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Figure 1: WASUP trains a neural network to extract class-representative support feature vectors (red
and blue) from support images and classifies via computation of their similarities to the test images’
latent vectors (white). Its B-cos architecture permits the computation of faithful local and global
explanations. Stars and circles denote samples of different classes.

ABSTRACT

The deployment of deep learning models in critical domains necessitates a bal-
ance between high accuracy and interpretability. We introduce WASUP, an inher-
ently interpretable neural network that provides local and global explanations of
its decision-making process. We prove that these explanations are faithful by ful-
filling established axioms for explanations. Leveraging the concept of case-based
reasoning, WASUP extracts class-representative support vectors from training im-
ages, ensuring they capture relevant features while suppressing irrelevant ones.
Classification decisions are made by calculating and aggregating similarity scores
between these support vectors and the input’s latent feature vector. We employ
B-Cos transformations, which align model weights with inputs to enable faithful
mappings of latent features back to the input space, facilitating local explanations
in addition to global explanations of case-based reasoning. We evaluate WASUP
on three tasks: fine-grained classification on Stanford Dogs, multi-label classifi-
cation on Pascal VOC, and pathology detection on the RSNA dataset. Results in-
dicate that WASUP not only achieves competitive accuracy compared to state-of-
the-art black-box models but also offers insightful explanations verified through
theoretical analysis. Our findings underscore WASUP’s potential for applications
where understanding model decisions is as critical as the decisions themselves.

1 INTRODUCTION

Deep learning is increasingly becoming part of everyday life, e.g., targeted advertisements, gaming,
and high-stakes areas like banking and medicine. In the latter, identifying errors in the model’s
decision-making process is crucial to detect failure cases, which can be addressed by adding trans-
parency to model prediction using explainable AI (XAI). Explanations are typically produced post-
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hoc for black-box models using approximation methods, which estimate the contribution of each
input feature to the prediction (Bach et al., 2015; Ribeiro et al., 2016; Selvaraju et al., 2017; Lund-
berg & Lee, 2017; Sundararajan et al., 2017; Petsiuk, 2018). While these methods can accurately
compute feature contributions for low-dimensional inputs Lundberg & Lee (2017), they introduce
approximation errors for high-dimensional inputs such as images (Adebayo et al., 2018).

As an alternative, inherently interpretable models provide explanations by design. For instance, lo-
gistic regression can be considered an inherently interpretable model since evaluating its coefficients
directly explains the effect of each input feature towards the prediction. Translating these properties
to complex functions implemented by neural networks was further fueled by the argument that if a
technique is able to summarize the decision-making of a black box without any error, the black box
could be replaced by an inherently interpretable model in the first place (Rudin, 2019). As a result,
a growing research community is dedicated to developing inherently interpretable models, e.g., for
decision-critical tasks like medicine Barnett et al. (2021); Kim et al. (2021); Wolf et al. (2023).

The explanations provided by these models can be categorized into local and global explanations,
and evaluated in terms of axioms to verify if they are faithful Sundararajan et al. (2017) 1. Local
explanations focus on individual predictions, revealing how the model arrived at a specific outcome
for a particular instance. In contrast, global explanations provide insight into the model’s over-
all behavior. In logistic regression, global explanations are derived from the model’s coefficients,
which describe how each feature influences the prediction across all instances. To produce local
explanations, a sample’s specific feature values are multiplied by their corresponding coefficients,
illustrating how each feature contributed to the particular prediction.

As outlined in Tab. 1, locally interpretable deep learning models include the work by Wang &
Sabuncu (2022), who trained a non-parametric classification head with metric learning to classify
an image by summing the softmax-normalized similarity scores between training image latent fea-
ture vectors and the test image latent feature vector. They proposed to provide local explanations by
showing the most influential images alongside their corresponding scores for a given test sample,
similar to the k-nearest-neighbor algorithm. While intuitive, the approach lacks contribution maps
in pixel space to identify important input features. To this end, BagNets (Brendel & Bethge, 2019)
classify local patches of an image individually and sum the probabilities of all patches for the final
classification. Providing the class-probability maps of the individual patches’ predictions as expla-
nations shows which local structures showed evidence of a respective class. However, they lack
faithful fine-grained attributions computed on a pixel-level, which are provided by B-cos networks
(Böhle et al., 2022; Böhle et al., 2024). In these models, each forward pass is summarized as a
linear transformation, and its resulting weight matrix then serves to compute local explanations in
image space. More recently, they were used to guide knowledge distillation by Parchami-Araghi
et al. (2024), who showed that a student network trained with knowledge distillation detects the
same features as the teacher network, which explanation-guiding helped to overcome. However,
B-cos models lack global interpretability because the weight matrix is dynamically computed for
each input.

Table 1: Comparison of inherently interpretable models and their properties.

Model Local Expl. Global Expl. Faithful Expl.
NW-Head Wang & Sabuncu (2022) ✓ ✓ ✗
ProtoPNet Chen et al. (2019) ✓ ✓ ✗
BagNets Brendel & Bethge (2019) ✓ ✗ ✓
B-Cos Böhle et al. (2022) ✓ ✗ ✓
WASUP (ours) ✓ ✓ ✓

Models that provide global interpretability include concept bottleneck models (Koh et al., 2020),
which train an encoder to predict concepts present in an image and a classifier to predict the target
class from these concepts, which serve as local explanations during a prediction. However, they
require access to concepts, i.e., meta information on each concept present in an image, e.g., the

1Throughout this manuscript, we define faithful explanations as explanations that satisfy all of the axioms
proposed by Sundararajan et al. (2017): Completeness, Sensitivity, Implementation Invariance, Dummy, Lin-
earity, and Symmetry-Preserving.
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color of the tail, legs, or head of a bird. While the concepts themselves provide global and local ex-
planations and are manually pre-defined, concept bottleneck models lack explanations in the image
domain like the Nadaraya-Watson head (Wang & Sabuncu, 2022). The most prominent inherently
interpretable model is ProtoPNet (Chen et al., 2019) and its extensions (), which provide local and
global explanations. Its key idea is to learn class-specific prototypical parts across the training set
to facilitate reasoning as “this part of an unseen test image looks like that part from my training
images.” ProtoPNet implements its reasoning by computing similarity scores between learned la-
tent feature vectors and (test sample) latent feature vectors. To provide image space explanations,
it upsamples similarity maps from latent space into the input domain. However, Hoffmann et al.
(2021) found that the explanations provided by ProtoPNet can be misleading and called for more
rigorous evaluations. Sacha et al. (2024) proposed a benchmark to evaluate spatial misalignment of
its prototypical parts, and (Wolf et al., 2024) showed that the explanations are generally not faithful,
primarily due to an absence of a spatial relationship between the input space and latent space in deep
neural networks, which generalizes to other prototypical networks like Pip-Net (Nauta et al., 2023),
ProtoTrees (Nauta et al., 2021), XProtoNet (Kim et al., 2021), or the Deformable ProtoPNet (Don-
nelly et al., 2022). While prototypical part-based case-based reasoning has shown to be the most
human comprehensible explanation (Nguyen et al., 2021; Kim et al., 2023; Jeyakumar et al., 2020),
the number of explanations to be evaluated in its current implementations grows with the number of
prototypical parts per class learned by the model.

We propose WASUP, an inherently interpretable neural network that fulfills all three properties:
local, global, and faithful explanations (see Tab. 1). We inject case-based reasoning into WASUP’s
decision-making to provide local and global explanations that reduce the complexity of explanations
to be evaluated. WASUP can implement any neural network architecture (e.g., ResNets He et al.
(2016), Transformers Vaswani (2017), Mamba Gu & Dao (2023)) in its feature extractor without
limiting their computational capacity. Specifically, the model extracts support vectors from training
images that capture only class-representative features by suppressing negative contributions from
other classes. Classification is performed by computing and summing similarity scores between
these support vectors and the latent feature vector of the input image (see Fig. 1). Levering B-
cos networks ensures that both the support vectors and their similarity to test images are directly
and faithfully explainable in the input space, enabling an intuitive understanding of the model’s
reasoning. In summary, the support samples serve two purposes: (i) they help the model capture the
high variability between different classes in the data, and (ii) they provide the user with examples
that illustrate which parts of the class-representative training images the feature extractor focuses
on. Our contributions are as follows:

• We propose WASUP, an inherently interpretable network that provides faithful local and
global explanations for image classification with either single or multiple labels.

• We prove that explanations provided by WASUP fulfill the axioms required to be faithful.

• We empirically evaluate WASUP and its explanations on three tasks (fine-grained single-
label image classification on Stanford Dogs, pathology prediction on RSNA, multi-label
image classification on Pascal VOC), and three architectures with different numbers of
parameters (DenseNet121: 8M, ResNet50: 26M, a hybrid vision transformer: 81M).

• We demonstrate how the explanations provided by WASUP enable model debugging.

2 BACKGROUND

Learning Class-Discriminative support vectors Wang & Sabuncu (2022) proposed to classify
images with the non-parametric Nadaraya-Watson head and a convolutional neural network Fθ with
parameters θ extracting latent vector of dimension d. During training, they randomly sample a
number of support vectors vck for every batch per class from the training set {(Ik, yk)}Nk=1, V c =
{vck = Fθ(Ik) | yk = c}, with Ω(V c) = Ns. This selection is executed for every training batch,
thereby directing the optimization of the feature extractor Fθ to form distinct, class-specific clusters
within the latent feature space.

For classification, a test image I is first transformed into its latent representation Fθ(I). The proba-
bility that I belongs to class c is computed by applying the softmax function to the negative squared

3
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L2 distances between Fθ(I) and each support vector vck:

p(y = c | I) =
∑
k

exp
(
−∥Fθ(I)− vck∥

2
2

)
∑

k′ exp
(
−
∥∥Fθ(I)− vc

′
k′

∥∥2
2

) .
This classification strategy leverages the learned latent space structure to assign class probabilities
based on proximity to the nearest support clusters.

Local explanations show the images of the most influential support samples in terms of softmax
probabilities (see Fig. 2). At first glance, these explanations seem intuitive, but the main limitations
are two-fold: (i) Computing probabilities from (inverted) Euclidean distances with softmax: Re-
gardless of the input (e.g., in an adversarial attack), the model explanations will suggest that at least
one support sample is similar with sufficient probability. Additionally, the softmax probabilities are
inapplicable to multi-label classification tasks out of the box since they sum to one. Thus, the model
cannot predict three classes simultaneously under a standard decision threshold of 0.5. (ii) No pixel-
level explanations: While explanations using similar input images are intuitive for humans, the lack
of attribution maps hinders a further understanding of the network’s mechanisms and the detection
of biased predictions.

Faithful Explanations with B-cos Networks B-cos networks proposed by Böhle et al. (2022)
impose weight-input alignment between the layer weights and input by re-formulating the scalar
product used by neural network computations, removing biases and standard non-linearities. This
forces the network to focus on the most salient features across the training set and facilitates the sum-
mary of each forward pass as an input-dependent linear equation. Each input feature’s contribution
can directly be traced by its corresponding weight in the corresponding transformation matrix.

Mathematically, the B-cos transformation computes a modified dot-product, that increases weight-
input alignment its exponent B, between an input vector x and a layer weight w:

B-cos(x;w) = ∥ŵ∥∥x∥|cos(x, ŵ)|B × sgn(cos(x, ŵ)), (1)

with ŵ = w/∥w∥ =⇒ ∥w∥ = 1, cos the cosine, sgn the sign function, and × the real valued
multiplication. While it is bounded by the magnitdude of ∥x∥, it effectively computes an input-
dependent linear equation, in matrix form expressed by:

B-cos(x,W) = W̃(x)x, with W̃(x) = |cos(x,Ŵ)|B−1 ⊙ Ŵ, (2)

where |cos(x,Ŵ)|B−1 scales the elements of the fixed weight matrix W̃ (⊙ the elementwise multi-
plication). A neural network Fθ with parameters θ that computes a series of these equations is called
piece-wise linear and its forward pass is summarized by the single input-dependent weight matrix:

Fθ(x) = W̃L(aL)W̃L−1(aL−1) . . .W̃1(a1 = x)x =

 L∏
j=1

W̃j(aj)

x = W1→L(x)x. (3)

Thus, the contribution maps in terms of a pixel location (m,n) in image space for a single forward
pass are faithfully computed with:

ϕl
j(x)(m,n) =

∑
ch

[
[W1→l]

T
j ⊙ x

]
(ch,m,n)

, (4)

with l any layer and j the index of the row (neuron) in W1→l (note that this allows to explain any
intermediate layer’s l neurons j). Since B-cos networks are trained with binary cross-entropy loss,
features negatively attributing the class logit cannot increase its probability and are not visualized.

Böhle et al. (2022) propose to compute RGBA explanations by normalizing each color channel [ch,
1-ch]2 to sum to 1 to maintain the angle of each color pair and to then scale RGBA values into the
range [0..1]. Finally, the alpha value (pixel opacity) is computed with the 99.9th percentile p99.9 of
the resulting weight w as min

([
∥w(m,n)∥2

]
/
[
p99.9(∥w(m,n)∥2)

]
, 1
)
.

2B-cos networks require an image encoding of [R, G, B, 1-R, 1-G, 1-B] in the channel dimension to uniquely
encode colors and to mitigate favoring of brighter regions.
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Figure 2: While the Nadaraya-Watson head Wang & Sabuncu (2022) provides explanations fol-
lowing case-based reasoning, and B-cos networks Böhle et al. (2022) faithfully explain the image
transformation of a neural network, WASUP combines both properties, thereby adding global ex-
planations by extracting a fixed set of class-representative, explainable support vectors.

Figure 3: WASUP consists of a feature extractor F with model weights θ that extracts latent vec-
tors f . The evidence predictor E converts them into positive-valued vectors f+, which, given other
images from the training set, can also serve as support vectors vci . Then, it computes the similar-
ity between the input image’s latent vector f and support vectors vci . Summing the class-specific
temperature-normalized similarity scores and adding a bias b yields the class logit µc. The B-cos
transform facilitates the summary of a forward pass as a single weight-matrix W1→L(I), which is
leveraged to compute faithful contribution maps.

The obvious strength of B-cos models is that they are able to extract local explanations of a sin-
gle forward pass that resemble the transformation of an input image with the network with high
fidelity, which we prove to fulfill the axioms required for faithful explanations in the appendix A.1.
Nonetheless, they do not provide global explanations (see Fig. 2).

3 METHODS

We propose WASUP, which combines the strengths of B-cos networks and the Nadaraya-Watson
head, to obtain an inherently interpretable neural network that implements case-based reasoning
and provides faithful local and global explanations, thereby reducing the complexity of explanations
to evaluate. WASUP achieves this by extracting class-representative support vectors from training
images for similarity-based classification and by leveraging the B-cos transform to faithfully explain
its decision, see Fig. 2.
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3.1 ARCHITECTURE

WASUP consists of a feature extractor Fθ (see Fig. 3) employs a B-cos backbone and transforms
an image I into latent vectors f = Fθ(I) ∈ Rd, with I ∈ Rch×H×W , with d being the latent
dimension, ch, H , and W the image’s channels, height, and width, respectively, and θ the model
weights (Fθ can be any B-cos neural network architecture).

The evidence predictor E consists of a function ⊕ : Rd → Rd
≥0 that transforms the real-valued

vectors f into non-negative vectors f+ = ⊕(f), and a similarity measure that computes similarities
between support vectors vci ∈ F c = {f+

k = Fθ(Ik) | yk = c} and f+ as sim(f+, vci ) ∈ R, with
Ω(F c) = Ns and i denoting the i-th support vector of class c. Logits are computed for class c as the
sum of its similarity scores:

µc = b+
∑
vc
i

sim(f+, vci )

T
, (5)

where b represents a fixed bias term, i = 1, . . . , Ns indexes the support samples, and T is a temper-
ature to improve convergence by scaling the logits’ magnitude appropriately. Examples of suitable
transformation functions ⊕ include the exponential function, absolute value, and ReLU.

3.2 TRAINING AND OPTIMIZATION

Following Wang & Sabuncu (2022), we randomly sample the training set to extract Ns support
vectors vck per class to encourage the model to form distinct, class-specific clusters in latent space.
After every epoch, we compute sets of latent vectors V̂ c = {f+

k = Fθ(Ik) | yk = c}Nk=1, which
we each cluster using k-means to extract centroids γc

i . Then, we replace each centroid γc
i with the

closest latent vector to yield support vectors from the same class, defined as:

vci = arg min
f+
k |yk=c

∥f+
k − γc

i ∥2, (6)

which facilitates case-based reasoning similar to k-nearest-neighbors, as only features descriptive of
the class can increase the probability of that class by definition of WASUP.

We follow the argument of Böhle et al. (2024) that training with binary cross entropy loss increases
the alignment pressure induced by B-cos networks, and compute the loss for every batch of Nb

samples and C classes as:

LBCE = − 1

Nb

Nb∑
b̂=1

C∑
c=1

[
yb̂,c log(ŷb̂,c) + (1− yb̂,c) log(1− ŷb̂,c)

]
, (7)

with ŷb̂,c = σ(µb̂,c), σ denoting the sigmoid function. If trained with cross-entropy loss, it could
potentially converge towards optima in which activation of the wrong classes is still relatively large,
and thus, the alignment pressure would fail.

3.3 EXPLAINABILITY

Global Explanations While global explanations provided by WASUP are ideal for a developer to
debug a model, they also facilitate case-based reasoning, which is most intuitive to understand for
humans (Nguyen et al., 2021; Kim et al., 2023; Jeyakumar et al., 2020).

We propose to first evaluate what is encoded in each support vector by computing the RGBA expla-
nations and contribution maps in terms of the similarity measure to its input image: B-cos(vci , v̂

c
i ) =

∥vci ∥, since v̂ci = vci /∥vci ∥ = 1 and cos(vci , v̂
c
i )

B = 1 for any B.

We observed negative attributions for the global features during initial experiments. While only vi-
sualizing features with positive class contributions is reasonable during the classification of an input
image, these negative attributions can serve as means of debugging a model if carefully evaluated.
The definition B-cos(vci , v̂

c
i ) = ∥vci ∥ implies that negative attributions are a means of the model to

downscale the range of the B-cos similarity (accordingly, we observed the negative attributions in
the corners of the images). This indicates the temperature scaling in Eq. 5 was chosen too small,
and re-training with a more significant temperature helped to overcome this issue.
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Additionally, WASUPś decision-making is based on a fixed set of latent support vectors. Hence, we
can compute the inter- and intra-class similarities to gain insights into the latent space learned by
the feature extractor.

Local Explanations Local explanations, shown in Fig. 2 are threefold: First, the temperature-
scaled similarity scores sim(f+,vc

i )
T (support evidence) provided by the evidence predictor E quan-

tify the alignment of a test image with a support sample, and their proportion of the log-probability.
Second, since a test image is assigned to a class if it is similar to that class’s support sample (see
Fig. 2), understanding which parts of the support sample’s image are compressed in the support vec-
tors themselves is crucial, i.e., explaining the model mechanisms. The B-cos properties of WASUP
allow us to faithfully compute the RGBA explanations in terms of the similarity measure. The pre-
diction of our model is a linear transform with the temperature and the bias term. Thus, we compute
contribution maps in terms of the class logit (test contribution) following the linearity axiom (Sun-
dararajan et al., 2017) (ϕ = αϕ1 + βϕ2 iff F(x) = αF1(x) + βF2(x)). Therefore, the test sample
contributions highlight the image features that aligned with the support vectors. Third, the global
RGBA explanations (support contributions) of the support samples allow the user to check for the
intersection of support contributions and test contributions, similar to k-nearest-neighbor.

Theoretic Evaluation To thoroughly assess the interpretability of WASUP, we conduct a theo-
retical evaluation of its explanations based on the axioms defined by Sundararajan et al. (2017),
namely Completeness, Sensitivity, Implementation Invariance, Dummy, Linearity, and Symmetry-
Preserving. Our proofs (see App. A.1), confirm that WASUP’s explanations adhere to these princi-
ples, thereby validating the model’s capability to provide faithful and comprehensive insights into
its decision-making processes.

4 EXPERIMENTS AND RESULTS

We evaluate WASUP on three tasks with three backbone architectures as feature extractors. The
tasks are (i) multi-label image classification on Pascal VOC (Everingham et al., 2009), (ii) fine-
grained image classification with mutually exclusive labels on Stanford Dogs (Aditya et al., 2011),
(iii) pathology prediction with mutually exclusive labels on RSNA (Shih et al., 2019). The backbone
architectures are B-cos versions of DenseNet121 (Huang et al., 2017), ResNet50 (He et al., 2016),
and a Hybrid Vision Transformer (Xiao et al., 2021) (VitC), with ∼8M, ∼26M, and ∼81M trainable
parameters, respectively.

Compared to black-box versions of the backbones (see Tab. A.2), WASUP performs on par on Pascal
VOC (≥ +0.29%), worse on Stanford Dogs (−3.7% Acc), and comparable on RSNA (−0.65%
Acc); take into account that we train the model from scratch on RSNA.

Pascal VOC (Everingham et al., 2009) Fig. 4 illustrates explanations of WASUP for multi-label
image classification on Pascal VOC with a DenseNet121 backbone. As seen in Figs. 4 (a) and (b),
WASUP shifts its focus in the test image depending on the class to predict, i.e., the corresponding
column c in [W1→L]

T
c : To predict the cat class, only the area around the cat is present in the

contribution map. When predicting the human class, for which the model computed very high
support evidence, the complementary area of the image is contained in the contribution map. The
support contributions show that the model is particularly sensitive to the eyes of a cat. In the test
sample in Fig. 4 (a) and (b), only the left half and one eye of the cat are visible, which explains the
comparably low support evidences in this particular instance. Arguably, the support contributions
of the human class in Fig. 4 (b) suggest that the model learned to look for human eyes in support
sample 42, which shows high contributions from the two lights on the ceiling. For support samples
43 and 44, the whole heads of the humans are the primary contributions to the support vectors.

Observing the wrong prediction presented in Fig. 4 (c) for the class potted plant, we see that the
support contribution map of support sample 45 focuses on the soil in the pot, while the support
samples 46 and 47 focus on the actual plants themselves. We see in the contribution map of the
test sample that the model mistakes the flower on the left-hand side and the artificial flowers on the
right-hand side with this class. The model correctly classified the TV/monitor class for the same
sample, presented in Fig 4 (d), in which the test contribution map primarily highlights the TV. Here,
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the support contributions of sample 57 show that the support vector carries information on all three
monitors present in the image. In the case of support sample 58, the support contribution shows high
contributions from the keyboard in addition to the monitor, indicating that the model picked up this
bias from the data. Support contribution 59 focuses on the TV instead of background objects.

We present additional results for other test images and backbones in Figs. A.5-A.7. In many test
sample instances (e.g., compare Fig. A.5 (a) vs. (b), Fig. A.5 (c) vs. (d), Fig.A.7 (a) vs. (b)), we
observe a strong shift in contributions depending on the class prediction. This demonstrates that the
latent vectors of samples with multiple labels efficiently encode features for all classes that need
to align with the class support vectors. In Fig. A.6 (a)-(d), we see that the model predicted four
classes, for which, according to the dataset labels, only a single class was actually contained (chair).
However, the explanations look very reasonable. Indeed, there is a table in the scene; whether it is a
dining table is obviously debatable. There is also a child in the image, so predicting humans is not
unreasonable. Lastly, the potted plant class logit is very low, and the test contribution map highlights
the flower on the table.

For the test sample predicted in Fig. A.7 (d) and (e), we see the correct classification of humans with
high support evidence scores (note how the model extracted the human for support sample 44 in
very dark lighting conditions), and WASUP believed that the martial arts club logo on the person’s
outfit resembled the logo of a drink.

Stanford Dogs (Aditya et al., 2011) We evaluate WASUP with a ResNet50 backbone on the
Stanford dogs dataset. The contribution maps for the test samples in Figs. A.8,A.9,A.10 show that
WASUP consistently focuses on the dogs and discards background elements such as humans, espe-
cially in Figs. A.8 (a) and (b).

The wrong classification of the test sample presented in Fig. A.8 (c) shows that primarily the head of
the dog contributed to an increased similarity with the support vector of support sample 46, whose
support contribution focuses on the head, too. In contrast, the support contributions of support
samples 45 and 47 both indicate that the support vectors contain large portions of the body of the
dog. Evaluating the explanations of the correct class in Fig. A.8 (d) shows that the support sample
33 containing two dogs has high support evidence, as there are two dogs of its class in the test image.
However, the low activation of support samples 34 and 35, which both contain one dog, resulted in
little support evidence, indicating that the number of instances is encoded into support vectors.

The different magnitude in the support evidence suggests that the model benefits from increasing
the number of support samples in settings with high intra-class variability, which manifests in the
visualization of support samples and their contribution maps. Considering the support evidence of
support sample 162 in Figs. A.10 (a) and (b), its support evidence for the test sample in Fig. A.10
(a) is lower compared to the test sample in Fig. A.10 (b), which only contains the lower portion
of the head like support sample 162. The support contributions of the other support samples that
focus on the eyes and the body show the inverse behavior of the two respective test samples. For
some classes, we observe similar support evidence for all support samples, e.g. Fig. A.9 (a) and (b),
suggesting lower intra-class variability within the training data for the particular classes.

RSNA (Shih et al., 2019) We utilize the RSNA dataset to showcase WASUP on a decision-critical
task to differentiate between images with lung opacity and others (healthy and unhealthy without
lung opacity, indicated by the presence of bounding boxes) from chest X-ray images. Here, we want
to verify reasonable decision-making by evaluating explanations in terms of bounding boxes. An
explanation of a classifier trained to predict lung opacity should focus on an area inside the bounding
box, illustrated in Figs. A.11-A.12.

Here, the model has to learn very subtle intra- and inter-class differences. Evaluating the prototypes
in Fig. A.13 shows only positive contributions as desired. In the case of the three non-occluded
support samples on the left, we immediately see that the sample is likely an outlier in that it has
some disease without opacity. The second and third support contributions are primarily highlighted
within the lungs and bounding boxes for the respective classes. Interestingly, the model seems to
exclude atypical objects from the healthy support vectors: Consider the third non-occluded support
contribution that does not contain contributions for the dark clamp present in the support sample.
However, the first two support contributions of each class contain most of the input and are, thus,
hard to interpret.

8
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The predictions in Figs. A.11 (a)-(d) exemplify how the support evidence varies across the class’s
support samples and suggest that the increasing number of support samples allowed WASUP to
reproduce the class’s latent space with a likely high variability. Additionally, we observe a high
degree of intersection between significant test sample contributions and bounding boxes for the
occluded class in Figs. A.11 (a)-(d) and that the focus of the model is within the lungs for non-
occluded samples in Fig. A.12, indicating that the model indeed learned to differentiate occlusion
from no-occlusion using medically reasonable regions.

Debugging WASUP While the experiments primarily highlighted the explainability features from
the view of a user, we now exemplify how the global and local explanations help to identify flaws
in the optimization process. Revisiting the model trained on RSNA, we detail how to use the global
explanations of WASUP to gain more insights into the model behavior. We observe that the sup-
port evidence of support sample 0 of the correct classifications in Figs. A.12 (a) and (b) is almost
absent compared to the wrong classification in Fig. A.12 (c). Considering that support contribution
0 contains large parts of the input, this raises suspicion. In addition, we see that the only significant
evidence for the correct class depicted in Fig. A.12 (d) comes from support sample 3, which suffers
from contributions across the whole input as well. As a result, we evaluate the latent space learned
by WASUP in Fig. A.14 and find that support vectors 0 and 3, although of different classes, are very
close in the t-SNE projection. We attribute this to a weak latent representation, suggesting that the
model has yet to learn a more class-separable latent space.

Next, we evaluate whether the model indeed learned class-representative support vectors (see
Fig. A.15) by computing the Silhouette score (0.655) (Rousseeuw, 1987) and plotting the inter-
and intra-class B-cos similarities of WASUP trained on Pascal VOC with a DenseNet121 backbone
in Fig. A.16. We observe that the intra-class similarities on the diagonal are indeed higher than
those off-diagonal, suggesting good class distinction in latent space. Additionally, the average dis-
tance between some classes is a bit higher, e.g., dining table, chair, and bottle. This is expected, as
images containing a dining table often include a chair and a bottle, requiring the model to extract a
latent vector capable of predicting all three classes with sufficient confidence.

5 DISCUSSION AND CONCLUSION

Current inherently interpretable models either lack global explanations, fail to explain the inter-
nal mechanisms of the deep learning model, or cannot provide explanations that faithfully explain
their decision-making. To this end, we proposed WASUP for interpretable classification by pro-
viding faithful local and global explanations by leveraging case-based reasoning and weight-input
alignment achieved with B-cos neural networks. Our theoretical analysis shows that our proposed
method’s explanations satisfy the required axioms for faithfulness. We evaluated WASUPon three
tasks using three backbone architectures, demonstrating how the complex mechanisms learned by
neural networks can be decomposed into intuitive explanations with limited complexity.

Additionally, we exemplified how its global and local explanation properties enable effective model
debugging from a developer perspective while giving intuitive explanations of its decision-making.
We focused on creating a model that yields comprehensible explanations, which can, if desired,
decompose each test contribution into individual components based on the similarity measure. This
generates additional contribution maps for each support sample, facilitating further validation in
cases with high intra-class variability, albeit with an increase in complexity.

While k-means clustering is fast to optimize, WASUP introduces additional overhead by requiring
the computation of support vectors, which is a potential limitation in cases with many classes. How-
ever, as demonstrated with the Stanford Dogs dataset comprising 120 classes, WASUP is readily
applicable out of the box to datasets with hundreds of classes. Moreover, note that the number of
classes in decision-critical fields such as medicine is generally smaller. In future work, we are cu-
rious to extend WASUP by conformal prediction to automatically show the explanations of a set of
possible classes as opposed to the most likely one in single-label tasks.
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(a) Prediction for the cat class.

(b) Prediction of the person class.

(c) A wrong prediction: The model mistook the flower with potted plants.

(d) However, the model correctly identified the TV.

Figure 4: Correct classifications are depicted with blue support evidence bars, incorrect ones with
red. The model trained on Pascal VOC with a DenseNet121 backbone barely classified the test
sample in (a) as a cat, because all support images suggest that the model learned to look for two cat
eyes. However, the test sample only contains one eye of the cat, and its support contributions suggest
that the model is susceptible to detecting two eyes. Computing the contributions for the person class
in (b) shows how the model utilizes the other portion of the input features. This shift is also present
in the example (c) and (d).
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Amin Parchami-Araghi, Moritz Böhle, Sukrut Rao, and Bernt Schiele. Good teachers explain:
Explanation-enhanced knowledge distillation. arXiv preprint arXiv:2402.03119, 2024.

V Petsiuk. Rise: Randomized input sampling for explanation of black-box models. arXiv preprint
arXiv:1806.07421, 2018.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analy-
sis. Journal of computational and applied mathematics, 20:53–65, 1987.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nat Mach Intell, 1(5):206–215, 2019.

Mikołaj Sacha, Bartosz Jura, Dawid Rymarczyk, Łukasz Struski, Jacek Tabor, and Bartosz Zieliński.
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A APPENDIX

A.1 ON THE FAITHFULNESS OF B-COS EXPLANATIONS

B-cos modles are piece-wise linear models that allows to summarize each input as an input-
dependent linear transform f(x) = W1→L(x)x, derived in Eq. 3. Explanations are computed
in terms of the weight matrix W1→L(x) by multiplying each feature with its matrix weight
ϕ(x)i = [W1→L]

T
j ⊙ x](ch,i,j). To show that computing explanations for a forward pass is faithful

(i.e., satisfies below six axioms introduced by Sundararajan et al. (2017)), we need to show that they
hold considering the transformation matrix W1→L(x). While W1→L(x) is indeed input-dependent,
it is effectively fixed during the computation of the explanation for its specific input x. This is be-
cause the explanations ϕ(f,X) aim to attribute the output f(x) to the input features of x using the
weights at that point. Therefore, we assume a fixed W1→L(x) when explaining the forward pass
of an input x, and acknowledge that while W1→L(x) varies across different inputs, it remains con-
stant within the context of computing local explanations ϕ(f, x) for a particular x. In addition, we
consider the case of single-class prediction, where the weight matrix simplifies to a single-column
form (W1→L(X) ∈ R) for in input vector X ∈ R. This allows us to focus on the core properties
of the explanation mechanism without loss of generality since explaining the prediction of a class
in the multiclass setting is analogous to explaining its corresponding column vector of the matrix
W1→L(x).

We abbreviate W1→L(x) with W (X) for ease of notation in the following. Let WASUP be
defined as f(X) = W (X) · X and its contributions similarily by ϕ(f,X) = W (X) ⊙ X =
(W (X)1 ×X1, . . . ,W (X)N ×XN ) (remark that · denotes the scalar product and ⊙ the element-
wise multiplication, × the multiplication of real numbers).

Now, we reformulate f(X):

f(X) = W (X) ·X =

N∑
i=1

W (X)i ×Xi =

N∑
i=1

ϕ(f,X)i. (8)

Completeness: The sum of feature attributions should add up to the model output.

This follows trivially from the reformulation in Eq.8.

Sensitivity: If changing only one feature’s value changes the prediction of the model, this feature’s
attribution should be non-zero.

We reformulate: f(X) =
∑N

j=1 ϕ(f,X)j = ϕ(f,X)i +
∑N

j ̸=i ϕ(f,X)j .

Modifying X only in i, denoted by X̂ , and f(X) ̸= f(X̂) yields:

f(X) = ϕ(f,X)i +
∑N

j ̸=i ϕ(f,X)j ̸= f(X̂) = ϕ(f, X̂)i +
∑N

j ̸=i ϕ(f,X)j .

and allows to substitute
∑N

j ̸=i ϕ(f,X)j .

=⇒ ϕ(f,X)i ̸= ϕ(f, X̂)i, which means that at least one of the two attributions in non-zero.

Implementation Invariance If two models are functionally equivalent, i.e. the outputs are equal
for all inputs, despite having different implementations, their contributions should always be identi-
cal.

Let f1, f2 be implementations.

Then: f1 = W1(X) ·X , f2 = W2(X) ·X, ∀X =⇒ W1(X) = W2(X), ∀X .

It follows that W1(X)⊙X = W2(X)⊙X, ∀X =⇒ ϕ(f1, X) = ϕ(f2, X), ∀X .

Dummy If a model f does not depend on some feature Xi, its attribution should always be zero.

If f(X) is does not depend on some feature Xi, it follows that W (X)i ×Xi = 0, ∀Xi ∈ R

=⇒ W (X)i = 0 ∀, Xi ∈ R
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=⇒ ϕ(f,X)i = 0, ∀Xi ∈ R.

Linearity If the output of a model is a linear combination of two models, the attribution of the
combined model should be the weighted sum of the contributions of the original models.

We need to show that f(X) = αf1(X) + βf2(X) =⇒ ϕ(f,X) = αϕ(f1, X) + βϕ(f2, X).

f(X) = αf1(X) + βf2(X) = α(
∑N

i=1 W1(X)i × Xi) + β(
∑N

i=1 W2(X)i × Xi) =

α(
∑N

i=1 ϕ(f1, X)i) + β(
∑N

i=1 ϕ(f2, X)i) = αϕ(f1, X) + βϕ(f2, X).

Symmetry-Preserving If swapping two features does not change the model output for all possible
values, they should have identical attributions.

Let Xi, Xj be two features.

If swapping the two does not change the model output for all possible values, it follows that

W (X)i ×Xi = W (X)j ×Xj , ∀Xi, Xj ∈ R

=⇒ ϕ(f,X)i = ϕ(f,X)j , ∀Xi, Xj ∈ R.

A.2 ON THE FAITHFULNESS OF SUPPORT VECTORS

On a theoretical level, the global explanations are the explanations of an intermediate B-cos neuron.
Thus, they satisfy the above axioms as well and can be interpreted as the information encoded in the
respective support vector.

When providing local explanations, we view support vectors as the weights of a B-cos linear trans-
form. Hence, computing the explanation of the prediction of the class in terms of the output yields
the input features compressed in any of the support vectors; and the log-probability scores of each
support vector indicate to which extend each was found.

Justification for ReLU in WASUP In contrast to other functions that could be used to implement
⊕, the ReLU activation does not alter the range of the input to potentially huge or tiny numbers
like, e.g. the exponential. However, ReLU activations are commonly scrutinized for their role in
setting negative activations to zero, which can cause deep neural networks to interpret this suppres-
sion as the absence of a feature. Thus, many XAI methods (e.g. gradient-based) yield misleading
attribution maps, as they cannot account for this type of contribution. However, this phenomenon is
tightly controlled in WASUP, where the sole operation following the ReLU activation is a similarity
computation between the latent vectors of two images. As a result, the absence of a feature does
not, by design, affect the probability of class logits, rendering it valid to disregard any input and its
explanation from neurons corresponding to such features.

A.3 IMPLEMENTATION AND TRAINING DETAILS

Optimization All models were optimized using the AdamW optimizer with fixed hyperparame-
ters: weight decay set to 0.0, betas configured to (0.9, 0.999), and an epsilon value of 1e-08. We con-
ducted an extensive grid search over the hyperparameter space (see Tab. A.2) to identify the optimal
settings based on accuracy. The training employed a custom learning rate scheduling policy, which
began with a linear warm-up phase over the first two epochs, increasing the learning rate from 10% to
the initial learning rate. This was followed by maintaining the initial learning rate until 50% of the to-
tal training iterations were completed. Subsequently, the learning rate was decayed by a factor of 0.5
at every subsequent 10% milestone of the total iterations. Batch sizes were set to 32 for all datasets
except RSNA, which utilized a batch size of 64. The number of training epochs was standardized to
50 across all datasets, with RSNA trained for 100 epochs. Pretrained feature extractor weights were
sourced from torchvision https://pytorch.org/vision/stable/index.html and the
official B-cos repository https://github.com/B-cos/B-cos-v2 for all experiments ex-
cept those involving RSNA.

Model-specific parameters included setting B-cos B = 2 and using three support samples. For
WASUP, the grid search explored learning rates of 0.01, 0.003, 0.001, and 0.0003 for the RSNA
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dataset, and 0.0022, 0.001, 0.00022, 0.0001, 0.000022, and 0.00001 for other datasets. Temperature
parameters tested were 10, 30, and 50 for RSNA, and 10 and 30 for the remaining datasets. For
BlackBox models, the grid search included the same learning rates as WASUPand additionally var-
ied the weight decay parameter, evaluating values of 0.0 and 0.0001. The best-performing models
were selected based on their accuracy metrics.

Table A.2: Best configurations and performance of each model. WASUP consistently performs
marginally better (≥ +0.29%) than the black box with the same backbone on Pascal VOC. On
Stanford Dogs, the black box outperforms WASUP by 3.7%. On RSNA, the difference (0.65%)
marginally favors the black box, although a repeatability study with different random weight initial-
izations is needed to confirm this finding (note that models were only randomly initialized in the
RSNA experiment).

Method Model Best LR Best WD Best Temp. Acc (%)

BlackBox

VOC - DenseNet121 2.2× 10−5 0.0 - 96.42
VOC - ResNet50 1.0× 10−5 0.0 - 96.71
VOC - VitC 1.0× 10−4 0.0 - 96.35
StanfordDogs - ResNet50 1.0× 10−5 0.0 - 87.16
RSNA - DenseNet121 3.0× 10−4 1.0× 10−4 - 79.78

WASUP

VOC - DenseNet121 2.2× 10−4 - 30 96.73
VOC - ResNet50 1.0× 10−4 - 30 97.00
VOC - VitC 2.2× 10−5 - 10 96.72
StanfordDogs - ResNet50 1.0× 10−4 - 10 83.46
RSNA - DenseNet121 3.0× 10−4 - 50 79.13

Architecture All backbones are extended by a linear projection layer to extract feature vectors
∈ Rd = 128. The ⊕ function is implemented as a ReLU activation in the evidence predictor E . In
multi-label classification settings, only training samples with a single class label are considered for
support labels.

Datasets, Data Pre-Processing and Augmentation In our study, we adhered to standard dataset
splits to ensure consistency and comparability with existing research. Specifically, for Stanford
Dogs, and Pascal VOC, we utilized the official training and testing partitions as provided. Regarding
the RSNA dataset, we employed the training set from Stage 2 of the RSNA challenge and further
subdivided it by randomly sampling 25% of the training data to form a separate test set, ensuring
that the splits were stratified by class label. Additionally, we verified that the distributions across
sex remained consistent following the splitting process, as illustrated in Tab. A.3.

Table A.3: Dataset statistics of the RSNA dataset.

Dataset Split Patient Sex Target Number of Samples

Training Set

F No Opacity 6,770
F Opacity 1,873
M No Opacity 8,734
M Opacity 2,636

Test Set

F No Opacity 2,246
F Opacity 629
M No Opacity 2,922
M Opacity 874

For non-Bcos models, we applied standard normalization using the mean and standard devia-
tion calculated from the training set. Specifically, images were standardized with mean values
[0.485, 0.456, 0.406] and standard deviations [0.229, 0.224, 0.225].

Data pre-processing for the Pascal VOC and Stanford Dogs datasets included a
RandomResizedCrop of torchvision to a target size of 224 pixels using bilinear interpolation.
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We implemented a RandomHorizontalFlip with a probability of 0.5. For non-Bcos models,
standardization was performed as mentioned above. Additionally, we employed RandomErasing
with a probability of 0.5 and a scale range of 2% to 33% of the image area.

For the RSNA dataset, intensity rescaling was conducted to map the maximum Hounsfield Units to
a range between 0 and 1. Data augmentation techniques included a RandomHorizontalFlip
with a probability of 0.5 and a RandomAffine transformation. The RandomAffine parameters
consisted of rotations up to 45 degrees, translations of ±15% in each direction, and scaling factors
ranging from 0.85 to 1.15. We also applied RandomErasing with a probability of 0.5, using patch
sizes between 5% and 20% of the image area.
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A.4 ADDITIONAL FIGURES

A.4.1 VOC - RESNET50

3 4 5 b
-4.0

-2.0

0.0

Test Sample Contrib.

Test Sample

Support Evidences

Support Sample 3 Support Sample 4 Support Sample 5

Support Contrib. 5Support Contrib. 4Support Contrib. 3

(a) Prediction for the bicycle class.

18 19 20 b
-5.0

0.0

5.0

(b) Prediction of the car class. Note the shift in contributions compared to (a).

24 25 26 b
-4.0

-2.0

0.0

2.0

(c) The model correctly found the chair.

45 46 47 b
-4.0

-2.0

0.0

(d) And also the potted plants. Note the shift in contributions compared to (c).

Figure A.5: In this and the following figures, they layout introduces marginal changes compared
to the main figure. Refer to (a) for the respective explanations. This model was trained with a
ResNet50 backbone on VOC.
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24 25 26 b
-5.0

0.0

5.0

(a) Prediction for the chair class.

30 31 32 b
-5.0

-2.5

0.0

2.5

(b) Wrong prediction according to the label of the dining table.

42 43 44 b
-4.0

-2.0

0.0

2.0

(c) Wrong prediction according to the label of a person.

45 46 47 b
-4.0

-2.0

0.0

(d) And a wrong prediction, as the flower on the table was mistaken with a potted plant.

Figure A.6: VOC ResNet50
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A.4.2 VOC - VITC

(a) Prediction for the bottle class.

(b) Prediction of the person class.

(c) For this test sample, this backbone was the only one not to mistake the milk jugs with bottles.

(d) Wrong prediction: The martial arts logo was mistaken with the labels of the first two support samples.

(e) Person was correctly classified.

Figure A.7: VOC VitC
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A.4.3 DOGS - RESNET50

24 25 26 b
-10.0

-5.0

0.0

5.0

10.0

(a) Correct classification. Note the insensitivity to the background.

(b) Correct classification. Note the insensitivity to the background.

(c) Incorrect classification. The model was very unsure about the class...

(d) The model found very little evidence for two of the three support samples.

Figure A.8: ...and the correst class probability suggests that the two breeds are indeed pretty similar.
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(a) Correct classification. Note the insensitivity to the background.

36 37 38 b
-7.5
-5.0
-2.5
0.0
2.5

(b) Correct classification. Note the insensitivity to the background.

17
4

17
5

17
6 b

-6.0

-4.0

-2.0

0.0

2.0

(c) Incorrect classification. The explanations suggest that the dog on the left was prioritized by the network...

36 37 38 b
-6.0

-4.0

-2.0

0.0

(d) ...in contrast to the (arguable) true label. Compared to support samples, the tip of the nose is relatively
bright.

Figure A.9: Dogs Dataset ResNet50
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(a) Correct classification. Note how different poses of the support samples lead to different contributions, which
is also evident in ...
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0.0
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(b) ...this figure. Here, the first support sample is most similar to the test image, which is also cropped along
the eyeline.

Figure A.10: Dogs Dataset ResNet50
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A.4.4 RSNA - DENSENET

3 4 5 b
-1.0

0.0

1.0

(a) Correct classification of an occlusion present sample.

3 4 5 b
-2.0

0.0

2.0

(b) Correct classification of an occlusion present sample.

3 4 5 b
-1.0
-0.5
0.0
0.5
1.0

(c) Correct classification of occlusion present sample.

3 4 5 b
-1.0

-0.5

0.0

0.5

(d) Correct classification of an occlusion present sample.

Figure A.11

A.4.5 VOC -DENSENET121 PROTOTYPES AND B-COS SIMILARITIES
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(a) Correct classification of a control sample.
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(b) Correct classification of a control sample.
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(c) Incorrect classification of a control sample. The model likely mistook the relatively large heart for pathology.
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0.5

(d) The model found very little evidence for two of the three support samples.

Figure A.12
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Figure A.13: Prototypes of WASUP trained with a DenseNet121 backbone on RSNA. Bounding
boxes indicate where medical staff found occlusion of the lungs. The first three columns are the
support samples of controls, the next three are support samples with occlusion present.

Figure A.14: t-SNE plot of the latent vectors of the RSNA training set. Red denotes samples of the
class ”opacity” and blue the class ”no opacity”. Support vector 0 and support vector 3 are very close
in the projected latent visualization.
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Figure A.15: Global explanations for WASUP trained on Pascal VOC with a DenseNet121 back-
bone. The respective second rows show the raw contribution maps ϕL

j=c, in which red denotes pos-
itive contributions and blue (absent) negative contributions. The respective third columns present
RGBA explanations.
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Figure A.16: Heatmap of Intra-class and Inter-class B-cos Similarities for WASUP trained on Pascal
VOC with a DenseNet121 backbone.
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