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Abstract

The field of machine learning for materials property prediction and
characterization is seeing rapid developments in models, datasets, and
frameworks. While datasets and models grow in size, frameworks must mature
concurrently to match the data requirements and quick development cycles
required to support these growing workloads. The efficient training of models
is one area where machine learning frameworks may be improved. Utilizing
active learning querying strategies to train models from scratch using fewer data
can lead to faster development cycles, model evaluations, and reduced costs of
training. Well-studied active learning querying strategies from computer vision
and natural language processing are directly applied to train an E(n)-GNN model
from scratch using a subset of the Materials Project Database and Novel Materials
Discovery (NOMAD) Database, with the results compared to data subset selection
techniques and the standard training pipeline. In general, the models trained
with active learning querying strategies meet or exceed the performance standard
trained models while using significantly less training data.

1 Introduction

In the field of materials science, the ability to accurately predict material properties is a critical
prerequisite for the design and synthesis of novel materials with tailored functionalities. Traditional
computational methods relying on first-principles calculations or empirical relationships often face
challenges in terms of computational cost, scalability, and generalizability. As the dimensionality
and complexity of material datasets data grow, there’s an increasing demand for innovative
approaches to predict material properties efficiently and reliably Goodall and Lee [2020]Jha et al.
[2019]. While machine learning models hold the potential to accelerate material property predictions
Pilania et al. [2013], their effectiveness is inherently tied to the quality and comprehensiveness
of the training data. Given the vastness of the materials space and the high cost associated with
experimental and computational data generation, obtaining exhaustive labeled datasets becomes a
significant bottleneck Jha et al. [2022]De Breuck et al. [2021][Song et al., 2023].

In typical machine learning workflows, models are trained by randomly sampling data from the
full dataset until all samples are seen. Random sampling ensures the full dataset is seen in an
unbiased way and ensures the full dataset distribution is well represented. Although beneficial,
random sampling an entire dataset may be slow and redundant, as the dataset may contain samples
that are not impactful on the model training and optimization itself. Long training times become a
hindering factor in development as larger datasets are curated and models grown in both size and
complexity. Reducing the dataset size requirements to achieve desirable model performance will
allow for faster development cycles, increase accessibility to modern experimental pipelines, and
give researchers more time to focus on other aspects of materials modeling challenges.

To mitigate these challenges, two types of data sampling techniques are explored to reduce overall
dataset size requirements in training models from scratch. Data subset selection aims to find the

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



most informative samples such that a model trained with a subset may achieve similar performance
to a model trained on the full dataset. Samples are ordered by their importance and iteratively fed
to the model during training. The ordering is determined by strategies such as measuring distance
of samples from their cluster centers in embedding space, uncertainty based scores, and feature
similarityDasgupta and Hsu [2008]Lewis and Gale [1994].

Active learning is a related problem originally developed for semi-supervised learning scenarios
where an existing model is to be updated with new data. In active learning querying, a pool
of unlabeled data is analyzed for the most important subset of samples which are selected and
subsequently labeled, typically by a human-in-the-loop or other oracle. Unlabeled samples are
queried by strategies that are uncertainty or diversity based Settles [2011]. Newly queried samples
are used to update the existing model by way of retraining or fine-tuning the model. In both data
subset selection and active learning querying, building a subset of data that accurately captures the
distribution and diversity of the original dataset is desired. The subset of data may then be used in
place of the full dataset to perform more efficient training of models.

2 Background and Related Work

Active learning has been extensively applied to the computer vision and natural language processing
domainsLi and Guo [2013]Wu et al. [2022]Zhang et al. [2022]. While active learning is typically
applied in the semi-supervised setting, many prior works highlight the utility of using active learning
query strategies to train models from scratch Chen et al. [2022]. The comprehensive work of Park
et al. [2022] presents how computer vision models may be trained from scratch more efficiently
using active learning querying compared to data subset selection methods, and highlights the
importance of an initial random subset of data used as the initial training pool. Bengio et al. [2009]
develop curriculum learning, where annotated training data is sorted from easy to learn, and is
presented to the model during training.

While active learning has broad coverage in computer vision and natural language processing, the
emerging field of applying deep learning in materials science has not been as thoroughly studied
under the framework of active learning. Wang et al. [2020] demonstrates how active learning may
be used in molecular dynamics simulations, where adversarial attacks move atoms towards uncertain
positions based on forces, which are then used in active learning updates. Lookman et al. [2019]
investigates the use of common querying functions and their use in materials science applications.
Jain et al. [2023] looks at active learning from the perspective of multi-objective optimization. Graff
and Coley [2022] develops a software library that accelerates the structure based virtual screening
process for used in drug discovery programs. In the work of Siemenn et al. [2022], two new active
learning acquisition functions are implemented which help guide sampling of new experiments.
Bo et al. [2022] implements a multi-objective active learning algorithm for designing 3D-printed
architected materials.

3 Querying Methods

Querying methods from active learning typically rely on the use of a model which selects data in an
unsupervised manner, i.e., data labels are assumed to be unknown. In data subset selection, the full
dataset and labels are available to see and utilize. Data subset selection may also make use of known
features of a dataset which can be used to separate out useful samples. These querying methods are
used in the context of pool based active learning, where multiple samples are selected at once, as
opposed to stream based where samples are provided to a model one-by-one.

3.1 Data Subset Selection Methods

Three data subset selection methods are used, namely: random sampling, center of mass (COM)
clustering and UMAP (Uniform Manifold Approximation and Projection) McInnes et al. [2018]
clustering. In random sampling, data points are randomly selected from the pool of unqueried data.
In center of mass clustering, the entire dataset is processed and local center of mass coordinates
are generated for each sample. The average center of mass across the dataset is then used as the
global center, and each sample is sorted by the Euclidean distance from the global center of mass.
Similarly, for UMAP, the 2-D output global center is calculated, and individual samples are sorted
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by their distance from the center. During training, samples furthest out are selected first, and the
closest points are selected last.

3.2 Active Learning Querying Methods

Standard active learning querying methods are used along with common variations including:
entropy Holub et al. [2008], margin Roth and Small [2006], least confidence Lewis and Gale [1994],
expected entropy Holub et al. [2008], expected least confidence Settles [2009], expected margin
Settles [2009], and predictive entropy Hernández-Lobato et al. [2014]. For precise definitions of
the standard strategies used please see Lesci [2022]. BALD Houlsby et al. [2011] is also utilized,
which is the difference between predictive entropy and expected entropy. Entropy strategies used
in this work are based on the entropy of the softmax of the logits. Confidence is defined as the
maximum probability assigned to a class, as determined by the softmax. Finally, learning loss (LL)
Yoo and Kweon [2019] is utilized which involves training a loss prediction module which shares the
backbone of the primary model, and is trained to predict the losses of unlabeled inputs.

4 Experiments

4.1 Setup

All experiments are performed utilizing the Open MatSciML Toolkit by Lee et al. [2023], and
Energizer: an active learning framework for PyTorch based on PyTorch Lightning Lesci [2022].
Datasets used include the Materials Project Dataset [Jain et al., 2013] with train, validation and
test splits defined in the Open MatSciML toolkit (108,159 train samples, 30,904 validation samples
15,456 test samples) and NOMAD Draxl and Scheffler [2019] randomly created train, validation,
and test splits (97,174 train samples, 27,763 validation samples, 13,883 test samples). The E(n)-
GNN model Satorras et al. [2021] implementation from Open MatSciML toolkit is used with default
parameters for the model and optimizer. The crystal symmetry property consisting of 230 possible
classes is used as the classification task to demonstrate the capabilities of active learning techniques.

Data is queried iteratively in chunks of 10% of the original training dataset size until the full dataset
has been sampled. At each update, the full dataset queried up to the current update step is used
to train the model. Each model update is trained for 25 epochs, and a total of 10 model updates
are performed. At the end of each model update, the test set is used to generate model performance
metrics. Three full experiments are run for each method using three random seeds per experiment. In
the result plots, average classification accuracy and loss is plotted as a solid line. Experiments using
active learning querying and data subset selection start with a randomly selected set of data which
is shown to lead to better overall performance Park et al. [2022]. In each model querying iteration,
the entire pool of available data is used and ranked based on the querying method. Selected data
is subsequently added to the train dataloader and removed from the pool of available data to query
from. All experiments are run on a cluster and utilize either a single Nvidia Titan-X, Titan-Xp or
Titan-V GPU.

In additional to query strategies, model weight resetting is used, where the models weights are fully
reset to their original initialization values after each active learning update. This type of experiment
is closely related to training a model from scratch using smaller data subset sizes, with the caveat in
active learning querying of using a previously trained model to aid in the selection of the next set of
data. In the typical active learning setting, pretrained model weights are fine-tuned using small pools
of oracle labeled data from active learning querying. This paradigm of active learning works well
for incremental updates with queried datasets that are small in comparison to the original pretraining
dataset Ren et al. [2021].

4.2 Results

In general, active learning querying methods enable models to match the performance of standard
training, and in some cases outperform the standard performance when comparing the test set
classification accuracy. Additionally, active learning querying methods tend to outperform the data
subset selection methods. The best results are seen when using a strategy that does not reset the
model weights back to their original values. Figure 1 shows test accuracy and loss as the percentage
of data sampled is increased.
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(a) Test accuracy on Materials Project (b) Test loss on Materials Project

Figure 1: Test set accuracy and loss curves for each query strategy, compared to standard training
(dashed black line). These results did not reset the models weights between queries. All active
learning strategies, except for learning loss, achieve equal or greater performance compared to
standard training. Learning loss performance may be improved by tuning the loss prediction
modules hyperparameters.

(a) Test accuracy on Materials Project (b) Test loss on Materials Project

Figure 2: Test set accuracy and loss curves for each query strategy, compared to standard training
(dashed black line). These results reset the model weights between queries. All strategies except
learning loss converge to the same final performance as expected. Ideally, querying strategies would
be able to select informative samples such that a model trained from scratch with a subset of data
would achieve the same performance as a model trained on the full dataset.

Model performance remains consistent with standard training when the models weights are reset
between queries. This is an indication that performing training simply with a smaller subset of
data will not provide any performance gains compared to training with the full dataset. Figure 2
highlights how each strategy eventually converges to the standard model performance once the full
dataset is sampled, except for learning loss, which never reaches the same final value. This may be
due to a poor hyperparameter configuration for the learning loss module itself.

Experiments performed with NOMAD show results that indicate smaller datasets may be used to
achieve the same performance as training with the full dataset, regardless of the method in which
the data were sampled. In comparison to the Materials Project Dataset, the distribution of NOMAD
space group numbers is far more sparse and can be seen in Appendix A Figure 5.
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(a) Test accuracy on NOMAD (b) Test loss on NOMAD

Figure 3: Test set accuracy and loss curves for each query strategy, compared to standard training
(dashed black line). These results do not reset model weights. These results indicate that smaller
datasets may be used to achieve the same performance as training with the full dataset, regardless of
the method in which the data were sampled.

Table 1: Performance comparison of active learning querying strategies, data subset selection, and
standard training using Materials Project dataset. Highlighted cells indicate a test set classification
accuracy greater than or equal to the standard strategy.

Strategy 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Entropy 0.2± 0.3 28.6± 1.2 36.3± 0.5 42.4± 0.4 45.2± 1.5 48.7± 1.7 51.7± 1.7 49.1± 5.7 55.5± 2.0 56.3± 1.7 56.7± 2.1

Least Confidence 0.2± 0.1 29.4± 1.0 37.0± 0.6 43.0± 0.4 46.7± 0.2 49.3± 0.9 52.3± 0.3 51.7± 3.9 55.4± 0.4 55.8± 1.7 57.2± 0.3

Margin 0.1± 0.0 27.7± 1.9 36.4± 1.9 43.6± 1.4 49.1± 0.1 51.8± 1.0 54.2± 0.2 56.0± 0.5 57.5± 0.5 58.2± 0.7 58.2± 0.5

Expected Entropy 0.4± 0.4 28.7± 0.7 35.4± 0.5 41.6± 0.5 44.9± 0.3 47.6± 0.9 50.8± 1.4 52.8± 1.6 55.2± 0.8 53.9± 3.5 56.2± 0.7

Predictive Entropy 1.0± 1.2 29.5± 1.0 37.5± 0.8 42.4± 0.7 45.5± 0.7 48.0± 0.5 50.5± 1.1 52.8± 0.8 54.8± 1.5 56.2± 0.7 56.0± 0.9

Expected Least Confidence 0.4± 0.3 28.7± 0.3 36.5± 0.3 42.1± 0.6 46.0± 0.6 48.5± 0.8 51.2± 0.9 53.6± 1.2 55.5± 1.0 55.8± 1.2 56.3± 0.6

Expected Margin 0.2± 0.0 29.4± 0.2 37.2± 0.8 42.5± 1.5 46.9± 0.4 49.4± 0.6 50.5± 1.0 53.4± 1.2 54.6± 1.0 55.6± 1.2 52.4± 3.0

BALD 0.4± 0.2 25.8± 2.2 35.3± 1.5 42.5± 1.5 46.3± 1.4 49.4± 1.7 51.6± 1.7 52.6± 1.2 53.6± 2.7 55.1± 1.9 55.8± 1.5

Learning Loss 0.4± 0.3 21.8± 0.9 27.1± 1.3 29.8± 0.5 32.6± 0.8 34.3± 0.8 36.5± 1.0 37.5± 1.1 39.5± 1.1 40.9± 1.0 40.9± 1.0

Random 0.4± 0.2 29.5± 0.4 37.9± 0.5 43.3± 0.3 47.0± 0.2 48.4± 0.7 49.9± 0.3 51.1± 0.5 52.4± 1.0 54.2± 0.2 54.0± 1.7

Center of Mass 2.1± 2.1 27.7± 1.8 34.7± 0.7 38.7± 0.1 41.7± 0.2 43.7± 0.6 46.0± 0.4 48.4± 0.3 49.4± 0.8 53.7± 0.6 54.0± 0.1

UMAP 0.1± 0.0 28.5± 1.9 37.2± 0.3 43.1± 0.8 47.0± 0.8 48.9± 1.0 50.5± 1.4 52.0± 1.5 53.4± 1.1 54.3± 1.1 54.0± 2.1

Standard - - - - - - - - - - 54.0± 1.1

5 Discussion

We show that by using active learning querying, model classification accuracy may match or
outperform standard performance while being trained with fewer data. All the active learning
querying strategies, except for learning loss, achieve the same classification accuracy prior to that of
a model trained with the full dataset and in some cases can achieve the same accuracy while using
40% less data. While the active learning query strategies perform well, data subset selection methods
do not bring model performance up as quickly. When training with the NOMAD dataset, the same
model performance was achieved by training with only 10% of the original dataset. Utilizing more
efficient training methods in practice may allow researchers and practitioners to focus their efforts
on model development, analysis, and dataset exploration.

While this work focuses primarily around active learning querying methods, a similar study may
be conducted with a focus on data subset sampling methods to more thoroughly cover this space.
Additionally, studying methods which train models for a comparable total number of epochs would
lead to reductions in both data and compute requirements.
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A Datasets and Distributions

(a) Train data distribution (b) Test data distribution

Figure 4: Train and test set distribution over the space group property for the Materials Project
dataset.

(a) Train data distribution (b) Test data distribution

Figure 5: Train and test set distribution over the space group property for the NOMAD dataset.
The distribution is far more sparse than Materials Project, despite having a similar number of total
samples.

A.1 Hyperparameters

We outline the hyperparameters for E(n)-GNN described in Section 4. We maintained consistent
architecture parameters for all training settings across all experiments.
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Table 2: Hyperparameters for E(n)-GNN

Hyperparameter Value

MLP hidden dim 32

MLP output dim 128

# of EGNN layers 5

Node MLP dim [128, 128, 128]

Edge MLP dim [128, 128, 128]

Atom position MLP dim [64, 64]

MLP activation ReLU
Graph read out Sum
Node projection block depth 3

Node projection hidden dim 128

Node projection activation ReLU
Output block depth 3

Output hidden dim 128

Output activation ReLU
Optimizer Parameters

Learning Rate 0.0001

Batch Size 24
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