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Abstract

Test-Time Adaptation (TTA) methods improve the robustness of deep neural networks to
domain shift on various tasks such as image classification, key-point estimation, or segmen-
tation. However, the overwhelming majority of methods have been developed for image
classification and new image segmentation methods are each evaluated under very di�erent
conditions and compared to a limited set of baselines, making understanding their perfor-
mance di�cult. This work explores adapting segmentation models to a single unlabelled im-
age with no other data available at test-time. This allows for individual sample performance
analysis while excluding orthogonal factors such as weight restart strategies. A diverse set
of baselines, some modified from other domains or modalities, are first thoroughly validated
on synthetic domain shifts and then tested on real datasets. The analysis highlights that
simple optimization improvements such as proper choice of the loss function can greatly
improve the performance of standard baselines such as pseudolabelling and that di�erent
methods and hyper-parameters are optimal for di�erent kinds of domain shift, hindering the
TTA performance where no prior knowledge about the domain shift is assumed.

1 Introduction

A common challenge in machine learning stems from the disparity between source, i.e. training, and tar-
get, i.e. deployment, data domains. Models optimized to minimize an error on a dataset from a specific
domain are often expected to perform reliably in di�erent domains. The discrepancy between training and
deployment data, known as “domain shift”, is very common; in fact, few things do not change in time, and
training happens (well) before deployment. A domain shift may substantially degrade model performance
at deployment time despite proper validation on training data, yet it is often not explicitly addressed and
most machine learning e�ort has focused on the generalization problem.

In many practical scenarios, the characteristics of the target domain are not known beforehand, making the
preparation of the model with traditional domain adaptation Rodriguez & Mikolajczyk (2019); Tzeng et al.
(2017) techniques non trivial. Recent advances Wang et al. (2020b); Sun et al. (2020); Gandelsman et al.
(2022) in the field suggest that under certain weak assumptions about the domain shift - such as stable label
distribution across domains - it is possible to mitigate the performance degradation with methods based on
the premise that input data, received during inference, carry information about its distribution that can be
exploited for adaptation.

Test-Time Adaptation (TTA) is suitable for apriori unknown or di�cult to predict domain shifts. Char-
acterized as an unsupervised and source-free technique, TTA operates under the principle of adapting the
model directly at the time of inference. The source-free nature, i.e. without access to the original training
data, ensures compliance with data governance standards and enables adaptation in memory-constrained
environments.

Single Image Test-Time Adaptation (SITTA) tailors a segmentation model at test time to each individual
image. Since it operates on a single image, it does not introduce assumptions about the stability of data
distribution over time. Each time starting from the weights fixed at training time, SITTA is safe to use
when any form of memorization of the deployment data is prohibited. A major disadvantage is an increased
computational time and no possibility to reuse the acquired knowledge. On the other hand, it could be
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Figure 1: The proposed experimental framework for Single Image Test-Time Adaptation (SITTA). The
SITTA hyper-parameters are found on a synthetic dataset derived from the training set by applying a
diverse set of corruption of di�erent levels. The SITTA is then tested on real-world datasets with domain
shift.

leveraged to reduce the computational cost of adapting to a sequence of similar images by only adapting to
the most informative samples. Despite the advantages, only Khurana et al. (2021) primarily address SITTA.
The mainstream of TTA research has centered on continual test-time adaptation in a changing environment
Niu et al. (2023); Volpi et al. (2022); Wang et al. (2022). These methods typically gradually update the
model parameters or accumulate image statistics for subsequent adaptation to individual images. While
practical in many applications such as autonomous driving, it presents challenges for accurately assessing
the strengths and weaknesses of di�erent TTA strategies. This di�culty arises due to the evaluations being
conducted over long sequences of images of varying levels and kinds of domain shift. Moreover, the sequence
in which images are presented can significantly influence the overall performance metrics, adding a layer of
complexity to understanding the true e�cacy of these methods. acsitta not only streamlines the evaluation
process but can also enhance our understanding and e�ectiveness in broader TTA applications where the
focus is currently more on issues such as catastrophic forgetting, which are orthogonal to our work.

In this paper, we explore and improve the state of the art in Single Image Test-Time Adaptation (SITTA)
for image segmentation. We center on SITTA with self-supervised loss functions as these methods are
broadly applicable and easily adoptable across various segmentation models and domains, without being
constrained by specific architectural or training requirements. Among the methods we employ, the strongest
assumption is access to training data prior to deployment. Consequently, the many works relying on the
existence of batch-normalization layers are not included in this work as they are incompatible with the
modern transformer architectures which currently dominate the field. Likewise, methods such as image-
reconstruction based TTA Wang et al.; Gandelsman et al. (2022) are not included due to their significant
demands for training process modification and model architecture adjustments.

Five di�erent TTA methods are evaluated in the SITTA setting. Most are evaluated on SITTA for the
first time, some are introduced from other domains (medical) and some have never been evaluated on image
segmentation. The methods include two established baselines: Entropy minimization and pseudolabelling
(self-training). These are the only methods evaluated in the SITTA setup before. Other methods are a
recently proposed segmentation TTA method that utilizes augmentation consistency to identify confident
pseudolabel pixels and an additional method from image classification which robustifies the network to small
domain shifts (represented by adversarially-attacked images), expecting increased robustness to other domain
shifts as well. We also extend methods based on optimizing self-supervised loss functions with learned mask
discriminators or mask refinement modules originally developed for medical image segmentation Karani
et al. (2021); Valvano et al. (2021). While medical domain and its domain shifts of interest are di�erent,
these methods are general and easily applicable to non-medical images. They have not been applied to
the traditional image segmentation TTA. Diverse self-supervised loss functions for image segmentation
TTA generally remain underexplored. To date, the focus has predominantly been on prediction entropy
and reconstruction loss. Our work aims to bridge this gap by investigating and applying these advanced
segmentation-specific self-supervised techniques, originally conceived for medical imaging, to traditional
image segmentation tasks.

We modify the learning of mask-refinement module to generate enhanced pseudolabels at test-time. The
method is adapted to traditional images by accounting for more complex domain shifts. Novel adversarial
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training of the mask refinement module is introduced, replacing the originally proposed heuristic of swapping
image patches. Swapping patches may results in unrealistic images and therefore masks and requires finding
a suitable size of the patches and the ratio of swapped patches. Controlling the severity of mask corruption
is non-trivial. Motivated by the intuition that the first pixels to be inverted in an untargeted adversarial
attack are also those most likely to be impacted by domain shift, this work simulates domain shift impact on
masks by projected gradient descent adversarial attack on the input image. This results in realistic corrupted
masks in the first iterations of the attack. The adversarial optimization learning rate and the number of
iterations then control the severity of the domain shift.

We address the problem that arises from the practice in the current landscape of segmentation TTA that
the performance assessment is carried out with inconsistent adaptation settings. For instance, keeping batch
normalization statistics constant or updating them during entropy minimization can yield substantially
di�erent outcomes. If only one of the two options is tested Khurana et al. (2021); Volpi et al. (2022),
contradictory results are reported. Often, the evaluation compares only with the established baselines such
as entropy-minimization Wang et al. (2020a) and batch-normalization Io�e & Szegedy (2015a) statistics
adaptation Schneider et al. (2020); Nado et al. (2020), ignoring recent progress. Many methods that improve
over these baselines have been proposed in recent years for both segmentation and classification Nguyen
et al. (a); Gao et al. (2023); Niu et al. (2023); Chen et al. (2022), and their relative merit is unknown, since
a comprehensive comparison with a well-defined methodology is missing.

Our experimental framework, depicted in Figure 1, involves testing with two di�erent pretrained segmen-
tation models. The first model was trained on the GTA5 Richter et al. (2016) datasets and tested on the
Cityscapes Cordts et al. (2016) and ACDC Sakaridis et al. (2021) benchmarks. The other model is trained
on COCO Lin et al. (2014) and evaluated on VOC Everingham et al. (2010). To fine-tune hyper-parameters
and conduct a majority of our method performance analyses, we utilize an augmented version of the training
datasets. This extension incorporates synthetic corruptions, encompassing a broad spectrum of corruption
types and levels, inspired by Hendrycks & Dietterich (2019). The corruption types include di�erent kinds
of noise and blur, weather conditions such as fog or frost, as well as the jpeg compression and basic image
intensity transformations. The advantage over commonly used synthetic datasets such as Synthia Ros et al.
(2016) is that it can be derived from an arbitrary segmentation training dataset, providing precise control
over the conditions and facilitating detailed analysis. The main limitation of this methodology is the focus
on synthetic covariate shifts means that our evaluation does not encompass real-world domain shifts, which
can be more complex and less predictable than their synthetic counterparts.

The main contributions of this paper are:

1. We conduct a comparative analysis of five di�erent TTA techniques run in SITTA mode for im-
age segmentation including established baselines and recently proposed promising methods. This
work is the first to apply methods developed in the medical imaging domain to traditional image
segmentation, filling a gap in the exploration of diverse self-supervised loss functions.

2. A novel adversarial refinement module training for Mask Refinement (Ref)-based TTA.

3. Improvements of baselines in single-image setup by replacing Cross-Entropy (CE) loss with Inter-
section over Union (IoU) loss.

4. First work emphasizing SITTA for segmentation, an underexplroed setup important in applications
with strict data governance standards or high variability among individual images.

5. Analysis of SITTA performance emphasizing the unpredictability and variability of target data
domains compared to source domains.

2 Background

Common approaches to domain adaptation change the style of labelled source images to resemble the training
images Tzeng et al. (2017); Zhang et al. (2018) or train domain classifiers to guide the adaptation process. In
practice, this is not always feasible since source data may not be available for example for privacy or memory
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limitation reasons, or we may only have a small number of target domain images available when data arrive
individually/in small batches, rather than all at once. In continually evolving environments, the distribution
may change by the time adaptation on a large target dataset is completed. Various modifications of the
traditional domain adaptation scenario tackling the aforementioned limitations have recently emerged, for
example by considering no access to source data or a continual domain shift Liu et al. (2021a); Volpi et al.
(2022); Wang et al. (2022); Bartler et al. (2022).

In particular, test-time adaptation methods assume no source data is available and aim to exploit the infor-
mation from as little as a single target domain image. Like other domain adaptation methods, TTA methods
are often inspired by semi-supervised learning methods. For instance, the most common TTA baseline relies
on minimization of the predictions entropy, a method inspired by Saito et al. (2019). Other methods rely on
adapting the bacth-normalization statistics, inspired by methods like adaptive batch-normalization Li et al.
(2018), or aggregating statistics to create so-called prototypes Tanwisuth et al. (2021) that can be used to
build a classifier.

Some works also distinguish between TTA and Test-Time Training (TTT). The di�erence between TTA
and TTT is that TTA methods such as Nguyen et al. (b); Karani et al. (2021) can be applied to arbitrary
pre-trained models without any additional constraints while TTT methods like Gandelsman et al. (2022);
Bartler et al. (2022); Liu et al. (2021b) require modifications to the training process. However, not all works
make this distinction and the boundary is not always clear, as some methods like Karani et al. (2021) require
to train an auxiliary deep net on the source data but do not modify the model pretrained weights. In this
work, both will be jointly referred to as TTA for simplicity.

In Appendix A, other related domain adaptation scenarios and their relation to TTA are described.

Generally, TTA methods can be split into three groups: Adaptation in the input space, feature space and
output space. Input space adaptation aims to translate the images from the source domain to the input
domain. In practice, Gao et al. (2023) achieve this by feeding target images with added noise to a di�usion
model trained on the source data, coupled with reconstruction guidance to preserve semantics. The model
doesn’t retain any knowledge from the adaptation, which can be both advantage as it is not susceptible to
catastrophic forgetting, but it may limit the adaptation capabilities. Adaptation in the feature space is
the most common approach and typically relies on optimizing the network parameters via a self-supervised
loss function. This can be done directly, i.e. through prediction entropy minimization, or by training an
auxiliary task such as image reconstruction. Another set of feature-adaptation approaches are parameter-
free and rely on accumulating the image statistics, such as the mean and variance of image features, or by
aggregating confident prediction features into so-called prototypes, which are then used for classification.
Output space adaptation techniques aim to improve the network output without neither altering the
network parameters and statistics nor the input image. This is done for instance in Karani et al. (2021)
where an auxiliary network is trained to predict a refined mask. To the best of our knowledge, output
space adaptation methods are typically only used to provide pseudo-masks, turning them into feature-space
adaptation methods. This helps to iteratively improve the pseudo-masks and adapt to larger domain shifts.
All the methods evaluated in this work can be considered as feature space adaptation methods, possibly via
output space adaptation.

3 Related Work

Test-Time Adaptation methods for classification. Many recent methods propose improved strategies
to update the batch normalization statistics Schneider et al. (2020); Nado et al. (2020). A limitation of these
methods is the reliance on presence of batch nromalization, which is often not part of recent transformer-based
architectures. In Wang et al. (2020b), the learnable parameters of the normalization layers are also updated
via entropy minimization. While this method is often reported as unstable since single-image statistics may
not be su�cient, the method can also only update the normalization layers learnable parameters, without
the statistics update, making it generalizable to all currently used architectures.

On classification tasks, many methods outperforming the aforementioned baselines have been proposed. A
combination of self-supervised contrastive learning to refine the features and online label refinement with a
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memory bank is proposed in Chen et al. (2022). Recently, a method based on updating the parameters of
the normalization layers of the network by optimizing it for robustness against adversarial perturbation as a
representative of domain shift was proposed in Nguyen et al. (b), outperforming similar test-time adaptation
approaches. Rotation prediction is proposed in Sun et al. (2020) as self-supervised task to be learnt alongside
the main one and then optimized at inference time. Lately, it was shown that reconstruction with masked
auto-encoders is a very strong self-supervised task for test-time adaptation of classifiers by Gandelsman et al.
(2022).

Test-Time Adaptation methods for segmentation. To the best of our knowledge, the only work also
focused on adaptation to a single isolated image Khurana et al. (2021) is based on computing the statistics
from augmented version of the input image, assuming batch-normalization layers are present in the network.
Both Prabhu et al. (2021) and Wang et al. (2022) exploit augmented views of the input images to identify
reliable predictions. The method of Prabhu et al. (2021) is based on the consistency of predictions between
augmented views, which replaces prediction confidence for selecting reliable pixels. Cross entropy loss is
then minimized on such reliable predictions, together with a regularization based on information entropy Li
et al. (2020) to prevent trivial solutions. The method achieves impressive results, however, in contrast to
our experiments, knowledge of the target domain shift is used for hyper-parameter tuning. The evaluation
assumed a full test set available at once, focusing on source-free domain adaptation, rather than TTA,
but the method is applicable to the TTA setup as well. In Volpi et al. (2022), the performance of entropy
minimization in a continual setup is explored, proposing parameter restart to tackle weight drift, significantly
improving performance. The focus is on driving datasets only. Similarly, Wang et al. (2022) also focus on
continual adaptation. Again, augmentations of the images are generated to obtain more reliable predictions.
Further, the network parameters are stochastically reset to their initial values to prevent forgetting of the
source domain knowledge.

Test-Time Adaptation methods for medical imaging. In Karani et al. (2021), an autoencoder is
proposed that translates predicted masks into refined mask. At test time, the segmenter is optimized to
produce masks closer to the enhanced ones. However, this work assumes the whole test dataset is available
at once, in contrast to our single-image setup. The work of Valvano et al. (2021) is similar to Karani et al.
(2021) but instead of a masked-autoencoder, a GAN-like discriminator trained end-to-end together with the
segmenter is used, as well as an auxiliary reconstruction loss.

These works assume domain shifts specific to the medical imaging domain such as the use of a di�erent
scanner and thus make the assumption that only low-level features are a�ected. Under this assumption,
these works typically optimize a small adapter only, ie. the first few convolutional layers of the segmenter.
Nonetheless, these methods are generalizable to image segmentation.

Enhancing existing TTA benchmarks. There are multiple concurrent works that identify similar issues
and reporting results consistent with our experiments, mostly for image classification. The work of Yu et al.
(2023) also highlights the issue of evaluating each method under very di�erent conditions and provides a
benchmark for image classification TTA encompassing di�erent adaptation scenarions, as well as diverse
backbones and domain shift datasets. Similarly to ours, a significant disparity between synthetic corruptions
performance and natural shifts is observed. However, the hyper-parameters were selected based on a single
kind of domain shift, which may bias the results. Another work adressing the issue of fair comparison of TTA
methods is that of Mounsaveng et al. (2024) which provides an analysis of existing orthogonal classification
TTA methods. Class rebalancing is one of the tricks proposed to improve the methods’ performance. Also,
sample filtration to remove noisy high-entropy images is employed. In contrast, we analyze performance of
di�erent methods based on prediction entropy, showcasing some methods can actually be highly e�ective on
those noisy, high-entropy samples. Similarly to ours, the work shows that baselines can be greatly improved
by very simple tricks. In Niu et al. (2023), label imbalance at test-time is again identified as an important
factor harming the TTA performance. Again, the works focus is on image classification and epxlores di�erent
normalization layer kinds and stabilization techniques of entropy minimization while we focus on comparions
of cross-entropy and a class-imbalance aware segmentation loss function, the IoU. Finally, Yi et al. (2023)
study TTA for image segmentations and how well classification methods transfer to semantic segmentation
TTA. They conclude that many of the classification TTA improvements do not transfer to segmentation
and again highlight the class imbalance, which is typically greater for segmentation datasets.
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4 Methods

In total, six di�erent methods are implemented and evaluated, including both traditional TTA baselines and
methods form other tasks or modalities. All of the methods consist in optimizing a self-supervised loss, the
specifics of the loss being what di�erentiates the methods. It can be formalized as follows:

◊i+1 = arg min
◊i

L(f◊i
S , x)

where ◊i are the parameters of the segmentation network f◊i
S at the i-th iteration and L is the self-supervised

loss function.

The methods considered are:

• Entropy-Minimization (Ent), a method proposed by Wang et al. (2020b) inspired by semi-
supervised learning where the self-sueprvised objective is the prediction entropy. It has been used
as a baseline by the majority of the TTA work. In most work, only normalization layer parameters
are updated to improve time e�ciency. Whether batch-normalization statistics are updated as well
varies.

• Pseudo-Labelling (PL), also commonly referred to as self-training. The model is finetuned with
pseudo-labels obtained from the pretrained segmentation model. There are many improvements and
modifications, the standard approach is to threshold the predicted probabilities and only train the
model on the most confident predictions.

• Mask Refinement (Ref) can be considered an enhanced pseudolabelling method where the pseudo-
labels are obtained by a learnt refinement module that takes logit masks as inputs and outputs a
refined segmentation mask. The idea has already been implemented in medical imaging Karani et al.
(2021) but never tested on non-medical tasks.

• Deep-Intersection-over-Union (dIoU) is similar to Ref. However, a single-scalar quality esti-
mate is predicted by a learnt module and minimized at test-time. It is similar to using a GAN-like
discriminator.

• Augmentation-Consistency (AugCo), proposed by Prabhu et al. (2021), is a method based on
self-training enhanced by also optimizing for consistency between the original prediction and the
prediction on augmented views, adapted to the single isolated image scenario.

• Adversarial-Attack (Adv) is the method proposed by Nguyen et al. (b) for image classification
TTA, adapted to the single, isolated image segmentation.

Only the necessary modifications to make the methods applicable to the single, isolated image segmentation
setup with no assumptions of specific network architecture were applied to the existing methods.

The only substantially di�erent method from previous work is the learnt mask-refinement module, which
will be described in the rest of this section. A description of other methods, as well as the details of their
modifications in this work, is in Appendix B.

The rest of this section describes the TTA with mask refinement in more detail, including novel adversarial
training of the refinement module proposed in this work.

TTA with mask refinement is based on the idea that since the output space changes much less than
the input space, a mask translation module can be learnt to refine mask predictions on images from target
distribution to resemble the masks obtained from source images. This is similar to domain adaptation
methods based on learning a discriminator between source and target domain, with two key di�erences:
Instead of a binary discriminator, a mask refinement module is learnt, so the output is not a scalar but
a new segmentation mask. Also, the target domain is not known in advance and cannot be used to train
the refinement network. At test time, the refinement network can be viewed as an enhanced pseudo-label
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Figure 2: Mask refiner training (left) and Mask Refinement (Ref) TTA inference (right). During training,
the segmenter outputs masks from a training image and a corrupted image simulating domain shift. The
mask refiner is then trained to predict the clean image mask given the corrupted image mask as input only
- no gradients flow to the segmenter. At inference time, the segmenter output is fed into the refiner model.
The refiner model is then used as an enhanced pseudo-label to finetune the segmenter. A single gradient
update is performed in each TTA iteration, then the masks are updated, since the segmenter output may
have changed with the new weights, which in turn results in a new, possibly better, pseudo-label from the
refiner. Visualized on single class prediction.

generation method. These pseudo-labels can then be used both as supervision for the segmenter, or directly
replace the segmentation output without any parameter optimization. However, the second option is unlikely
to tackle highly distorted masks since the refined mask cannot improve gradually.

To train the refinement network f„
R with learnable parameters „, images from the source distribution and the

pretrained segmentation network f◊
S are required. Given an image x and xÕ generated from x by synthesizing a

covariate domain shift (not changing the label), let us denote as s = f◊
S (x) and sÕ = f◊

S (xÕ) the corresponding
segmentation masks. Then, fR is trained to predict s, given sÕ as input:

arg min
„

LCE(f„
R(sÕ), s) (1)

Predicted masks s can also be replaced with ground truth g at training time:

arg min
„

LCE(f„
R(sÕ), g) (2)

where LCE is the cross-entropy loss.

At test-time, adapting to an image x, the model parameters are updated to minimize the IoU loss between
mask prediction and a refined mask estimated by fR:

◊i+1 = arg min
◊i

LIoU(fR(f◊i

S (x)), f◊i
S (x)) (3)

where ◊i are the learnable parameters of f◊
S at optimization iteration i and fS denotes no gradient flow

throughout the computations of fS.

An overview of the training pipeline, as well as the TTA with mask-refinement, is in Figure 2.

Refinement module training requires generating masks resembling those that the model would output
under domain shift. Since TTA assumes the domain shift is not known in advance, the goal is to generate
a diverse set of domain shifts well representing realistic masks under domain shift. The advantage of the
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refinement module is that only the output space corrupted masks are needed, it doesn’t matter how these
were obtained since the refinement module is independent of the input images. In Karani et al. (2021), the
corrutped masks are obtained through swapping input image patches, a heuristic method with many hyper-
parameters that could lead to unrealistic artifacts in the masks. This work simulates the mask corruptions
by using mask predictions on the images from the first few iterations of a Projected Gradient Descent (PGD)
Madry et al. (2017); Kurakin et al. (2018) adversarial attack, using the inverted mask as target. The more
iterations of the attack, the higher the mask corruption, but the less realistic it becomes. Examples of
generated corrupted masks are shown in Appendix C. The intuition behind this adversarial approach is that
in the first iterations, the most challenging pixels for the network are converted. Similarly, those image areas
could be easily impacted by domain shift.

5 Experiments

The structure of this section is as follows:

1. Evaluation metrics: Given the focus of this study on SITTA and per-image performance analysis,
we underscore the need for an image-level evaluation metric. The widely used mean Intersection
over Union (mIoU) metric is typically applied at the dataset level and its adaptation for image-level
assessment is not standardized.

2. Experimental Setup: Experiment settings shared across experiments such as network architec-
tures or hyper-parameters. Creation of the synthetic SITTA training set derived from the segmen-
tation training dataset is also explained.

3. Experimental Results and Analysis: Experiment results and analysis. The TTA methods are
evaluated on two semantic segmentation models pretrained on the GTA5 Richter et al. (2016) and
COCO Lin et al. (2014) datasets.

5.1 Evaluation metrics

The standard semantic segmentation evaluation metric is the mIoU, where the IoU score of each class is
computed from predictions aggregated over the whole dataset

mIoU = 1
C

Cÿ

c=1
IoUc(mc, gc) (4)

where mc, gc are the predictions and ground truth values for class c for all pixels across all images. Con-
catenating all the masks into a single one and then computing the metric would not change the results, each
pixel has the same weight. This metric does not consider the size of objects or the di�culty of individual
images. Per-image results cannot be compared, since not all classes are typically present in an image.

Two additional metrics are introduced to account for the limitations of the standard mIoU and make the
evaluation more fine-grained. The first metric is designed to consider class imbalance and di�culty of
individual images, focusing on per-class performance. It will be referred to as mIoUc and is defined as

mIoUc = 1
C

Cÿ

c=1

1
|Ic|

ÿ

iœIc

IoU(mic, gic) (5)

where Ic is the set of images in which either the prediction or the ground truth mask contains class c and
|Ic| is the total number of pixels.

The second metric is focused more on per-image performance and can be computed for a single image. It
will be referred to as mIoUi and is defined as
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mIoUi = 1
|I|

ÿ

iœI

1
|Ci|

ÿ

iœCi

IoU(mic, gic) (6)

where Ci is the set of classes in the predicted masks and the ground truth. This is the metric reported in our
experiments, unless stated otherwise. It allows for per-image performance comparison with the disadvantage
of not accounting for class imbalance - less frequent classes (on the image-level) get smaller weight .

Similar metrics were recently considered by other works Volpi et al. (2022), typically only aggregating
over images where the given class appears in the ground truth (as opposed to either ground truth or the
prediction). This has the advantage that mistakes are only accounted for once, making the metric more
optimistic than ours. On the other hand, information about the errors is lost, since the error is only
computed for the ground truth class independently of what the incorrectly predicted class is.

5.2 Experiment setting

SITTA training set. The SITTA training set for each model is derived from a set of 40 images from
the segmentation model’s training dataset extended with a set of 9 synthetic corruptions at three severity
levels from Hendrycks & Dietterich (2019) such as blur, noise or fog, simulating di�erent domain shifts. The
original images are also included, since the TTA methods should not harm the model on source domain
images. Details about the corruptions can be found in Appendix D. These synthetic datasets based on the
GTA5 and COCO datasets are referred to as GTA5-C and COCO-C, respectively. Since the original images
without any corruption are also included, each SITTA training dataset consists of 1200 images in total (40
images, 9 + 1 corruptions, 3 corruption levels).

TTA hyper-parameters. For each TTA method, optimizing either all the network parameters or normal-
ization parameters only is considered, resulting in at least two di�erent setups for each method. Further,
when applicable (the methods compute a segmentation loss based on masks, as opposed to another self-
supervised loss such as the prediction entropy), the cross-entropy and IoU losses are compared. This results
in four setups for the Ref, PL and AugCo methods. From learning hyper-parameters, the learning rate
and number of TTA iterations are considered. The maximum possible number of iterations is 10 to limit
the computational requirements. Reasonable learning rate values are first found via a grid search and then
extended with other promising values based on the initial results.

Shared implementation details. The refinement network architecture is a U-Net Ronneberger et al.
(2015) with an E�centNet-B0 Tan & Le (2019) backbone pre-trained on ImageNet from the Timm library
Wightman (2019). It is trained with the AdamW Loshchilov & Hutter (2017) optimizer with a learning rate
of 1e≠3 and the Cross-Entropy (CE) loss. The SGD optimizer is used for the TTA since early experiments
with AdamW showed high divergence rate.

Ent PL Ref AugCo Adv dIoU

params full norm full full norm norm full full norm norm full full norm norm full norm full norm

loss ent ent ce iou ce iou ce iou ce iou ce iou ce iou kl kl - -

NA 35.18 35.18 35.18 35.18 35.18 35.18 35.18 35.18 35.18 35.18 35.18 35.18 35.18 35.18 35.20 35.20 35.18 35.18

TTA–ú 35.18 35.58 35.54 37.21 35.60 37.09 35.18 38.69 36.88 36.50 35.27 35.66 35.35 35.39 35.20 35.20 35.18 35.18

�ABS ≠‘ 0.39 0.36 2.03 0.42 1.90 ≠‘ 3.51 1.70 1.32 0.09 0.48 0.17 0.21 ≠‘ ≠‘ ≠‘ ≠‘

Table 1: mIoUi results aggregated across corruptions and levels in the GTA5-C dataset, compared to non-
adapted (NA) performance. The TTA hyper-parameters –ú were selected for overall best performance of
each method. The overall and per-method best results are highlighted. No positive hyper-parameters are
denoted by ≠‘ (the performance converges to 0 from below).
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Figure 3: GTA5-C mIoUi error reduction (%) depending on corruption levels. TTA with overall optimal
hyper-parameters for GTA5-C.

(a) mIoUi NA (b) entropy NA

Figure 4: The relationship between per-image scores (a) or entropy (b) before and the score after adaptation
on the GTA5-C dataset. The di�erence between non-adapted (NA) mIoUi or entropy and the mIoUi after
TTA is shown (mIoUi�). A least-squares line fitted to the points is shown in yellow.

5.3 Experiment results

GTA5 æ Cityscapes, ACDC. This experiments explores the performance of the TTA methods on a
model trained on a synthetic driving dataset, GTA5, evaluated on real-world driving dataset in clean weather
conditions, as well as under adverse weather conditions. The GTA5-pretrained model is the best-performing
model of Volpi et al. (2022) (DeepLabV2).

Since current methods do not consider di�erent hyper-parameters for individual images, a single set of
hyper-parameters with overall best performance across all corruptions and corruption levels is selected.
The aggregated results with these overall optimal hyper-parameters on the SITTA training set can be
found in Table 1. It can be observed that large improvements are achieved either by PL with IoU loss,
optimizing normalization parameters only, or by Ref with IoU loss, optimizing all the parameters. The
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Figure 5: GTA5-C error reduction di�erence (%) between overall optimal hyperparameters and hyper-
parameters selected for each corruption kind separately. The hyper-parameters were selected on GTA5-C.

best-performing method is Ref, improving by 3.51 % over the non-adapted baseline (NA), reducing the total
segmentation error by 5.41 %. Other methods only marginally improve over NA or show no improvement at
all. Optimizing CE generally yields worse results than optimizing the IoU. While updating normalization
parameters may only stabilize Ent, optimizing all the parameters for optimal performance of Ref is important.
For other methods, the di�erence is small, yet optimizing normalization parameters only is faster and thus
recommended.

In Figure 3, the total error reduction results with the same set of overall optimal hyper-parameters for each
method are shown but for each corruption level and kind separately. It can be seen that it is not possible
to find a single set of hyper-parameters that would perform well across all the corruption levels with these
methods. While all methods improve performance on level 1 corruptions, from level 3, negative results can
be observed for some of the corruptions, and all methods yield negative results on level 5. Ref outperforms
the other methods on the majority of corruption kinds and corruption levels. The aggregated results across
all corruptions showed that the negative results for level 5 and mixed results for level 3 are mostly outweighed
by the gains on level 1, resulting in overall positive results.

In figure 5, it is shown that if one could select optimal hyper-parameters for each corruption kind and level,
results would improve substantially. Moreover, Ref significantly outperforms the other methods on most
corruptions, the blur corruption kinds being a notable exception. Significant improvements can be observed
compared to other methods, especially on di�erent kinds of noise and jpeg corruption at level 5. This analysis
suggests that unless it is known in advance what kind of corruption or corruption levels will be present after
deployment, strategies on method and hyper-parameter selection for each image should be considered.

Only the methods with overall positive TTA results are used for further analysis, namely Ref, PL, AugCo
and Ent. The relationship between the non-adapted (NA) performance and the performance improvement
on individual images for di�erent methods is visualized in Subfigure 4a. The analysis shows Ref outperforms
other methods, especially on images that had low initial mIoUi, while the performance of PL is more consis-
tent across all initial scores but not as powerful for initial low scores. While Ent makes performance worse
for low initial scores and improves more as the initial score increases, AugCo shows consistent improvements
across all initial scores similarly to PL but to a smaller extent.

If the mIoUi for each image were known, it could be used to either select a method performing best on those
values or to select hyper-parameters. In Subfigure 4b, an analogous analysis is performed, replacing the
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(a) GTA5 model (b) COCO model

Figure 6: TTA mIoUi error reduction (%) the driving test datasets with hyper-parameters selected on GTA5-
C (left) and the VOC test dataset with hyper-parameters selected on COCO-C (right).

mIoUi with segmentation prediction entropy. Similar results as with the mIoUi can be observed, showing
that the segmentation prediction entropy is a good proxy for initial segmentation mIoUi.

After selecting the best hyper-parameters for each method on the SITTA training set, the methods are
evaluated on 5 test datasets: ACDC-Rain, ACDC-Fog, ACDC-Night, ACDC-Snow and Cityscapes. The
Cityscapes represents a domain shift from synthetic to real images while ACDC datasets add adverse weather
conditions, making the domain hsift even greater. The first four datasets are created by splitting the ACDC
dataset by di�erent conditions. Each of the test sets consists of 500 images. The test results are reported in
Figure 6a. Similarly to SITTA training datasets, the Ref and PL methods perform best across all datasets.
While not outperforming Ref on all the datasets, the performance of PL is consistently better than the other
methods while Ref is outperformed or matched by the other methods on Cityscapes and ACDC-night.

The inconsistencies of results between SITTA training and test suggest that unless the domain shift conditions
are known in advance, it is di�cult to select hyper-parameters based on a general SITTA training set.

COCO æ VOC. In this experiment, the performance of TTA methods is studied on a model trained on
the COCO dataset and evaluated on the VOC dataset. The segmentation model is an o�cial Torchvision
DeepLabV3 model with a Resnet50 backbone trained on the COCO dataset with a subset of 20 VOC classes.
In contrast to previous experiments, it is a real-to-real dataset domain shift. The results of di�erent methods
with parameters selected for the overall best performance across all corruptions and levels can be found in
Table 2. Major improvements are obtained by the PL and Ref methods. PL outperforms Ref, in contrast
to GTA5-C experiments. The best improvement is by 3.28 %, reducing the total segmentation error by 7.3
%. Again, best results for each method are always achieved by the IoU loss, outperforming CE in all cases.
In contrast to GTA5-C, Ent achieves better results when optimizing all the network parameters. The same
holds for PL. For Ref, optimizing all the parameters is again important. For other methods improvements
over the non-adapted baseline are marginal.

Ent PL Ref AugCo Adv dIoU

params full norm full full norm norm full full norm norm full full norm norm full norm full norm

loss ent ent ce iou ce iou ce iou ce iou ce iou ce iou kl kl - -

NA 55.01 55.01 55.01 55.01 55.01 55.01 55.01 55.01 55.01 55.01 55.01 55.01 55.01 55.01 55.16 55.16 55.01 55.01

TTA◊ú 56.97 56.75 57.17 57.99 57.10 58.30 56.24 57.31 56.56 57.16 55.40 55.59 55.30 56.30 55.16 55.16 55.61 55.74

�ABS 1.96 1.74 2.16 2.98 2.09 3.28 1.23 2.30 1.55 2.15 0.39 0.58 0.29 1.29 ≠‘ ≠‘ 0.60 0.73

Table 2: mIoUi results aggregated across corruptions and levels in the COCO-C dataset, compared to non-
adapted (NA) performance. The TTA hyper-parameters –ú were selected for overall best performance of
each method. The overall and per-method best results are highlighted. No positive hyper-parameters are
denoted by ≠‘ (the performance converges to 0 from below).

The total error reduction results with a single set of optimal hyper-parameters for each method are reported
for each corruption level and kind in Figure 7. The results slightly di�er from those for the GTA5-C, as
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Figure 7: COCO-C mIoUi error reduction (%) depending on corruption levels. TTA with overall optimal
hyper-parameters for COCO-C.

(a) mIoUi NA (b) entropy NA

Figure 8: The relationship between per-image scores (a) or entropy (b) before and the score after adaptation
on the COCO-C dataset. The di�erence between non-adapted (NA) mIoUi or entropy and the mIoUi after
TTA is shown (mIoUi�). A least-squares line fitted to the points is shown in yellow.

in this case, PL outperforms Ref. Both methods are again consistently better than the other methods, but
positive results are reported for most corruptions on both level 1 and level 3.

In Figure 9, the results with optimal hyper-parameters for each method, corruption kind, and level are shown.
This time, the results between di�erent methods are much smaller. The PL consistently outperforms all other
methods at all the corruption levels. Interestingly, the dIoU methods shows much stronger performance than
in the GTA5-C experiments.

Figure 10b shows a comparison of the overall method performance on the SITTA training set. An oracle
option is included where the method with best results is picked on per-image basis. There is a significant gap
between the oracle and other methods, which further highlights that di�erent methods are good in di�erent
cases and understanding the strengths of each methods can lead to greatly improved performance.
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Figure 9: COCO-C error reduction di�erence (%) between overall optimal hyperparameters and hyper-
parameters selected for each corruption kind separately. The hyper-parameters were selected on the COCO-
C.

(a) Comparison of the overall performance of di�erent

methods on the GTA5-C validation set.

(b) Comparison of the overall performance of di�erent

methods on the COCO-C validation set.

Figure 10: The di�erence between non-adapted (NA) mIoUi .

Again, only Ref, PL, AugCo and Ent are used for further analysis. The relationship between the non-adapted
(NA) performance and the performance improvement on individual images for di�erent methods is visualized
in Subgigure 8a. The distribution of initial non-adapted mIoUi is di�erent. The initial model is stronger
than the GTA5 model. All methods show similar behavior - more improvement is achieved on images with
a lower initial score, Ref and PL significantly outperform the other methods and again, Ref show better
performance on images with low initial scores compared to other methods.

The relationship of segmentation prediction entropy and mIoUi improvement by adaptation is shown in
Subfigure 8b, supporting the notion that the entropy of prediction before adaptation is a good proxy for
mIoUi.

The results on the VOC test set are shown in Figure 6b. PL slightly outperforms the other methods, but all
the methods improved over the non-adapted baseline.

Additional results can be found in Appendix E.
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6 Conclusions and limitations

This work investigates the performance of Single Image Test-Time Adaptation (SITTA) on segmentation
problems. The first part explores the e�ect of previously neglected design choices. The results on a synthetic
validation set reveal that while SITTA in the standard setting with CE loss does not improve performance
much, substituting the CE with IoU improves performance substantially. The experiments on whether to
update all or normalization parameters only are inconclusive; the results depends on the settings. Further,
we find that entropy minimization, often reported as unstable for small batch sizes, performs well when the
batch-normalization mean and variance are not updated at test-time.

Experiments were carried out on the GTA5 and COCO-pretrained models. In the GTA5-C synthetic datasets
experiments, the refinement SITTA dominates, followed by pseudo-labelling. While the refinement is signif-
icantly better on some of the real-world test datasets, on other ones, pseudo-labelling performs best. In the
COCO-C experiments, the top performers swap places: Pseudo-labelling is followed by refinement. On the
test dataset, pseudo-labelling remains the best.

There are many common patterns in the GTA5 and COCO model experiments, but the TTA performance
still depends on the model and the dataset. There is not a single method performing best in all cases.
This motivated the oracle experiments which show that the results would improve substantially if the best
method was chosen for each image. Evaluation with overall-optimal parameters and parameters found for
each synthetic domain shift separately shows di�erent kind of images benefit from di�erent hyper-parameters.
This diversity in performance underscores the necessity of a context-aware selection of adaptation techniques
and hyper-parameters, based on the specific characteristics of the deployment domain.

We evaluate how performance depends on the di�culty of the segmentation task. First, we show that
refinement performs well on images with low initial segmentation score in the GTA5 experiments. Next, we
show that the initial score can be replaced by the prediction entropy which does not require labels. In the
COCO experiments, the results are inconclusive, methods generally improve more on high-entropy images.

Limitations. First of all, to limit the scope of the study, we only focused on adaptation with self-supervised
loss functions and no reliance on batch-normalization layers. While these methods tend to perform the best,
their iterative optimization comes at an increased computational time. Methods alleviating this burden
should be explored, such as only adapting to informative samples or methods inspired by e�cient model
finetuning. Secondly, the synthetic validation set created by applying artificial corruption to the training
set images can only emulate covariate shift. The presence of label shift may contribute to some of the
discrepancies between the validation and test results. Finally, only two models were considered and the
e�ect of di�erent model architectures on the individual methods is not known. While our work improves
the understanding of TTA for semantic segmentation methods better, a benchmark for fair and thorough
evaluation of the methods is still missing.

Broader Impact Statement

Maybe we could discuss a bit the ’Test-Time Poisoning Attacks Against Test-Time Adaptation Models’ work
and similar.
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