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Abstract

Eye movements in reading reveal humans’ cog-001
nitive processes during language understanding.002
As such, the time a reader’s eyes dwell on a to-003
ken has been utilized as a measure for the visual004
attention paid to that word, or the importance005
of that word to the reader. This study investi-006
gates the alignment of the importance attributed007
to input tokens by language models (LMs) on008
the one hand and humans, in the form of fixa-009
tion durations, on the other hand. While previ-010
ous research on the internal processes of LMs011
have employed the models’ attention weights,012
recent studies have argued in favor of gradient-013
based methods. Moreover, previous approaches014
to interpret LMs’ internals with human gaze015
have neglected the tasks readers performed dur-016
ing reading, even though psycholinguistic re-017
search underlines that reading patterns are task-018
dependent. We thus introduce a novel approach019
that employs a gradient-based saliency method020
designed to emulate task-specific human read-021
ing strategies to align model and human impor-022
tance, and we find that task specificity plays a023
crucial role in this alignment.024

1 Introduction025

Human eye movements during reading reflect cog-026

nitive processes involved in language process-027

ing (Just and Carpenter, 1980; Rayner, 1998): the028

fixation duration on a word correlates with read-029

ing comprehension (Rayner, 1977; Malmaud et al.,030

2020a). As such, fixation duration has been em-031

ployed as proxy of the relative importance of a032

word to a reader (Hollenstein and Beinborn, 2021).033

The introduction of neural attention mechanisms034

(Bahdanau et al., 2014) and the Transformer ar-035

chitecture (Vaswani et al., 2017), which relies on036

self-attention to compute input and output repre-037

sentations, has given fresh impetus to research into038

how language models (LMs) process language. At-039

tention mechanisms assign dynamic weights to040

input tokens, offering a method to understand a041

model’s internal functioning and decision-making 042

processes (Wang et al., 2016; Ghaeini et al., 2018). 043

Recent research has compared model and human 044

language comprehension by aligning model atten- 045

tion weights with human reading metrics, such as 046

fixation durations (Sood et al., 2020; Eberle et al., 047

2022; Bensemann et al., 2022), presuming model 048

attention effectively signifies the relative impor- 049

tance of input tokens. However, research on atten- 050

tion (Jain and Wallace, 2019; Serrano and Smith, 051

2019; Brunner et al., 2019) has questioned the re- 052

liability of attention weights in accurately reflect- 053

ing token significance, labeling attention as a con- 054

tentious issue in interpretability discussions (Bast- 055

ings and Filippova, 2020). Alternative approaches 056

like gradient-based saliency (Simonyan et al., 2014; 057

Li et al., 2016), which assess the impact of input 058

tokens on model predictions through gradients, are 059

proposed for better assessing token importance. 060

Building on this, Hollenstein and Beinborn (2021) 061

incorporated a saliency method by correlating gra- 062

dient saliencies, obtained through iterative token 063

masking and gradient computation, with human fix- 064

ation durations. However, the output space of this 065

approach comprises tens of thousands of tokens, 066

which makes gradient-based saliency methods un- 067

informative (Yin and Neubig, 2022). Moreover, the 068

model and the humans did not partake in the same 069

task when processing the text, which is a crucial 070

discrepancy, as psycholinguistic studies show that 071

human reading strategies vary with the task and dif- 072

fer from normal reading (Shubi and Berzak, 2023; 073

Mézière et al., 2023; Malmaud et al., 2020b). 074

To address this, we propose a novel gradient- 075

based saliency approach that replicates the classifi- 076

cation tasks humans perform during task-specific 077

reading to better align the importance LMs and hu- 078

mans assign to tokens. Additionally, we expand our 079

analysis to include decoder-based LMs, which, due 080

to their auto-regressive nature, align more closely 081

with the incremental nature of human processing. 082
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2 Related Work083

Model attention and human attention Re-084

search comparing model attention to human visual085

attention, using fixation locations and durations as086

proxies, has produced mixed findings. Sood et al.087

(2020) observed distinct differences between trans-088

former LM attention patterns and human fixation089

patterns. Conversely, studies by Eberle et al. (2022)090

and Bensemann et al. (2022) found strong corre-091

lations between early transformer layer attention092

weights, like those in BERT (Devlin et al., 2019),093

and human visual attention, contrasting with ear-094

lier results. This discrepancy can be attributed to095

methodological differences in processing attention096

weights: Sood et al. (2020) analyzed maximum at-097

tention values from the last layer’s sub-word tokens,098

while Bensemann et al. (2022) averaged attention099

across sub-word tokens in the first layer.100

Limitations of attention-based interpretation101

The inconsistent results outlined above challenge102

the usefulness of methods based on model attention103

to investigate the internals of LMs. Indeed, Brunner104

et al. (2019) emphasize the lack of token identifia-105

bility as one moves to higher layers of a model, and106

Abnar and Zuidema (2020) show that distinct atten-107

tion patterns are only found in earlier layers, while108

in higher layers the attention weights approximate109

a uniform distribution. Moreover, Jain and Wallace110

(2019) question whether attention weights can re-111

liably identify the relative importance of inputs to112

the entire model, showing that different attention113

distributions yield equivalent model predictions.114

Similarly, Serrano and Smith (2019) find attention115

weights to be very noisy indicators of importance.116

Finally, an analysis of BERT’s (Devlin et al., 2019)117

attention (Clark et al., 2019) reveals a significant118

focus on the [SEP] token, which does not affect119

model outputs when its attention is altered, sug-120

gesting a "no-op" operation. Similarly, research on121

attention heads (Voita et al., 2019; Michel et al.,122

2019) finds that many of them can be pruned with123

minimal impact, further indicating the potential124

redundancy or non-operational nature of certain125

attention mechanisms.126

Saliency-based methods for analyzing LMs with127

human gaze As saliency-based methods are ar-128

guably more suited than methods based on atten-129

tion (Bastings and Filippova, 2020) for model anal-130

ysis, Hollenstein and Beinborn (2021) extract token131

importance by iteratively masking each input to-132

ken, computing the L2 norm of the gradient for 133

the correct output with respect to each token, and 134

then summing all saliency scores for each input 135

token. However, while they do emulate the LM’s 136

pre-training objective, this does does not neces- 137

sarily align with human processing: whereas the 138

model “sees” the input only partially, and as many 139

times as there are tokens, the readers see the input 140

fully and only once. Moreover, the gaze data used 141

in their study was, in parts, recorded while partic- 142

ipants were completing a task, such as sentiment 143

analysis and relation extraction (i.e., task-specific 144

reading). In our approach, we thus compute gradi- 145

ents by having the model perform the same kind of 146

classification task that humans performed during 147

reading. Thereby the token importance attributed 148

by both humans and the model refers to the impor- 149

tance within the constraint of a specific task, and 150

the model sees the input only once, and fully. 151

3 Method 152

Consider an input sentence, formalized as x = 153

⟨x1, . . . , xN ⟩ of N tokens, where xj is the jth to- 154

ken (word) in the sentence, and two corresponding 155

token importance vectors of the same length: the 156

human importance vector h = ⟨h1, . . . , hN ⟩ and 157

the model importance vector m = ⟨m1, . . . ,mN ⟩, 158

where hj and mj are the human and model impor- 159

tance attributed to token xj . We obtain the mean 160

Spearman correlation between model and human 161

importance by computing the by-token Spearman 162

correlations between the vectors m and h for all 163

sentences x, then dividing the sum of these correla- 164

tions by the number of sentences x. 165

Extracting model importance: gradient-based 166

saliency The model importance vector m con- 167

sists of gradient saliency values mj for each input 168

token xj of the sentence x. “Saliency” refers to 169

neural network interpretation methods that assign 170

an importance distribution over the input in order 171

to analyse a network’s prediction (Ding and Koehn, 172

2021). In other words, saliency methods aim at ex- 173

plaining how sensitive the decision of a model is to 174

changes in the input. The most common method of 175

assigning this importance distribution is by means 176

of the gradient (Simonyan et al., 2014). Given a 177

parametrized language model fθ, we compute the 178

gradient g with respect to an input token xj ∈ x as 179

g(xj) :=
∂f c

θ

∂xj
(x), (1) 180
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BERT base BERT large RoBERTa DistilBERT GPT-2 base GPT-2 large OPT
Sentiment Analysis (SA)

fine-tuned 0.610.010 0.570.011 0.470.012 0.530.011 0.490.011 0.550.010 0.430.012

pre-trained (0-shot) 0.550.011 0.590.010 0.450.012 0.520.012 0.40.014 0.480.012 0.420.013
random init. (0-shot) 0.240.013 0.220.013 0.040.014 0.210.013 0.20.014 0.190.014 0.150.015

Relation Extraction (RE)
fine-tuned 0.530.010 0.520.009 0.420.010 0.450.010 0.460.010 0.520.009 0.50.011
pre-trained (0-shot) 0.510.010 0.470.011 0.370.011 0.490.010 0.370.011 0.450.011 0.420.011
random init. (0-shot) 0.080.011 0.070.011 0.040.012 0.090.011 0.160.013 0.160.013 0.140.014

Table 1: We report mean Spearman correlations and standard errors between model and human importance for all
models in their fine-tuned, pre-trained (0-shot), and randomly initialized (0-shot) version, for both tasks SA and RE.
The difference in correlations is significant in all cases except for the ones indicated in italic.

where c indexes the true class y in the model’s out-181

put, and f c
θ refers to the predicted output logit for182

the true class y. We then follow Li et al. (2016) by183

defining the gradient saliency mj of token xj as the184

L1 norm of its gradient mj := |g(xj)|. Since dif-185

ferent LMs employ different tokenization methods186

which split tokens into sub-word tokens (Sennrich187

et al., 2016; Song et al., 2021), we pool gradients188

back to token level by summing up the sub-word189

token-level gradient norms. We then normalize the190

token-level saliencies by dividing them by the sum191

of all saliency values in the sentence.192

Extracting human importance: relative fixation193

duration To obtain the human importance vector194

h, we first extract raw total fixation durations tj,r195

for each token xj ∈ x, which is the sum of the196

durations of all fixations on that token by a reader197

r. However, due to variations in reading speed198

across readers and sentences, these raw durations199

can vary significantly between instances. We thus200

normalize them by dividing them by the sum of du-201

rations across all tokens within a sentence, resulting202

in relative fixation durations dj,r = tj,r/
∑

j tj,r203

for each token xj . These relative durations are204

then averaged across all readers to bypass individ-205

ual differences and to obtain a more robust signal,206

resulting in aggregated relative fixation durations207

hj =
∑

r dj,r/ |readers| for each token xj .208

4 Experiments1209

Datasets The eye-tracking part of the Zurich Cog-210

nitive Language Processing Corpus (ZuCo; Hol-211

lenstein et al., 2018) comprises two task-specific212

readings: in the sentiment analysis (SA) reading,213

participants were presented with a subset from the214

Stanford Sentiment Treebank (SST; Socher et al.,215

2013) that consists of movie reviews, based on216

which they had to rate the movies; in the relation217

1Our code is available at anonymous-link.

extraction (RE) reading, they performed relation ex- 218

traction on a subset of sentences from the Wikipedia 219

relation extraction corpus (Culotta et al., 2006). 220

Models and fine-tuning We include both en- 221

coder models and decoder models, as well as mod- 222

els from the same family but different in size. En- 223

coders include BERT (Devlin et al., 2019) base 224

and large, RoBERTa (Liu et al., 2019), and Dis- 225

tilBERT (Sanh et al., 2019); decoders include 226

GPT-2 (Radford et al., 2019) base and large, and 227

OPT (Zhang et al., 2022). As the models perform 228

classification — ternary for SA, and 9-class for RE 229

—, we utilize the architecture variants implemented 230

for sequence classification in Huggingface (Wolf 231

et al., 2019). For SA, we fine-tune the models on 232

the SST dataset and for RE on the Wikipedia dataset 233

(Culotta et al., 2006) , excluding the sentences used 234

for ZuCo SA and RE, respectively.2 235

Baselines. We include two sets of baseline mod- 236

els: the above-mentioned models randomly initial- 237

ized (random (0-shot)), and the models pre-trained 238

but not fine-tuned (pre-trained (0-shot)). 239

Results As depicted in Table 1, the more similar 240

the model’s training is to the human task, the more 241

aligned are the model and human importance vec- 242

tors. There exist medium to strong correlations be- 243

tween the fine-tuned model importance and human 244

importance vectors, exemplified by correlations of 245

0.61 by BERT base or 0.55 by GPT-2 large for SA. 246

Additionally, most fine-tuned models produce sig- 247

nificantly higher correlations than the pre-trained 248

baselines, and the pre-trained models all have sig- 249

nificantly higher correlations than their randomly 250

initialized counterparts. Encoder models, on av- 251

erage, achieve higher correlations than decoders, 252

despite variability within both types. Additionally, 253

SA task model importance correlates more strongly 254

on average than for RE. 255

2For training and implementation details as well as classi-
fication test results, see Appendix A.
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Figure 1: Mean Spearman correlations between relative fixation durations and gradient saliencies for fine-tuned
BERT base are depicted at the participant level, with error bars denoting the standard error. Participants are arranged
according to task accuracy, with their average task accuracies presented at the bottom of each bar.

5 Participant-level analysis256

To investigate whether the models correlate more257

with certain participants, we perform an additional258

participant-level analysis in which we compute cor-259

relations between the model-extracted saliency val-260

ues and relative fixation durations for each partici-261

pant individually. We also extract the participants’262

response accuracies for both their SA and RE, av-263

eraged over sentences. The underlying intuition is264

that the models possibly correlate more with partic-265

ipants that have a higher task accuracy.266

Results The juxtaposition of correlations on par-267

ticipant level and participants’ accuracies reveals268

no discernible pattern, as exemplified by BERT269

base in Figure 1. The correlation coefficients be-270

tween participants exhibit great variability in both271

tasks. Participants’ task accuracies are distributed272

across a wide range for SA but exhibit a ceiling273

effect for RE. Moreover, averaging the participant-274

level correlations yields lower correlation values275

than using the aggregate relative fixation durations,276

e.g., the group-level correlation with BERT base is277

0.61 and the average on participant-level is 0.41.3278

6 Discussion and Conclusion279

The experimental results find medium to strong280

correlations between model importance vectors,281

derived from gradient saliencies, and human im-282

portance vectors, indicated by relative fixation du-283

rations, particularly when language models (LMs)284

are fine-tuned for tasks mirroring those undertaken285

by readers: task-specific fine-tuned models demon-286

strate notably stronger correlations than pre-trained287

zero-shot baselines. The discrepancy between288

the pre-trained and randomly initialized models289

3An overview of all by-participant accuracies and correla-
tions, for all models can be found in Table 3 in Appendix B.

suggests an initial understanding for human im- 290

portance attribution acquired during pre-training. 291

These findings underline the importance of match- 292

ing tasks between models and humans for accu- 293

rate gaze analysis, with task-specificity influencing 294

reading behavior but remaining largely ignored in 295

NLP (Shubi and Berzak, 2023). We further find 296

that SA tasks show consistently higher correlations 297

than RE, possibly due to the complexity introduced 298

by more output classes affecting model predictions. 299

Moreover, initial observations suggest encoders 300

outperform decoders in correlation, potentially due 301

to decoders’ unsuitability for classification tasks. 302

Yet, this distinction may be incidental, influenced 303

by factors like pre-training data or model architec- 304

ture. Surprisingly, BERT base yields the highest 305

correlation, while BERT large and RoBERTa, who 306

achieve higher test accuracies than BERT, produce 307

lower correlations. This indicates that emulating 308

human importance attribution is neither a function 309

of model parameters nor does it necessarily imply 310

better model performance. The participant-level 311

analysis reveals no distinct pattern, indicating that 312

the models do not mirror the token importance attri- 313

bution of more proficient humans. Moreover, aver- 314

aging correlations across individual participants re- 315

sults in a lower correlation value compared to when 316

participant fixation durations are aggregated across 317

sentences. This implies both that by-participant ag- 318

gregation of relative fixation durations produces a 319

more robust signal, and that models correlate more 320

with average human language processing than with 321

subject-level idiosyncracies. 322

In conclusion, we have developed a gradient 323

saliency-based method to analyze LMs with hu- 324

man gaze that does not neglect task-specificity and 325

found that mirroring tasks yields higher correla- 326

tions. 327
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Limitations328

First of all, the number of sentences in the eye gaze329

dataset is quite low, as is the number of readers330

(which are all L1 English readers based in Zurich,331

and are not experts in sentiment analysis or relation332

extraction), which does not make for a representa-333

tive sample of the population at large.334

Relatedly, for a more extensive evaluation of our335

task-specific approach, one would have to apply336

it to the same sentences that contain eye move-337

ments from natural reading instead of task-specific338

reading. We leave it to future work to extend the339

data from ZuCo with eye movements from natural340

reading.341

Moreover, while the studies outlined in Section 2342

underline the superiority of gradient-based over343

attention-based methods, they might still not be the344

state-of-the-art for explainability methods and one345

might employ methods such as Integrated Gradi-346

ents or Layer-wise Relevance Propagation.347

Ethics Statement348

Working with human data requires careful ethical349

considerations. The eye-tracking dataset utilized in350

this study follows ethical standards and has been351

approved by the responsible ethics committees. It is352

licensed under the Creative Commons Attribution353

4.0 International Public License (CC BY 4.0).354
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A Fine-Tuning Details562

We fine-tune the models outlined in Section 3 on the SST (Socher et al., 2013) dataset for ternary sentiment563

classification, excluding the sentences used for ZuCo SA, and on the Wikipedia dataset (Culotta et al.,564

2006) for 9-class relation classification, excluding the sentences used for ZuCo RE. After excluding565

sentences from ZuCo SA and RE, we are left with 5211 sentences allocated for SA and 889 sentences566

allocated for RE. Subsequently, we implement an 80/20 split for training and validation. For testing, there567

are 400 sentences from ZuCo SA and 335 sentences from ZuCo RE 4. We train the models for 10 epochs,568

with an early stopping patience of 3 epochs, using the AdamW (Loshchilov and Hutter, 2019) optimizer, a569

learning rate of 2 ∗ 10−5, and a batch size of 16. All models are implemented in PyTorch (Paszke et al.,570

2019).571

BERT base BERT large RoBERTa DistilBERT GPT-2 base GPT-2 large OPT
SA 75.3 76.5 82.8 75.0 71.8 77.8 73.8
RE 57.9 61.2 57.9 60.9 53.1 56.1 55.2

Table 2: We report the accuracy of fine-tuning the models on the SST (Socher et al., 2013) for sentiment analysis
(SA) and on the Wikipedia dataset (Culotta et al., 2006) for relation extraction (RE). In both cases, the ZuCo SA and
RE sentences are excluded from the training data; the models are tested on the ZuCo sentences for SA and RE.

B Participant-Level Analysis572

(a) BERT large

(b) DistilBERT

(c) RoBERTa

4Out of the original 407 sentences in ZuCo RE, we retain only 335 sentences that contain a specific relation.
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(d) GPT-2 base

(e) GPT-2 large

(f) OPT

Figure 1: Spearman correlations between relative fixation durations and gradient saliencies for various models are
depicted at the participant level, including standard error. Participants are arranged according to task accuracy, with
their accuracy values presented at the bottom of each bar.

ZAB ZDM ZDN ZGW ZJM ZJN ZJS ZKB ZKH ZKW ZMG ZPH avg
Sentiment Analysis (SA)

Task acc 76.09 76.09 89.13 71.74 80.43 54.34 91.3 89.13 76.09 69.57 91.3 89.13 79.53
BERT base 0.47 0.36 0.28 0.39 0.40 0.36 0.39 0.42 0.51 0.49 0.43 0.40 0.41
BERT large 0.44 0.33 0.26 0.37 0.37 0.34 0.36 0.38 0.48 0.46 0.39 0.36 0.38
DistilBERT 0.40 0.32 0.25 0.36 0.35 0.30 0.34 0.36 0.44 0.41 0.38 0.35 0.35
RoBERTa 0.4 0.25 0.2 0.28 0.33 0.31 0.29 0.3 0.43 0.37 0.31 0.27 0.31
GPT-2 base 0.41 0.25 0.23 0.29 0.35 0.31 0.31 0.31 0.43 0.38 0.31 0.27 0.32
GPT-2 large 0.43 0.3 0.29 0.33 0.39 0.35 0.34 0.36 0.45 0.43 0.34 0.33 0.36
OPT 0.34 0.23 0.21 0.26 0.31 0.27 0.26 0.28 0.35 0.34 0.27 0.25 0.28

Relation Extraction (RE)
Task acc 90.42 96.81 92.87 92.14 79.12 96.56 93.86 95.33 93.12 94.84 95.82 97.05 93.16
BERT base 0.39 0.27 0.27 0.34 0.40 0.34 0.32 – 0.42 0.41 0.37 0.24 0.34
BERT large 0.37 0.27 0.26 0.33 0.41 0.34 0.31 – 0.43 0.42 0.36 0.22 0.34
DistilBERT 0.35 0.25 0.24 0.28 0.30 0.29 0.31 – 0.34 0.30 0.30 0.23 0.29
RoBERTa 0.33 0.21 0.19 0.25 0.34 0.31 0.26 – 0.38 0.31 0.27 0.16 0.27
GPT-2 base 0.36 0.21 0.23 0.30 0.34 0.33 0.25 – 0.37 0.35 0.29 0.20 0.29
GPT-2 large 0.41 0.24 0.27 0.34 0.39 0.35 0.29 – 0.4 0.4 0.34 0.24 0.33
OPT 0.4 0.24 0.29 0.33 0.35 0.34 0.31 – 0.38 0.36 0.31 0.25 0.32

Table 3: The participants’ task accuracy and their Spearman correlations with the LMs are reported. There is a lack
of correlations for one participant in the RE task because of a pre-processing issue with the eye-tracking data.
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