs progress, layers gradually transi-
tion to localized learning. Specifically, for each epoch, the algorithm identifies a
Localized→SGD transition layer, which delineates the network into two regions.
Layers before the transition layer use localized updates, while the transition layer
and later layers use gradient-based updates. The trend in the weight updates made
to the transition layer across epochs is used to determine how the boundary between
SGD and localized updates is shifted in future epochs. We also propose a low-cost
weak supervision mechanism by controlling the learning rate of localized updates
based on the overall training loss. We applied LoCal+SGD to 8 image recognition
CNNs (including ResNet50 and MobileNetV2) across 3 datasets (Cifar10, Cifar100
and ImageNet). Our measurements on a Nvidia GTX 1080Ti GPU demonstrate
upto 1.5× improvement in end-to-end training time with ∼0.5% loss in Top-1
classification accuracy.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved continued success in many application domains
involving images (Krizhevsky et al., 2017), videos (Ng et al., 2015), text (Zhou et al., 2015) and
natural language (Goldberg & Hirst, 2017). However training state-of-the-art DNN models is
computationally quite challenging, often requiring exa-FLOPs of compute as the models are quite
complex and need to be trained using large datasets. Despite rapid improvements in the capabilities
of GPUs and the advent of specialized accelerators, training large models using current platforms
is still quite expensive and often takes days to even weeks. In this work, we aim to reduce the
computational complexity of DNN training through a new algorithmic approach called LoCal+SGD1,
which alleviates the key performance bottlenecks in Stochastic Gradient Descent (SGD) through
selective use of localized or Hebbian learning.

Computational Bottlenecks in DNN Training. DNNs are trained in a supervised manner using
gradient-descent based cost minimization techniques such as SGD (Bottou, 2010) or Adam (Kingma &
Ba, 2015). The training inputs (typically grouped into minibatches) are iteratively forward propagated
(FP ) and back propagated (BP ) through the DNN layers to compute weight updates that push the
network parameters in the direction that decreases the overall classification loss.

1In addition to combining localized and SGD based learning, LoCal+SGD is Low-Calorie SGD or SGD
with reduced computational requirements
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Back-propagation is computationally expensive, accounting for 65-75% of the total training time on
GPUs. This is attributed to two key factors: (i) BP involves 2 Generalized Matrix Multiply (GEMM)
operations, one to propagate the error across layers and the other to compute the weight gradients, and
(ii) when training on distributed systems using data/model parallelism(Dean et al., 2012b; Krizhevsky
et al., 2012), aggregation of weight gradients/errors across devices incurs significant communication
overhead. Further, BP through auxiliary ops such as batch normalization are also more expensive
than FP .

Prior Efforts on Efficient DNN Training. Prior research efforts to improve DNN training time
can be grouped into a few directions. One group of efforts enable larger scales of parallelism in
DNN training through learning rate tuning (You et al., 2017a; Goyal et al., 2017; You et al., 2017b)
and asynchronous weight updates (Dean et al., 2012a). Another class of efforts employ importance-
based sample selection during training, wherein ‘easier’ training samples are selectively discarded to
improve runtime (Jiang et al., 2019; Zhang et al., 2019). Finally, model quantization (Sun et al., 2019)
and pruning (Lym et al., 2019) can lead to significant runtime benefits during training by enabling the
use of reduced-bitwidth processing elements.

LoCal+SGD: Combining SGD with Localized Learning. Complementary to the aforementioned
efforts, we propose a new approach, LoCal+SGD, to alleviate the performance bottlenecks in DNN
training, while preserving model accuracy. Our hybrid approach combines Hebbian or localized
learning (Hebb) with SGD by selectively applying it in specific layers and epochs. Localized learning
rules (Hebb; Oja, 1982; Zhong, 2005) utilize a single feed-forward weight update to learn the feature
representations, eschewing BP . Careful formulation of the localized learning rule can result in ∼2×
computation savings compared to SGD and also significantly reduces memory footprint as activations
from FP needed not be retained until BP . The reduction in memory footprint can in turn allow
increasing the batch size during training, which leads to further runtime savings due to better compute
utilization and reduced communication costs. It is worth noting that localized learning has been
actively explored in the context of unsupervised learning (Chen et al., 2020; van den Oord et al.,
2018; Hénaff et al., 2019). Further, there has been active research efforts on neuro-scientific learning
rules (Lee et al., 2015; Nøkland, 2016). Our work is orthogonal to such efforts and represents a new
application of localized learning in a fully supervised context, wherein we selectively combine it
within an SGD framework to achieve computational savings.

Preserving model accuracy and convergence with LoCal+SGD requires localized updates to be
applied judiciously i.e., only to selected layers in certain epochs. We address this challenge through the
design of a learning mode selection algorithm. At the start training, the selection algorithm initializes
the learning mode of all layers to SGD, and as training progresses determines the layers that transition
to localized learning. Specifically, for each epoch, the algorithm identifies a Localized→SGD
transition layer, which delineates the network into two regions. Layers before the transition layer use
localized updates, while subsequent layers use gradient-based updates. This allows BP to stop at the
transition layer, as layers before it have no use for the back-propagated errors. The algorithm takes
advantage of the magnitude of the weight updates of the Localized→SGD transition layer in deciding
the new position of the boundary every epoch. Further, we provide weak supervision by tweaking the
learning rate of locally updated layers based on overall training loss.

Contributions: To the best of our knowledge, LoCal+SGD is the first effort that combines local-
ized learning (an unsupervised learning technique) within a supervised SGD context to reduced
computational costs while maintaining classification accuracy. This favorable tradeoff is achieved
by LoCal+SGD through a Learning Mode Selection Algorithm that applies localized learning to
selected layers and epochs. Further improvement is achieved through the use of weak supervision
by modulating the learning rate of locally updated layers based on the overall training loss. Across
8 image recognition CNNs (including ResNet50 and MobileNet) and 3 datasets (Cifar10, Cifar100
and ImageNet), we demonstrate that LoCal+SGD achieves up to 1.5× improvement in training time
with ∼0.5% Top-1 accuracy loss on a Nvidia GTX 1080Ti GPU.

2 LoCal+SGD: COMBINING SGD WITH SELECTIVE LOCALIZED LEARNING

The key idea in LoCal+SGD is to apply localized learning to selected layers and epochs during DNN
training to improve the overall execution time, without incurring loss in accuracy. The following
components are critical to the effectiveness of LoCal+SGD:
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Stage Localized Updates SGD-Based Updates

FP 𝑧𝑙 = 𝐺𝐸𝑀𝑀(𝑎𝑙−1, 𝑊𝑙) (2)

Update 
Stage

∆𝑊𝑙 = 𝐺𝐸𝑀𝑀 𝑎𝑙−1, 𝑧𝑙 (3)

𝑊𝑙= 𝑊𝑙 + η
∆𝑊𝑙

| ∆𝑊𝑙 |
(4)

𝛿𝑙 = 𝐺𝐸𝑀𝑀 𝛿𝑙+1,𝑊𝑙 (5)
∆𝑊𝑙 = 𝐺𝐸𝑀𝑀 𝑎𝑙−1, 𝛿𝑙 (6)
𝑊𝑙 = 𝑊𝑙+η∆𝑊𝑙 (7)

𝐖𝐥: Filter Weight of Layer L
𝐳𝐥 ∶ Pre-Activation o/p of Layer L
𝐚𝐥: Post-Activation o/p of Layer L

𝛅𝐥: Error at Layer L
η :   Learning Rate

NOTE: GEMM includes operations in convolutional and fully-connected layers

Figure 1: Comparing Localized Updates and SGD-based BP

• Localized Learning Rule Formulation. We formulate a computationally efficient localized
learning rule and highlight the clear runtime benefits when compared to SGD.
• Learning Mode Selection Algorithm. We propose a learning mode selection algorithm

that chooses between localized learning and SGD-based learning for each layer in every
epoch, based on the potential impact on accuracy and computational benefits.
• Weak Supervision. We propose a weak supervision technique, which comprises of a low-

cost supervision signal communicated to the localized learning layers in each epoch. The
signal modulates the learning rates of these layers based on the rate of change of the overall
classification loss.

In the following sub-sections, we describe the salient aspects of these components in greater detail.

2.1 EFFICIENT LOCALIZED LEARNING

Localized learning has been extensively explored in the context of unsupervised learning, demon-
strating success on small (<= 3 layer) networks using relatively simpler datasets (e.g. MNIST,
Cifar-10) (LeCun & Cortes, 2010; Krizhevsky et al., a)) with an accuracy gap that is yet to be bridged
on larger datasets (e.g. ResNet50 or MobileNetV2 on ImageNet (Deng et al., 2009)). First proposed in
(Hebb), the key intuition behind localized learning rules is to encourage correlations between neurons
that have similar activation patterns. Equation 1 depicts the Hebbian weight update proposed in
(Hebb), for a synapse with weight W , connecting a pair of input and output neurons whose activation
values are represented by x and y respectively, with η as the learning rate.

4W = η · x · y (1)

Considerable research has gone into evolving this equation over the years to improve the perfor-
mance of localized learning (Oja, 1982; Zhong, 2005). However, many of the proposed rules are
computationally complex, or are difficult to parallelize on modern hardware platforms such as GPUs
and TPUs. Since our primarily goal is improving DNN training time, we adopt the computationally
simple localized learning rule presented in Equation 1.

The learning rule in Equation 1 assumes a distinct synapse between each input and output neuron
pair. While its application to fully-connected (fc) layers is straightforward, we need to consider
the sharing of weights between neuron pairs in convolutional (conv) layers. For updating a shared
weight of a conv layer, we calculate the individual updates due to each pair of pre- and post-synaptic
neurons sharing the weight and sum all such updates. This essentially reduces to a convolution
operation between the input and output activations of the layer and can be expressed by Equation 3
in Figure 1. For further computational efficiency improvement, unlike Equation 1, we consider the
pre-activation-function values of the outputs i.e., zl instead of their post activation value al. Further,
we normalize the localized update values as shown in Equation 4 of Figure 1, as it was observed to
achieve better convergence in practice.

Overall, we utilize Equations 3 and 4 from Figure 1 to perform the weight updates in all layers that are
earlier than the Localized→SGD transition layer during a certain epoch. All other layers continue to
be updated using SGD-based BP , expressed by Equations 5-7 in Figure 1. SGD updates are applied
to batch-normalization layers present after the Localized→SGD transition layer, and are otherwise
skipped. Clearly, Equation 3 has the same computational complexity as Equation 6 of SGD-based
BP for conv and fc layers. Thus, from Figure 1, we can directly infer that our localized learning rule
will be considerable faster than SGD-based BP . In practice, we measured this improvement to be
more than 2× on a NVIDIA GTX 1080Ti GPU for the ImageNet-ResNet50 benchmark, across all
conv and fc layers. In addition to the computational complexity, the memory footprint of SGD-based
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BP is also higher. This is because DNN software frameworks commonly store all activation values
computed during FP to avoid recomputing al−1, the input activations to the layers, used in Equation
6 of SGD-based BP . In contrast, the localized update for a layer can be performed as soon as the
FP through the layer is complete. The activation tensor al of layer L can be discarded or over-written
as soon as FP proceeds to the next layer in the network, thereby freeing up a significant portion of
on-device memory during training. In turn, this can allow larger minibatch sizes to be accommodated
on a given hardware platform, when the localized updates are applied on a sufficient number of layers.

2.2 LEARNING MODE SELECTION ALGORITHM

The compute benefits of localized learning come at the cost of potential loss in classification accuracy
with respect to SGD training. Thus, we utilize a learning mode selection algorithm to judiciously
choose when and where to apply localized learning. The proposed algorithm identifies the learning
mode of each layer at every epoch to maximize the runtime benefits, while incurring minimal losses
in classification accuracy.

To design an efficient learning mode selection algorithm, we first study the effects of different spatio-
temporal patterns of localized learning on the computational efficiency and classification accuracy of
a network. We specifically investigate whether localized learning is more suitable for specific layers
in the network and specific phases in the training process.

Impact on runtime efficiency: We first analyze the spatial trends, i.e., if locally updating specific
layers in the network results in better runtime efficiency. In a particular epoch, if a convolutional
layer L, updated with SGD precedes a convolutional layer K, that is updated locally, calculating
the SGD-based error gradients of Layer L, i.e. δL, requires error propagation through the locally
updated layer K. From a compute efficiency perspective, the benefits of using localized-updates in
layer K completely vanish. Thus, it makes sense to partition the network into two regions - a prefix
(set of initial layers) that are updated using localized learning, followed by layers that are updated
with SGD. SGD-based BP is stopped at the junction of the two regions. Naturally, the compute
benefits increase when the number of locally updated layers are higher and thus the boundary i.e., the
Localized→SGD transition layer is moved deeper into the network.

The impact of different temporal patterns on runtime efficiency is quite straightforward, with higher
number of locally updated epochs leading to higher benefits. Further, as the compute complexity of
localized updates is constant across different epochs, these benefits are agnostic of which particular
epoch involves localized learning.

Impact on accuracy: To analyze the impact on accuracy, we first examine the nature of features
learnt by different layers trained by SGD. It is commonly accepted that the initial layers of a
network (Agrawal et al., 2014) perform feature extraction, while later layers aid in the classification
process. As localized learning demonstrates better performance for feature extraction, applying it
more aggressively, i.e for higher number of epochs, in the initial layers has a much smaller impact
accuracy. However, for later layers in the network, the number of localized learning epochs should be
progressively reduced to preserve accuracy.
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Figure 2: Overview of the Learning Mode Selection Algorithm

Overall, based on the impact of localized learning on both runtime and accuracy, we find that a good
learning mode selection algorithm should favor application of localized learning to a contiguous
group of initial layers, while ensuring fewer or no localized learning epochs in later layers. We further
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impose an additional constraint on top of this spatio-temporal pattern. Specifically, we allow each
layer to transition from one learning mode to another at most once during the entire training process.
We empirically observe that utilizing SGD as the initial learning mode allows the network to achieve
a higher accuracy than utilizing localized learning as the initial mode. SGD essentially provides
a better initialization point for all layers, and the subsequent use of localized updates enables the
training to converge with good accuracy.

Algorithm 1 Learning Mode Selection Algorithm
Input: TE (Index of the transition layer at epoch

E), ek (epochs since last transition), ||4WE ||
(L2 norm of the weight update of the transi-
tion layer at epoch E), K (minimum interval
between transitions), tshift (number of layers
to shift boundary)

Output: TE+1 (Index of the transition layer at
epoch E+1)

1: WAvg = 1
K

∑e=E−1
e=E−K || 4We||

2: if || 4WE || <= α ·WAvg and ek>=K
3: TE+1 = TE + tshift
4: ek = 0
5: else
6: TE+1 = TE
7: ek = ek + 1

In accordance with the above considerations, we
propose a learning mode selection algorithm,
described in Algorithm 1, that identifies the po-
sition of the boundary or the Localized→SGD
transition layer every epoch. To that end, the
algorithm analyzes the L2 norm of the SGD
weight updates made to the Localized→SGD
transition layer across epochs and determines
whether the boundary can be shifted deeper into
the network for the next epoch. In order to
ensure stability in the training process, the al-
gorithm moves the boundary at most once in
every K epochs. It calculates the running av-
erage of the norm of the updates, Wavg, over
the last K epochs (line 1). The boundary is
shifted to the right only if the weight update
in epoch E is within a fraction α of Wavg,
and K epochs have transpired since the last
transition (line 2). The rationale for this cri-
terion is that sustained high magnitudes of weight updates in the transition layer indicate that
they are potentially critical to accuracy, in which case the transition layer must continue be-
ing updated with SGD. If the criterion is not satisfied, the boundary remains stationary (line 5).
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Figure 3: Progression of
Localized→SGD transition layer

The value of α is set by analyzing the trends in the weight update
magnitudes across the training process for different networks.
The hyper-parameter tshift is set to the size of a recurring block,
such as the residual blocks in ResNets and MobileNetV2. The
hyper-parameter K is selected in a manner that ensures that
localized updates are never applied beyond some fraction of the
initial network layers. We denote this fraction as Lmax, and is
set to 0.75 in all our experiments. Equation 2 is used to compute
K for a network of L layers and a total training period of Emax

epochs.

K =
Emax

Lmax ∗ L
tshift

(2)

In Figure 3, we plot the progression of the transition layer across
the ResNet-34 and -50 benchmarks trained on the ImageNet dataset using LoCal+SGD. Interestingly,
the weight update norm metric automatically modulates the rate at which the boundary progresses, as
the boundary traverses the deeper layers at a slower rate.

2.3 WEAK SUPERVISION

To further bridge the accuracy gap between our approach and end-to-end SGD training, we introduce
weak supervision in the locally updated layers. Unlike the SGD-updated layers, the locally updated
layers in our approach cannot take advantage of the information provided by supervision, i.e., the
classification error evaluated at the output. We utilize this supervised information through a low-cost
weak supervision scheme that consists of a single signal sent to all layers updated locally in a
particular epoch, and is derived from the classification loss observed over past few epochs. The weak
supervision scheme is described in Algorithm 2.

The key principle behind the weak supervision scheme is to control the learning rates of the locally
updated layers based on the rate at which the overall classification loss changes. For example, if the
overall classification loss has increased across consecutive epochs, we reverse the direction of the
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updates (line 3) in the next epoch. In contrast, the update direction is maintained if the overall loss is
decreasing (line 5). We find that this weak supervision provides better accuracy results than other
learning rate modulation techniques for the locally updated layers such as Adam or momentum-based
updates.

Algorithm 2 Weak Supervision Scheme
Input: Li (Overall classification loss at epoch

i), lrL (original learning rate of layer L)
Output: WL (Weight update of layer L)

1: 4WL = conv(al−1, zl)
2: if Li−1 < Li

3: WL = WL - lrL · 4WL

||4WL||
4: else
5: WL = WL + lrL · 4WL

||4WL||

We would like to highlight that traditional SGD pro-
vides fine-grained supervision and involves evalu-
ating the error gradients for every neuron in the
network. In contrast, the proposed weak supervi-
sion scheme provides coarse-grained supervision by
forcing all weights to re-use the same loss infor-
mation. Overall, our weak supervision scheme is
not developed with the intent to compete with SGD
updates, but is rather a simple, approximate and
low-cost technique that brings the final accuracy of
LoCal+SGD at par with end-to-end SGD training
performance.

3 EXPERIMENTAL RESULTS

In this section, we present the results of our experiments highlighting the compute benefits achieved
by LoCal+SGD. We evaluate the benefits across a suite of 8 image-recognition DNNs across 3
datasets. We consider the ResNet18 (He et al., 2015) and VGG13 (Simonyan & Zisserman, 2015)
networks for the Cifar10 (Krizhevsky et al., a) and Cifar100 (Krizhevsky et al., b) datasets; and
the ResNet34, ResNet50 (He et al., 2015) and MobileNetV2 (Sandler et al., 2018) networks for
the ImageNet dataset (Deng et al., 2009). All experiments are conducted on Nvidia GTX 1080Ti
GPUs with the batch size set to 64 per GPU, unless otherwise mentioned. Further experimental
methodology details for the baseline and proposed approach are provided in the Appendix.

3.1 SINGLE GPU EXECUTION TIME BENEFITS

ImageNet: Table 1 presents the performance of the baseline (end-to-end SGD training) and the
proposed LoCal+SGD algorithm on the ImageNet benchmarks in terms of the Top-1 classification
error and runtime observed on a single GPU. For all benchmarks listed here, LoCal+SGD applies
localized updates for nearly 50-60% of the layers. As can be seen, LoCal+SGD achieves upto∼1.4×
reduction in runtime compared to to the baseline, while sacrificing <0.5% loss in Top-1 accuracy.

Table 1 also compares the performance of LoCal+SGD against existing research efforts designed to
improve training efficiency. We perform this analysis against two efforts, namely (i) Training with
stochastic depth (Huang et al., 2016) and (ii) Structured Pruning during Training (Lym et al., 2019).
Training with stochastic depth, as the name suggests, stochastically bypasses residual blocks by
propagating input activations/error gradients via identity or downsampling transformations, resulting
in improved training time. However, the approach is targeted towards extremely deep networks and

Table 1: ImageNet

Network Training Strategy Top-1 Error Speed-Up
Baseline SGD 26.6% 1×
LoCal+SGD 27.04% 1.26×

ResNet34 Training with Stochastic Depth 27.89% 1.13×
Freezing layers during training 27.42% 1.38×
Baseline SGD 24.02% 1×
LoCal+SGD 24.41% 1.36×

ResNet50 Training with Stochastic Depth 26.76% 1.08×
Pruning during training 24.89% 1.32×
Freezing layers during training 25.64% 1.44×
Baseline SGD 28.41% 1×
LoCal+SGD 28.94% 1.31×

MobileNetV2 Training with Stochastic Depth 30.53% 1.17×
Freezing layers during training 29.49% 1.52×
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as seen in Table 1, it incurs a noticeable accuracy loss on networks such as ResNet34, ResNet50
and MobileNetV2. Compared to training with stochastic depth, our proposal clearly achieves better
accuracy as well as training runtime benefits. The key principle behind the pruning during training
approach is to reduce the size of the weight and activation tensors in a structured manner during
training, thereby providing speed-ups on GPU/TPU platforms. However, on complex benchmarks
such as ResNet50, such techniques achieve speed-ups at the cost of significant drop in accuracy
(∼ 1.5%). To further demonstrate the utility of localized updates in our approach, we consider a third
technique, wherein layers selected to be updated locally for a given epoch are instead frozen, i.e.,
the parameters are held fixed during that epoch. While this achieves better runtime savings, it incurs
considerably higher loss (∼1%) in accuracy, further underscoring the benefits of LoCal+SGD.

CIFAR-10 and CIFAR-100: Table 2 presents the accuracy and corresponding compute benefits of
the baseline and the proposed technique, as well as training with stochastic depth and layer freezing,
for the CIFAR-10 and CIFAR-100 datasets. Stochastic depth is applicable only to residual blocks
and is hence not considered for the VGG-13 network. Across benchmarks, we observe upto a 1.51×
improvement in training runtime. Compared to the ImageNet benchmarks, LoCal+SGD applies
localized updates more aggressively in the CIFAR-10 and CIFAR-100 benchmarks i.e., for more
layers are updated locally for a higher number of epochs. This leads to the superior compute benefits
of the proposed scheme on these benchmarks.

Table 2: Cifar10 and Cifar100

Network(Dataset) Training Strategy Top-1 err. Speed-Up
Baseline SGD 6.06% 1×

ResNet18 LoCal+SGD 6.23% 1.51×
(Cifar10) Training with Stochastic Depth 6.79% 1.35×

Freezing layers during training 6.51% 1.65×
Baseline SGD 7.16% 1×

VGG13 LoCal+SGD 7.25% 1.31×
(Cifar10) Freezing layers during training 7.43% 1.42×

Baseline SGD 23.39% 1×
ResNet18 LoCal+SGD 23.63% 1.44×
(Cifar100) Training with Stochastic Depth 23.97% 1.35×

Freezing layers during training 23.74% 1.62×
Baseline SGD 31.36% 1×

VGG13 LoCal+SGD 31.59% 1.32×
(Cifar100) Freezing layers during training 31.94% 1.42×

3.2 EXECUTION TIME BENEFITS FOR MULTI-GPU TRAINING
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Figure 4: Analyzing memory footprint and
batch-size variation

We analyze the memory footprint of the ResNet50 net-
work when trained with LoCal+SGD on the ImageNet
dataset. Training first commences with all layers updated
with SGD, resulting in a high memory footprint. Due to
the 10 GB capacity of the chosen GPU, the mini-batch
size is set to 64 per GPU. As the Localized→SGD tran-
sition layer progresses across the network, the memory
footprint required also gradually reduces across epochs.
We take advantage of this reduction in memory footprint
in the context of distributed training using 4 GPUs with
data parallelism. Specifically, we extract additional run-
time benefits by increasing the batch size on each GPU,
which reduces the frequency of gradient aggregation between devices and alleviates the communi-
cation overhead. At epoch 33, the memory footprint per GPU reduces to less than 5 GB, allowing
training with an increased mini-batch size of 128 per GPU from epoch 33 onwards. The doubling
of the batch-size provides an additional 6% runtime improvement, when measured across the entire
training period. We note that other training techniques such as training with stochastic depth cannot
exploit this feature, due to minimal reduction in memory footprint.

3.3 ABLATION ANALYSIS

As mentioned in Section 2, the hyper-parameters α, tshift and Lmax control the progression
of the boundary across the network. Different values of either parameter can result in dif-
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Table 3: Analyzing Impact of Increasing Batch-Size on ImageNet

Network Training Strategy Top-1 err. Speed-Up
Baseline SGD (fixed batch-size) 24.06% 1×

ResNet50 LoCal+SGD (fixed batch-size) 24.48% 1.27×
LoCal+SGD (variable batch-size) 24.51% 1.34×

ferent learning mode configurations during training, resulting in different points in the com-
putational efficiency vs. accuracy trade-off space. To understand the trade-off space be-
tween accuracy and runtime benefits, we now individually study the impact of each parameter.
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Impact of α : Figure 5
depicts the best compute
benefits achieved for differ-
ent α, for accuracy losses
ranging from 0.1%-1.5%
for the ResNet50 and
MobileNetV2 benchmarks
on ImageNet. On the
ResNet50 benchmark,
even while limiting the
loss in accuracy 0.1%,
LoCal+SGD achieves
1.1× speedup over tradi-
tional SGD. The speedups
increase to 1.38×-1.47× when around 1.5% loss in accuracy is tolerable.
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Figure 6: Impact of (a) tshift and (b) Lmax on accuracy and
runtime savings on the ImageNet dataset for ResNet50

Impact of tshift : Figure 6(a) depicts
the accuracy achieved for different
tshift values for the ResNet50 net-
work trained using ImageNet. Here,
we denote tshift as a percentage of the
total network depth. For each value of
tshift, we identify α and Lmax that
result in the best accuracy while pro-
viding considerable runtime savings
(at least greater than 10%). The graph
indicates that accuracy is severely im-
pacted for extremely small values of
tshift that are less than 3%. The ac-

curacy is largely stable in the regime of tshift between 5-12%, and begins to experience small
degradations again when tshift exceeds 12%. These trends can be explained by analyzing the rate at
which the transition layer progresses, and the number of layers transitioning to localized updates in
an epoch for different tshift values. Smaller values of tshift (<3%) give rise to low values of k (∼1-2
epochs), the minimum number of epochs that must elapse before the transition layer can shift again.
This results in fast progression of the transition layer across the network, leading to rapid changes
in the learning mode at the boundary, thereby negatively impacting accuracy. In contrast, while
larger tshift values (>12%) encourage slow progression of the boundary, a larger number of layers
transition from SGD to localized updates in a single epoch, thereby impacting performance. We
note here that in both cases, while α and Lmax can be tuned to control the progression and mitigate
the loss in accuracy, the runtime savings is vastly reduced (<10%). Furthermore, for fixed values of
Lmax and α, tshift is largely insensitive to runtime benefits, as the average number of layers updated
with localized updates remains similar. Hence, for best accuracy and runtime benefits we set tshift in
the range of 5-10% for all networks.

Impact of Lmax : Figure 6(b) depicts the impact of Lmax on accuracy for the ResNet50 network. For
each Lmax, we identify the α and tshift that provide the best runtime benefits with minimal loss
in accuracy (less than 0.5%). As with tshift, we denote Lmax as a percentage of the total network
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depth. As seen in the figure, the degradation in accuracy increases slowly for Lmax in the initial
layers - it is merely 0.1% at around Lmax = 30%, and increases to 0.4-0.5% for Lmax = 60-70%.
However, the accuracy degradation sharply increases beyond 2% once Lmax exceeds 90% of the
network depth. Further, runtime benefits generally increase with higher values of Lmax, for fixed
tshift and α. Hence, for achieving a good accuracy versus runtime trade-off, we usually set Lmax to
75% for all networks.

4 RELATED WORK

This section discusses related research efforts to the proposed LoCal+ SGD training technique.
These efforts can be broadly categorized into two classes. The first class of efforts focus on compute
efficient DNN training. All efforts belonging to this class utilize gradient-descent algorithms to train
the DNN model. These techniques are largely complementary to LoCal+SGD, as they can potentially
be applied to the parts of the DNN model updated with SGD. In Section 3, we demonstrated how
LoCal+SGD achieves superior accuracy versus computational efficiency trade-off than some of these
efforts. Further, the second class of efforts involve neuro-scientific faithful learning rules, such as
feedback alignment based efforts etc (Nøkland, 2016). Our work is orthogonal to such efforts, as we
selectively combine localized learning rules with SGD for better computational efficiency.

We elucidate upon the different research efforts in both directions as follows.

Hyper-parameter tuning: Many notable algorithmic efforts are directed towards achieving training
efficiency by controlling the hyper-parameters involved in gradient-descent, notably the learning rate.
(You et al., 2017a; Akiba et al., 2017; Goyal et al., 2017; You et al., 2017b) propose learning rate
tuning algorithms that achieve training in less than an hour with no loss in accuracy, when distributed
to over hundreds of CPU/GPU cores.

Model size reduction during training: Model size reduction via pruning and quantization is a
popular technique to reduce compute costs during inference. In many of these efforts, a dense or full
precision model is re-trained or fine-tuned to obtain a pruned or quantized model. Recently, several
efforts have also investigated dynamically pruning (Lym et al., 2019) or quantizing (Sun et al., 2019)
a model during training itself. The reduction in model size results in training speed-ups. Taking a
slightly different approach (Huang et al., 2016) proposes stochastically dropping residual blocks on
extremely deep networks such as ResNet-1202, not only for training runtime benefits but also better
accuracies due to improved gradient strength.

Instance importance based training: Recent research efforts have discovered that not all training
samples are required for improving loss minimization during SGD training (Jiang et al., 2019; Zhang
et al., 2019). That is, a sizable fraction of the samples can be skipped during several epochs, depending
on their impact on the classification loss evaluated during FP . This translates to a reduction in
mini-batches, providing considerable runtime benefits.

Neuro-scientific learning rules: Back-propagation algorithms utilized in DNN training are not
biologically plausible, and do not explain how learning actually happens in the brain. To this end,
there have been several efforts that develop biological faithful learning algorithms, and demonstrate
considerable success on complex benchmarks including Cifar10 and ImageNet. For example, unlike
conventional DNN training, feedback alignmnent algorithms (Nøkland, 2016) tackle the weight
transport problem (Liao et al., 2015) by allowing for asymmetry in the weight values during forward
and back propagation. Likewise, Target-Propagation (Lee et al., 2015) encourages neural activity to
reach desired target activations evaluated during forward propagation itself, instead of utilizing loss
gradients.

5 CONCLUSION
In this paper, we introduce a new approach to improve the training efficiency of state-of-the-art
DNNs. Specifically, we take advantage of the computationally efficient nature of localized learning
rules and selectively update some layers with these rules instead of SGD. We design an intelligent
learning mode selection algorithm that determines the update method for the convolutional layers of
the network in every epoch while maintaining the accuracy level and extracting maximum benefits.
Further, we also implement a low-cost weak supervision scheme that brings the accuracy of the
proposed scheme closer to traditional SGD training. Across a benchmark suite of 8 DNNs, we
achieve upto 1.5× reduction in training times, as measured on a modern GPU platform.
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6 APPENDIX

6.1 EXPERIMENTAL SETUP

This subsection describes the experimental setup used for realizing the baseline and proposed
LoCal+SGD training schemes, on the benchmarks specified in Section 3 of the main paper. We
conduct our experiments on the complete training and test datasets of each benchmark, using the
PyTorch (Paszke et al., 2019) framework.

Baseline: We consider end-to-end SGD training as the baseline in our experiments. The hyper-
parameters used in SGD training of each of the benchmarks are described below.

ImageNet: For experiments in Section 3.1 we utilize a batch-size of 64 per GPU, for all benchmarks.
For the ResNet50 and ResNet34 benchmarks the initial learning rate set to 0.025. The learning rate is
decreased by 0.1 every 30 epochs, for a total training duration of 90 epochs, and the weight decay
is 4e− 5. The MobileNetV2 benchmark utilizes an initial learning rate of 0.0125. We use a cosine
learning rate decay schedule, as in (Li et al., 2019) for 150 epochs. The weight decay is set to 4e− 5.
Both benchmarks use an input size of 224*224*3.

For the experiments in Section 3.2, the total batch-size at epoch 1 is 256 (64*4), with the initial
learning rate set to 0.1 for the ResNet benchmarks and 0.05 for the MobileNetV2 benchmark. All
other parameters remain the same.

Cifar10 and Cifar100: All Cifar10 and Cifar100 experiments utilize a batch-size of 64. The Cifar10
benchmarks are trained with an initial learning rate of 0.05 that is decayed by 0.1 every 10 epochs,
across 90 epochs. The initial learning rate of the Cifar100 benchmarks is 0.025 and decayed by 0.5
every 20 epochs, for 150 epochs in total. The weight decay is set to 5e− 4. Both benchmarks utilize
an input size of 32*32*3.

LoCal+SGD: In the proposed LoCal+SGD training scheme, the layers updated with SGD are trained
with the same hyper-parameters used in the baseline implementation. Further, LoCal+SGD training
is conducted using the same number of epochs as baseline SGD training. When a layer is updated
locally, the initial learning rate is 0.01 and is decayed by a factor of 2 and 10 every 30 epochs, for
the Cifar and the ImageNet benchmarks respectively. In all experiments, the α parameter is set to
0.95. We measure the accuracy and runtime of the proposed scheme for the same number of training
epochs as the baseline implementations.

6.2 HYPER-PARAMETER TUNING

To realize LoCal+SGD, we introduce three hyper-parameters: α, tshift and Lmax. tshift controls
the number of layers that switch to SGD-based updates every epoch, Lmax is the maximum number
of layers that can be updated with localized learning rules, and α determines the position of the
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transition layer every epoch by analyzing the gradient information at the boundary between the
localized and SGD updates.

To obtain optimized values for these hyper-parameters, we first perform simple grid search using a
single network for a particular dataset (for example, we choose the ResNet50 network for ImageNet).
We transfer the same hyper-parameter values to other networks for the same dataset. We justify our
use of common hyper-parameter values by the following experiment. In Table 4 below, we depict the
results on other ImageNet benchmarks (ResNet34 and MobileNetV2) when hyper-parameter tuning
is performed for each benchmark individually. As can be seen, the accuracy and runtime benefits
are only marginally better than those obtained using a common set of hyper-parameters obtained
by tuning on the ResNet50 benchmark. We thus utilize common values for a dataset, effectively
rendering them constants. The time taken to obtain these constants is thus a one-time cost, and does
not impact the speedups obtained by LoCal+SGD.

Table 4: Analyzing impact of a common set of hyper-parameters

Network Training Strategy Top-1 err. Speed-Up
LoCal+SGD (fine tuned) 26.93% 1.32×

ResNet34 LoCal+SGD (common constants) 27.04% 1.26×
LoCal+SGD (fine-tuned) 28.82% 1.36×

MobileNetV2 LoCal+SGD (common constants) 29.94% 1.31×

6.3 IMPACT OF WEAK SUPERVISION

In Table 5, we highlight the impact of the weak supervision technique on final classification accuracy.
As can be seen, across all our benchmarks, the weak supervision technique clearly improves accuracy
by nearly 0.06%-0.17%, bringing the final accuracy of LoCal+ SGD closer to baseline SGD.

Table 5: Impact of Weak Supervision on accuracy

Dataset Network Top-1 err. with weak
supervision

Top-1 err. without
weak supervision

ResNet34 27.04% 27.1%
ImageNet ResNet50 24.41% 24.49%

MobileNetV2 28.94% 29.03%
VGG13 7.25% 7.39%

Cifar10 ResNet18 6.23% 6.41%
VGG13 31.59% 31.7%

Cifar100 ResNet18 23.63% 23.75%

6.4 ADDITIONAL COMPARATIVE ANALYSIS

In addition to the experiments performed in Section 3 to compare the performance of Lo-
Cal+SGD against existing techniques such as pruning during training (Lym et al., 2019) and training
with stochastic depth (Huang et al., 2016), we conduct additional experiments to further solidify the
superiority of our approach. We elucidate upon these comparisons as follows.

6.4.1 COMPARING LoCal+ SGD AGAINST SGD AT ISO-ACCURACY
We compare the proposed LoCal+SGD training strategy against a SGD baseline that is trained
with fewer epochs, i.e., the number of epochs required to reach the highest accuracy obtained by
LoCal+ SGD across the total training periods listed in Section 6.1. For the ImageNet benchmarks,
the runtime improvements are listed in Table 6 below. Clearly, LoCal+SGD continues to achieve
significant speed-ups (around 1.25×) compared to the SGD baseline, even for complex benchmarks
such as ResNet50 and MobileNetV2.

6.4.2 COMPARING LoCal+SGD AGAINST FREEZING LAYERS DURING TRAINING

In Section 3, we compare LoCal+SGD against a technique, freezing layers during training, wherein
instead of updating the layers using localized learning, the weights are held fixed. In this section,
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Table 6: Analyzing LoCal+SGD speed-up at iso-accuracy

Network Training Strategy Top-1 err. Speed-Up
SGD baseline (76 epochs) 24.40% 1×

ResNet50 LoCal+SGD (83 epochs) 24.41% 1.26×
SGD baseline (138 epochs) 28.92% 1×

MobileNetV2 LoCal+SGD (146 epochs) 28.94% 1.24×

we perform a more thorough comparison of LoCal+SGD against freezing layers during training.
Specifically, we perform this comparison at iso-runtime, and analyze the resulting accuracy of either
approach. To elaborate, we first identify the LoCal+SGD configuration that can reach the best
accuracy within 0.05%, 0.1%, 0.25%, 0.5% and 1% of the baseline SGD accuracy. Then, for the
same runtimes taken by each LoCal+SGD configuration, we identify the configuration that provides
the best accuracy for the freezing layers approach. Our results for the Cifar10 ResNet18 benchmark
can be found in Table 7. LoCal+SGD performs superior to freezing layers during training on 3 out of
the 5 configurations studied, i.e., is a superior technique when the loss compared to SGD is allowed
to exceed 0.1%.

Table 7: Comparing LoCal+SGD against freezing layers during training

Maximum loss in Top-1 Accuracy Loss in accuracy for Lo-
Cal+SGD

Loss in accuracy for freezing
layers during training

0.05% 0.08% 0.04%
0.1% 0.1% 0.09%
0.25% 0.21% 0.28%
0.5% 0.41% 0.56%
1% 0.85% 0.97%

6.5 ANALYSIS OF STATIC SCHEDULES FOR LEARNING MODE SELECTION

The current LoCal+SGD framework is realized with the help of an automatic learning mode selection
algorithm, which determines the position of the transition layer every epoch. Instead of a dynamic
data-dependent algorithm, we investigate the benefits of using a static schedule - that is, the position
of the transition layer is determined using some pre-defined scheduling function. To this end, we
have implemented a simple static schedule that favors aggressive application of the localized learning
rule in initial layers, and gradually decreases the number of epochs localized learning is applied in the
deeper layers. As shown in Equation 3, we opt for a quadratic scheduling function, as we empirically
observe they perform better compared to the linear functions studied. Here N determines the position
of the transition layer every epoch, Emax is the maximum number of training epochs, and c1 and c2
are constants obtained using grid search.

N = bmax(0, c1 − c2 · (E − Emax)
2)c (3)

We report the results using this static schedule in Table 8 for the ImageNet-ResNet50 and Mo-
bileNetV2 benchmarks. Compared to the results reported in Table 1, we find that the static schedule
achieves slightly higher runtime benefits, for marginally lower accuracies. However, static schedules
suffer from some drawbacks – several static scheduling functions are feasible, e.g. exponential,
quadratic, etc., and identifying the best scheduling function for each network requires extensive
empirical analysis. The learning mode selection algorithm utilized in the paper helps alleviate this
by automatically identifying the position of the transition layer every epoch, leveraging the gradient
information at the boundary between localized updates and SGD.

Table 8: Analyzing Impact of Static Learning Mode Selection Schedule

Network Training Strategy Top-1 err. Speed-Up
ResNet50 LoCal+SGD (static schedule) 24.51% 1.41×
MobileNetV2 LoCal+SGD (static schedule) 28.90% 1.33×
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