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Abstract

Although it is well known that exploration plays a key role in Reinforcement
Learning (RL), prevailing exploration strategies for continuous control tasks in
RL are mainly based on naive isotropic Gaussian noise regardless of the causality
relationship between action space and the task and consider all dimensions of
actions equally important. In this work, we propose to conduct interventions on
the primal action space to discover the causal relationship between the action
space and the task reward. We propose the method of State-Wise Action Refined
(SWAR), which addresses the issue of action space redundancy and promote
causality discovery in RL. We formulate causality discovery in RL tasks as a state-
dependent action space selection problem and propose two practical algorithms
as solutions. The first approach, TD-SWAR, detects task-related actions during
temporal difference learning, while the second approach, Dyn-SWAR, reveals
important actions through dynamic model prediction. Empirically, both methods
provide approaches to understand the decisions made by RL agents and improve
learning efficiency in action-redundant tasks.

1 Introduction

Although model-free RL has achieved great success in various challenging tasks and outperforms
experts in most cases [21, 26, 17, 34, 4], the design of action space always requires elaboration. For
example, in the game StarCraftII, hundreds of units can be selected and controlled to perform various
actions. To tackle the difficulty in exploration caused by the extremely large action and state space,
hierarchical action space design and imitation learning are used [27, 34] to reduce the exploration
space. Both of those approaches require expert knowledge of the task. On the other hand, even in the
context of imitation learning where expert data is assumed to be accessible, causal confusion will still
hinder the performance of an agent [8]. Those defects motivate us to explore the causality-awareness
of an agent that permits an agent to discover the causal relationship for the environment and select
useful dimensions of action space during policy learning in pursuance of improved learning efficiency.
Another motivating example is the in-hand manipulation tasks [2]: robotics equipped with touch
sensors outperforms the policies learned without sensors by a clear margin in hand-in manipulation
tasks [20], showing the importance of causality discovery between actions and feedbacks in RL. A
similar example can be found in human learning: knowing nothing about how to control the finger
joints flexibly may not hinder a baby learns to walk, and a baby has not learned how to walk can still
learn to use forks and spoons skillfully, inspiring us to believe that the challenge for exploration can
be greatly eased after the causality between action space and the given task is learned.

In this work, the recent advance of instance-wise feature selection technique [38] is improved to be
more suitable in large-scale state-wise action selection tasks and adapted to the time-series causal
discovery setting to select state-conditioned action space in RL with redundant action space. With the
proposed method, the agent learns to perform intervention, discover the true structural causal model
(SCM) and select task-related actions for a given task, remarkably reduces the burden of exploration
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Figure 1: Block diagram of INVASE in temporal difference learning. States and actions sampled
from replay buffer are fed into the selector network that predicts the selection probabilities of different
dimensions of actions. A selection mask is then generated according to such a selection probability
vector. The critic network and the baseline network are trained to minimize temporal difference error
with states and the selected dimension of actions and primal action respectively. The difference of
TD-Error is used to conduct a policy gradient to update the selector network.

and obtains on-par learning efficiency as well as asymptotic performance compared with agents
trained in the oracle settings where the action spaces are pruned according to given tasks manually.

2 Preliminary

Markov Decision Processes RL tasks can be formally defined as Markov Decision Processes
(MDPs), where an agent interacts with the environment and learns to make decision at every timestep.
Formally, we consider the deterministic MDP with a fixed horizon H ∈ N+ denoted by a tuple
(S,A, H, r, γ, T , ρ0), where S andA are the |S|-dimensional state and |A|-dimensional action space;
r : S ×A 7→ R denotes the reward function; γ ∈ (0, 1] is the discount factor indicating importance
of present returns compared with long-term returns; T : S ×A 7→ S denotes the transition dynamics;
ρ0 is the initial state distribution.

We use Π to represent the stationary deterministic policy class, i.e., Π = {π : S 7→ A}. The
learning objective of an RL algorithm is to find π∗ ∈ Π as the solution of the following optimization
problem: maxπ∈Π Eτ∼ρ0,π,T [

∑H
t=1 γ

trt] where the expectation is taken over the trajectory τ =
(s1, a1, r1, . . . , sH , aH , rH) generated by policy π under the environment T , starting from s0 ∼ ρ0.

INVASE INVASE is proposed by [38] to perform instance-wise feature selection to reduce over-
fitting in predictive models. The learning objective is to minimize the KL-Divergence of the full-
conditional distribution and the minimal-selected-features-only conditional distribution of the out-
come, i.e., minF L, with

L = DKL(p(Y |X = x)||p(Y |X(F (x)) = x(F (x)))) + λ|F (x)|0. (1)

where F : X → {0, 1}d is a feature selection function and |F (x)|0 denotes the cardinality (l0
norm) of selected features, i.e., the number of 1’s in F (x). 1 d is the dimension of input features.
x(F (x)) = F (x) � x denotes the element-wise product of x and generated mask m = F (x).

1To avoid confusion between state notion s ∈ S and the selector notion S used in [38], F is used in this
work to represent the selector (i.e., mask generator).
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Ideally, the optimal selection function F should be able to minimize the two terms in Equation (1)
simultaneously.

INVASE applies the Actor-Critic framework in the optimization of F through sampling, where
fθ(·|x), parameterized by a neural network θ 2, is used as a stochastic actor. Two predictive networks
Cφ(·), Bψ(·) are considered as the critic and the baseline network used for variance reduction [36]
and trained with the Cross-Entropy loss to produce return signal L, based on which fθ(·|x) can be
optimized through policy gradient:

E(x,y)∼p[Em∼fθ(·|x)[L∇θ log fθ(·|x)]]. (2)

Finally, F (x) = (F1(x), ..., Fd(x)) can be get by sampling from f(·|x) = (f1(x), ..., fd(x)), with

Fi(x) =

{
1, w.p. fi(·|x).

0, w.p. 1− fi(·|x).
(3)

3 Proposed Method

The objective of this work is to carry out state-wise action selection in RL through intervention,
and thereby enhance the learning efficiency with a pruned task-related action space after finding the
correct causal model. Section 3.1 starts with the formalization of the action space refinery objective
in RL tasks under the framework of causal discovery. Section 3.2 introduces SWAR, which improves
the scalability of INVASE in high dimensional variable selection tasks. We integrate SWAR with
deterministic policy gradient methods [25] in Section 3.3 to perform state-wise action space pruning,
resulting in two practical causality-aware RL algorithms.

3.1 Temporal Difference Objective with Structural Causal Models

In modern RL algorithms, the most general approach is based on the Actor-Critic framework [15],
where the critic Qw(s, a) approximates the return of given state-action pair (s, a) and guides the
Actor to maximize the approximated return at state s. The Critic is optimized to reduce Temporal
Difference (TD) error [29], defined as

LTD = Esi,ai,ri,s′i∼B[(ri + γQw(s′i, a
′
i)−Qw(si, ai))

2]. (4)

where B = (si, ai, ri, s
′
i)i=1,2,... is the replay buffer used for off-policy learning [17, 10, 12, 28],

and a′i = π(s′i) is the predicted action for state s′i. In practice, the calculations of Qw(s′i, a
′
i) are

usually based on another set of slowly updated target networks for stability [10, 12]. Henceforth,
TD-learning can be roughly simplified as regression with notion yi = ri + γQw(s′i, a

′
i):

LTD = Esi,ai,ri,s′i∼B[(yi −Qw(si, ai))
2]. (5)

Assume there are only M < L actions are related to a specific task among the L-dimensional
actions ai = a

(1)
i , ..., a

(L)
i , i.e., Qw(·, ·) is function of si, a

(1)
i , ..., a

(M)
i . Learning with the primal

redundant action space will lead to around L+|S|
M+|S| times sample complexity [9, 39]. Therefore, we are

motivated to improve the learning efficiency of Q by pruning those task-irrelevant action dimensions
a

(M+1)
i , ..., a

(L)
i by finding an action selection function G, satisfying

min
G,Qw

Esi,ai,ri,s′i∼B[(y′i −Qw(si, a
(G(ai|si))
i ))2] + λ|G(ai|si)|0. (6)

where y′i = ri + γQw(s′i, a
′G(a′i|si)
i ).

Such a problem can be addressed from the perspective of causal discovery. Formally, we can use
the Structural Causal Models (SCMs) to represent the underlying causal structure of a sequential
decision making process, as shown in Figure 2. Under this language, we use the notion of causal
actions to denote a(1,...,M)

i , and nuisance actions for other dimension of actions. In our work, we use
IC-INVASE for causal discovery. Ideally, the action selection functionG should be able to distinguish
between nuisance action dimensions and the causal ones that has causal relation with either dynamics
or reward mechanism. We present in the next section our causal discovery algorithms.

2In this work, subscripts φ, ψ, θ, w are used to denote the parameter of neural networks.
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Figure 2: SCM of temporal difference learning. Among all executable actions, there can be only
a subset have effect on the dynamical changes or the reward mechanism. In our work, we use
IC-INVASE as a causal discovery tool to distinguish the causal irrelevant actions and hence improve
learning efficiency.

3.2 Iterative Curriculum INVASE (IC-INVASE)

Instead of directly applying INVASE to solve Equation (6). We first propose two improvements
to make the vanilla INVASE more suitable for large-scale variable selection tasks as the action
dimension in RL might be extremely large [34]. Specifically, the first improvement, based on
curriculum learning, is introduced to tackle the exploration difficulty when λ in Equation (1) is large,
where INVASE tends to converge to poor sub-optimal solutions and prune all variables including the
useful ones [38]. The second improvement is based on the iterative structure of variable selection
tasks: the feature selection operator G can be applied multiple times to conduct hierarchical feature
selection without introducing extra computation expenses.

3.2.1 Curriculum Learning For High Dimensional Variable Selection

The work of [3] first introduces Curriculum Learning to mimic human learning by gradually learn
more complex concepts or handle more difficult tasks. Effectiveness of the method has been
demonstrated in various set-ups [3, 19, 7, 35, 37]. In general, it should be easier to select M useful
variables out of L input variables when M is larger. The most trivial case is to select all L variables,
with an identical mapping x(G(x)) = G(x)� x = x. Formally, we have

Proposition 1 (Curriculum Property in Variable Selection). Assume M out of L variables are
outcome-related, let M ≤ N1 < N2 ≤ L, GN1(x) minimizes DKL(p(Y |X = x)||p(Y |X(G(x)) =
x(G(x)))) + λ||G(x)|0 −N1|. Then
GN2

(x) minimizesDKL(p(Y |X = x)||p(Y |XG(x) = xG(x)))+λ||G(x)|0−N2| can be get through:
GN2

(x) ∈ {GN1
(x) ∨ [GN1

(x)XOR 1]1N2−N1
},

where [·]1N2−N1
means keep N2 −N1 none-zero elements unchanged while replacing other elements

by 0.

Proof. By the definition of the [·]1N2−N1
operator, ||G(x)|0 −N2| = 0 is minimized. On the other

hand, starting from N1 = M , minimizing DKL(p(Y |X = x)||p(Y |X(G(x)) = x(G(x)))) requires
all the M outcome-related variables being selected by GN1

. Therefore, GN2
also minimizes the

KL-divergence by the independent assumption of the other L−M variables with the outcomes.

The proposition indicates the difficulty of selecting N useful out of L variables decreases monotoni-
cally as N ≥ M increase from M,M + 1, ..., L. In this work, two classes of practical curriculum
are designed: 1. curriculum on the l0 penalty coefficient, and 2. curriculum on the proportion of
variables to be selected.

Curriculum on l0 Penalty Coefficient In this curriculum design, the penalty coefficient λ in
Equation (1) is increased from 0 to a pre-determined number (e.g., 1.0). Increasing the value of λ
will lead to a larger penalty on the number of variables selected by the feature selector. Experiments
in [38] has shown a large λ always lead to a trivial selector that does not select any variable.

Curriculum on the Proportion of Selected Features In this curriculum design, the proportion of
variables to be selected, denoted by pr, is adjusted from the default setting 0 to a decreasing number
from a pre-determined value (e.g., 0.5) to 0. i.e., the l0 penalty term λ|G(x)|0 in Equation (1) is
revised to be λ||G(x)|0 − d · pr|, where d is the dimension of input x. When the proportion is set
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Algorithm 1 TD3 with TD-SWAR
Initialize critic networksCφ1

, Cφ2
, baseline networksBψ1

,Bψ2
and actor network πν , IC-INVASE

selector network Gθ
Initialize target networks φ′1 ← φ1, φ′2 ← φ2, ψ′1 ← ψ1, ψ′2 ← ψ2, ν′ ← ν
Initialize replay buffer B
for t = 1, H do

Interact with environment and store transition tuple (s, a, r, s′) in B
Sample mini-batch of transitions {(s, a, r, s′)} from B
Calculate perturbed next action by ã← πν′(s

′) + ε, ε is sampled from a clipped Gaussian.
Select actions with target selector network
ã(G(ã|s′)) ← Gθ′(ã|s′)� ã

Calculate target critic value yc and baseline value yb:
yc ← r + γmini=1,2 Cφ′i(s

′, ã(G(ã|s′)))

yb ← r + γmini=1,2Bψ′i(s
′, ã)

Update critics and baselines with selected actions:
a(G(a|s)) ← Gθ(a|s′)� a
φi ← arg minφi MSE(yc, Cφi(s, a

(G(a|s))))
ψi ← arg minψi MSE(yb, Bψi(s, a))

Update IC-INVASE selector network by the policy gradient, with learning rate η1:
θ ← θ − η1(lb − lc)∇θ logGθ(a|s), lb, lc are MSE
losses in the previous step.

Update ν by the deterministic policy gradient, with learning rate η2:
ν ← ν − η2∇aCφ1

(s, a)|a=πν(s)∇νπν(s)
Update target networks, with τ ∈ (0, 1):
φ′i ← τφi + (1− τ)φ′i
ψ′i ← τψi + (1− τ)ψ′i
ν′ ← τν + (1− τ)ν′

end for

to be pr = 0.5, the selector will be penalized whenever less or more than half of all variables are
selected. Such a curriculum design forces the feature selector to learn to select less but increasingly
more important variables gradually.

Thus, we get the learning objective of curriculum-INVASE:

L = DKL(p(Y |X = x)||p(Y |X(G(x)) = x(G(x)))) + λ||G(x)|0 − d · pr|. (7)
where λ increases from 0 to some value and pr decreases from a value in [0, 1) to 0.

3.2.2 Iterative Variable Selection

The second improvement proposed in this work is based on the iterative structure of variable selection
tasks. Specifically, the G(x) mapping x ∈ X to {0, 1}d is an iterative operator, which can be applied
for multiple times to perform coarse-to-fine variable selection. Although in practice we follow [38]
to apply an element-wise product in producing x(G(x)): x(G(x)) = G(x)� x ∈ X . In more general
cases, the i-th element of x(G(x))

i is

x
(G(x))
i =

{
1, if Gi(x) = 1.

∗, if Gi(x) = 0.
(8)

where ∗ can be an arbitrary identifiable indicator that represents the variable is not selected.

On the other hand, once the outputs G(x) of the selector have been recorded, ∗ can be replaced by
any label-independent variable G(x)� z, where z ∼ pz(·) is outcome-independent. Then x(G(x))

can be regarded as a new sample and be fed into the variable selector, resulting in a hierarchical
variable selection process:

x(1) = (G(x)� x)⊕ (G(x)� z),
x(2) = (G(x(1))� x(1))⊕ (G(x(1))� z),
...
x(n) = (G(x(n−1))� x(n−1))⊕ (G(x(n−1))� z),

(9)
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where z ∼ pz(·), and ⊕ is the element-wise sum operator. Moreover, if the distribution of irrelevant
variable px(·) is known, applying the variable selection operator obtained from Equation (7) for
multiple times with pz(·)

d
= px(·) has the meaning of hierarchical variable selection: after each

operation, the most obvious 1−pr irrelevant variables are discarded. e.g., when pr = 0.5, ideally top-
50%, 25%, 12.5% most important variables will be selected after the first three selection operations.
In this work, a coarse approximation is utilized by selecting z to be z = 0 for simplicity. 3

Combining those two improvements lead to an Iterative Curriculum version of INVASE (IC-INVASE)
that addresses the exploration difficulty in high-dimensional variable selection tasks. Curriculum
learning helps IC-INVASE to achieve better asymptotic performance, i.e., achieve higher True Positive
Rate (TPR) and lower False Discovery Rate (FDR), while iterative application of the selection operator
contributes to higher learning efficiency: selectors models with different level of TPR/FDR can be
generated on-the-fly.

3.3 State-Wise Action Refinery with IC-INVASE

3.3.1 Temporal Difference State-Wise Action Refinery

With the techniques introduced in the previous section, higher dimensional variable selection tasks
can be better solved, therefore we are ready to use IC-INVASE to solve Equation (6). The resulting
algorithm is called Temporal Difference State-Wise Action Refinery (TD-SWAR).

In this work, TD3 [10] is used as the basic algorithm we build TD-SWAR up on. In addition to the
policy network πν , double critic networks Cφ1 , Cφ2 and their corresponding target networks used
in vanilla TD3, TD-SWAR includes an action selector model Gθ and two baseline networks Bψ1 ,
Bψ2

following [38] to reduce the variance in policy gradient learning. Pseudo-code for the proposed
algorithm is shown in Algorithm 1. And the block diagram in Figure 1 illustrates how different
modules in TD-SWAR updates their parameters.

3.3.2 Static Approximation: Model-Based Action Selection

While IC-INVASE can be formally integrated with temporal difference learning, the learning stability
is not guaranteed. Different from general regression tasks where the label for every instance is fixed
across training, in temporal difference learning, the regression target is closely related to the present
critic function Cφ, the policy πν that generates the transition tuples used for training, and the selector
model of IC-INVASE itself. In this section, a static approach is proposed to approximately solve the
challenge of instability in TD-SWAR 4.

Other than applying the IC-INVASE algorithm to solve Equation (6), another way of leveraging
IC-INVASE in action space pruning is to combine it with the model-based methods [11, 16, 13, 14],
where a dynamic model P : S ×A 7→ S is learned through regression:

P = arg min
P

E(s,a,s′)∼π,T (s′ − P(s, a))2 (10)

Although the task of precise model-based prediction is in general challenging [24], in this work, we
only adopt model-based prediction in action selection, and the target is action discovery other than
precise prediction. As the dynamic models are always static across learning, such an approach can be
much more stable than TD-SWAR. We name this method as Dyn-SWAR and present the pseudo-code
in Algorithm 2, where we infuse IC-INVASE to Equation (10) and get the learning objective:

min
G,P

E(s,a,s′)∼π,T (s′ − P(s, a(G(a|s))))2 (11)

4 Experiment

In this section, we demonstrate our proposed methods in five continuous control RL tasks with
redundant action space where our proposed methods can perform causality-aware RL. We provide
quantitatively comparison between IC-INVASE and the vanilla INVASE on synthetic datasets to
show its improved scalability in Appendix B.

3pz(·) may be learned through generative models to approximate px(·), and Equation (9) can be regarded as
a kind of data-augmentation or ensemble method. This idea is left for the future work.

4Analysis on the approximation is provided in Appendix A
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Algorithm 2 TD3 with Dyn-SWAR
Initialize critic networks Qw1

, Qw2
, Dynamics critic model Cφ, dynamic baseline model Bψ , actor

network πν , and IC-INVASE selector network Gθ
Initialize target networks w′1 ← w1, w′2 ← w2, ν′ ← ν
Initialize replay buffer B
for t = 1, H do

Interact with environment and store transition tuple (s, a, r, s′) in B
Sample mini-batch of transitions {(s, a, r, s′)} from B
Update dynamic critics and dynamic baselines with equation (10):
φ← arg minφMSE(s′, Cφ(s, a(G(a|s))))
ψ ← arg minψMSE(s′, Bψ(s, a))

Update IC-INVASE selector network by the policy gradient, with learning rate η1:
θ ← θ − η1(lb − lc)∇θ logGθ(a|s), lb, lc are MSE
losses in the previous step.

Calculate perturbed next action by ã← πν′(s
′) + ε, ε is sampled from a clipped Gaussian.

Select actions with selector network
ã(G(ã|s′)) ← Gθ′(ã|s′)� ã

Calculate target critic value y and update critic networks:
y ← r + γmini=1,2Qw′i(s

′, ã(G(ã|s′)))

wi ← arg minwi MSE(y,Qwi(s, a
(G(a|s))))

Update ν by the deterministic policy gradient, with learning rate η2:
ν ← ν − η2∇aQw1

(s, a)|a=πν(s)∇νπν(s)
Update target networks, with τ ∈ (0, 1):
w′i ← τwi + (1− τ)w′i
ν′ ← τν + (1− τ)ν′

end for

+10

+10

+10

+10

(a) 4Rew.-Maze (b) Pendulum (c) Walker2d (d) LunarLander (e) BipedalWalker

Figure 3: Environments used in experiments

For this set of experiments, we use five RL environments (Figure 5) that are listed in Table 1 5. |S|
means the dimension of state space in each task, |A| represents the dimension of task-related action
space, and |Ared.| indicates the dimension of redundant action space that is injected to each task.
Those redundant dimensions of actions will not affect the state transitions or reward calculation, but
an agent needs to learn to identify those redundant dimensions to perform efficient learning.

We evaluate both TD-SWAR that integrate IC-INVASE with temporal difference learning and its
static variant Dyn-SWAR that applies IC-INVASE in dynamics prediction. The results are compared
with two baselines: the Oracle: redundant action dimensions are eliminated manually; and TD3: the
vanilla TD3 algorithm without explicit action redundancy reduction.

In experiments, we find the implementation of Dyn-SWAR can be much more efficient in terms
of both sample complexity and computational expense: while the TD-SWAR need to continuously
update all parameters for the IC-INVASE selector to keep consistent with the real-time policy and
value networks as the regression label varies along time, the Dyn-SWAR selector can be trained with
far less amount of data. Say, 10, 000 to 25, 000 timesteps of interactions with the environment. Such
a property can be naturally combined with the warm-up trick used in TD3 [10], i.e., the Dyn-SWAR
selector can be trained with warm-up transition tuples collected in the random exploration phase

5For more details of the environments please refer to Appendix C
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Table 1: Tasks used in evaluating SWAR in temporal difference learning

TASK/DIMENSION |S| |A| |Ared.|
PENDULUM-V0 3 1 100
FOURREWARDMAZE 2 2 100
LUNARLANDERCONTINUOUS-V2 8 2 100
BIPEDALWALKER-V3 24 4 100
WALKER2D-V2 17 6 100
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Figure 4: Performance of agents in five different environments. The curves shows averaged learning
progress and the shaded areas show standard deviation.

and then be fixed in the later learning process. Compared with normal RL settings where millions
of interactions with the environment are always needed, the training of Dyn-SWAR only increases
negligible computational expense.

The results are shown in Figure 4. In all environments, agent learning with IC-INVASE in both
manner (TD-/Dyn-) outperforms the vanilla TD3 baseline. The Dyn-SWAR achieves high learning
efficiency that is comparable to the oracle benchmarks. However, the performance of TD-SWAR in
higher dimensional tasks (Walker2d-v2 and BipedalWalker-v3) still has a lot of room for improvement.
Improving the stability of and scalability of instance-wise variable selection in temporal difference
learning thereby should be addressed in future work.

5 Related Work

Instance-Wise Feature Selection While traditional feature selection method like LASSO [31]
aims at finding globally important features across the whole dataset, instance-wise feature selection
try to discover the feature-label dependency on a case-by-case basis. L2X [5] performs instance-wise
feature selection through mutual information maximization with the technique of Gumbel softmax.
L2X requires pre-determined hyper-parameter k to indicate how many features should be selected for
each instance, which limits its performance while the number of label-relevant features varies across
instances.

In this work, we build our instance-wise action selection model on top of INVASE [38], where policy
gradient is applied to replace the Gumbel softmax trick and the size of chosen features per instance is
more flexible. [32] considers instance-wise feature selection problems in time-series setting, and
build generative models to capture counterfactual effects in time series data. Their work enables
evaluation of the importance of features over time, which is crucial in the context of healthcare. [18]
formally defines different types of feature redundancy and leverages mutual information maximization
in instance-wise feature group discovery and introduces theoretical guidance to find the optimal
number of different groups.

Our work is distinguished from previous works for instance-wise feature selection in two aspects.
First, while previous works focus on static scenarios like classification and regression, this work focus
on temporal difference learning where there is no static label. Second, the scalability of previous
methods in variable selection is challenged as there might exist hundreds of redundant actions in the
context of RL.

Dimension Reduction in RL In the context of RL, attention models [33] have been applied to
interpret the behaviors of learned policies. [30] proposes to perceive the state information through a
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self-attention bottleneck in vision-based RL tasks, which concentrates on the state space redundancy
reduction with image inputs. The work of [22] also applies the attention mechanism to learn task-
relevant information. The proposed method achieves state-of-the-art performance on Atari games
with image input while being more understandable with top-down attention models.

Different from those papers, this work considers relatively tight state representations (vector input),
and focuses on the task-irrelevant action reduction. We aim at finding the task-related actions and
improving the learning efficiency without wasting samples in learning the task-irrelevant dimensions
of actions. Our work is most closely related to AE-DQN [39] in that we both consider the problem of
redundant action elimination. AE-DQN tackles action space redundancy with an action-elimination
network that eliminates sub-optimal actions. Yet its discussion is limited in the discrete settings. In
contrast, our work focuses on action elimination in continuous control tasks.

6 Conclusion and Future Work

In this work, we tackle the challenge of action space pruning in action redundant RL tasks. Recent
advance on instance-wise feature selection technique (INVASE) is exploited after curriculum learning
and iterative operation are integrated for the pursuance of scalability and efficiency. The resulting
method, termed IC-INVASE, is then generalized to the RL setting where two different algorithms are
proposed, TD-SWAR and Dyn-SWAR, to conduct causality-aware RL. While the former algorithm
addresses the action redundant issue directly in temporal difference learning, the latter algorithm
captures dynamical causality with model-based prediction. Experiments on various tasks demonstrate
the causality-awareness is crucial for RL agents to perform efficient learning in action-redundant
environments.

In future work, the iterative property can be further explored to perform ensemble methods in variable
selection. And a more proper curriculum might be designed to better fuse multiple curricula together.
On the RL side, the stability of TD-SWAR might be further improved for better sample efficiency.
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A On the Dynamic Model Approximation

We provide analysis on the approximation in this section based on the deterministic MDP model in
finite action space where the problem degenerates to Q-Learning. Similar results can be get to prove
the Policy Evaluation Lemma, combined with Policy Improvement Lemma (given proper function
approximation of the arg max operator) and result in Policy Iteration Theorem.

In deterministic MDPs with st+1 = T (st, at), rt = r(st, at), the value function of a state is defined
as

V π(s) =

∞∑
t=0

γtr(st, at), (12)

given s0 = s is the initial state and at = π(st) comes from the deterministic policy π.

The learning objective is to find an optimal policy π, such that an optimal state value can be achieved:

V ∗(s) = max
π

V π(s) (13)

The state-action value function (Q-function) is then defined as

Q(s, a) = r(s, a) + γV ∗(T (s, a)) (14)

Formally, the objective of action space pruning in action-redundant MDPs is to find an optimal policy
π(G) = G(π(st)|st)� π(st) with an action selector G : S ×A 7→ {0, 1}d,

V ∗(s) = max
π(G)

V π
(G)

(s) = max
π

V π(s), (15)

with minimal number of actions selected, i.e., |G|0 is minimized. The sufficient and necessary condi-
tion for Equation (15) to hold is r(st, π(st)) = r(st, π

(G)(st)) and T (st, π(st)) = T (st, π
(G)(st)).

In general, the reward function r and transition dynamics T may depend on different subsets of actions
and the optimal, i.e., r(st, at) = r(st, a

(G1)
t ), while T (st, at) = T (st, a

(G2)
t ), where G1, G2 select

different subset of given actions by a(G1)
t = G1(at|st) � at, a(G2)

t = G2(at|st) � at but a(G1)
t 6=

a
(G2)
t . The final action selector G should be generated according to G(a|s) = G1(a|s) ∨G2(a|s),

where ∨ is the element-wise OR operation.

Therefore, in our approximation of Dyn-SWAR, we assume G(a|s) = G2(a|s) as an approximation
for G(a|s) = G1(a|s) ∨G2(a|s). Future work may include another predictive model for the reward
function and take the element-wise OR operation to get G.

B Additional Experiments

B.1 Synthetic Data Experiment

The synthetic datasets are generated in the same way as [5, 38]. Specifically, there are 6 synthetic
datasets that have inputs generated from an 11-dim Gaussian distribution without correlations across
features. The label Y for each dataset is generated by a Bernoulli random variable with P (Y =
1|X) = 1

1+logit(X) . In different tasks, logit(X) takes the value of:

• Syn1: exp(X1X2)

• Syn2: exp(
∑6
i=3X

2
i − 4)

• Syn3: −10× sin 2X7 + 2|X8|+X9 + exp(−X10)

• Syn4: if X11 < 0, logit follows Syn1, otherwise, logit follows Syn2
• Syn5: if X11 < 0, logit follows Syn1, otherwise, logit follows Syn3
• Syn6: if X11 < 0, logit follows Syn2, otherwise, logit follows Syn3

In the first three synthetic datasets, the label Y depends on the same feature across each dataset, while
in the last three datasets, the subsets of features that label Y depends on are determined by the values
of X11.
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Table 2: Relevant variables discovery results for Synthetic datasets with 11-dim input

DATA SET METHOD ITERATION 1 ITERATION 2 ITERATION 3 ITERATION 4

METRIC TPR FDR TPR FDR TPR FDR TPR FDR

Syn4

INVASE (REP.) 99.8 10.3
INVASE (EXP.) 98.6 1.6 98.1 1.1 98.1 1.1 98.1 1.1
IC-INVASE (λ ↑ 0.2) 99.7 3.4 99.7 2.6 99.7 2.5 99.7 2.5
IC-INVASE (λ ↑ 0.3) 99.3 1.6 99.3 0.8 99.3 0.8 99.3 0.8

Syn5

INVASE (REP.) 84.8 1.1
INVASE (EXP.) 82.1 1.0 79.7 1.0 79.3 1.0 79.2 1.0
IC-INVASE (λ ↑ 0.2) 99.3 1.6 99.1 1.1 99.1 1.1 99.1 1.1
IC-INVASE (λ ↑ 0.3) 96.8 1.0 96.4 0.4 96.4 0.4 96.4 0.4

Syn6

INVASE (REP.) 90.1 7.4
INVASE (EXP.) 92.3 1.7 89.8 1.6 89.6 1.6 89.6 1.6
IC-INVASE (λ ↑ 0.2) 99.6 2.9 99.5 2.6 99.5 2.5 99.5 2.5
IC-INVASE (λ ↑ 0.3) 99.4 1.9 99.3 1.6 99.3 1.6 99.3 1.6

For each dataset, 20, 000 samples are generated and be separated into a training set and a testing
set. In this work, we focus on finding outcome-relevant features (e.g., finding task-relevant actions
in the context of RL), thus the true positive rate (TPR) and false discovery rate (FDR) are used as
performance metrics.

11-dim Feature Selection Table 2 shows the quantitative results of the proposed method, IC-
INVASE on the 11-dim feature selection tasks. To accelerate training and facilitate the usage of
dynamical computational graphs in curriculum learning and RL settings, the vanilla INVASE is
re-implemented with PyTorch [23]. In general, the PyTorch implementation is 4 to 5 times faster than
the previous Keras [1, 6] implementation, with on-par performance on the 11-dim feature selection
tasks. In the comparison, both the reported results in [38] (denoted by INVASE (REP.)) and our
experimental results on INVASE (denoted by INVASE (EXP.)) are presented. The pr curriculum
for IC-INVASE in all experiments are set to decrease from 0.5 to 0.0 except in ablation studies.
Results of two different choices of the λ curriculum are reported and denoted by IC-INVASE (λ ↑ ·),
e.g., λ ↑ 0.3 means λ increases from 0.0 to 0.3 in the experiment. We omit the results on the first
three datasets (Syn1,Syn2,Syn3) where both IC-INVASE and INVASE achieve 100.0 TPR and
0.0 FDR. Iteration 1 to Iteration 4 in the table shows the results after applying the selection operator
for different number of iterations.

In all experiments, IC-INVASE achieves better performance (i.e., larger TPR and lower FDR) than
the vanilla INVASE with Keras and PyTorch implementation. Iterative applying the feature selection
operator can reduce the FDR with a slight cost of TPR decay.

100-dim Feature Selection We then increase the total number of feature dimensions to 100 to
demonstrate how IC-INVASE improves the vanilla INVASE in larege-scale variable selection settings.
In this experiment. The features are generated with 100-dim Gaussian without correlations and
the rules for label generation are still the same as the 11-dim settings. (i.e., 89 additional label-
independent noisy dimensions of input is concatenated to the 11-dim inputs.)

The results are shown in Table 3. IC-INVASE achieves much better performance in all datasets, i.e.,
higher TPR and lower FDR. The ablation studies on different curriculum show both an increasing λ
and a decreasing pr can benefit discovery of label-dependent features. As the hyper-parameters for
curriculum are not elaborated in our experiments, direct combining the two curriculum may hinder
the performance. The design for curriculum fusion is left to the future work.

C Environment Details

FourRewardMaze The FourRewardMaze is a 2-D navigation task where an agent need to find all
four solutions to achieve better performance. The state space is 2-D continuous vector indicating the
position of the agent, while the action space is a 2-D continuous value indicating the direction and
step length of the agent, which is limited to [−1, 1]. The initial location of the agent is randomly
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Table 3: Relevant feature discovery results for Synthetic datasets with 100-dim input

DATA SET METHOD ITERATION 1 ITERATION 2 ITERATION 3 ITERATION 4

METRIC TPR FDR TPR FDR TPR FDR TPR FDR

Syn4

INVASE (REP.) 66.3 40.5
INVASE (EXP.) 27.0 6.5 18.0 6.4 18.0 6.4 18.0 6.4
IC-INVASE W/O pr ↓ 66.3 40.5 66.3 40.5 66.3 40.5 66.3 40.5
IC-INVASE W/O λ ↑ 100.0 43.0 100.0 43.0 100.0 43.0 100.0 43.0
IC-INVASE 100.0 43.0 100.0 43.0 100.0 43.0 100.0 43.0

Syn5

INVASE (REP.) 73.2 23.7
INVASE (EXP.) 56.4 37.9 56.4 37.9 56.4 37.9 56.4 37.9
IC-INVASE W/O pr ↓ 90.9 7.8 88.8 4.4 88.8 4.3 88.8 4.3
IC-INVASE W/O λ ↑ 96.1 11.3 95.2 8.2 95.5 8.1 95.5 8.1
IC-INVASE 91.9 8.1 90.8 4.3 90.8 4.2 90.8 4.2

Syn6

INVASE (REP.) 90.5 15.4
INVASE (EXP.) 90.1 43.7 90.1 43.7 90.1 43.7 90.1 43.7
IC-INVASE W/O pr ↓ 98.5 4.1 98.4 2.4 98.4 2.3 98.4 2.3
IC-INVASE W/O λ ↑ 99.6 8.1 99.6 7.1 99.6 7.0 99.6 7.0
IC-INVASE 98.9 7.0 98.9 5.0 98.9 4.9 98.9 4.9

+10

+10

+10

+10

(a) FourReward-
Maze

(b) Pendulum (c) Walker2d (d) LunarLander (e) BipedalWalker

Figure 5: Environments used in experiments

selected for each game, and each episode has the length of 32, which is the timesteps needed to
collect all four rewards from any starting position.

Pendulum-v0 The Pendulum-v0 environment is a classic problem in the control literature. In the
Pendulum-v0 of OpenAI Gym. The task has 3-D state space and 1-D action space. In every episode
the pendulum starts in a random position, and the learning objective is to swing the pendulum up and
keep it staying upright.

Walker2d-v2 The Walker2d-v2 environment is a locomotion task where the learning objective is
to make a two-dimensional bipedal robot walk forward as fast as possible. The task has 17-D state
space and 6-D action space.

LunarLanderContinuous-v2 In the tasks of LunarLanderContinuous-v2, the agent is asked to
control a lander to move from the top of the screen to a landing pad located at coordinate (0, 0). The
fuel is infinite, so an agent can learn to fly and then land on its first attempt. The state is as 8-D
real-valued vector and action is 2-D vector in the range of [−1, 1], where the first dimension controls
main engine, [−1, 0] off, [0., 1] throttle from 50% to 100% power and the second value in [−1,−0.5]
will fire left engine, while a value in [0.5, 1.0] fires right engine, otherwise the engine is off.

BipedalWalker-v3 The BipedalWalker-v3 is a locomotion task where the state space is 24-D and
the action space is 4-D. The agent needs to walk as far as possible in each episode where a total
timestep of 1000 are given and total 300 points might be collected up to the far end. If the robot falls,
it gets −100 points. Applying motor torque costs a small amount of points, more optimal agent will
get better score.
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D Reproduction Checklist

D.1 Neural Network Structure

In all experiments, we use the same neural network structure: in TD3, we follow the vanilla
implementation to use 3-layer fully connected neural networks where 256 hidden units are used. In
the selector networks of the INVASE module, we follow the vanilla implementation to use 3-layer
fully connected neural networks where 100, 200 hidden units are used.

D.2 Hyper-Parameters

In both TD-SWAR and the Dyn-SWAR, we apply IC-INVASE with pr reducing from 0.5 to 0.0
and λ increasing from 0.0 to 0.2. While our experiments have already shown the effectiveness and
robustness of those hyper-parameters, performing grid search on those hyper-parameters may lead to
further performance improvement.
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