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Abstract

Latent-based image generative models, such as Latent Diffusion Models (LDMs)
and Mask Image Models (MIMs), have achieved notable success in image gen-
eration tasks. These models typically leverage reconstructive autoencoders like
VQGAN or VAE to encode pixels into a more compact latent space and learn the
data distribution in the latent space instead of directly from pixels. However, this
practice raises a pertinent question: Is it truly the optimal choice? In response,
we begin with an intriguing observation: despite sharing the same latent space,
autoregressive models significantly lag behind LDMs and MIMs in image genera-
tion. This finding contrasts sharply with the field of NLP, where the autoregressive
model GPT has established a commanding presence. To address this discrepancy,
we introduce a unified perspective on the relationship between latent space and
generative models, emphasizing the stability of latent space in image generative
modeling. Furthermore, we propose a simple but effective discrete image tokenizer
to stabilize the latent space for image generative modeling by applying K-Means
on the latent features of self-supervised learning models. Experimental results
show that image autoregressive modeling with our tokenizer (DiGIT) benefits
both image understanding and image generation with the next token prediction
principle, which is inherently straightforward for GPT models but challenging
for other generative models. Remarkably, for the first time, a GPT-style autore-
gressive model for images outperforms LDMs, which also exhibits substantial
improvement akin to GPT when scaling up model size. Our findings underscore the
potential of an optimized latent space and the integration of discrete tokenization
in advancing the capabilities of image generative models. The code is available at
https://github.com/DAMO-NLP-SG/DiGIT.

1 Introduction

In recent years, remarkable advancements have been achieved in the field of image generation,
principally propelled by the development of latent-based generative models, such as Latent Diffusion
Models (LDMs) [34, 30] and Mask Image Models (MIMs) [7, 26]. By employing reconstructive
autoencoders such as VQGAN [15] or VAE [23] to compress images into a manageable low dimen-
sional latent space, these models can generate highly realistic and imaginative samples. Concurrently,
in light of the transformative impact of autoregressive (AR) generative models, such as Large Lan-
guage Models [31, 32, 5, 27] in NLP, it becomes compelling to investigate the feasibility of similar
paradigms to images. Despite the advances in image autoregressive pre-training, exemplified by
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Figure 1: (a): Linear probe and class-unconditional generation performance of different methods
trained and evaluated on ImageNet-1K. (b): Class-conditional generation performance of different
methods on ImageNet-1k. The size of the bubbles indicates the number of parameters in the models.
DiGIT achieves SOTA performance in linear probing and establishes a new SOTA in image generation
within a single model.

models such as iGPT [8], AIM [14] and GIVT [36] in the pixel space, VIM [41] and LVM [1] in the
latent space, their performance are still inferior to the leading models [34, 12, 7] in image generation,
or self-supervised learning models [18, 10, 6, 28] in image understanding tasks.

An intriguing observation emerges regarding the presumed optimality of current practices in latent
space: as illustrated in Figure 1(b), though sharing the same latent space, autoregressive models
significantly lag behind LDMs and MIMs in the image generation task. This discrepancy prompts
reevaluating our understanding of latent spaces and their interaction with generative models, sug-
gesting unexplored avenues worth investigating. A central premise in learning theory [20] is that the
latent distribution should retain as much critical information of the data distribution as possible, akin
to a compression goal. This leads to a common misconception that an optimal latent space for re-
construction equates to optimal generative performance. Nevertheless, in the investigation regarding
the reconstruction and generation ability with the popular VQGAN model [42], it is observed that the
generation FID will deteriorate when the reconstruction FID becomes lower (where a lower value
indicates better performance), challenging the above assumption.

To address these intriguing discrepancies, we introduce a unified perspective on the relationship
between latent spaces and generative models to analyze what constitutes an optimal latent space
for generative models. Our findings reveal that, beyond the compression techniques employed by
prevalent latent generative models, an optimal latent space should also aim to minimize the distance
between distributions under the condition of incorporating a generative model, which is an aspect
often overlooked. We critically assess prevalent methodologies and reveal that the stability of latent
space is important for generative models. We argue that the reason why autoregressive models
underperform iterative models such as LDMs and MIMs is that iterative models can correct errors
brought by the instability of latent space.

Drawing from this insight, we propose a straightforward method to stabilize the existing latent space
methods for image autoregressive generative models. Unlike conventional autoencoder-style ap-
proaches, our approach disentangles the concurrent training of encoders and decoders and commences
with encoder-only training through a discriminative self-supervised model [28]. This phase does not
necessitate a decoder for pixel reconstruction, enabling the encoder to discern the intrinsic and distin-
guishable features present within the data. Subsequently, a separate decoder of the autoencoder [15] is
trained and tasked solely with the pixel reconstruction process, conditioned on the features identified
by the encoder. By focusing initially on the encoder’s capability to extract meaningful data features
independently of pixel reconstruction, we lay a foundation for a more stable and feature-rich latent
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space. The subsequent independent training phase of the decoder ensures that these captured features
can be accurately translated back to pixels.

In support of the autoregressive generative model, which requires discrete tokens for next token
prediction, we employ a strategy inspired by VQGAN [15] to discretize the encoder’s latent feature
space with the K-Means clustering algorithm. With this novel image tokenizer induced from the
stabilized latent space, the performance of autoregressive generative models in images is enhanced
significantly in both image understanding and image generation tasks. We refer to this approach as
call Discriminative Generative Image Transformer (DiGIT). Notably, when scaling up the model size,
substantial improvements can be achieved. To the best of our knowledge, this is the first evidence that
image autoregressive generative models behave analogously to GPT. In essence, this work endeavors
to redefine the boundaries of what is possible in image autoregressive modeling through a unified
perspective of latent space.

In summary, our contributions to the field of image generative models include:

• We introduce a unified perspective on the relationship between latent space and generative
models, emphasizing the stability of latent space in image generative modeling.

• We propose a novel method to stabilize latent space by disentangling the encoder and
decoder training processes. Furthermore, a simple yet effective discrete image tokenizer is
proposed to improve the image autoregressive generative model’s performance under the
philosophy of next token prediction.

• The experimental results show that the image autoregressive modeling with our tokenizer
leads to SOTA performance in image understanding and generation, with further improve-
ments witnessed when scaling up the model size.

2 Problem Formulation

In section 2.1, we formalize the latent space requirements for generative models and categorize
current latent-based generative models. Furthermore, in section 2.2, we analyze the stability of
different induced latent spaces and propose to stabilize the latent space for autoregressive generative
models instead of stabilizing the generation process with an iterative decoding strategy like LDMs.

2.1 Latent Space for Generative Models

Drawing inspiration from the complexity perspective of latent space induced from autoencoders in
Hu et al. [21], we delve into the latent space for generative models. Generative models aim at learning
a distribution to approximate the data distribution PX . Formerly, given a tractable prior distribution
PZ and a distance metric D(·, ·) between distributions, the purpose of a generative model g ∈ G is to
minimize the distance between data distribution PX and the distribution generated by g(Z):

min
g

D(Pg(Z), PX). (1)

For example, GANs [16] employ the Gaussian distribution as their prior and utilize a discriminator
network as the distance metric. However, the optimal strategy for data representation in generative
models is still under-explored. Recent studies on latent diffusion models [34] have identified that
direct learning in the pixel space of images is suboptimal. They propose to learn in a latent space
induced by a constrained autoencoder model such as VAE [23] or VQGAN [15], which has been
demonstrated to improve the perceptual quality.

A simple method to construct the latent space is using an encoder f ∈ F : Rd → Rdz to map raw data
samples x ∈ Rd into a latent space f(X) of dimension dz . Consequently, the goal of latent-based
generative models is to learn the distribution as per the following formula:

min
g

D(Pg(Z), Pf(X)), (2)

where Pf(X) denotes the data distribution in the latent space induced by the encoder f . Despite
these advances, determining the optimal latent space configuration for generative models remains
unresolved.
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Distance between distributions in different spaces. Given the ultimate goal of the generative
model is to produce image pixels, a decoder model h ∈ H : Rdz → Rd, paired with the encoder
model f , is necessary to convert latent representations back into pixels. We define a generalized
distance between different spaces associated with a decoder h ∈ H as:

DH(Pf(X), PX) := inf
h∈H

D(Ph(f(X)), PX). (3)

By employing DH to compare distributions across different spaces, we can define the ideal latent
space f(X) as the one that minimizes DH(Pf(X), PX). This implies selecting a latent representation
that minimizes the empirical objective L(h|Pf(X)) with the same family H of decoder models. Such
a latent configuration depends on both the data and the decoder training methodology. We can
formalize it with an autoencoder framework by looking at the encoder and decoder together, and the
primary goal becomes the reconstruction of the input sample x, formulated as minf,h L(h(f(x)), x).
Once a generative model g successfully approximates the latent distribution Pf(X), the generated
sample can be efficiently transformed back into pixels using the decoder h.

Similarly, we can define the distance between distributions in the latent space f(X) ∈ Rdz and data
space X ∈ Rd conditioned on the latent-based generative model g ∈ G,

DG(Pf(X), PX) := inf
g∈G

D(Pg(Z), Pf(X)), (4)

which aims to minimize the empirical objective with the generative model family G.

Optimal Latent Space for Generative Models. Now that we have characterized the ideal latent
distribution given the family of generative models and the data, the next step is to determine how to
find the optimal latent space. At the population level, the objective for the latent-based generative
models with a decoder is:

min
h∈H,g∈G

D(Ph(g(Z)), PX) = min
h∈H,g∈G

D(Ph(f(X)), PX) +D(Pg(Z), Pf(X)), (5)

where the first term focuses on optimizing the decoder to enhance the reconstruction quality and the
second one is directed towards optimizing the generative model to more accurately approximate the
latent space distribution. Inspired by this observation, we can characterize the optimal latent distribu-
tion P ∗

f(X) for a given PX from the perspective of minimizing the distance between distributions in
different spaces by defining f∗ as

argmin
f∈F

Dlatent(Pf(X), PX) := f∗(X) = argmin
f∈F

DG(Pf(X), PX) +DH(Pf(X), PX) (6)

Notice that Pf∗(X) depends on multiple factors, including PX , the distance metric D, and the
constructed model families G and H. By integrating DG and DH, we arrive at a comprehensive
measure of the distance between the distribution in the latent space and the original data distribution
as Dlatent(Pf(X), PX). The second term, DH(Pf(X), PX), is exactly the objective of reconstructive
autoencoders. Ultimately, from examining the learning objective pertinent to identifying the optimal
latent space for generative models, it becomes evident that:

A reconstructive autoencoder does not necessarily establish an advantageous latent space for
generative models.

Two Pathways of the Latent Space Construction. Although we theoretically analyze the opti-
mization of the optimal latent space for generative models, it is challenging to implement in practice
because optimizing (f, g, h) simultaneously is computationally complex. A practical solution is to
optimize DG and DH separately, allowing for tractable training.

• When DH(Pf(X), PX) is not a target for optimization, it implies that the optimization of
the decoder within the generative model framework is bypassed. The encoder independently
forms a latent space, aligning with self-supervised learning (SSL) strategies aimed at un-
covering lower-dimensional features from unlabeled data. However, learning the generative
models in the latent space induced by SSL models remains relatively unexplored.

• On the other hand, when DG(Pf(X), PX) remains fixed, the primary objective becomes
optimizing the encoder and decoder to effectively learn and represent the latent space,
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where Dlatent(Pf(X), PX) degrades into an autoencoder learning objective. This approach is
evident in recent latent-space-oriented generative models, such as LDM [34, 30], VQGAN
(AR)[15], and MaskGIT (MIM) [7], all of which concentrate on learning g in the latent
space with the encoder and decoder frozen. 2

While latent generative models such as LDM [34], MaskGIT [7], and VQGAN [15] share the same
latent space induced by a reconstructive autoencoder [15] to minimize DH(Pf(X), PX), their image
generation performances differ significantly. In the next section, we analyze the reason behind it from
the perspective of the latent space.

2.2 Stability of the Latent space

We first describe the decoding mechanism of various latent generative models. Both LDM [34] and
MaskGIT [7] can be depicted as an iterative sampling procedure given by:

p(xT ) =

T∏
i=1

p(xi|xi−1). (7)

The intermediate states xi in LDMs represent images infused with Gaussian noise of varying variance,
whereas for MaskGIT, they denote discretely tokenized images augmented with masks. In contrast,
the autoregressive framework of VQGAN (AR) is described as:

p(x) = p(x1, . . . , xN ) =

N∏
j=1

p(xj |x<j), (8)

where xi represents the i-th patch in the image sequence. Notice that xi denotes the entire image while
xj means the local patch tokens. In the autoregressive decoding process, if the previously sampled
tokens are incorrect, the accuracy of subsequent tokens would be affected due to error aggregation.
In contrast, the iterative decoding approach allows for the revision of earlier misjudged tokens.
When the latent space is unstable that small perturbation in pixels can change the latent distribution
significantly, the iterative decoding mechanism employed by LDM and MaskGIT can alleviate the
error aggregation problem by allowing for revision of earlier misjudged tokens while autoregressive
models cannot. Consequently, a stable latent space is required to reduce errors introduced in the
generation process of autoregressive models.

This principle forms the foundation of our methodology for developing a metric to evaluate latent
spaces with an emphasis on the stability of the latent representations. We examine two primary types
of latent spaces: (1) autoencoder induced by minimizing DH(Pf(X), PX) and (2) self-supervised
learning (SSL) model induced by minimizing DG(Pf(X), PX). By analyzing network parameters of
these models in a linear regime, we derive the following propositions.
Proposition 2.1. The latent space spanned by a linear autoencoder is congruent with that spanned
by the principal component loading vectors derived in Principal Component Analysis (PCA). Fur-
thermore, the principal component loading vectors can be elucidated from the autoencoder’s weights.

Proposition 2.2. The discriminative self-supervised model learns to separate data distributions in
the latent space as Linear Discriminant Analysis in principle.

Motivated by these theoretical insights, we introduce a metric to assess the stability of the latent
space induced by different encoder models. To exemplify these concepts, we refer to an example
consisting of two Gaussian distributions in a two-dimensional space, as depicted in Figure 6(a). The
results attained from applying the PCA and LDA algorithms are visually depicted in Figure 6(b) and
(c) respectively. The distribution embedded by the LDA model exhibits greater separability than that
by the PCA model. To quantitatively evaluate stability, we add Gaussian noise of different variances
to the original 2D data and subsequently train a linear classifier on the latent space. As Figure 6(d)
illustrates, the accuracy of the LDA model consistently surpasses that of PCA.

2DG and DH can achieve zero simultaneously. For example, in the well-known posterior collapse phe-
nomenon in the VAE literature, the latent space f(X) is a tractable Gaussian distribution and DG(Pf(X), PX)
can be zero by simply setting the generative models as a Gaussian sampler. If the decoder is strong enough and
directly generates samples without conditioning on the encoder output, DH(Pf(X), PX) can be zero as well.
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Table 1: The stability of latent spaces induced from VQ Token and Discriminative Token (introduced
in Section 3), assessed across different Signal-to-Noise Ratio (SNR) levels to evaluate performance
under varying signal and noise conditions.

SNR 30 25 20 15 10 5 1 0.01

VQ Token change ↓ 0.187 0.317 0.487 0.663 0.805 0.901 0.948 0.956
Disc Token change ↓ 0.114 0.178 0.260 0.355 0.457 0.570 0.687 0.721
VQ Token cos-sim ↑ 0.972 0.949 0.910 0.853 0.777 0.682 0.594 0.571
Disc Token cos-sim ↑ 0.975 0.960 0.940 0.916 0.888 0.855 0.816 0.803

Image Patches
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SSL Model

K-Means

Discriminative Tokens  Visual Features  Frozen  Trainable

DiGIT
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…
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Figure 2: The architecture of DiGIT.

To evaluate the stability of latent space induced from autoencoders and SSL models, we add Gaussian
noise to image pixels and then feed the noisy images to a VQGAN encoder and an SSL encoder
DINOv2 [28]. This experiment aims to examine the resilience of the latent spaces induced by these
encoders to such disturbances. We measure the rate of change in discrete tokens, specifically VQ
tokens for the latent space induced from the VQGAN encoder and discriminative tokens for the latent
space induced from the SSL model, and the cosine similarity in conjunction with the strength of the
noise introduced. The experimental results in Table 1 demonstrate that the latent space induced from
the SSL model exhibits heightened stability compared to that derived from the VQGAN autoencoder.
Therefore, we propose to replace the unstable latent space induced by the reconstructive model with
a stable latent space induced by the discriminative self-supervised model for autoregressive models.

3 Stabilize the Latent Space with Self-supervised Learning Model

In this section, we present a simple but effective image tokenizer that discretizes the feature rep-
resentations of discriminative SSL models to form discrete tokens for autoregressive models. The
architecture of our model is illustrated in Figure 2.

Discrete Image Discriminative Tokenizer Drawing inspiration from the VQGAN tokenizer [15],
which employs an implicit K-Means clustering algorithm within the latent space to generate discrete
tokens for autoregressive modeling, we propose a straightforward approach to perform K-Means
clustering on the feature space of discriminative SSL models to obtain discrete tokens. To process a
given dataset, our initial step involves gathering the features of image patches, akin to the hidden
states produced by SSL models. Then we employ a clustering algorithm to group these patches,
resulting in a collection of K clustering centers. These centers constitute the codebook for the discrete
tokenizer. To determine the discrete tokens for an image patch at inference, we identify its nearest
neighbor in the codebook, which is then designated as the discrete token for the respective patch.

Image Autoregressive Modeling After converting images into discrete tokens with the discrimina-
tive tokenizer, we treat each image as a sequence by flattening the discrete tokens from images into a
1D sequence in raster order. We train a causal Transformer [38] model with the next token prediction
objective, which is the same as the standard approach for language models.
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Table 2: Linear-probe accuracy of image autoregressive generative models on ImageNet [11].

Methods # Tokens Features # Params Top-1 Acc.↑
iGPT-L [8] 32× 32 1536 1362M 60.3
iGPT-XL [8] 64× 64 3072 6801M 68.7
VIM+VQGAN [41] 32× 32 1024 650M 61.8
VIM+dVAE [41] 32× 32 1024 650M 63.8
GIVT [36] 16× 16 1024 304M 65.1
VIM+ViT-VQGAN [41] 32× 32 1024 650M 65.1
VIM+ViT-VQGAN [41] 32× 32 2048 1697M 73.2
AIM [14] 16× 16 1536 0.6B 70.5
DiGIT (Ours) 16× 16 1024 219M 71.7
DiGIT (Ours) 16× 16 1536 732M 80.3

4 Experiments

4.1 Implementation Details

We take the discriminative SSL model DINOv2 [28] as the encoder for all experiments. The K-Means
model is trained on the randomly selected 10% subset of the ImageNet [11] training set. We use the
autoregressive model with the same architecture as GPT-2 [32]. We train the DiGIT models with the
base and large sizes. The vocabulary size of the tokenizer for the base is 8192 and 16000 for the large
size. More implementation details and hyper-parameters are provided in Appendix A.3.

4.2 Image Understanding

The GPT model is famous for learning semantic features by a generative training objective of next
token prediction. We compare the image understanding ability of different image autoregressive
models with linear-probe as described in iGPT [8]. We train a linear classifier on top of the frozen
features average from each layer on the ImageNet training set. We report the Top-1 accuracy compared
with other image autoregressive models in Table 2. Remarkably, with only 219M parameters, DiGIT
achieves a Top-1 accuracy of 71.7%, surpassing both iGPT and VIM-Base, which have a greater
number of parameters and operate at more visual tokens. Despite representing images with a smaller
token grid size (16 × 16 as opposed to 32 × 32), DiGIT still delivers superior top-1 accuracy,
demonstrating the effectiveness of our tokenizer. Moreover, when we scale DiGIT’s parameters from
219M to 732M, the Top-1 accuracy shows an additional increase of 8.6% and reaches 80% for the
first time. The improvement indicates that DiGIT with the proposed discriminative tokenizer has the
potential for the development of large vision models.

4.3 Image Generation

Since the SSL models do not have a paired decoder to recover pixels from latent space, the generative
models trained with our discriminative tokenizer require an auxiliary image decoder to render pixels.
The discriminative tokenizer can be seamlessly integrated with any existing image generative models
trained with a tokenizer induced from a reconstructive autoencoder. In our experiment, we train
an autoregressive model VQGAN, and an MIM model MaskGIT as the pixel decoder respectively.
The results are presented in Table 3 and Table 4. The autoregressive model equipped with our
discriminative tokenizer achieves the SOTA performance with FID reaching 3 for the first time.
Furthermore, the performance significantly improves as the model size increases, demonstrating
the potential of a large vision model with next token prediction. Interestingly, when utilizing the
DiGIT as the conditioning factor, the performance of both the autoregressive and MaskGIT decoders
becomes close (4.62 and 4.79). This observation suggests that stabilizing the latent space produces
effects analogous to the iterative stabilization decoding mechanism.

4.4 Ablation Study

We conduct the ablation study to present a comprehensive analysis of the proposed discriminative
tokenizer in image generation and understanding. The results are illustrated in Table 3(a) and
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Table 3: Class-unconditional image generation on ImageNet with resolution 256 × 256. DiGIT +
VQ indicates that we utilize golden discriminative tokens alongside VQ generated by autoregressive
models.

Type Methods #Param #Epoch FID↓ IS↑
GAN BigGAN [4] 70M - 38.6 24.70
Diff. LDM [34] 395M - 39.1 22.83
Diff. ADM [12] 554M - 26.2 39.70
MIM MAGE [26] 200M 1600 11.1 81.17
MIM MAGE [26] 463M 1600 9.10 105.1

MIM MaskGIT [7] 227M 300 20.7 42.08
MIM DiGIT (+MaskGIT) 219M 200 9.04 75.04
AR VQGAN [15] 214M 200 24.38 30.93
AR GIVT [36] 304M 500 17.70 -
AR GIVT [36] 1.67B 500 11.02 -
AR DiGIT (+VQGAN) 219M 400 9.13 73.85
AR DiGIT (+VQGAN) 732M 200 4.59 141.29
validation data DiGIT + VQ - - 1.92 184.40
validation data VQ only - - 1.67 175.56

Table 4: Class-conditional image generation on ImageNet with resolution 256× 256. † denotes the
model is trained with classifier-free guidance while all the other models are not.

Type Methods #Param #Epoch FID↓ IS↑
GAN BigGAN [4] 160M - 6.95 198.2
Diff. ADM [12] 554M - 10.94 101.0
Diff. LDM-4 [34] 400M - 10.56 103.5
Diff. DiT-XL/2 [30] 675M - 9.62 121.50
Diff. L-DiT-7B [30] 7B - 6.09 153.32
MIM Contextual RQ-Trans [25] 371M 300 5.45 172.6
MIM+AR VAR [35] 310M 200 4.64 -
MIM+AR VAR [35] 310M 200 3.60† 257.5†

MIM+AR VAR [35] 600M 250 2.95† 306.1†
MIM MAGVIT-v2 [42] 307M 1080 3.65 200.5
AR VQVAE-2 [33] 13.5B - 31.11 45
AR RQ-Trans [24] 480M - 15.72 86.8
AR RQ-Trans [24] 3.8B - 7.55 134.0
AR ViTVQGAN [41] 650M 360 11.20 97.2
AR ViTVQGAN [41] 1.7B 360 5.3 149.9
AR GIVT [36] 304M 500 5.67 -
AR GIVT [36] 1.67B 500 3.46 -

MIM MaskGIT [7] 227M 300 6.18 182.1
MIM DiGIT (+MaskGIT) 219M 200 4.62 146.19
AR VQGAN [15] 227M 300 18.65 80.4
AR DiGIT (+VQGAN) 219M 400 4.79 142.87
AR DiGIT (+VQGAN) 732M 200 3.39 205.96
validation data DiGIT + VQ - - 1.92 184.40
validation data VQ only - - 1.67 175.56

Figure 3(b). For image generation tasks, we take the autoregressive model trained with the VQGAN
tokenizer as the baseline. Introducing discriminative tokens leads to a significant improvement,
reducing FID to 9.66 and increasing IS to 69.15, underscoring the effectiveness of stabilizing latent
space for autoregressive models. Further extending the training duration to 400 epochs yielded
additional improvements of 0.53. A substantial advancement is observed when scaling up the model
size to 732M, resulting in FID dropping dramatically to 4.59 and IS more than doubling to 141.29.
This indicates that increasing the model’s capacity significantly enhances its ability to model complex
relationships within the data, which is a similar phenomenon in GPT models. Overall, the study
highlights the latent space stabilization and the potential of large-scale training of autoregressive
modeling in images with our discriminative tokenizer.
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FID↓ IS↑
VQ Token 24.38 30.93
+ Discriminative Token 9.66 69.15
+ Longer Training (400 epoch) 9.13 73.85
+ Scale up (732M) 4.59 141.29
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Figure 3: Ablation study of DiGIT. (a) The comparison of tokenizer, training steps, and model size
in the image generation task. (b) Linear-probe accuracy from different layers in the pre-trained
DiGIT-base with different number of K-Means clusters.

For the image understanding task, we investigate the effect of K-Means clusters and features learned
in the different layers of DiGIT. We can see that increasing the cluster number can further improve the
accuracy of the linear probe, which means the image autoregressive model can benefit from a larger
vocabulary. The linear probe accuracy increases quickly from the first transformer block, reaches its
peak at the middle layers, and finally decreases a little bit for the last few blocks. This observation
connects the image autoregressive model to the text language model where the semantic information
is learned in the middle layers of the transformer.

4.5 Comparison of Discrete Tokenizers

We conduct an experiment to investigate the effect of different SSL models on latent space. We
generally categorize the SSL models into two types according to their pre-training objectives: (1)
Global level (MoCo) and patch level (MAE,iBOT), (2) reconstructive (MAE) and discriminative
(MoCo, iBOT). At the global level, the loss function is computed using an aggregate output such
as [CLS] token or mean pooling. In contrast, patch-level models involve patches directly in loss
computation. Reconstructive models, such as MAE, aim to recover image pixels in a manner akin to
autoencoders, while discriminative models are optimized to learn the distinguishable features. As
demonstrated in Table 4(a), the discriminative objective plays a pivotal role in image generation in
that it can stabilize the latent space. Furthermore, because generative models need to predict patches,
the inclusion of a patch-level loss function can enhance performance.

To assess the stability of latent space induced by our discriminative tokenizer and reconstructive tok-
enizer. We pre-train two auto-regressive generative models on the ImageNet dataset [11], employing
the proposed discriminative tokenizer and VQGAN tokenizer respectively. We provide each model
with the upper half of the target image as a conditional prompt for generation, challenging them to
complete the lower half of the image. A stable latent space should be able to help the autoregressive
model generate the lower half more robustly, maintaining thematic and aesthetic coherence. As shown
in Figure 4(b), the FID decreases for both models when given a longer prefix context. However,
when the prefix length is reduced from 75% to only 12.5% of the image, the model trained with the
VQGAN tokenizer encounters difficulties in producing images that adhere to the specified prompt. In
contrast, the model utilizing the discriminative tokenizer effectively continues to produce congruent
visual tokens, maintaining low FID scores even with a significantly truncated prefix.

5 Related Work

Image Tokenizer The image tokenizer [37, 33, 15] is essential in converting pixels into discrete
tokens for autoregressive generative modeling. VQVAE [37] first proposes to assign latent features
learned by an encoder to the nearest entry in the learnable codebook embeddings, followed by a
decoder to reconstruct the original image pixels. VQGAN [15] further incorporates adversarial
loss and perceptual loss to improve the image synthesis quality. RQ-Transformer [24] extends the
single-layer quantizer to the multi-layer residual quantizer to augment the visual tokenizer’s ability to
capture fine-grained details. ViT-VQGAN [41] incorporates the modern Vision-Transformer [13]
into VQGAN to enhance the reconstruction quality. MAGVIT-v2 [42] substitute the online update
codebook in VQGAN with a lookup-free quantizer to enable a larger vocabulary for generative
language models.
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SSL Type FID↓ IS↑ Acc@LP Acc@OL†

MAE P+R 45.51 18.39 31.40 75.8
MoCo G+D 20.38 45.02 59.22 76.7
iBOT P+D 16.81 57.88 61.10 76.0
VQGAN - 24.38 30.93 - -

(a)
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Figure 4: (a): The comparison of tokenizers induced from different SSL models. Acc@LP is obtained
by linear probing on the autoregressive model (model size of 39M for 100 epochs) trained with
tokenizers. Acc@OL is the linear probe score of the SSL model. “P”: patch, “D”: discriminative,
“R”: reconstructive. (b): Generation quality curves in FID on ImageNet 256× 256 valid set when
scaling the prefix length with discriminative tokenizer and reconstructive VQGAN tokenizer. Both
are autoregressive models with 219M parameters.

Image Autoregressive Modeling Inspired by the success of autoregressive Transformer [38] in
text generation tasks, there have been several efforts to replicate it in image generation tasks. One of
the pioneering works is iGPT [8], which pre-trains an autoregressive model on pixels with the same
architecture as GPT2 [32], achieving promising results in unsupervised visual representation learning.
LVM [1] proposes a large-scale vision dataset composed of images and videos, based on which a
large vision model is trained. Empirical observations indicate that the model scales effectively across
various tasks with in-context learning [40]. Similarly, AIM [14] follows ViT [13] and represents
images in the patch. It is observed that the performance of image recognition continues to increase as
the model size scales up. VAR [35] proposes a next-scale prediction to generate images from coarse
to fine in a hybrid of autoregressive and nonautoregressive manner.

Self-supervised Learning Models Self-supervised learning (SSL) [9, 17] plays an important role
in learning fundamental visual representations for downstream tasks. Among them, SimCLR [9],
MoCo [9, 18, 10] compute losses at the image level through [CLS] token aggregation or pooling
operations with contrastive learning. iBOT-style models [43, 6, 28] extend the loss to the patch
level, achieving improved performance in dense prediction tasks. BEiT [3] uses VQGAN tokenized
sequences as the training target. MAE [19] randomly masks some patches of images and reconstructs
the pixels with unmasked patches as the condition.

6 Conclusion

In this paper, we make an exploration in the latent space for generative modeling. We introduce a
unified perspective on the relationship between latent space and generative models, emphasizing
the stability of latent space in image generative modeling. Subsequently, we propose a simple but
effective discriminative image tokenizer, followed by an image autoregressive generative model
DiGIT. Empirical results indicate that our tokenizer achieves superior performance across both image
understanding and image generation tasks. Notably, when DiGIT is scaled up in model size, it
exhibits even greater enhancements, indicating the potential for the development of large vision
models. Our findings challenge the conventional wisdom that proficiency in reconstruction equates
to an effective latent space for auto-regressive generation. Through this work, we aim to rekindle
interest in the generative pre-training of image auto-regressive models and encourage a reevaluation
of the fundamental components that define latent space for generative models.
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A Appendix

A.1 Limitation and Broader Impact

Our proposed discriminative tokenizer exhibits remarkable capabilities in both the image under-
standing and the image generation tasks, which is challenging for a single model. However, the
discriminative tokenizer induced by the SSL model cannot directly render pixels. Consequently,
we need to train another decoder model to convert tokens from discriminative tokenizers to VQ-
GAN tokens. The potential for a direct generation of RGB pixels from the tokens produced by the
discriminative tokenizer remains an uncharted avenue, which we leave for future work.

Image generative models possess a dichotomous nature, particularly within the realm of visual media.
On the positive side, they foster a myriad of creative endeavors, and methodologies aim to minimize
the costs of training and inference, holding the potential to broaden access and democratize the use of
this technology. On the negative side, the simplicity with which manipulated content can be crafted
and propagated raises serious concerns. This includes the proliferation of misinformation and spam.
Furthermore, generative models may inadvertently unveil aspects of their training data, a particularly
troubling issue when that data includes sensitive or personal information collected without explicit
consent.

A.2 Proof of claims in Section 2

Proposition A.1. Consider the optimization problem for X ∈ Rn:

min
W1∈Rm×n,W2∈Rn×m

∥X −W2W1X∥2F , (9)

which is a linear autoencoder. W2 is a minimizer of the problem if and only if its column space is
spanned by the first m loading vectors of X .

Proof. First, we derive the condition for the optimal W1 in the context of this optimization problem.
Setting the gradient of the objective function with respect to W1 to zero leads to W1 being the left
Moore-Penrose pseudoinverse of W2 [2]. Similarly, setting the gradient with respect to W2 to zero
would identify W2 as the right pseudoinverse of W1:

W1 = W †
2 = (WT

2 W2)
−1WT

2 . (10)

This finding indicates that the optimization can be simplified to focus on a single matrix (either W1

or W2), hence removing the redundancy in the parameters:

min
W2∈Rn×m

∥X −W2W
†
2X∥2F . (11)

The term W2W
†
2 = W2(W

T
2 W2)

−1WT
2 is recognized as the matrix form of the orthogonal projection

operator onto the column space of W2. This property holds true even when the column vectors of W2

are not orthonormal.

By performing QR decomposition on W2, W2 = QR where Q is an orthogonal matrix (QTQ = I)
and R is an upper triangular matrix, we effectively transform the problem into optimizing over
orthogonal matrices. The objective can thus be restated as:

min
W∈Rm×n

∥X −WTWX∥2F , subject to WWT = In×n. (12)

This revelation explicitly demonstrates that minimizing the reconstruction error in the space Rm×n

demands that W (equivalent to W2 in our context) projects X onto a space spanned by its most
significant structural components (in terms of variance), which are precisely the first m loading
vectors, or principal components, of X .

Proposition A.2. The discriminative self-supervised model learns to separate data distributions in
latent space as LDA in principle.

Proof. We first consider the objective of Fisher LDA for two-class classification. LDA seeks to find a
linear projection that maximizes the separation between the two classes:
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J(w) =
wTSBw

wTSWw
, (13)

where SB is the between-class scatter matrix, SW is the within-class scatter matrix, and w is the
projection vector.

We take contrastive learning with InfoNCE for analysis because it is the most popular learning
objective in discriminative SSL models. For contrastive learning using the asymptotic form of the
InfoNCE objective [39], we have two components:

L = −1

τ
E(x,x+)∼ppos

[
f(x)⊤f(x+)

]
+ Ex∼pdata

[
logEx−∼pdata

[
ef(x)

⊤f(x−)/τ
]]

, (14)

where the first term encourages similarity between positive pairs. In LDA, this is analogous to
minimizing SW because we want points from the same class to be close to each other when projected
onto w. The second term, when expanded using Jensen’s inequality, represents an upper bound on the
regularized sum of all pairwise inner products between different embeddings, effectively encouraging
dissimilarity between all samples:

Ex∼pdata

[
logEx−∼pdata

[
ef(x)

⊤f(x−)/τ
]]

=
1

m

m∑
i=1

log

 1

m

m∑
j=1

eh
⊤
i hj/τ

 ≥ 1

τm2

m∑
i=1

m∑
j=1

h⊤
i hj .

(15)

When hi = f(xi) are normalized, optimizing this term aims to decrease Sum(WW⊤) =∑m
i=1

∑m
j=1 h

⊤
i hj . This term, being an upper bound for the largest eigenvalue of WW⊤, when

minimized, encourages a "flatter" singular value distribution of the embedding space. This flattening
makes the embedding space more isotropic, which in turn increases the between-class scatter SB .

To make the connection explicit, consider that in LDA, we want to maximize SB , the between-class
scatter, which is typically represented as:

SB = (µ1 − µ2)(µ1 − µ2)
T , (16)

where µ1 and µ2 are the means of the two classes.

Analogously, in the contrastive learning framework, minimizing the second term scatters the embed-
dings more uniformly in the high-dimensional space, akin to maximizing between-class scatter. The
uniform distribution of the embeddings across the space increases the separation between classes or
clusters of points, akin to the effect of maximizing SB .

A.3 Implementation Details

We extract the hidden states from the third-to-last layer of DINOv2 for discriminative tokenizer
training, as it suggests more generalized representations in the intermediate layers compared to the
last layer. All DiGIT models are trained from scratch with a batch size of 2048 for the base model and
1024 for the large model, over a duration of 200 epochs. For the image generation task, the decoder
model for pixel rendering is trained with a batch size of 2048 for 400 epochs, while the large model
uses a batch size of 1024 for 200 epochs. The base model consists of 16 layers with a dimension of
1024 and a hidden dimension of 4096. The large model consists of 24 layers with a dimension of
1536 and a hidden dimension of 6144. Both configurations feature 16 attention heads. For all models,
we utilize the Adam [22] optimizer with β = (0.9, 0.98). We employ an inverse square root decay
schedule for the learning rate with a peak value of 3e− 4 for 10 epochs warm-up. We use the same
VQGAN model as MAGE Li et al. [26]. During training, we apply data augmentations including
random crops resized to the short edge and horizontal flips. For the decoding strategy, we apply top-k
sampling with K = 400 for the large model and K = 200 for the base model. In the autoregressive
decoder for pixel rendering, we use a probability of 0.8 with a temperature of 1.0 for top-p sampling.
All experiments are conducted using the FAIRSEQ [29] library.
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Figure 5: FID and Inception Score as a function of top-k, top-p sampling on the image generation task
with DiGIT-base. The decoding temperature is fixed to 1.0. The “stage2” denotes the autoregressive
model for pixel rendering.
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A.4 Qualitative Cases

Figure 7: Class-unconditional image generation results on ImageNet 256×256 by DiGIT.
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Figure 8: Class-conditional image generation results on ImageNet 256×256 by DiGIT, where the
images in the same row share the same class label.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please refer to Section 6.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to Section A.1.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Please refer to Section 2 and Appendix A.2
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Appendix A.3
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: A primary reason for not providing open access to the code is at the request of
our collaborators.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Section 4 and Appendix A.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because computing them would be too computa-
tionally expensive, given the large-scale nature of our experiments, which involved multiple
large models and extensive datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Appendix A.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research aligns with the NeurIPS Code of Ethics by ensuring ethical treat-
ment of participants, maintaining data privacy, avoiding harmful applications, considering
environmental impacts, providing transparency for reproducibility, and complying with legal
and ethical standards.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Section A.1.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: Implementing effective safeguards is challenging now due to limited computa-
tional and human resources. We plan to develop and integrate appropriate measures prior to
release to ensure responsible usage.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Please refer to Section 4.5. we have appropriately cited the ImageNet dataset
and adhered strictly to its terms of access, as outlined at https://image-net.org/
download.php.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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