
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SCALING 3D COMPOSITIONAL MODELS FOR ROBUST
CLASSIFICATION AND POSE ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning algorithms for object classification and 3D object pose estimation
lack robustness to out-of-distribution factors such as synthetic stimuli, changes
in weather conditions, and partial occlusion. Human vision, however, is typically
much more robust to all these factors. This is arguably because human vision
exploits 3D object representations which are invariant to most of these factors.
Recently a class of 3D compositional models have been developed where objects
are represented in terms of 3D meshes, with typically 1000 vertices associated
with learnt vertex features. These models have shown robustness in small-scale
settings, involving 10 or 12 objects, but it is unclear that they can be scaled up to
100s of object classes. The main problem is that their training involves supervised
contrastive learning on the mesh vertices representing the objects and requires
each vertex to be contrasted with all other vertices, which scales quadratically
with the vertex number. A newly available dataset with 3D annotations for 188
object classes allows us to address this scaling challenge. We present a strategy
which exploits the compositionality of the objects, i.e. the independence of the
feature vectors of the vertices, which greatly reduces the training time while also
improving the performance of the algorithms. We first refactor the per-vertex
contrastive learning into contrasting within class and between classes. Then we
propose a process that dynamically decouples the contrast between classes which
are rarely confused, and enhances the contrast between the vertices of classes that
are most confused. Our large-scale 3D compositional model not only achieves state-
of-the-art performance on object classification and 3D pose estimation in a unified
manner surpassing ViT and ResNet, but is also more robust to out-of-distribution
testing including occlusion, weather conditions, and synthetic data. This paves
the way for scalable 3D object understanding and opens exciting possibilities for
applications in robotics, autonomous systems, and augmented reality.

1 INTRODUCTION

Recent progress in deep learning has yielded impressive results in different machine visual recognition
tasks, such as object classification, detection, and pose estimation LeCun et al. (2015), with the help
of large-scale training images and annotations. Cognitive scientists, however, suggest that human
vision is more sophisticated and when classifying objects also recognizes their 3D structure including
their shape and pose in a unified way using compositional representations Biederman (1987); Leek
et al. (2005); Biederman (2000). We conjecture that endowing computer vision models with 3D
representations will improve their performance, particularly in challenging out-of-distribution (OOD)
scenarios, including domain shifts due to changes in weather, occlusions, and unfamiliar viewpoints,
for which humans show big robustness Zhu et al. (2019), but where standard deep network models
struggle Goodfellow et al. (2016); Koporec & Perš (2019); Zhu et al. (2019). The key insight is that
the 3D structure of objects rarely varies in most OOD settings while deep network features are much
more variable.

One promising avenue involves 3D Compositional Neural Networks (3D-CompNets) Wang et al.
(2024; 2021); Ma et al. (2022); Jesslen et al. (2024); Kaushik et al. (2024b). These models are
compositional in the sense that they represent objects by 3D meshes of vertices which are associated
to learned vertex features which are independent both during learning and inference. The feature
vectors are computed by a DNN feature extractor, CNN or Transformer, which is trained to encourage
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them to be invariant to object viewpoint and instance. Using these compositional models, researchers
demonstrated superior performance in generalizing to OOD scenarios for tasks such as image
classificationJesslen et al. (2024), 3D pose estimation Wang et al. (2024); Kaushik et al. (2024b) and
6d pose estimation Ma et al. (2022). We note that the ability of these models to estimate object 3D
pose, as well as independently, makes them suitable for a range of tasks such as robotic manipulation
Jesslen et al. (2024)

However, to date, these neural mesh models have only been demonstrated on small datasets, such
as Pascal-3D+ Xiang et al. (2014) (12 object classes) and OOD-CVZhao et al. (2024) (10 object
classes), for two reasons. Firstly, because they require datasets with accurate 3D annotations for
learning. Secondly, because their learning algorithms scale badly. For example, for previous neural
mesh models Wang et al. (2024); Ma et al. (2022); Kaushik et al. (2024b); Jesslen et al. (2024), the
contrastive learning includes every vertex from every object class which scales quadratically. The
github code from Jesslen et al. (2024) will not run on more than 150 object classes due to memory
limitations. This raises the challenges we address in this work: (I) Can 3D compositional models
be scaled to a large number of object classes efficiently? (II) How will they perform compared to
conventional neural networks in i.i.d. testing? (III) Most importantly, will they retain their important
robustness properties (e.g., robustness to OOD, partial occlusion handling, multitasking) when scaled
up?

In this work, we reformulate neural mesh models to allow scaling up to a large number (188) of
object classes efficiently exploiting the recent availability of 3D annotated data Ma et al. (2023; 2024).

Figure 1: Our model is able to perform classifica-
tion and 3D pose estimation simultaneously while
being robust to IID and various OOD scenarios.
(values are scaled for better visualization)

Our strategy is to train 3D compositional models
by a new algorithm compositional contrastive
learning that exploits the compositionality of
our objects in terms of their vertices. We con-
jecture that only a small number of the huge
number of contrastive vertex pairs are required
to optimize the model to achieve strong per-
formance. To identify these vertex pairs, our
algorithm dynamically decouples the contrast
between classes which are rarely confused and
emphasizes the contrast between classes that
are most confused. This greatly reduces the
number of vertices of the object that need to be
contrasted with, allowing for a greatly reduced
computation. More precisely, we weight the
contrastive loss between vertex features from
a pair of object classes by their mutual confu-
sion level (i.e. how similar the model considers
the two object classes are). This is similar to
classic hard-negative mining Xia et al. (2022);
Kalantidis et al. (2020); Wang et al. (2023), but
differs given that we exploit the compositional
structure of our models in a supervised learning
manner. In addition, to provide an improved rendering of image features, we modify the object mesh
representations by using Gaussian splatting concepts so that a mesh vertex corresponds to a Gaussian
with associated vertex feature.

Concisely, our contributions are as follows:

1. We extend 3D-CompNets to an order of magnitude more object classes than previous studies
and show they outperform conventional deep networks for both object classification and 3D
pose estimation in a unified manner when tested on both IID and OOD data. By comparison,
previous studies of 3D-CompNets showed no improvement over conventional deep networks
on IID data.

2. We first refactor the per-vertex contrastive learning into two levels: contrasting within class
and between classes to largely improve learning efficiency.
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3. We further advanced the inter-class contrastive learning by dynamically decomposing object
classes into subgroups and applying dynamic weights on contrasting between classes,
enabling efficient and effective model optimization.

4. We further demonstrate that our model shows robust generalization capabilities from real-
world to synthetic data, suggesting the potential to generalize from synthetic to real thereby
mitigating the need for costly 3D annotations.

2 RELATED WORK

Robust Image Classification and Pose Estimation Deep Networks have been shown to be non-
robust Schneider et al. (2020); Rusak et al. (2021); Kortylewski et al. (2021) to simple nuisances in
tasks like image classification ima (2021); Hendrycks & Dietterich (2019); Hendrycks et al. (2021)
and 3D pose estimation Zhao et al. (2024). Nuisances like partial occlusion, weather, additive noise,
etc. may not have much effect on human visual capabilities however can completely derail deep neural
networks outputs. A convincing theory attributes this fragility to lack of 3D compositional knowledge
in these models which humans possess Kaushik et al. (2024b). Methods like data augmentations, test
time adaptation, noise addition, input masking, etc. have been proposed to make neural models more
robust with varying but unsatisfactory levels of success with many arguing that we would need a
different architectural approach may be required Wang et al. (2017); Kortylewski et al. (2020) which
incorporates some 3D object knowledge in the models.

Robust Neural Compositional Models It refers to a family of 2D Kortylewski et al. (2020); Kaushik
et al. (2024a); Wang et al. (2017) and 3D models Wang et al. (2024); Jesslen et al. (2024); Kaushik
et al. (2024b) who have shown to be robust to out-of-distribution nuisances like partial occlusion Ko-
rtylewski et al. (2020); Wang et al. (2021), real and synthetic corruptions Jesslen et al. (2024); Kaushik
et al. (2024a;b) relative to conventional deep networks and have been utilized to perform robust image
classification Kortylewski et al. (2020); Jesslen et al. (2024), 3D and 6D pose estimation Wang et al.
(2024; 2021); Ma et al. (2022), amodal segmentation Sun et al. (2020) and unsupervised domain
adaptation Kaushik et al. (2024a;b). These models focus on learning object-centric, compositional
neural representations and often employ the ideas of analysis-by-synthesis Yuille & Kersten (2006)
in their applications. However, all of these previous works have only been shown to work on small-
scale datasets often due to the computationally expensive nature of learning these compositional,
object-centric representations. In this work, we build upon ideas introduced by this family of models
and scale them up efficiently to work with large datasets.

Contrastive Learning. Contrastive learning was originally developed for supervised learning Khosla
et al. (2020); Misra & van der Maaten (2020); Wu et al. (2018); Chen et al. (2020); He et al. (2020)
but has made its biggest impact when it was modified and applied to self-supervised learning Henaff
(2020) giving state of the art results for many applications . Researchers have tried to adapt the idea
of hard-negative mining Xia et al. (2022); Kalantidis et al. (2020); Wang et al. (2023) to improve
performance and to improve efficiency but for unsupervised or self-supervised contrastive learning the
lack of supervision makes it infeasible to adopt existing negative sampling strategies and motivates
the development of other strategies Robinson et al. (2021). Although these strategies can be effective
they are not always efficient because finding these hard samples takes time. Our approach differs in
two respects. Firstly, it is supervised so it is easier to define a hard negative (e.g., two objects that
are easily confused with each other). Secondly, we have a compositional structure of objects and
parts and so we can use contrastive learning on the parts can be driven by hard negative mining of the
objects.

3 METHOD : 3D COMPOSITIONAL NETWORK (3D-COMPNET)

In this section, we present a deep network architecture with an integrated object-centric 3D neural
representation and an efficient learning algorithm (subsection 3.1) that can be used to perform robust
image classification and 3D pose estimation at scale (subsection 3.2).

Motivation and Problem Statement. Previous methods Wang et al. (2024); Jesslen et al. (2024)
learnt the vertex features by mapping the image feature at each 2D location from a feature extractor to
a corresponding vertex in the 3D representation of the object given its 3D pose. The 3D representation
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Figure 2: An overview of 3D-CompNet. The top-green box represents the variety of objects (188)
that we consider and illustrates the grouping of Neural Vertex Features (NVF) (with arbitrary groups
for illustrative purposes). The lower part illustrates the inference pipeline. During inference, an image
is first processed by the backbone into a feature map F (purple box). Then, by efficiently matching
features from F and our NVF, the object class can be predicted (top-red box), or alternatively, given
the class label, pose estimation can be performed by leveraging our volumetric representation in a
render-and-compare manner (bottom-red box).

for each object class is either in a coarse shape like a cuboid or in an average prototypical shape.
During training, the feature extractor is updated using contrastive loss between vertex features which
ensures that every vertex feature is distinct from one another.

However, as we scale up to a large number of object classes n, we have to learn a large number of
these compositional vertex representations. This is problematic for a few reasons:

1. We need to contrast every vertex feature with every other vertex feature of the same object
class as well as all other object classes. The calculation/floating point operations grow with
a complexity of O(n2).

2. During training, model optimization (using the contrastive loss) becomes more complex
as we increase the number of objects, due to the drastic increase in the number of vertex
features.

3. During inference, we have to evaluate our data samples against the vertex features of all
other classes and an incorrect classification inference may lead to incorrect pose inference.

3.1 GROUPED NEURAL OBJECT VOLUMES WITH DYNAMICALLY WEIGHTED
COMPOSITIONAL CONTRASTIVE LEARNING

Expanding on recent advances in Gaussian splatting Kerbl et al. (2023), we articulate the represen-
tation of a set of objects as a three-dimensional density field through a spatial arrangement of K
Gaussians, strategically placed on the surface geometries of distinct object categories. Each Gaussian
emanates a corresponding feature vector (which we will refer to as volume features), thereby delineat-
ing the volumetric representation termed as neural vertex feature. These features, representative of
a single object category, is synthesized from feature maps derived from two-dimensional imagery,
utilizing three-dimensional annotated poses of objects during training. For the task of classification
and pose estimation, we find that cuboid geometries suffice Wang et al. (2021); Kaushik et al. (2024a);
Jesslen et al. (2024) but more tightly defined geometries Wang et al. (2024) can also be used if
available.
In a departure from previous works, we train vertice features in a grouped manner, what we refer to
as Grouped Neural Vertex Contrasting using Dynamically Weighted Compositional Contrastive
Learning. We learn neural object volumes (and their volume features) using a contrastive loss where
the contrastive loss terms between similar object categories’ volume features have a higher weight and
dissimilar ones have a lower weight. This leads to a sparse and therefore more efficient contrastive
loss calculation as most vertice feature pairs have the weight 0 associated with them i.e. we do not
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calculate any corresponding loss terms. This contrastive loss formulation is termed compositional
since every vertice feature is composed of individual volume features which roughly correspond to
object parts. Additionally, we find that only a fraction of uniformly sampled volume features are
necessary for the grouped contrastive loss calculation making the training process even more efficient.

Our grouped formulation helps us to ameliorate the drawbacks mentioned in the previous section 3.
The advantages include

1. 95% reduction in the number of floating point operations for every contrastive loss calcula-
tion as we only calculate the distance between uniformly-sampled volume feature pairs of
categories with non-zero weights.

2. Faster and easier contrastive loss optimization leading to better accuracy.

Grouped Neural Vertex Contrasting Specifically, we define a neural volume density at spatial
location x ∈ R3 as a mixture of three-dimensional Gaussian ρh(x) =

∑K
k=1 ρk(x). Each Gaussian

density (what we refer to as vertex feature) ρk(x) is defined as N (µk,Σk), with µk ∈ R3 repre-
senting the position and Σk ∈ R3×3 the covariance matrix of the k-th vertex feature. The vertex
features are arranged to form a cuboid volume with predefined diagonal covariance, covering the
variable object instances in the category. Each vertex feature is linked to a feature vector Ck ∈ RD.
We define the feature set for each category y as Cy = {Ck ∈ RD}Kk=1, and the collective set across
all categories and levels as C = {Cy}Yy=1, where Y is the number of categories. The neural object
volume can be rendered in the feature space, using standard volume rendering Jesslen et al. (2024):

Ĉi(α) =

∫ tf

tn

T (t)

K∑
k=1

ρk(rα(t))Ckdt, where T (t) = exp

(
−
∫ t

tn

ρ(rα(s))ds

)
, (1)

where the feature Ĉi(α) at the pixel position i in the rendered feature map is calculated by aggregating
the vertex features along the ray rα(t). The ray passes through the centre of the camera through
the pixel i on the image plane with α denoting the camera view. Here, t ranges from the near
plane tn to the far plane tf . The remainder of the image that is not covered by the rendered
object volume is represented as background features B = {βn ∈ RD}Nb

n=1 where Nb is a fixed
hyperparameter and B is shared across all categories. The background features are represented as von
Mises-Fisher distributions with constant concentration parameters. We note that B can be replaced by
a threshold Kaushik et al. (2024b) with similar performance to save computing resources.

Our model architecture builds on a feature extractor Φw and a set of neural volume features - each
neural volume corresponding to one object category. The feature extractor Φw, using CNN parameters
w, transforms an input image I into a feature map F = Φw(I) ∈ RD×H×W . This map holds feature
vectors fi ∈ RD at each 2D lattice position i.

Our model learns by mapping a vertex feature k from a neural object volume to a location i on the
feature map F of a training image, using the camera pose α and volume rendering to calculate the
contribution γik of vertex feature Ck to image features fi. We establish a one-to-one correspondence
by selecting the image feature fi closest to each vertex feature, specifically where γik is maximal.
For clarity, fk→i denotes the feature fi at location i corresponding to vertex feature k with mean µk.

We model the probability of generating the feature fi from vertex feature Ck as P (fk→i|Ck) =
cM (κ)eκfk→i·Ck , with Ck as the mean of each vMF distribution, both fk→i and Ck are unit vectors.
Similarly, the probability of fi from background features βn is P (fi|βn) = cM (κ)eκfi·βn , where
βn ∈ B. We define the concentration parameter κ, a measure of the spread of the distribution, as a
global hyperparameter, allowing us to disregard the normalization constant cM (κ) during learning
and inference.

Dynamically Weighted Compositional Contrastive Learning Similarly to previous ap-
proaches Wang et al. (2021); Jesslen et al. (2024); Kaushik et al. (2024b), we maximize the probability
that any extracted feature fk→i was generated from P (fk→i|Ck) instead of any other alternatives.
This is done using a supervised contrastive learning formulation such that the likelihood that an
extracted feature fk→i is generated by the correct vertex feature Ck is maximised Jesslen et al. (2024)
w.r.t 1. from distanced vertex features of the same object 2. vertex features of other object classes,
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Epoch	=	0 Epoch	=	2 Epoch	=	10

Figure 3: Illustrative example of our Dynamically Weighted Compositional Contrastive Learning.
We change the weights applied on cross-category contrastive loss terms during training. The weights
are calculated based on the confusion matrix from the calibration data split every two epochs.

and 3. background features. If we try to trivially scale this loss to |Y | classes, we find that the number
of contrastive terms scales approximately by a quadratic (n2) factor! In addition, the loss landscape
for optimizing over these many parameters further lengthens and complicates the training process.
However, we hypothesize that all of these contrastive loss terms are not necessary and that we can
make learning more effective by focusing on the most confused vertex feature pairs. We start training
by unit-weighting every pair of vertex features. Note that to reduce the number of contrastive pairs,
we uniformly sample only 30% of the vertex features with which we contrast the current vertice
features. Refer to ablation experiments in subsection 4.1. After every 2 epochs, we validate the
model’s performance on held-out calibration data. Using the confusion matrix from the calibration
data split, we weigh the pairwise contrastive loss terms between 0 and 1. Weights are set to 0 when
the confusion level is below 0.05 between object classes, means we don’t calculate the contrastive
loss between these classes anymore. This weighting changes dynamically throughout the training,
and in the end will be sparse with the majority of the vertice feature pairs not being grouped together
(i.e. 0 weight). Refer to Figure 3 for further insight.

We formulate the dynamically weighted compositional contrastive loss as follows -

P (fk→i|Ck)∑
Cl∈Cy

Cl /∈Nk

P (fk→i|Cl) + ωβ

∑
βn∈B P (fk→i|βn) + Ωy,ȳ ωȳ

∑
Cm∈Cȳ

C̄m∼U(C̄m)

P (fk→i|C̄m)
, (2)

where Nk = {Cr : ∥µk − µr∥ < δ, k ̸= r} is the neighborhood of Ck and δ is a distance threshold
controlling the size of neighborhood. y is the category of the image and ȳ is a set of all other
categories except y. C̄m ∼ U(Cm) refers to uniformly sampled vertex features from Neural Object
Volumes of all other categories. Ωy,ȳ is the grouping weight which is calculated using the confusion
matrix between object categories of the calibration dataset. The confusion matrix is normalized over
the true (image class y), and a threshold of 0.05 is set to turn the grouping weight into 0 when the
confusion level is below the threshold.

ωβ = P (βn)
P (Ck)

is the ratio of the probability that an image feature corresponds to the background

instead of the vertex feature k, and ωȳ = P (Cm)
P (Ck)

is the ratio of the probability that an image feature
corresponds to vertex features of other categories instead of the vertex feature k.

We compute the final loss L(C,B, w) by taking the logarithm and summing over all training examples
– all sets of features {fk→i} from the training set

−
∑
y

K∑
k=1

ok · log
eκfk→i·Ck∑

Cl∈Cy

Cl /∈Nk

eκfk→i·Cl + ωβ

∑
βn∈B

eκfk→i·βn +Ωy, ȳ ωȳ

∑
Cm∈Cȳ

C̄m∼U(C̄m)

eκfk→i·Cm

, (3)

where ok = 1 if the vertex is visible and ok = 0 otherwise and y is the object category.
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Updating vertex features and Background Features. The vertex features and background features
C and B are updated after every gradient update of the feature extractor. Following He et al. (2020);
Bai et al. (2023), we use momentum update for the vertex features:

Ck ← Ck · σ + fk→i · (1− σ), ∥Ck∥= 1. (4)

The background features are simply resampled from the newest batch of training images. In particular,
we remove the oldest features in B, i.e. B = {βn}Nn=1\{βn}Tn=1. Next, we sample T new background
features fb from the feature map, ensuring fb is not influenced by any vertex feature, and update B as
B ← B ∪ {fb}. Note that σ and T are model hyperparameters.

3.2 INFERENCE FOR IMAGE CLASSIFICATION AND 3D POSE ESTIMATION

Fast Robust Classification Image classification is performed swiftly and robustly by matching
extracted features to learned vertex features of all vertex features and background features. For each
category y, we compute both foreground P (fi|Cy) and background P (fi|B) likelihoods across all
feature map locations i. Ignoring object geometry simplifies this to a fast convolution operation.
Image classification involves comparing average total likelihood scores across all locations for each
class.

Specifically, we define a binary-valued parameter zi,k such that zi,k = 1 if the feature vector fi
matches best to any vertex feature {Ck} ∈ Cy , and zi,k = 0 if it matches best to a background feature.
The object likelihood of the extracted feature map F = Φw(I) can then be computed as Jesslen et al.
(2024): ∏

fi∈F

P (fi|zi,k, y) =
∏
fi∈F

P (fi|Ck)
zi,k

∏
fi∈F

max
βn∈B

P (fi|βn)
1−zi,k . (5)

As described in subsection 3.1, the extracted features follow a vMF distribution. Thus the final
prediction score of each object category y is:

Sy =
∑
fi∈F

max{ max
Ck∈Cy

fi · Ck,max
βn∈B

fi · βn}. (6)

The final category prediction is ŷ = argmaxy∈Y {Sy}.
Volume Rendering for Pose Estimation. Given the predicted object category ŷ, we use the
vertex feature Cŷ to estimate the camera pose α leveraging the 3D geometrical information of
the neural object volumes. Following the vMF distribution, we optimize the pose α via feature
reconstruction Wang et al. (2024); Ma et al. (2022); Kaushik et al. (2024b); Jesslen et al. (2024):

L(α) =
∑

fi∈FG

fi · Ĉi(α) +
∑

fb∈BG

max
βn∈B

fb · βn, (7)

where FG is the set of foreground features that are covered by the rendered neural object, i.e.
those features for which the aggregated volume density is bigger than a threshold FG = {fi ∈
F,

∑K
k=1 ρk(rα(t)) > θ}. BG = F \ FG is the set of features in the background. Pose estimation

begins by identifying the optimal initial pose α through computation of the reconstruction loss
(Equation 7) across predefined poses. This is followed by gradient-based optimization starting from
the pose with the lowest loss to determine the final pose α̂.

4 EXPERIMENTS

In this section, we evaluate our approach and baselines on classification and 3D pose estimation
tasks using both synthetic and real data in in-distribution and out-of-distribution (OOD) scenarios
(subsection 4.1). Additionally, we show results on large-scale synthetic-to-real data generalization
(subsection 4.3). Finally, we conduct ablation studies to analyze the key components (subsection 4.4).
We included some qualitative results in Figure 7 of the appendix.

Datasets We use two different types of data in our experiments, notably real and synthetic data.
Real Data We train and evaluate our method on real data using the ImageNet3D dataset Ma et al.
(2024), a large dataset for 3D understanding containing class and 6D pose annotation. From the
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dataset, we selected a total of 188 classes with enough images for a total of 61 230 images divided
in 30 630 training images and 30 600 test images. We then create occluded-Imagenet3D following
Wang et al. (2020) by placing occlusion on both object and background in three levels: L1, L2, and
L3. In L1, around 10% of the object and 30% of the background will be occluded, and these numbers
are 30%, 50% for L2 and 50%, 70% for L3. We also test on corruptions following Hendrycks &
Dietterich (2019) for 4 kinds of common types of corruptions in natural environment on level 4.

Synthetic Data For out-of-distribution testing, we also test our method on synthetic data generated
following the approach outlined by Ma et al. (2023). This method enables precise 3D geometry
control of diffusion models, allowing us to obtain detailed 3D annotations for the generated images.
We generate the synthetic data for a subset of the object classes that exist in our real dataset. Hence,
we have 50 synthetic classes and 500 images for each class. We included some visualisations of the
generated synthetic data in Figure 6 of the appendix.

Implementation The features extractor Φw of our architecture builds is a ViT-B/14 with DI-
NOv2 Oquab et al. (2023) pretraining. The input image size is 644× 812 for ViT-B/14 backbone and
the output feature map F is 1/14th of the input size. Output features are projected to a dimension of
D = 128.

A baseline model with ResNet50 He et al. (2016) feature extractor has two upsampling layers to
integrate the output from the last three layers of ResNet50. The size of the feature map F is 1/8th of
the input size. Output features are projected to a dimension of D = 128.

Our method is trained as described in section 3.1. For each class, the corresponding vertex feature is
composed of approximately K = 600 vertex features for each object class. To model the background,
we use N = 2560 background features. We use momentum update for the vertex features using
σ = 0.9 and sample T = 5 new background features from the image background to update B at each
gradient step. Our model only takes 12 epochs to train fully.

Evaluation We evaluate all methods on two different tasks: image classification and 3D pose
estimation. Image classification consists of estimating the object category of the main object in the
image while 3D pose estimation involves predicting the azimuth, elevation, and in-plane rotation of
an object to a camera. The pose estimation error is calculated between the predicted rotation matrix
Rp and the ground truth rotation matrix Rgt as e =

∥∥logm (
RT

p Rgt
)∥∥

F
/
√
2, following Zhou et al.

(2018). We define the coarse and fine accuracy of that task using two thresholds where a prediction is
considered correct if e < π

6 and e < π
18 .

Baselines We compare the performance of our approach to 2 competitive baseline architectures (that
is, Resnet50 and ViT-b-16) for the classification and 3D pose estimation tasks. During training,
these baselines are trained with a dual head: one for classification and one for pose estimation. This
approach allows to leverage of the 3D knowledge for classification and conversely class knowledge
for 3D pose estimation. For each baseline, the classification and pose estimation heads have an output
size corresponding to the number of classes (i.e., 188) and the number of angles to estimate times
the bin size (i.e., 3 · 40 = 120), respectively. We consider pose estimation as a classification task for
each angle (ie elevation, in-place rotation, azimuth) by dividing the 360◦ pose space into 40 different
classes of 9◦ each and predicting the corresponding bin. We finetuned each baseline for 100 epochs
using standard cross-entropy loss, and chose the best checkpoint with the highest test accuracy on
clean Imagenet3D+. In order to make baselines more robust, we apply standard data augmentation
(i.e., scale, rotation, and flipping) during training.

4.1 CLASSIFICATION AND 3D POSE ESTIMATION

Table1, Table 3, and Table 4 show classification and 3D pose estimation performance on the base
Imagenet3D dataset Ma et al. (2024), synthetic data generated using Ma et al. (2023), its corrupted
version using corruptions like fog, snow, etc. from the Imagenet-C dataset Hendrycks & Dietterich
(2019), and partial occlusion with levels ranging from 20 − 80%. All our baselines have 3D
information incorporated in them during training. NOVUM Jesslen et al. (2024) is our ablative
baseline, which is learned without Grouped Neural Vertex Features and without using Dynamically
Weighted Compositional Contrastive Learning. All model performances reported here are trained
till full convergence. In Table1, we show comparisons of classification task between our 3D-aware
model and the same backbones with standard classification heads. Our model outperforms both
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Figure 4: Training time comparison between
NOVUM and our scalable 3D-CompNet

Models IID Synthetic
Resnet50 84.8 58.2
ViT-b-14 86.2 65.0
NOVUM 85.7 68.8

OURS (ResNet50) 86.5 69.3
OURS (ViT-b-14) 88.2 71.2

Table 1: Classification Results on Imagenet3D+

NMMs Neighbor size Loss GFLOPS ↓ Training Time ↓ 12 Epoch 100 Epoch
NOVUM full 61.2 (100%) 66.8h 30.0 85.7

OURS 64 4.31 (-93%) 13.3h 87.5 -
OURS 32 2.71 (-96%) 9.3h 88.2 -

Table 2: Detailed Comparison Between NOVUM and Our scalable 3D-compNet

the standard classification DNNs by 1.7% - 2.0% and the NOVUM baseline by 2.5% under the IID
testing. Moreover, in Table 4, our model also shows the strongest performance on 3D pose estimation.

4.2 TRAINING TIME EFFICIENCY

We report quantitative results about the drastic decrease both in memory usage and the training time
by our model in Table 2. Our model uses 96% less loss FLOPS and convergents 5 times faster than
NOVUM, and still outperforms it and other standard neural networks thanks to our simple yet novel
training methodology changes. Particularly, our model can converge with only 12 epochs of training,
and we can outperform the performance of NOVUM being training 100 epochs to a final convergence.

Also, the training time of our model almost increases linearly with the number of categories, while
for NOVUM, the number of computations scale quadratically (O(n2)) with the number of categories.
We compared our model with two NOVUM settings: NOVUM with 1000 vertices per mesh and with
500 vertices per mesh. We report the training time for each model to converge best with different
number of categories in Figure 4. Considering more 3D data available in the future, an algorithm that
scales up linearly is crucial both theoretically and practically.

Classification under Occlusion and Corruption
Model L0 L1 L2 L3 Average brightness frost snow fog Average

Resnet50 84.8 58.8 34.7 11.2 33.9 71.4 37.5 19.2 63.9 48.0
ViT-b-14 86.2 60.1 35.9 12.9 36.3 68.3 48.3 21.8 64.3 50.7
NOVUM 85.7 64.6 37.6 13.4 38.5 75.1 46.1 30.1 72.6 55.9

OURS 88.2 65.2 37.8 13.5 38.8 78.8 48.6 30.4 73.6 57.9

Table 3: Classification results on clean, occluded, and corrupted ImageNet3D+. Different occlusion
level (L1, L2, L3) and different corruption type applied.

4.3 DOMAIN SHIFT

Table 3 and Table 4 show that our method is able to outperform all other baselines with a large
margin on both classification and 3D pose estimation with occlusion and corruption. We also report
real-to-synthetic generalization performances for classification in Table1. We demonstrate our neural
vertex features are strongly robust to various OOD scenarios under drastic domain shifts, including
different levels of occlusion, unusual weather environments and domain shifts from real to synthetic.

9
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Pose Estimation under Occlusion and Corruption
Model L0 L1 L2 L3 brightness snow frost fog

Resnet50 55.6 40.4 27.5 14.4 50.8 29.1 38.7 51.3
ViT-b-14 56.9 42.7 28.2 15.7 52.2 30.4 40.9 51.6
NOVUM 57.2 42.6 28.8 15.6 51.9 32.5 41.0 52.7

OURS 57.6 43.4 29.2 16.0 54.1 32.7 42.2 53.9

Table 4: 3D pose estimation on clean, occluded, and corrupted ImageNet3D+. Different occlusion
levels (L1, L2, L3) and different corruption types applied. Results are estimated under accuracy π/6.

4.4 ERROR CASE ANALYSIS

Through per-category analysis on the IID performance, we found our 3D-compositional model
performs well for most object classes, but not on elongated object classes, see Figure 5 for examples.
The reason is that these objects look very similar, and sometimes even identical when facing forward
and backwards, left and right, or when rotated along their dominant geometric axis. This ambiguity
causes the main difficulty in estimating an accurate 3D pose of the objects. The 10 elongated objects
are ”ax”, ”paintbrush”, ”bow”, ”comb”, ”fork”, ”hammer”, ”french horn”, ”knife”, ”pen” and ”pencil”.
Removing the elongated object classes from ImageNet3D+ leads to further improvement by our
model, see Table 5.

Figure 5: Example images of elongated objects in the ImageNet3D+ dataset. For these ten classes, it
is very difficult to estimate the 3D pose.

Classification
IID Occ. Corr.

All classes 88.2 38.8 57.9
w/o Elongated 89.3 39.7 58.5

3D Pose Estimation
IID Occ. Corr.

All classes 57.6 29.5 45.7
w/o Elongated 59.3 32.8 48.3

Table 5: Comparison on the classification and pose estimation results by our model on the object
classes including and excluding the ten elongated objects in ImageNet3D+. Here Occlusion (Occ.)
and Corruption (Corr.) results are averaged.

5 DISCUSSION AND CONCLUSION

In this work, we argue that endowing computer vision object models with 3D representations will
improve their performance, particularly in challenging out-of-distribution (OOD) scenarios. To
demonstrate this, we scaled up 3D-CompNets to 188 object categories taking advantage of a recent
dataset with 3D ground truth annotation. This scaling up required developing a modification of
supervised contrastive learning, called Grouped neural Vertex with Dynamically weighted Composi-
tional contrastive Learning(GVDComp). This algorithm exploited the compositional structure of
3D-CompNets and can be used for other applications of contrastive learning of compositional models.
GVDComp resulted in greatly increased speed and reduction in computation, for learning 3D-CGNs,
which increase significantly with the number of object classes. The resulting 3D-CompNets not only
outperformed conventional neural networks for object classification and 3D pose estimation when
tested IID (unlike 3D-CompNets tested previously) but also outperformed them even more signif-
icantly when tested in challenging OOD settings. We conclude that endowing object models with
explicit 3D representations has many advantages including improved performance and robustness,
as demonstrated in this paper, as well as applicability to a greater range of tasks including robotic
manipulation.
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A APPENDIX

A.1 SYNTHETIC DATASET VISUALISATION

In order to evaluate our method in many different settings, we generated 3D consistent data following
Ma et al. (2023). Given some 3D CAD models, we were able to generate data with known objects
class an 3D pose annotation. The usage of synthetic data is appealing since it allows to control many
parameters during the dataset generation. Benchmark datasets like ImageNet3D can have certain bias
(e.g., imbalance in the number of objects per class). Hence, we decided to generate synthetic images
to measure our model’s capacity to adapt to domain shift (i.e., real-to-synthetic generalization). In
order to show the quality of the generated images, we show a subset of the generated data in Figure 6.

A.2 QUALITATIVE RESULTS

In Figure 7, we provide a few qualitative results. We provide an example for the clean images of
ImageNet3D, an example of synthetic occlusion of occluded-ImageNet3D, and two examples of
corrupted images (notably fog and pixelate). We represent side-by-side the input image along with
the input image overlaid by the prediction of our approach. We selected the CAD model of the class
that was predicted by our approach and we overlaid the CAD model in the pose predicted by our
approach.
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(a) Synthetic, phone (b) Synthetic, dining table (c) Synthetic, bike

(d) Synthetic, car (e) Synthetic, armchair (f) Synthetic, couch

Figure 6: Visualisation of the generated synthetic data.

(a) Clean image, category: door (b) Occ L2 image, category: fire extinguisher

(c) Fog corrupted image, category: guitar (d) Pixelate corrupted image, category: shovel

Figure 7: Qualitative results showing the predictions of our approach for classification and 3D pose
estimation
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