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ABSTRACT

Advanced facial recognition technologies and recommender systems with inadequate privacy tech-
nologies and policies for facial interactions increase concerns about bioprivacy violations. With the
proliferation of video and live-streaming websites, public-face video distribution and interactions
pose greater privacy risks. Existing techniques typically address the risk of sensitive biometric
information leakage through various privacy enhancement methods but pose a higher security risk by
corrupting the information to be conveyed by the interaction data, or by leaving certain biometric
features intact that allow an attacker to infer sensitive biometric information from them. To address
these shortcomings, in this paper, we propose a neural network framework, CausalVE. We obtain
cover images by adopting a diffusion model to achieve face swapping with face guidance and use the
speech sequence features and spatiotemporal sequence features of the secret video for dynamic video
inference and prediction to obtain a cover video with the same number of frames as the secret video.
In addition, we hide the secret video by using reversible neural networks for video hiding so that the
video can also disseminate secret data. Numerous experiments prove that our CausalVE has good
security in public video dissemination and outperforms state-of-the-art methods from a qualitative,
quantitative, and visual point of view.

1 INTRODUCTION

With the widespread adoption of smart devices and the Internet of Things (IoT), the security issues of biological face
privacy are becoming increasingly unavoidable. The explosion of public face video distribution for IoT, exemplified by
YouTube, TikTok, and Instagram, makes it difficult to protect face privacy during video interaction and distribution. In
addition, the autonomy of public face video distribution and interaction on video websites means that disguised face
videos must convey the same visual video information effect as the original video and hide sensitive personal privacy
information.

Current face privacy measures mainly focus on destroying or hiding facial attributes. In video sequences, face attributes
are destroyed by replacing the region where the person is located with blank information (Newton et al., 2005; Meden
et al., 2018) or by blurring and pixellating face attributes from the detector (Sarwar et al., 2018). These methods
directly damage the biometric features in facial videos, destroying the usability of data interactions and even failing to
leave any useful information in interactions and propagation. To strike a balance between privacy preservation and
information extraction, (Newton et al., 2005; Brkic et al., 2017; Chhabra et al., 2018; Sim & Zhang, 2015) preserve
sensitive information by identifying and selectively deleting, replacing, or hiding sensitive information while preserving
non-private information. The definition of sensitive information and the attacker’s ability to infer hidden personal
attributes from non-private information (Hu & Song, 2024) make the feasibility of these methods in preserving privacy
in real-world interactions challenging. In this case, we believe that a better way to protect privacy is to perform direct
and complete data hiding. One of the ways of data hiding is steganography.

The purpose of steganography is to encode sensitive information in some transmission medium and communicate
covertly with a recipient who has a key to recover the secret information. zhang et al. (Zhang & Wang, 2004) proposed
an image steganography method based on the human visual system, which utilizes a multi-base symbol system to
dynamically adjust the embedding strength to ensure high imperceptibility. However, nowadays digital video is
gradually replacing images as the main communication medium (Social), and video has a greater capacity to carry
secret information, so video steganography is more necessary for development nowadays. Video steganography is a
technique to embed information into the cover content. Weng et al. (Weng et al., 2019a) proposed a novel high-capacity
convolutional video steganography model, which can hide a complete video clip in a video. Zhai et al. (Zhai et al., 2019)
proposed a new 12-dimensional universal feature set, which is capable of detecting video steganography in a variety
of embedded domains. However, in the public channel, the cover video needs to have the function of disseminating
the original information, while the cover video of steganography is usually chosen randomly, and the duration and
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information conveyed are not matched with the original video. How to match the cover face video with the information
that needs to be disseminated by the secret video is the difficulty of applying steganographic methods such as video
hiding to public video interactions.

With the great success of diffusion modeling in the field of image generation, video generation techniques have also
come into the limelight. Ruan et al. (Ruan et al., 2023) proposed a joint MM-Diffusion audio-video generation
framework consisting of a sequential multimodal U-Net for designing a joint denoising process. In the area of video
prediction and causal inference, researchers have worked on developing advanced algorithms and techniques for
accurate prediction of video content and causal analysis. Ye et al. (Ye & Bilodeau, 2023) proposed a new and efficient
Transformer block for video feature learning, which reduces the complexity of a standard Transformer complexity.
Hu et al. (Hu et al., 2023) proposed a Dynamic Multi-scale Voxel Flow Network (DMVFN) that uses RGB images to
achieve better video prediction performance at lower computational cost. Causal inference, on the other hand, helps
researchers to gain a deeper understanding of causal relationships in videos in order to better control where and how
the secret information is embedded. Zang et al. (Zang et al., 2023) investigate the structure of relationships from the
perspective of causal representation of multimodal data, and propose a novel inference framework for Video Question
and Answer (VideoQA). Li et al. (Li et al., 2023) proposes a Context-Aware Video Intent Reasoning Model (CaVIR)
to address the special VideoQA task of video intent reasoning. These studies give us new research directions for
conducting privacy-secure propagation of public face videos. For a more detailed explanation of the principles, we
explain the related work on video Steganography, video prediction, and face generation in appendix A.

Therefore, we introduce "CausalVE," an innovative framework for face-video privacy interaction, which significantly
advances the field of video steganography and privacy protection. The novel approach integrates dynamic causal
reasoning with reversible neural networks to seamlessly blend the original video content with generated cover face
videos. This not only effectively conceals the identity and sensitive information within videos but also ensures that the
authenticity and expressiveness of the facial features are maintained across the video timeline. The primary contributions
are:

• Introduction of Dynamic Causal Reasoning for Video Prediction: The use of causal reasoning to guide the
video prediction process helps in creating cover videos that are not only visually convincing but also capable
of carrying hidden information without detectable alterations.

• Reversible Neural Network for Video Hiding and Recovery: The framework uses a reversible neural network
that allows for the original video to be hidden within a pseudo video and accurately recovered using a key.
This method provides a robust way to secure personal data while still allowing the video to be used in public
channels.

• Hybrid Diffusion Model for Face Swapping: By incorporating a hybrid diffusion model that uses identity
features and controlled noise processes, the system generates high-fidelity facial transformations that preserve
the natural dynamics and expressions of the original video.

2 METHODOLOGY

2.1 CAUSALVE: A FRAMEWORK FOR FACE VIDEO PRIVACY INTERACTION

Figure 1: CausalVE Network Framewrok

Figure 1 shows the specific framework of our CausalVE.
For a given face video, we first extract the first frame for
face replacement. Then, the physical information of the
original video is used as a guide and the causal analysis
framework is applied to build the time series of the over-
lay video Rai for video prediction. Finally, the overlay
video is generated. The original video is hidden in the
overlay video by a reversible neural network to generate
a pseudo-video with the information of the original video.
Anyone can view the pseudo video directly and the key
holder can restore the pseudo video to the original video
by using the key.

2.2 COVER VIDEO GENERATION

Since the cover face video is not only for the attacker but also for the public channel at the same time, the generation of
the cover face video needs to consider not only the detection of counterfeiting tools but also the visual representation of
the face. Therefore, we propose the use of dynamic causal reasoning to support video prediction for the generation of
cover-face videos. In the following, we will elaborate on the network module for cover face video generation.
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2.2.1 FACE SWAPPING MODULE

For a video space R3×H×W×T , we divide into n video frames by frequency. Take the first frame image as Is for
face-swapping. In order to make the transformed face have better security on this graph space, and at the same time
make the transformed face connect with the post-time series better, we draw on the idea of the diffusion model to
perform image face-swapping.

Consider Is and It to represent the secret and target images, respectively, each containing distinct facial features Fs and
Ft. The primary goal of this research is to construct a cover image Ib, wherein Ft is seamlessly replaced by Fs, while
meticulously preserving the identical pose and expression.

Let I denote an image within the space R3×H×W . For identity embedding, we employ the ArcFace model (Deng et al.,
2019). Upon embedding the secret image Is, we obtain the identity feature Iid. This feature Iid is then integrated
into the diffusion model λθ(xt, t, Iid). At each time step t, Is is subject to a prior process that aims to reconstruct It
utilizing a standard Gaussian distribution (Luo, 2022), which is achieved by reversing the recursive noise addition, as
defined in the following equation:

q (xt|xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
(1)

where βt is a predefined variance schedule. The inverse diffusion process is described by:

pθ (xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t)) (2)

To facilitate the generation of the cover image, multiple expert models are utilized to provide nuanced facial guidance,
thus enhancing the fidelity of the synthesized image. The incorporation of multiple models often introduces various
forms of noise, complicating the retention of the target background during the face-swapping process. To mitigate this,
we introduce a novel target-preserving hybrid method that modulates the mask’s strength by gradually increasing its
intensity from 0 to 1 over the diffusion process duration T . This modulation is strategically controlled to ensure the
preservation of the target image’s structural integrity, as expressed by:

Ut = min

{
1,

T − t

T̂
U

}
(3)

Here, U denotes the rigid mask derived through the face parsing process, and Ut represents the dynamic mask, which
increases in intensity progressively. The threshold T̂ defines the critical point at which the mask transitions to its full
intensity.

The blending of the intermediate predictions x̂t−1 with the target images is then performed using the mask Ut in the
reverse process:

x̂t−1 = (1− Ut) · φθ(xt, t) + Ut · λθ(xt, t, Iid) (4)

This process effectively allows the integration of facial features from Is into It, culminating in the creation of the
desired cover image Ib, which maintains the original pose and expression of the target while featuring the secret identity.

2.2.2 INTERACTION MODULE

The original video contains rich temporal, spatial, and physical information. To utilize this information for assisting
subsequent dynamic video reasoning, we design an interaction model to incorporate various desirable types of inputs.
As shown in Figure 2, this module fuses the audio sequence information with the currently selected face-changing
picture frame to generate a new representation and updates the fusion process by simulating facial head movement
through conditional VAE for cover video prediction.

Specifically, we set the first frame of the secret video to the face-swapping picture Is. At this time, in the 3D deformable
model (3DMM), the face shape can be expressed by the following formula:

F = F̄ + αrid + βrex (5)
Here, F represents the average shape of the 3D face, rid represents the orthogonal basis for shape, and rex represents
the orthogonal basis for expression, with αand β describing human identity and expression, respectively. To maintain
posture changes, the coefficients µ and ν represent head rotation and transformation, respectively. To separate these
parameters from the human body, we incorporate audio modeling parameters β, µ, and ν. The partial posture parameters
of the head, denoted as ρ = [µ, ν], are used for personal identity ID inquiries. We establish the correlation between
expression and the identity of a specific individual through the expression coefficient β0 of It. To reduce the weight of
expressions of other facial components when speaking, the lip motion coefficients generated by pre-trained Wav2lip are
used as targets. In addition, other micro-expressions are constrained by additional key point losses. Then, the expression
coefficient of t frames is generated through the audio sequence, where the audio feature of each frame is the 0.2s Mel
spectrum. We utilize a ResNeXt-based audio encoder Ψ to map to a latent space, and then the residual layer acts as a
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Figure 2: Architecture of CausalVE for Cover Video Generation. After segmenting the initial video, CausalVE selects
images for face-swapping at regular intervals. The Interaction Module then uses a single cover image to generate a
complete cover video sequence, guided by the voice sequence from the initial video.
mapping network Θ to decode the expression coefficients. To maintain the facial expression features of the cover video,
we introduce the reference label β0 to control personal features, and only use the lip area as the ground truth during
training. Finally, the framework of this network can be expressed as:

β{1,...,t} = Θ
(
Ψ
(
α{1,...,t}

)
, β0 ⊙ F̄

)
(6)

Where ⊙ is the element-wise product, which represents the fusion process of the representation of the replacement
picture and the original video sequence.

To produce extended, consistent, and uninterrupted head movements.We made some changes to the above framework.
We changed the encoder part to the architecture of implementing ResNeXt with VAE’s encoder, at this time, the
framework of this network not only learns the potential distribution of the input data but also applies ResNeXt can
help the model to capture more complex image features. In addition, according to the idea of CVAE, we also add the
corresponding head motion parameter ρ = [µ, ν], the style coefficient zstyle as an added input, which makes the model
pay more attention to the rhythm and personal style, embedded with a Gaussian distribution, and the distribution and
quality of the generated motion is measured by L1, and the decoder network learns based on the distribution sampled to
generates a gestalt map with the same number of frames as the audio sequence.

2.2.3 RE-PREDICTION AND DECISION MODULE

During the interaction between the target image and the original video voice sequence, we use voice-controlled video
generation to obtain the cover video. However, in such a prediction process, the cover video controls the expression
and character characteristics through β0 and controls the character style through the specified function zstyle. These
controls are highly subjective and dependent, completely interacting with It as the core representation. This method
can have good results when the distance to It is closer to the number of frames. However, the representation of It
becomes less and less special as the time series increases. At this time, as the number of frames ts continues to increase,
the representation of It becomes less and less obvious in actual situations. However, in the process of using voice
interaction prediction, It is still regarded as the core interaction, and the information conveyed by the cover video would
be contrary to the facts. Our goal is to conceal sensitive personal information during face video interactions on public
channels while ensuring effective interaction and dissemination of other information. To solve the above Questions, we
perform video re-prediction and decision-making through causal video prediction.

We re-examine the entire incident. When generating a cover face video, we need to achieve the following goals:

Video character event prediction. This task requires a model to infer possible future facial biometric changes based
on observed videos.

Reverse reasoning. The task is to guess the facial biometric changes that occurred before the start of an existing video
clip.
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Figure 3: The CNN-ViST-CNN Frameworks for Video Prediction in our Re-prediction and Decision Module. We utilize
CNNs as the encoder for extracting spatial features and as the decoder for post-video frame prediction. And Video
Swin Transformer (ViST) is employed as the translator to learn both temporal and spatial evolution.
Counterfactual reasoning. This task guesses the inevitable results given some assumptions (for example, what will
happen if you don’t smile?) The hypothetical conditions will not appear in the original video that requires reasoning, so
the model needs to imagine and reason Video prediction results under some given assumptions.

In this process, if our use of It for face video prediction violates any of the above reasoning processes, we need to use
other physical information of the original video sequence to control the prediction of subsequent videos. We introduce
the Video Swin Transformer (ViST) to perform dynamic face video inference and prediction based on the latent spatial
dynamics of the original video. Figure 3 shows the frameworks of our CNN-ViST-CNN Video Prediction framework.
In this network framework, we adopt CNN as the encoder for extracting spatial features and the decoder for post-video
frame prediction, and the Video Swin Transformer (ViST) as the translator for learning temporal and spatial evolution.

The encoder stacks ni Conv2d, LayerNorm, and ReLU for convolution, which is expressed as follows:

Ωk = σ (LN (C (Ωk−1))) (7)

Where LN represents LayerNorm and C represents Conv2d. The input Ωk−1 and the output Ωk shapes are
(TK−1, CK−1, HK−1,WK−1) and Tk, Ck, Hk,Wk, 0 < k < ni. The decoder and encoder use the same number
of layers for decoding and prediction.

We use Video Swin Transformer as a tool for spatiotemporal evolution analysis. The core principle is to use the
Transformer architecture to simultaneously process the spatial characteristics and temporal continuity of video data.
By limiting the calculation of 3D self-attention to a local window, the computational complexity can be significantly
reduced. The shift window strategy changes the arrangement of windows between consecutive layers, promotes
information exchange between different windows, and enhances the overall perception of the model. The formula is
expressed as follows:

Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V (8)

Where Q,K, and V are query, key and value matrices respectively. They may originate from different parts of the video
frame in the same window, or the same position at different time points. dk is the dimension of the key vector.

By adopting a hierarchical architecture, features at different scales are captured by gradually reducing the temporal
and spatial resolution. This approach helps the model capture extensive contextual information while maintaining low
computational cost. The specific expression formula is:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO (9)

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (10)
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Figure 4: Video Hiding and Recovery Framework. Given a hidden video xsecret and a cover video xcover after forward
hiding frame by frame, a pseudo-video xstego is generated. Inversely, with the same reversible neural network and same
parameters, the pseudo-video xstego can be recovered into the original video xrecover.
WQ

i ,WK
i , and WV

i are the linear transformation weights of the corresponding heads, and WO is the linear transforma-
tion weight of the output.

2.3 VIDEO HIDING AND RECOVERY

Figure 4 shows the framework of the hidden part of our video. Specifically, given a hidden video xsecret and a cover
video xcover (the cover video is generated from the above section) after forward hiding frame by frame, a pseudo-video
xstego is generated, which is ostensibly indistinguishable from xcover to achieve the xsecret undetectable the effect of
xsecret. With the same reversible neural network architecture and parameters, the pseudo-video xstego can be recovered
into the original video xrecover. In order to utilize the temporal and spatial correlation within the video, we use Discrete
Wavelet Transform (DWT) to divide each frame into four frequency bands LL,HL,LH,HH, and then in the same group
of frames, we connect the portions of the same band portion of different frames in the channel dimension, and then
concatenate these four bands in series according to the frequency magnitude, to generate the final secret video for
concealment x′

secret and the cover video x′
cover.

It can be shown in Figure 4 that our video hiding and recovery results in reversible video hiding by constructing the
reverse information flow through the invertible block. The initial reversible neural network can be defined as follows:
assuming the input is x,the hiding module splits x into two parts x1 and x2 along the channel axis by the transform
parameter and then untransforms it by the same transform parameter (Dinh et al., 2014), which is expressed as follows:

x̂1 = x1 · γ1 (x2) + ε1 (x2)

x̂2 = x2 · γ2 (x̂1) + ε2 (x̂1) ,
(11)

Where γ(·) and ε(·) are the functions of the invertible block transformation.

On this basis, we construct reversible projections in the inversion block by means of several interaction paths between
the two branches: using additive transformations to project x′

cover and multiplicative transformations to project x′
secret,

and generating the transformation parameters from each other. Here, we utilize the weighting modules (η1k(·) and
ϕ1
k(·)) to extract features from all the secret sets, producing a feature set. ηik(·) and ϕi

k(·)(i = 1, 2, 3) refer to a
3× 3 convolutional layer and a five-layer dense block, respectively. The transformation parameters of xsecret can be
generated by x′

cover, so that the bijection of the front propagation of the video hiding is reformulated as in the hidden
module: x′k+1

cover = x′k
cover + ξk

(
||ϕ1

k

(
η1k

(
x′k

secret

))
||
)

x′k+1
secret = x′k

secret · exp
(
ϕ2
k

(
η2k

(
x′k+1

cover

)))
+ ϕ3

k

(
η3k

(
x′k+1

cover

))
,

(12)

where ||·|| refers to the channel-wise concatenation. exp(·) is the Exponential function. Accordingly, the backward
recovery is expressed as follows:
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X′k
secret =

(
X′k+1

secret − ϕ3
k

(
η3k

(
X′k+1

cover

)))
· exp

(
−ϕ2

k

(
η2k

(
X′k+1

cover

)))
X′k

cover = X′k+1
cover − ξk

(
||ϕ1

k

(
η1k

(
X′k

sec ret

))
||
)
.

(13)

2.4 LOSS FUNCTION

Our CausalVE loss function consists of cover image generation loss, initial cover video generation loss, video prediction
loss, causal inference and decision loss, and video hiding loss.We provide additional information about the loss function
in the appendix B for more supplementary information.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets and Settings. The VoxCeleb2 (Chung et al., 2018) training set is used to train our CausalVE, with the spatial
resolution of each sequence contained in it fixed to 512 × 300. During training, we randomly crop the training video to
256 × 256 and randomly flip it horizontally and vertically to increase the amount of data. The testing datasets include
VoxCeleb2, with 150,480 videos at each sequence resolution 512 × 300, Voxblink (Lin et al., 2024) with 1.45 million
videos by about 38000 people at each sequence resolution 480 × 367, and Mead (Wang et al., 2020). We segment the
video in Mead and get 54291 videos by about 60 people at each sequence resolution 256 × 256. The test video for each
sequence uses a center crop to 256 × 256 to ensure that the cover video and the secret video have the same resolution.
The optimizer uses Adam’s standard parameters, while the initial learning rate is 1× 10−5, halved every 25K iterations.
An NVIDIA A100 Tensor Core GPU is used for all training and testing.

Benchmarks and Evaluation Metrics. We evaluate the soundness of our motivation and the effectiveness of our
CausalVE. We compare our CausalVE with different information steganography approaches, including LSB, Weng et
al. (Weng et al., 2019b), Baluja et al. (Baluja, 2020), HiNet (Jing et al., 2021), RIIS (Xu et al., 2022), and LF-VSN
(Mou et al., 2023b). It is important to note that the original video-hiding model was initially designed solely for
information concealment, differing from our configuration for face privacy interaction protection. To accommodate
video concealment, we made slight modifications to the output dimensions. Furthermore, unlike our approach where the
model autonomously generates cover videos, the cover videos for these models were predefined. To align these models
with our methodology, we adjusted the cover video inputs, redefined the video generation function, and retrained the
networks. We use two metrics to evaluate the quality of cover/hide and secret/reduce video pairs, namely cover/stego
and secret/recovery video peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) (Wang et al., 2004),
MAE and RMSE.

Meanwhile, in order to verify the validity of the generated overlay images, we use ArcFace (Deng et al., 2019), CosFace
(Wang et al., 2018a), SphereFace (Liu et al., 2017a) and AdaFace (Kim et al., 2022b) face recognition models to verify
the processing effect of RFIS-FPI on cover images, recovery images. Since the resolution of ArcFace (Deng et al.,
2019) and AdaFace (Kim et al., 2022b) is 112 × 112, CosFace (Wang et al., 2018a) and SphereFace (Liu et al., 2017a)
have a resolution of 112 × 96, which is smaller than the resolution of our training dataset, we use MTCNN (Xiang &
Zhu, 2017) to align and crop the face images to match the resolution of RFIS-FPI. We use SSIM (Wang et al., 2004) and
Learning to Perceive Image Patch Similarity (LPIPS) to perceive the quality of cover/secret and secret/recovery image
pairs. For SSIM / LPIPS values between secret and cover images, we denote them by SSIMst / LPIPSst. Similarly, for
the SSIM / LPIPS value between the secret image and the recovery image, we denote it by SSIMsr / LPIPSsr. A higher
SSIM means that the two images are more similar, and a lower LPIPS means that the two images are less similar.

Moreover, we use the statistical steganalysis tool StegExpose (Boehm, 2014) to evaluate the effectiveness of our face
privacy interaction protection approach.

3.2 QUANTITATIVE COMPARISON

Tables 1 and 2 demonstrate the effectiveness of our method and other state-of-the-art video hiding methods on video
datasets.The best data in each column of the table is in red, and the second best data is in blue. As can be seen from Table
1, our CausalVE compares slightly better metrics than other video hiding methods on cover video and steganography
video. This is due to the fact that excellent generated videos have a camouflage ability that is no less than that of natural
videos. At the same time, the cover video with the same ability to evolve time sequence and spatial features is similar in
the process of hidden reorganization of reversible neural networks. This makes it harder to spot the difference between
a fake video and a cover video. In Table 2, the performance of our method on secret images/recovered images is not far
from the results of the state-of-the-art methods. This shows that our optimized reversible neural network applied to face
video encryption is effective. The use of CausalVE allows for public face video video information interaction while
having the perfect role of carrying sensitive information interaction.
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To verify the effectiveness of our face cover video generation method, we compare our CausalDE with specialized face
video generation methods and biometric privacy generation methods, and the results are shown in Table 3. Our method
performs well in generating cover face videos, fully hiding the face information while achieving a more complete
communication of the original video information.

Table 1: Benchmark comparisons about Cover/Stego video pair

Methods
Cover/Stego video

VoxCeleb2 Voxblink Mead
PSNR(dB)↑ SSIM↑ MAE↓ RMSE↓ PSNR(dB)↑ SSIM↑ MAE↓ RMSE↓ PSNR(dB)↑ SSIM↑ MAE↓ RMSE↓

4bit-LSB 33.30 0.689 6.84 7.94 33.28 0.723 7.29 9.13 33.66 0.741 6.42 8.40
Weng et al. 39.77 0.851 3.24 4.87 38.90 0.884 3.99 3.92 37.36 0.853 4.73 5.26
Baluja et al. 36.74 0.965 3.78 5.02 38.39 0.854 3.73 7.42 38.59 0.865 4.15 5.43

HiNet 37.23 0.969 2.94 3.45 40.70 0.946 3.36 4.11 43.80 0.937 3.61 4.32
RIIS 45.20 0.967 3.17 3.41 46.23 0.964 3.43 3.95 44.79 0.939 3.82 4.13

LF-VSN 47.21 0.968 2.63 2.82 49.72 0.983 2.94 3.75 48.71 0.959 3.23 3.71
CausalVE 50.39 0.975 2.65 2.73 50.74 0.989 2.79 3.62 50.72 0.972 3.10 3.32

Table 2: Benchmark comparisons about Secret/Recovery video pair

Methods
Secret/Recovery video pair

VoxCeleb2 Voxblink Mead
PSNR(dB)↑ SSIM↑ MAE↓ RMSE↓ PSNR(dB)↑ SSIM↑ MAE↓ RMSE↓ PSNR(dB)↑ SSIM↑ MAE↓ RMSE↓

4bit-LSB 24.20 0.695 6.73 7.85 33.25 0.648 7.29 9.13 33.64 0.643 6.43 8.40
Weng et al. 34.60 0.811 3.37 5.06 38.90 0.877 4.01 5.92 37.63 0.859 4.69 5.28
Baluja et al. 35.24 0.841 3.45 5.52 36.39 0.855 4.97 7.42 36.60 0.853 3.62 4.42

HiNet 41.70 0.922 3.19 4.13 43.73 0.917 3.58 4.73 42.73 0.935 3.12 4.32
RIIS 43.09 0.935 2.93 3.63 44.76 0.934 3.54 4.71 44.79 0.939 3.16 4.36

LF-VSN 47.87 0.957 2.97 3.17 46.72 0.959 2.56 3.72 49.73 0.967 3.13 4.35
CausalVE 48.15 0.972 2.88 3.09 49.72 0.975 2.48 3.71 50.76 0.963 2.64 3.26

Table 3: Comparison of image visual quality metrics and face cosine similarity(con-sim) between different face
recognition algorithms for face privacy interaction protection.

Methods SSIMst ↓ LPIPSst ↑ SSIMsr ↑ LPIPSsr ↓ cos-sim

ArcFace 0.029 0.942 0.971 0.091 0.997
CosFace 0.058 0.953 0.963 0.107 0.996
SphereFace 0.063 0.947 0.951 0.114 0.996
AdaFace 0.032 0.954 0.965 0.109 0.997

3.3 QUALITATIVE COMPARISON

Figure 5a shows a comparison of the effectiveness of our CausalVE and the LF-VSN method, which produces the next
best results for hidden images, on hidden videos. As can be seen in Figure 5a, our CausalVE is closer to visual logic
on hidden videos thanks to guided video prediction. Specifically, we chose a challenging task: a piece of speech with
multiple intonational auxiliaries: "Mum ... Ah-Haha!", a scenario that requires challenging matching videos to hide
and show the progression from a closed accent to an open accent to a toothy smile. Under the same time sequence, we
extracted the same frames from the two representative methods for comparison. Our CausalVE effect is closer to the
truth. The coherent start-to-open movement from "Mum" to "Ah" is more consistent with the original semantics, which
makes our CausalVE visually superior to the LF-VSN.

3.4 STEGANOGRAPHIC ANALYSIS

Data security remains a critical issue in the field of steganography. This section evaluates the resistance of various
steganographic methods to detection by steganalysis tools, focusing on their ability to differentiate stego frames from
natural frames. We utilize StegExpose for this evaluation, creating a detection dataset composed of stego and cover
frames in equal proportions. Detection thresholds are varied extensively within StegExpose (Boehm, 2014), and the
resulting data is represented on a receiver operating characteristic (ROC) curve, shown in Figure 5b. Notably, an
ideal detection scenario is where the probability of identifying stego frames from a balanced mix is 50%, akin to
random chance. Thus, a ROC curve that approximates this ideal indicates higher methodological security. Our findings
demonstrate that the stego frames produced by our CausalVE model are significantly more difficult to detect than those
from other methods, highlighting the enhanced data security offered by our CausalVE.

Additionally, to verify the effectiveness of the CausalVE module, ablation experiments were conducted on both the
causal analysis and video generation modules. These ablation experiments are shown in Appendix C.
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(a) After video hiding by our method and LF-VSN method
for videos of the same time sequence, the resulting graphs
of comparison of the hidden videos generated by different
methods and the same frame of each syllable of a sentence
in the original video are taken as images.

(b) Analysis of steganalysis resistance across various techniques
by StegExpose (Boehm, 2014) reveals a noteworthy trend: as ac-
curacy approaches 50%, resilience to vector analysis increases.

Figure 5: Overall comparison and steganalysis results.

4 CONCLUSIONS

We provide the CausalVE framework, which demonstrates a high level of efficiency in hiding and recovering video
content, and positions it as a leading solution for privacy protection in video content shared over public channels.
The experimental results reveal that CausalVE outperforms existing methods in both the visual quality of the cover
videos and the undetectability of the hidden content, offering substantial improvements over traditional steganography
and face-swapping techniques. The findings suggest that CausalVE not only provides robust privacy protection but
also ensures that the integrity and expressiveness of the video content are maintained, making it a valuable tool for
various applications in digital media, communications, and security fields. Furthermore, the approach’s resistance
to steganalysis tools underscores its potential for secure communication channels, where maintaining confidentiality
and authenticity is crucial. Overall, this work lays a strong foundation for future research in video privacy protection,
particularly in developing methods that balance security with the need for expressive and dynamic video content.
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A RELATED WORK

A.1 VIDEO STEGANOGRAPHY

Video steganography involves embedding a secret message within a video, in a way that is almost imperceptible to
humans. The Least Significant Bit (LSB) method is a traditional steganographic technique based on spatial domain,
which substituting the n least significant bits of a pixel in the video frame with the n most significant bits of the
secret message. (Swathi & Jilani, 2012) applied LSB in video steganography to hide secret text in grayscale video
frames. (Abbas et al., 2015) combined LSB technique with Cuckoo Search to embed each secret image’s color
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channel independently into a cover video’s frame. Beyond spatial-domain methods, some transform-domain techniques
were also applied in video steganography, such as discrete cosine transform (DCT) (Hsu & Wu, 1999) and discrete
wavelet transform (DWT) (Barni et al., 2001). Transform-domain methods, though more undetectable and robust than
spatial-domain methods, still provide a limited capacity for embedding secret information, ranging from text (Patel
et al., 2013; Abbas et al., 2015; Mstafa et al., 2017) to images (Lu et al., 2010; Kumar & Singh, 2018; Sadek et al.,
2017).

Recently, some deep learning models (Hayes & Danezis, 2017; Baluja, 2017; 2020; Guan et al., 2022) have been
proposed for video steganography, achieving superior performance compared to traditional methods. (Hayes & Danezis,
2017) introduced the application of Generative Adversarial Network (GAN) in steganography, demonstrating that
employing an adversarial training approach can enhance the security of concealment. (Baluja, 2017; 2020) first
implemented concealing a full-sized image within another image. (Guan et al., 2022) attempts to enhance capacity by
embedding multiple images within a video, bringing it closer to true video steganography. Video hiding is an important
research direction of video steganography, which attempts to hide a whole video into another one. Different from above
methods, it requires larger hiding capacity. (Weng et al., 2019b) was the first to explore concealing/recovering a video
within/from another video by masking the residuals between consecutive frames on a frame-by-frame basis. Besides,
(Mishra et al., 2019) explores temporal correlations in video steganography using 3D CNNs. (Mou et al., 2023a) further
extends the capacity limit of video steganography, enabling hiding/recovering 7 secret videos in/from 1 cover video. In
conclusion, the previous research demonstrate the prospects of deep learning in video hiding.

A.2 VIDEO PREDICTION

Video prediction involves predicting future video frames based on given ones. According to their model architecture,
video prediction methods can be categorized as recurrent-based and recurrent-free. Recurrent-based models process
predictions by incorporating previously predicted frames into the current input, making the prediction sequence serial
in nature. PredRNN (Wang et al., 2017) utilizes standard ConvLSTM (Shi et al., 2015) modules to develop a Spatio-
temporal LSTM (ST-LSTM) unit that concurrently captures spatial and temporal changes. The advanced PredRNN++
(Wang et al., 2018b) introduces a gradient highway unit to address the issue of vanishing gradients and a Casual-LSTM
module for cascading spatial and temporal memories. Enhancements in PredRNNv2 (Wang et al., 2023) include
the introduction of a curriculum learning approach and a memory decoupling loss to enhance performance. MIM
(Wang et al., 2018c) incorporates high-order non-stationarity into the design of LSTM modules. PhyDNet (Le Guen &
Thome, 2020) separately models PDE dynamics and additional unknown information using a recurrent physical unit.
E3DLSTM (Wang et al., 2019) merges 3D convolutions with recurrent networks, and MAU (Chang et al., 2021) features
a motion-aware unit that efficiently captures motion dynamics. Despite the development of various sophisticated
recurrent-based models, the underlying mechanisms contributing to their efficacy are still not fully understood.

On the other hand, recurrent-free models simplify the prediction process by inputting the entire sequence of observed
frames and producing all predicted frames simultaneously. Due to its parallel characteristic, it has an inherent efficiency
advantage over the recurrent-based model. Recurrent-free models often utilize 3D convolutional networks to handle
temporal dependencies (Liu et al., 2017b; Aigner & Körner, 2018). Early on, PredCNN (Xu et al., 2018) and
TrajectoryCNN (Liu et al., 2021) employed 2D convolutional networks to prioritize computational efficiency. Initially,
these early recurrent-free models were criticized for their poor performance. However, models like SimVP (Gao et al.,
2022; Tan et al., 2022; 2023) have recently demonstrated a simple yet effective approach that rivals recurrent-based
models. PastNet (Wu et al., 2023) and IAM4VP (Seo et al., 2023) represent newer developments in recurrent-free
models, showcasing notable improvements. In this study, we have implemented both recurrent-based and recurrent-free
models within a single framework to methodically examine their intrinsic characteristics. Furthermore, we have
explored the capabilities of recurrent-free models by redefining the spatio-temporal prediction challenge and integrating
MetaFormers (Yu et al., 2022) to connect the visual backbone with spatio-temporal predictive learning more effectively.

A.3 FACE SWAP MODEL

Mainstream Face swapping techniques are primarily divided into two groups: 3D-based methods and GAN-based
methods. The 3D-based approaches (Blanz et al., 2004; Nirkin et al., 2017) typically utilize the 3DMM (Blanz &
Vetter, 1999) to integrate structural priors. However, these methods often require human intervention or tend to produce
noticeable artifacts. On the other hand, GAN-based methods generally focus on the target, merging identity features
from the source face with the target’s characteristics and employing GANs to maintain the authenticity of the swapped
face. Nonetheless, these techniques often involve numerous loss functions, and balancing them necessitates meticulous
adjustment of the hyperparameters. Additionally, these methods usually make only slight alterations to the target face,
which limits their effectiveness in scenarios where there is a significant discrepancy in facial shapes between the source
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and the target. While some studies have attempted to use features from the 3DMM (Li et al., 2021; Wang et al., 2021)
to guide the face swapping process, this indirect use of 3D information still falls short in maintaining consistent facial
shapes.

Recently, diffusion model (Ho et al., 2020; Nichol & Dhariwal, 2021; Rombach et al., 2022) has been introduced for
face swapping due to its delicate controllability and high fidelity. DiffFace (Kim et al., 2022a) trained ID Conditional
DDPM with facial guidance to preserve target insensitive attributes. DiffSwap (Zhao et al., 2023) designed a 3D-aware
masked diffusion model using designed face attributes, enabling high-fidelity and controllable face swapping. The
previous work demonstrates the great potential of the diffusion model in face swapping.

B LOSS FUNCTION DETAILS

B.1 COVER IMAGE GENERATION LOSS.

Cover image generation is performed in a noisy environment, while the expert model is trained on a clean image.
Therefore, we predict the noise by using the denoising score matching loss, while the identification loss due to effective
recognition of faces by multi-expert recognition can be summarised by the source identification at each time step t.
Specifically, the cover image generation loss is formulated as follows:

Lcover = ∥σ − σθ (xt, t, Iid)∥22 + 1− cos
(
Iid, Îid

)
(14)

Where cos (−,−) denotes the cosine similarity between the un-noised secret identity and the denoised secret identity.

B.2 INITIAL COVER VIDEO GENERATION LOSS.

In the initial cover video generation process, we use the first cover image to generate the corresponding video. This
is an image-to-video process. By using the pre-trained expression coefficients obtained from wav2lip, then, 3D face
capture is performed on the face of the target image as a target to guide the video generation. At this point, both the
generation coefficients and the lip movement expression coefficients are known, and the face capture loss function for
the kth frame is obtained by taking the mean square loss:

L3D =

k∑
i=1

(
ωgen
k − ωlip

k

)
(15)

Where ωgen
k and ωlip

k are the lip-movement coefficients and the expression coefficients generated in the wav2lip
pre-training, respectively. This loss function expresses the importance of 3D facial features, especially lip-movement
features, in face image to face video generation.

At the same time, we calculated the loss function for 3D face projection onto 2D. We represent the facial representation
on the 2D projection with the blink signal (which we set as a Gaussian-distributed signal with continuity from 0 to 1).

L2D =

k∑
i=1

∥∥ε
Left1
t − εRight1

t ∥2 − ∥εLeft2
t − εRight2

t ∥2
2

+
∥εUp1

t − εDown1
t ∥2 − ∥εUp2

t − εDown2
t ∥2

2
− zstyle∥

1

(16)

where zstyle is the blink control signal at frame t, which obeys a Gaussian distribution.εLeft1
t and εRight1

t are used
to outline the width region of the left eye, and εUp1

t and εDown1
t are used to outline the height region of the left eye.

The right eye is similar to the left eye. This describes the generation of a continuous blinking performance in a 2D
environment.

In addition, we construct a more realistic generated video by head reconstruction. We first pass the generated and the
original by applying a mean-square loss between them to compute the reconstruction loss. It is denoted as:

LRebuild =
1

k

K∑
i=1

(∆ρ′t −∆ρt)
2 (17)
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Moreover, to make the generated faces more plausible in the latent space representation, we encourage the latent
space distribution to have similarity to the Gaussian distribution of the mean vector and covariance matrix. Therefore,
we define the similarity loss Lkl as the Kullback-Leibler (KL) scatter between the latent spatial distribution and the
Gaussian distribution.

Ultimately, the loss function can be expressed as:

Lloss = λ3DL3D + λ2DL2D + λRebuildLRebuild + λKLLKL (18)

Where λ3D, λ2D, λRebuild, λKL are set to 2, 0.01, 1, 0.7. Based on the above loss function and the method in the main
body, the algorithm in this section can be represented by pseudo-code 1.

Algorithm 1 Interaction Module for Dynamic Video Reasonin

1: Input: Audio sequence α{1,...,t}, initial face-swapping picture Is, 3DMM parameters (F̄ , rid, rex)
2: Output: Updated video frames with facial head movement
3: Initialize the 3D face shape F = F̄ + αrid + β0rex using Is and 3DMM
4: Extract lip motion coefficients ωlip from pre-trained Wav2Lip model
5: Encode audio features into latent space using ResNeXt-based encoder Ψ(α{1,...,t})
6: L3D ← 0,L2D ← 0,LRebuild ← 0,LKL ← 0
7: for i = 1 to t do
8: Compute expression coefficients βi = Θ(Ψ(αi), β0 ⊙ F̄ )
9: Generate head pose parameters ρi = [µi, νi] based on conditional VAE

10: Incorporate style coefficient zstyle sampled from a Gaussian distribution
11: Decode the expression and head pose to generate updated frame I ′i
12: L3D ← L3D + (ωgen

i − ωlip
i )2

13: L2D ← L2D +
∥εLeft1

t −εRight1
t ∥2−∥εLeft2

t −εRight2
t ∥2

2 + ∥∥ε
Up1
t −εDown1

t ∥2−∥εUp2
t −εDown2

t ∥2

2 − zstyle∥1
14: LRebuild ← LRebuild + (∆ρ′i −∆ρi)

2

15: LKL ← LKL + KL divergence between latent space and Gaussian distribution
16: end for
17: L3D ← L3D/t,L2D ← L2D/t,LRebuild ← LRebuild/t,LKL ← LKL/t
18: Lloss ← λ3DL3D + λ2DL2D + λRebuildLRebuild + λKLLKL

B.3 VIDEO RE-PREDICTION AND CAUSAL DECISION LOSS.

In our video regeneration, we applied a simple CNN-VIST-CNN nesting approach for video prediction. We set it
to MSE loss. Video prediction is defined as: Consider a video sequence Xk,T = {xi}tk−T+1 at time k, comprising
the past T frames. Our objective is to predict the future sequence X ′

k,T ′ = {xi}t+T ′

k at time k, which includes the
subsequent T ′ frames, where each frame xi ∈ RC,H,W is an image characterized by channels C, height H , and width
W . Formally, the prediction model is a mapping FΓ : Xk,T 7→ X ′

k,T ′ with learnable parameters Γ , optimized through:

Γ ′ = argmin
Γ
L

k−T+1∑
i=1

FΓ (Xk,T ),

t+T ′∑
i=t

X ′
k,T ′

 (19)

During this mapping process, it is easy to see that as the number of frames of a given video sequence increases, the
more accurate the process is for subsequent predictions. The initial video generation process, on the other hand, relies
on the first cover image only, although we chose to use 3D/2D features, head reconstruction potential, etc. to guide the
generation of the video. However, inevitably the weight of the first image is very large, almost 1. However, each frame
in the time series is relatively independent and has the same weight. Although we believe that the time continuity from
the first picture to a video is given, this period of time does not match the original time series spatial sequence, and it is
correspondingly difficult to generate a cover video that matches the information that needs to be disseminated in the
secret video. Video prediction can be better combined with spatio-temporal information, but few input video sequence
frames make it difficult to match the original video spatio-temporal information for a long period. Therefore, we add
causal inference to the loss function for decision-making video generation.
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For each frame s that requires inference, the cross-entropy loss Ltpred is used to train the classifier for the prediction
module:

Ls
prediction = −

k∑
i=1

yk log(pkt ) (20)

where y is the label vector of the generated frame and pkt is the difference between the spatio-temporal dynamics of the
kth frame and the original spatio-temporal dynamics. To push the skip policy branch to select a reasonable frame at
each inference step, we adopt a simple loss function:

Lk
ce = δt−1 − δt (21)

where δt is the difference between the frame alteration frame xi of the best video re-prediction and the other alteration
frames with the highest probability. We can simply infer that larger δt indicates more confident and accurate reasoning.
Thus, we use this loss function to encourage margins to grow over inference steps, suggesting that at each step, our goal
is to select a useful frame to favor our dynamic inference.

We define parameter µ as a condition of the decision-making program:

µ = Γ ′ − Lloss (22)

In the context of a reasoning process, reliable decision-making is imperative if we are to terminate the process at the
current reasoning step. However, in the absence of basic fact labels that provide feedback on the viability of exiting
the reasoning process, we employ dynamic labels generated using δt. The difference in δt across various inference
steps allows us to estimate the spatio-temporal information gain obtained from observing additional frames during our
dynamic inference process. Given a predefined maximum inference step T , the gap between δt (at the current step) and
δT (at the final step) serves as an estimate of the potential spatiotemporal information gain if the reasoning is continued
to the end. Consequently, this gap can be utilized to determine if the network can terminate reasoning at step t. When
δt is nearly equal to δT , it indicates that the information gained from observing more frames is minimal, allowing us to
terminate inference early to reduce computational cost without compromising prediction accuracy. Specifically, at each
step t, if δt is sufficiently close to δT , implying that the estimated residual information gain is negligible, we assign
the label yfbk to 1, signifying that our model can cease inference at the t-th step. Conversely, if the label is set to 0, it
indicates the necessity for additional frames. The threshold µ > 0 controls the proximity requirement between δt and
δT for the network to exit inference. Therefore, we train the module by minimizing the binary cross-entropy loss:

Lk
fb = −

[
ykfb log (ek) +

(
1− ykfb

)
log (1− ek)

]
(23)

Therefore, the total loss for the causal decision to choose xi is:

Ltotal = Lk
fb + Ls

prediction + λceLk
ce (24)

When

{
k ≤ xi, Initial Cover Video Generation
k > xi,Video Re-prediction (25)

Where λce is the hyperparameter that controls the decision, here set to 3. We accumulate all the inference steps
L′

total =
∑k

i=1 Ltotal as the final optimization objective.

Based on the above loss function and the method in the main body, the algorithm in this section can be represented by
pseudo-code 2.
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Algorithm 2 Video Re-prediction and Causal Decision Loss

1: Input: Video sequence Xk,T = {xi}tk−T+1, future sequence length T ′

2: Output: Predicted future sequence X ′
k,T ′ = {xi}t+T ′

k

3: for i = 1 to ni do
4: Ωi = σ (LN (C (Ωi−1)))
5: end for
6: Attention(Q,K, V ) = Softmax

(
QKT

√
dk

)
V

7: MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO

8: headi = Attention(QWQ
i ,KWK

i , V WV
i )

9: for i = 1 to ni do
10: Ω′

i = σ
(
LN

(
C
(
Ω′

i−1

)))
11: end for
12: Generate predicted future sequence X ′

k,T ′ using the decoder output
13: Lprediction ← 0,Lce ← 0,Lfb ← 0
14: for s = k − T + 1 to t+ T ′ do
15: Ls

prediction = −
∑k

i=1 y
k log(pkt )

16: Ls
ce = δt−1 − δt

17: if δs ≈ δT then
18: yfbs ← 1 {Early termination is possible}
19: else
20: yfbs ← 0 {More frames are needed}
21: end if
22: Ls

fb = − [yfbs log (es) + (1− yfbs) log (1− es)]
23: Ltotal ← Ltotal + Ls

fb + Ls
prediction + λceLs

ce

24: end for
25: Ltotal ← Ltotal/(t+ T ′ − k + T )
26: Γ ′ = argminΓ Ltotal

B.4 VIDEO HIDING LOSS.

The loss function for video hiding is mainly a constraint on the reversible neural networks to perform forward-term
hiding and backward recovery of the secret video. The forward term hiding is to hide the secret video in the stego video
in the cover video. The stego video cannot be recognized as containing the secret video and the generated stego video
should be as similar as possible to the cover video. Therefore, we limit Xstego to be the same as the cover video Xcover:

Lforward = ∥Xstego ⊙ CF −Xcover ⊙ CF∥22 (26)

Where CF is the index of the center frame of the video. The output is fused in a time-smoothed manner by means of the
frame index. The goal of the backward recovery process is to recover Xsecret from Xstego. Thus, we define the loss
function as:

Lbackward = ∥X̃secret ⊙ CF −Xsecret ⊙ CF∥22 + ∥X̃cover ⊙ CF −Xcover ⊙ CF∥22 (27)

Where X̃secret and X̃cover denote recovered secret and cover videos.

Finally, we define the objective loss function for video hiding as minimizing the prior hiding loss function and the
backward recovery loss function:

LV H = Lforward + λLbackward (28)

Where λ is the hyperparameter that balances the feed-forward and recovery directions of the reversible neural network
and is here set to 2.
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Figure 6: After video hiding by our method and LF-VSN method for videos of the same time sequence, the resulting
graphs of comparison of the hidden videos generated by different methods and the same frame of each syllable of a
sentence in the original video are taken as images.

C ABLATION EXPERIMENTS

In order to verify that our method modules are all valid, we study the ablation of our method from the following aspects:

Question 1: Can a simple video face-swapping, e.g., using a simple generative model such as GAN or diffusion for
video face-swapping, achieve similar results to our model? It can be seen that a complex multi-module model will be
far more complex than a simple model during operation. In short, it is whether our modeling study is indispensable.

Question 2: How much do temporal and spatial features affect the generation of cover images for publicly distributed
videos??

Question 1 setting. We still use cosine similarity for comparison. The difference is that in this question, the focus is
more on not the mean result of face-swapping, but the stability of face-swapping per frame. We use the mean square
deviation of the cosine similarity to represent this.

Answer to Question 1. As can be seen from Figure 6, the stability of video face-swapping using GAN is very poor,
while the difference between direct video face-swapping using the diffusion model and our method still has a gap in the
metrics. This shows that our proposed concept and method are indispensable for privacy preservation in public face
video distribution.

Question 2 setting. In terms of spatiotemporal feature impact, we predicted video data with different time series
lengths by means of speech-video prediction, CNN-ViST-CNN, and causal-time prediction, respectively. In terms of
Conv kernel, we investigated the impact of kernel size and hidden dimension on model performance. We used the MSE
metric to determine the impact of the Conv kernel.

Answer to Question 2. From Table 4, it can be seen that speech video prediction performs comparably to causal
temporal prediction for video prediction over short periods. However, speech video prediction is much less effective
than causal video prediction in medium and long-term video prediction over 10s. And the CNN-ViST-CNN with direct
spatiotemporal evolution is not as effective in short-time face video prediction. This is because speech video prediction
makes full use of the face features of the first replacement image in the prediction process, including physical features
such as features and expressions. In the actual sequence, the features of a particular frame of the image will keep
changing as the time sequence does not grow shorter, and the features of a single image stand for a smaller and smaller
proportion of the total time sequence, and other spatiotemporal evolutionary features are needed. The CNN-ViST-CNN
that directly performs spatiotemporal evolution does not directly give a lot of attention to a single image, and the
spatiotemporal evolution features are not obvious in a short time, which leads to poor prediction results. The trade-off
between the two through causal analysis achieves the result of optimal long-time video prediction.
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Table 4: Ablation study in spatiotemporal information similarity

SpeechVP CNN-ViST-CNN CausalVE
1s 0.956 0.373 0.962
2s 0.937 0.501 0.955
5s 0.842 0.474 0.936

10s 0.771 0.435 0.942
20s 0.682 0.417 0.938
30s 0.594 0.409 0.943

D LIMITATIONS

The CausalVE framework involves several advanced techniques such as diffusion models, reversible neural networks,
and dynamic causal inference. This complexity may create implementation challenges for practitioners unfamiliar
with these methods. Additionally, issues such as different video quality, different lighting conditions, and different
types of facial obstructions may affect the performance of the framework. Although the diffusion model can effectively
improve the quality of videos, lower video quality still has a great impact on the training of the diffusion model and the
generation of new cover videos. Additionally, practical considerations for deployment in real-world applications (such
as latency, real-time processing capabilities, and ease of integration) are not considered in this article.

20


	Introduction
	Methodology
	CausalVE: A Framework for Face Video Privacy Interaction
	Cover Video Generation
	Face Swapping Module
	Interaction Module
	Re-prediction and Decision Module

	Video Hiding and Recovery
	Loss Function

	Experiments
	Experimental Setup
	Quantitative Comparison
	Qualitative Comparison
	Steganographic Analysis

	Conclusions
	Related Work
	Video Steganography
	Video Prediction
	Face Swap Model

	Loss Function Details
	Cover Image Generation Loss.
	Initial Cover Video Generation Loss.
	Video Re-prediction and Causal Decision Loss.
	Video Hiding Loss.

	Ablation Experiments
	Limitations

