
Don’t Generate Me:
Training Differentially Private Generative Models

with Sinkhorn Divergence

Tianshi Cao1,2,4 Alex Bie3∗ Arash Vahdat4 Sanja Fidler1,2,4 Karsten Kreis4

1University of Toronto 2Vector Institute 3University of Waterloo 4NVIDIA
tianshic@nvidia.com, yabie@uwaterloo.ca, {avahdat,sfidler,kkreis}@nvidia.com

Abstract

Although machine learning models trained on massive data have led to break-
throughs in several areas, their deployment in privacy-sensitive domains remains
limited due to restricted access to data. Generative models trained with privacy
constraints on private data can sidestep this challenge, providing indirect access
to private data instead. We propose DP-Sinkhorn, a novel optimal transport-based
generative method for learning data distributions from private data with differen-
tial privacy. DP-Sinkhorn minimizes the Sinkhorn divergence, a computationally
efficient approximation to the exact optimal transport distance, between the model
and data in a differentially private manner and uses a novel technique for control-
ling the bias-variance trade-off of gradient estimates. Unlike existing approaches
for training differentially private generative models, which are mostly based on
generative adversarial networks, we do not rely on adversarial objectives, which
are notoriously difficult to optimize, especially in the presence of noise imposed
by privacy constraints. Hence, DP-Sinkhorn is easy to train and deploy. Ex-
perimentally, we improve upon the state-of-the-art on multiple image modeling
benchmarks and show differentially private synthesis of informative RGB images.
Project page: https://nv-tlabs.github.io/DP-Sinkhorn.

1 Introduction
Modern machine learning (ML) algorithms and their practical applications (e.g. recommender sys-
tems [1], personalized medicine [2], face recognition [3], speech synthesis [4], etc.) have become
increasingly data hungry and the use of personal data is often a necessity. Consequently, the impor-
tance of privacy protection has become apparent to both the public and academia.

Differential privacy (DP) is a rigorous definition of privacy that quantifies the amount of information
leaked by a user, participating in a data release [5, 6]. The degree of privacy protection is represented
by the privacy budget. DP was originally designed for answering queries to statistical databases. In a
typical setting, a data analyst (party wanting to use data; e.g. a healthcare company) sends a query to
a data curator (party in charge of safekeeping the database; e.g. a hospital), who makes the query on
the database and replies with a semi-random answer that preserves privacy. Responding to each new
query incurs a privacy cost. If the analyst has multiple queries, the curator must subdivide the privacy
budget to spend on each query. Once the budget is depleted, the curator can no longer respond to
queries, preventing the analyst from performing new, unanticipated tasks with the database.

Generative models can be applied as a general and flexible data-sharing medium [7, 8], sidestepping
the above problems. In this scenario, the curator first encodes private data into a generative model;
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then, the model is shared with the analyst, who can use it to synthesize similar yet different data
from the training data. This data can be used in any way desired, such as for data analysis or to train
specific ML models. Unanticipated novel tasks can be accommodated without repeatedly interacting
with the curator, since the analyst can easily generate additional synthetic data as required.

Furthermore, it has been observed that generative models can reveal critical information about their
training data [9, 10]. For example, Webster et al. [9] found that modern GANs trained on images of
faces produce examples that greatly resemble their training data, thereby leaking private informa-
tion. Hence, the generative model must be learnt with privacy constraints to protect the privacy of
individuals contributing to the database.

Differentially private learning of generative models has been studied mostly using generative adver-
sarial networks (GANs) [7, 11, 12, 13, 14]. While GANs in the non-private setting can synthesize
complex data such as high definition images [15, 16], their application in the private setting is chal-
lenging. This is in part because GANs suffer from training instabilities [17, 18], which can be
exacerbated by adding noise to the GAN’s gradients during training, a common technique to im-
plement DP. Hence, GANs typically require careful hyperparameter tuning. This goes against the
principle of privacy, where repeated access to data need to be avoided [19].

In this paper, we propose DP-Sinkhorn, a novel method to train differentially private generative
models using a semi-debiased Sinkhorn loss. DP-Sinkhorn is based on the framework of optimal
transport (OT), where the problem of learning a generative model is framed as minimizing the op-
timal transport distance, a type of Wasserstein distance, between the generator-induced distribution
and the real data distribution [20, 21]. DP-Sinkhorn approximates the exact OT distance in the pri-
mal space using the Sinkhorn iteration method [22]. Furthermore, we propose a novel semi-debiased
Sinkhorn loss to optimally control the bias-variance trade-off when estimating gradients of this OT
distance in the privacy preserving setting. Since our approach does not rely on adversarial compo-
nents, it avoids any training instabilities and removes the need for early stopping (stopping before
catastrophic divergence of GANs, as done, for example, in [15]). This makes our method easy to
train and deploy in practice. To the best of our knowledge, DP-Sinkhorn is the first fully OT-based
approach for differentially private generative modeling.

In summary, we make the following contributions: (i) We propose DP-Sinkhorn, a flexible and
robust optimal transport-based framework for training differentially private generative models. (ii)
We demonstrate a novel technique to finely control the bias-variance trade-off of gradient estimates
when using the Sinkhorn loss. (iii) Benefiting from these technical innovations, we achieve state-
of-the-art performance on widely used image modeling benchmarks for varying privacy budgets,
both in terms of image quality (as measured by FID) and downstream image classification accuracy.
Finally, we present informative RGB images generated under strict differential privacy without the
use of public data, with image quality surpassing that of concurrent works.

2 Related Works

The task of learning generative models on private data has been tackled by many prior works. The
general approach is to introduce privacy-calibrated noise into the model parameter gradients during
training. A long line of works have explored combinations of GANs and differential privacy. DP-
GAN [7] first introduced the idea of combining differential privacy with GANs in a simple scheme
where DPSGD [23] is used when updating the generator. This is followed up a year later by dp-
GAN [11], which adds a decaying clipping threshold that heuristically matches the decreasing gra-
dient magnitude during training. DP-CGAN [24] adds class conditioning to DPGAN for generation
of conditional data. PATE-GAN [25] adopts the PATE framework for generative learning by using
PATE [26] to train a private student discriminator; only generated images are scored by this student
discriminator to train the generator. This work is improved by G-PATE [27], which uses random
projections and gradient quantization to directly aggregate discriminator gradients for updating the
generator. Importantly, G-PATE makes the point that only the generator is released in the DP gen-
erative learning task, thus a large (∼1000s) ensemble of non-private discriminators can be used to
train a private generator. GS-WGAN [13] brings this idea back to DPSGD-based training, in which
the gradient aggregate from an ensemble of discriminators is processed by the Gaussian mechanism.
Unlike DP-GAN, this is performed on the image gradient, which has fewer dimensions than the
parameter gradient. Datalens [14] further improves upon G-PATE by introducing TopAgg—a three
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step gradient compression and aggregation algorithm, which provides stable, quantized discrimina-
tor gradients at a low privacy cost.

It is well documented that GANs are unstable during training [17, 18] due to the non-optimality of
the discriminator producing large biases in the generator gradient [20]. This problem is critical in the
context of DP, where the imposed gradient noise can increase training instabilities and interaction
with private data (for example during hyperparameter tuning) should be limited. Our approach cir-
cumvents these issues by not relying on adversarial learning schemes. Furthermore, state-of-the-art
methods [13, 14] rely on training a large number of discriminators to take advantage of the subsam-
pling property of differential privacy. This hinders their practical usefulness as the discriminators
require large amounts of GPU/TPU memory. In contrast, only a single generator network is trained
in DP-Sinkhorn, making our approach more amenable to various hardware configurations.

Other generative models have also been studied in the DP setting. [28] partitions the private data
in clusters and learns separate likelihood-based models for each cluster. [29] uses Maximum Mean
Discrepancy with random Fourier features. While these works do not face the same stability issues
as GANs, their restricted modeling capacity results in these methods mostly learning prototypes for
each class. DP-Sinkhorn is better at using the modeling capacity of neural networks to produce high
utility synthetic data while preserving privacy. Lastly, while [30] produced strong empirical results,
their privacy analysis relies on the use of Wishart noise on sample covariance matrices, which has
been proven to leak privacy [31]. Hence, their privacy protection is invalid in its current form.

3 Background
3.1 Notations and Setting

Let X denote a sample space, P(X ) all possible measures on X , and Z ⊆ Rd the latent space. We
are interested in training a generative model g : Z 7→ X such that its induced distribution µ = g ◦ ξ
with noise source ξ ∈ P(Z) is similar to observed ν through an independently sampled finite sized
set of observations D = {y}N . In our case, g is a trainable parametric function with parameters θ.

3.2 Generative Learning with Optimal Transport

Optimal Transport-based generative learning considers minimizing variants of the Wasserstein dis-
tance between real and generated distributions [20, 21]. Two key advantages of the Wasserstein
distance over standard GANs, which optimize the Jensen-Shannon divergence [32], are its definite-
ness on distributions with non-overlapping supports, and its weak metrization of probability spaces
[33]. This prevents collapse during training caused by discriminators that are overfit to training data.

The OT framework can be formulated in either the primal or dual formulation. In WGAN and vari-
ants [33, 34, 35], the dual potential is approximated by an adversarially trained discriminator. These
methods still encounter instabilities during training, since the non-optimality of the discriminator
can produce arbitrarily large biases in the generator gradient [20]. The primal formulation involves
solving for the optimal transport plan—a joint distribution over the real and generated sample spaces.
The distance between the two distributions is then measured as the expectation of a point-wise cost
function between pairs of samples as distributed according to the transport plan.

In general, finding the optimal transport plan is a difficult optimization problem. The entropy-
regularized Wasserstein distance (ERWD) imposes a strongly convex regularization term on the
Wasserstein distance, making the OT problem between finite samples solvable in linear time [36].
Given a positive cost function c : X × X 7→ R+ and λ ≥ 0, the ERWD is defined as:

Wc,λ(µ, ν) = min
π∈Π

∫
c(x,y)dπ(x,y) + λ

∫
log

(
dπ(x,y)

dµ(x)dν(y)

)
dπ(x,y) (1)

where Π = {π(x,y) ∈ P(X × X )|
∫
π(x, ·)dx = ν,

∫
π(·,y)dy = µ}.

The Sinkhorn divergence uses auto-correlation terms to reduce the entropic bias introduced by
ERWD with respect to the exact Wasserstein distance, canceling it out completely for µ = ν (i.e.
Sc,λ(µ, ν) = 0 for matching µ = ν). This results in faithful matching between the generator and
real distributions. Here, we use the Sinkhorn divergence as defined in [37].
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Figure 1: Flow diagram of DP-Sinkhorn for a single training iteration: Batch of generated data is
split for the calculation of the cross term and the self term losses. Element-wise differences are
captured in the cost matrix. Then, the losses are calculated using the Sinkhorn algorithm. In the
backward pass, we impose a privacy barrier behind the generator by clipping and adding noise to
the gradients at the generated image level, similar to [13].

Definition 3.1. (Sinkhorn Divergence) The Sinkhorn divergence between measures µ and ν is de-
fined as:

Sc,λ(µ, ν) = 2Wc,λ(µ, ν)−Wc,λ(µ, µ)−Wc,λ(ν, ν) (2)

3.3 Differential Privacy

The current gold standard for measuring the privacy risk of data-releasing programs is the notion of
differential privacy (DP) [5]. Informally, DP measures to what degree a program’s output can deviate
between adjacent input datasets d and d′—sets differing by one entry. For a user contributing their
data, this translates to a guarantee on how much an adversary could learn about them from observing
the program’s output. Here, we are learning a generative model of images, while conditioning on
available semantic labels. Hence, we are interested in the domain of image-and-label datasets where
each image and its label constitute an entry.

A well-studied formulation of privacy, which allows tight composition of multiple queries and can be
easily converted to standard definitions of DP, is provided by Rényi Differential Privacy (RDP) [38]:
Definition 3.2. (Rényi Differential Privacy) A randomized mechanismM : D → R with domain D
and rangeR satisfies (α, ε)-RDP if for any adjacent d, d′ ∈ D:

Dα(M(d)|M(d′)) ≤ ε, (3)
where Dα is the Rényi divergence of order α. Also, anyM that satisfies (α, ε)-RDP also satisfies
(ε+ log 1/δ

α−1 , δ)-DP

Here,M is a DP-learning algorithm, d a training set, andM(d) a generator trained on d. The ran-
domized mechanism can often be dissected into a deterministic function of the dataset Q : D → R,
the query, and a noise injecting random functionM′ : R → R, the privacy mechanism, such that
M(d) = M′ ◦ Q(d). The sensitivity of a query S(Q) is a property that represents the maximum
magnitude of change between outputs of the query when applied to adjacent datasets. For a query
output q = Q(d) with sensitivity S(Q) and standard deviation of Gaussian noise σ, the Gaussian
mechanism M(q) = q + z, z ∼ N(0, σ2) satisfies (α, αS(Q)2/(2σ2))-RDP [38]. Subsampling
the dataset into batches also improves privacy. The effect of subsampling on the Gaussian mecha-
nism under RDP has been studied in [39, 40, 41]. Furthermore, privacy analysis of a gradient-based
learning algorithm entails accounting for the privacy cost of single queries (possibly with subsam-
pling), summing up the privacy cost across all queries (i.e. training iterations in our case), and then
choosing the best α. A more thorough discussion of DP can be found in the Appendix.

4 Differentially Private Sinkhorn

We propose DP-Sinkhorn (Fig. 1), an OT-based method to learn differentially private generative
models that avoids the training instability issues of GANs. In this section, we first provide an
overview of DP-Sinkhorn, followed by our novel semi-debiased Sinkhorn loss function. We then
analyze the privacy protection of DP-Sinkhorn, and discuss some design considerations.

4.1 Overview of DP-Sinkhorn
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Algorithm 1 DP-Sinkhorn
L is number of categories. X is sample space.
M is size of private data set. backprop is a
reverse mode auto-differentiation function that
takes ‘out’, ‘in’ and ‘grad weights’ as input and
computes the Jacobian vector product Jin(out) ·
grad weights. Poisson Sample and Ŵλ (via
Sinkhorn iterations) are defined in Appendix.

Input: private data set d = {(y, l) ∈ X ×
{0, ..., L}}M , sampling ratio q, noise scale σ, clip-
ping coefficient ∆, generator gθ , learning rate α, en-
tropy regularization λ, debiasing resample fraction
p, total steps T .
Output: θ
n = q ∗M , n′ = floor(n ∗ p)
for t = 1 to T do

Sample Y ← Poisson Sample(d, q),

Z← (zi)
(n+n′)
i=1

i.i.d.∼ Unif(0, 1)

Lx ← {li}(n+n
′)

i=1

i.i.d.∼ Unif(0, ..., L)

X← {xi = gθ(zi, li)}(n+n
′)

i=1

gradX ← ∇XŜc,λ,p(X,Y)

gradX[0:n] ← clip(gradX[0:n],∆)+2∆σN (~0, I)
grad

X[n:n+n′] ← clip(gradX[n:n+n′],∆)

gradθ ← backprop(X, θ, gradX)
θ ← θ − α ∗Adam(gradθ)

end for

DP-Sinkhorn aims to stably and robustly train
generative models on high dimensional data
(e.g. images) while preserving the privacy
of training data. As discussed in Sec. 2,
current state-of-the-art methods in privacy-
preserving data generation are reliant on ad-
versarial training schemes that are not ro-
bust, unstable, and complicated to train.
DP-Sinkhorn leverages advancements in OT-
based generative learning to do away with
the adversarial training scheme. Specifi-
cally, training a generative model with DP-
Sinkhorn is a straightforward end-to-end iter-
ative loss minimization process. In each iter-
ation, data produced by the generator are split
according to the debiasing ratio into a “cross”
group and a “debiasing” group. Empirical OT
distances are calculated between the “cross”
group and the real data, and between the “de-
biasing” group and the “cross group”. Gra-
dients of the OT distances with respect to the
generated data are calculated and backpropa-
gated to the generator. Privacy protection is
enforced by clipping and adding noise to the
gradients of the “cross” group during back-
propagation.

4.2 Estimating Sinkhorn Divergence with Semi-Debiased Sinkhorn Loss

Sinkhorn divergence, as expressed in Eq. 2, involves integration over the sample space. Empirical
estimation of Eq. 2 based on finite samples is required to train a generative model through gradient-
based optimization. A solution suggested by previous works [37, 21] would be to replace µ and ν
with empirical samples from each distribution.
Definition 4.1. The empirical Sinkhorn loss computed over a batch of n generated examples X and
m real examples Y is defined as [37]:

Ŝc,λ(X,Y) = 2Ŵλ(X,Y)− Ŵλ(X,X)− Ŵλ(Y,Y), (4)

where Ŵλ(A,B) = CAB � PλAB.2 CAB ∈ R+n×m with Ci,j = c(xi,yj) (xi,yj are rows of
A,B) is the cost matrix between A and B, and PλAB is the approximate optimal transport plan that
empirically minimizes Ŵλ(A,B) computed by the Sinkhorn algorithm.

However, [42] showed that the gradients of Ŝc,λ(X,Y) are biased estimates of the gradients of
Sc,λ(µ, ν), computed over the population. Instead, they proposed a loss formulation that produces
unbiased gradients using additional independently drawn samples:
Definition 4.2. Following the notations of Def. 4.1, let X′ and Y′ denote a second batch of gener-
ated and real examples. The debiased Sinkhorn loss is then defined as [42]:

Ŝc,λ(X,Y,X′,Y′) = 2Ŵλ(X,Y)− Ŵλ(X,X′)− Ŵλ(Y,Y′). (5)

In comparison with Def. 4.1, Def. 4.2 comes with higher variance (only Ŵλ(X,Y) contributes to
variance in Def. 4.1). Unfortunately, privacy constraints in the DP setting prevent us from using very
large batch sizes or very long training periods with low learning rates to effectively reduce variance.
Hence, the variance incurred from using the unbiased estimator is more difficult to handle in the DP
setup. Furthermore, Def. 4.2 draws two batches of real data in every training step, thereby increasing
the privacy cost of each step. Nonetheless, Def. 4.2 is an unbiased estimator with better convergence
properties. We now discuss how we overcome the above issues in DP-Sinkhorn.

2� is the Hadamard product.
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First, we make the observation that the Ŵλ(Y,Y′) term does not contribute to gradients of the
generator. Hence, we can omit it from Ŝc,λ. Next, we propose a loss formulation that interpolates
between biased and unbiased Sinkhorn divergence. As observed in previous works, it can sometimes
be beneficial to control bias-variance trade-offs through mixing biased and unbiased gradient esti-
mators [43]. Instead of completely resampling the generator for X′, we reuse some of the samples in
X when computing Ŵλ(X,X′). This provides better control over the bias-variance trade-off when
empirically estimating gradients.
Definition 4.3. (Semi-debiased Sinkhorn loss) For a mixture fraction p ∈ [0, 1] and natural number
n, n′ = floor(n× p). Given n+ n′ generated samples X ∈ Xn+n′

and m real samples Y ∈ Xm,
the semi-debiased Sinkhorn loss is defined as:

Ŝc,λ,p(X,Y) = 2Ŵλ(X[0:n],Y)− Ŵλ(X[0:n],X[n′:n+n′]), (6)

where X[a:b] denotes the contiguous rows of X starting from a and ending with b− 1.

When p = 1, Eq. 6 is equal to Eq. 5, whereas when p = 0, Eq. 6 recovers Eq. 4 (ignoring the terms
in Eqs. 4 and 5 that only depend on data Y and are irrelevant during training).

Algorithm 1 describes how Eq. 6 is used to train a generative model, while additionally modifying
the gradient by adding noise and clipping to implement the privacy mechanism described below.
Training of the generator proceeds by computing the gradient of the semi-debiased Sinkhorn loss
with respect to X. Please also see the Appendix for more details.

4.3 Privacy Protection

Information about real data enters the generator through loss function gradients with respect to the
generated images. Let G = ∇XŜc,λ,p(X,Y) denote the gradients of the semi-debiased Sinkhorn
loss, and let G[a:b] denote the contiguous rows of G from a to b− 1 inclusive. We modify G as:

G̃ = G[0:n] ·min (
∆

||G[0:n]||2
, 1), G̃′ = G[n:n+n′] ·min (

∆

||G[n:n+n′]||2
, 1)

Ĝ = concat(G̃ + γ, G̃′), where γ ∼ N (0,∆2σ2), concat is applied to the first axis

We observe that ∇X[n:n+n′]Ŵλ(X[0:n],Y) = 0, i.e. G[n:n+n′] contains no information about Y.
As such, noise does not need to be added to this term, but we apply clipping to G[n:n+n′] to
preserve the scale between the magnitudes of the gradients. In addition, the sensitivity of G̃ is
maxY,Y′ ||G̃(Y) − G̃(Y′)||2 ≤ 2∆. The following theorem states the privacy guarantee of DP-
Sinkhorn’s gradient updates, with proofs in the appendix:

Theorem 4.1. For clipping constant ∆ and noise vector γ ∼ N (0,∆2σ2), releasing Ĝ satisfies
(α, 2α/σ2)-RDP.

We use the RDP accountant with Poisson subsampling proposed in [41] for privacy composition
across updates. Note that the batch size of X is kept fixed, while the batch size of Y follows a
binomial distribution due to Poisson subsampling.

4.4 Design Considerations

Advantages of primal form OT When compared to WGAN [33], learning with primal form OT
(such as Sinkhorn divergence) has distinct differences. While both are approximations to the exact
Wasserstein distance, the source of the approximation error differs. WGAN’s source of error lies in
the sub-optimality of the dual potential function. Since this potential function is parameterized by an
adversarially trained deep neural network, it enjoys neither convergence guarantees nor feasibility
guarantees. Furthermore, the adversarial training scheme can cause the discriminator and generator
to change abruptly every iteration to counter the strategy of the other player from the previous
iteration [44], resulting in non-convergence. These challenges are exacerbated in the DP setting.
In contrast, the suboptimality of the transport plan when computing Sinkhorn divergence can be
controlled by using enough iterations, and the bias introduced by entropic regularization can be
controlled by using small λ values. Training with the Sinkhorn divergence does not involve any
adversarial training, converges more stably, and reaps the benefits of OT metrics at covering modes.
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Table 1: Comparison of DP image generation results on MNIST and Fashion-MNIST at (ε, δ) =
(10, 10−5)-DP. Results for other methods (G-PATE [27], DP-MERF AE [29], DP-CGAN [24], GS-
WGAN [13]) are from [13], except Datalens [14]. Results are averaged over 5 runs of synthetic
dataset generation and classifier training.

Method DP-ε
MNIST Fashion-MNIST

FID Acc (%) FID Acc (%)

Log Reg MLP CNN Log Reg MLP CNN

Real data ∞ 1.6 92.2 97.5 99.3 2.5 84.5 88.2 90.8
Non-priv Sinkhorn (m = 1) ∞ 54.2 89.0 89.0 91.0 65.8 78.4 79.1 73.9
Non-priv Sinkhorn (m = 3) ∞ 43.4 87.7 87.3 90.6 63.8 78.4 78.4 73.3

G-PATE 10 177.2 26 25 51/80.93 205.8 42 30 50/69.33

DP-CGAN 10 179.2 60 60 63 243.8 51 50 46
DP-MERF AE 10 161.1 54 55 68 213.6 50 56 62
DataLens 10 173.5 N/A N/A 80.66 167.7 N/A N/A 70.61
GS-WGAN 10 61.3 79 79 80 131.3 68 65 65

DP-Sinkhorn (m = 1) 10 61.2 79.5 80.2 83.2 145.1 73.0 72.8 70.9
DP-Sinkhorn (m = 3) 10 55.56 79.1 79.2 79.1 129.4 70.2 70.2 68.9

Cost function The choice of the element-wise cost c(x,y) influences the type of images produced
by the generator. We consider a mixture between pixel-wise L1 and squared L2 losses. L2 loss
has smooth gradients that scale with the difference in pixel value, whereas the gradient of L1 loss
is constant in magnitude for each pixel that differs. Therefore, while L2 loss can quickly rein
in outlier pixel values, L1 loss can encourage generated image pixels to closely match those of
the real image, promoting sharpness. We define the element-wise cost function as cm(x,y) =
L2(x,y)2 + mL1(x,y), where L2(x,y) = ||x − y||2, L1(x,y) = |x − y| and m is a scalar
mixture weight. Class conditioning is also achieved through the cost function by concatenating a
one-hot class embedding to both the generated images and real images, similar to the approach used
in [42]. Intuitively, this works by increasing the cost between image pairs of different classes, hence
shifting the weight of the transport plan (P ∗λ in Eq. 4) towards class-matched pairs.

5 Experiments
We conduct experiments on differentially private conditional image synthesis, since our focus is on
generating high-dimensional data with privacy protection. We evaluate our method on both visual
quality and data utility for downstream classification tasks. Additional experiments and analyses
of the proposed semi-debiased Sinkhorn loss can be found in the Appendix. Code will be released
through the project page4.

5.1 Experimental Setup

Datasets We use 3 image datasets: MNIST [45], Fashion-MNIST [46], and CelebA [47] down-
sampled to 32x32 pixels. For MNIST and Fashion-MNIST, generation is conditioned on regular
class labels; for CelebA we condition on gender.

Metrics In all experiments, we compute metrics against a synthetic dataset of 60k image-label
pairs sampled from the model. For a quantitative measure of visual quality, we report FID [48]. To
measure the utility of generated data, we assess the class prediction accuracy of classifiers trained
with synthetic data on the real test sets. We consider logistic regression, MLP, and CNN classifiers.

Architectures & Hyperparameters We implement DP-Sinkhorn with two generator architec-
tures. We adopt a four layer, convolutional architecture from DCGAN [49] for MNIST and Fashion-
MNIST experiments, and a twelve layer residual architecture from BigGAN [15] for CelebA exper-
iments. Class conditioning is achieved by providing a one-hot encoding of the label to the generator,
and concatenating the one-hot encoding to images when calculating the element-wise cost. We set
λ=0.05 for MNIST and Fashion-MNIST experiments, and λ=5 for CelebA experiments. Complete
implementation details can be found in the Appendix.

3The G-PATE [27] authors report much more accurate classification results than reported in [13]. The visual
quality of samples in both papers is roughly the same.

4https://nv-tlabs.github.io/DP-Sinkhorn
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Figure 2: Images generated at (10, 10−5)-DP for MNIST and Fashion-MNIST by various methods.
Datalens images obtained from [14]; images of other methods obtained from [13].

Figure 3: Images generated on CelebA by Datalens (Left) and DP-Sinkhorn (Right). Datalens
images obtained from [14].

Privacy Implementation Our models are implemented in PyTorch. We implement the gradi-
ent sanitization mechanism by registering a backward hook to the generator output. MNIST and
Fashion-MNIST experiments target (10, 10−5)-DP while CelebA experiments target (10, 10−6)-DP.
Details are in the Appendix.

5.2 Experimental Results on Standard Benchmarks

In Table 1, we compare the performance of two DP-Sinkhorn variants with other methods on MNIST
and Fashion-MNIST. We use p=0.2 for the semi-debiased loss, which was determined through grid
search. The two variants use different weights (m=1 and m=3) for the L1 loss in the cost function.
Given the same privacy budget, DP-Sinkhorn with m=1 generates more informative examples than
previous methods, as demonstrated by the higher accuracy achieved by the downstream classifier.
On the more visually complex Fashion-MNIST, DP-Sinkhorn’s lead is especially pronounced, beat-
ing previous state-of-the-art results by a significant margin. DP-Sinkhorn with m=3 achieves lower
FID than all baselines, while still maintaining downstream accuracy similar to GS-WGAN. We hy-
pothesize that giving more weight to the L1 loss improves FID because L1 is more sensitive to small
differences in pixel values, thereby encouraging sharper edges. Images generated by DP-Sinkhorn
are visualized in Fig. 2. DP-Sinkhorn produces more visual diversity within each class compared to
the baselines, which likely benefits DP-Sinkhorn’s downstream classification performance.

Robustness We evaluate the training stability of DP-Sinkhorn (m = 1, p = 0.2) with different
learning rates and two optimizers (Adam [50] and SGD) on MNIST. We perform the same parameter
sweep on GS-WGAN for comparison5, as it is the strongest baseline we are comparing to. Results
are illustrated in Fig. 4a. We find that DP-Sinkhorn reliably converges for sufficiently small learning
rates, and it is not sensitive to the choice of optimizer. In contrast, GS-WGAN, relying on adversarial
training, suffers from non-convergence for learning rates too big or too small, and is very sensitive
to the choice of optimizer. Exact numbers are reported in the Appendix.

Privacy Utility Trade-off Stronger privacy protection can be attained by training DP-Sinkhorn
for fewer iterations at the cost of utility and image quality. We evaluate the performance of DP-
Sinkhorn at various privacy budgets and contrast it to GS-WGAN (Fig. 4b). DP-Sinkhorn shows
strong performance among a wide range of privacy budgets, and provides good downstream utility

5https://github.com/DingfanChen/GS-WGAN (MIT License) [13]
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Figure 4: Analyzing hyperparameter choices in DP-Sinkhorn.

even at a small privacy budget of ε = 2.33, significantly outperforming GS-WGAN. Note that we
found GS-WGAN to require significantly more memory than DP-Sinkhorn, since it uses multiple
discriminators for different parts of the data. In our experiments, DP-Sinkhorn can fit comfortably on
an 11GB GPU, while GS-WGAN requires 24GB of GPU memory. Hence, DP-Sinkhorn is arguably
more scalable to very large datsets.

Table 2: Ablating loss functions, debias-
ing, and gradient perturbation mechanism on
MNIST.

Image Gradient
Perturbation Loss Debiasing FID Acc (%)

MLP CNN

No L2 No 218.6 79.9 80.7
Yes L2 No 124.3 82.0 80.8
Yes L1 No 73.9 68.4 65.7
Yes L1+L2 No 88.6 76.6 76.1
Yes L1+L2 Full 98.0 63.0 60.5
Yes L1+L2 Semi 61.2 80.2 83.2

Table 3: DP image generation results on down-
sampled CelebA. We include results from [14]
for context, but note that their experiment uses
a 64x64 resolution and a larger δ of 10−5.

Method (ε, 10−6)-DP FID Acc (%)

MLP CNN

Real data ∞ 1.1 91.9 95.0
Sinkhorn ∞ 129.5 80.8 82.2

DP-Sinkhorn 10 168.4 76.2 75.8

DataLens [14] (10, 10−5) 320.8 N/A 72.9

Analysis of Semi-debiased Sinkhorn Loss To
study why our novel semi-debiased Sinkhorn loss
outperforms both fully-debiased and fully-biased
Sinkhorn losses, we evaluate bias and variance
of the semi-debiased Sinkhorn loss-based gradient
estimator Gp = ∇θŜ(X(θ),Y). We sample gen-
erator gradients with respect to the semi-debiased
Sinkhorn loss with different p and plot bias and
variance (Fig. 4c). Each line represents a gen-
erator trained with a different p on MNIST. For
each value of p, we compute Gp on three hundred
batches of real and generated data to obtain its av-
erage and sample variance. Since G1 is unbiased,
we use it as the ground truth when computing bias.
Variances of each model’s gradients are normal-
ized with respect to variance of G0.

We observe two prominent trends from this graph.
First, as we increase p, bias decreases and vari-
ance increases. This requires us to find a balance
in the trade-off between bias and variance. Sec-
ond, we see flatter curves for generators trained
with smaller p. As p affects bias and variance through changing the number of resampled gen-
erated images, we can deduce that training with smaller p likely results in greater similarity between
generated images, which improves consistency across generated images at the cost of diversity. That
is, if the generator is mode collapsed, p would have no effect on the bias-variance trade-off, as re-
sampling the latent variables would produce the same images. While previous works [42] found
fully-debiased (p = 1) Sinkhorn loss to provide higher performance, we find a small amount of
debiasing (p = 0.2) to perform best. Our hypothesis is that because training in a privacy-preserving
manner is restrictive in batch size and number of iterations, the increased variance of the fully-
debiased loss is more detrimental. In particular, in the DP setting we cannot simply increase batch
sizes or train with more iterations and lower learning rates to counteract high loss variances, as this
would incur increased privacy costs. In contrast, our novel semi-debiasing provides control over the
trade-off between consistent low-variance gradients and less biased objectives. This also demon-
strates how training in the DP setting differs from the non-private setting, hence requiring new ideas
and tailored methods.
Ablations We study the impact of perturbing image vs. parameter gradients, design of element-
wise cost function, and debiasing on performance in the MNIST benchmark. We start with the
simplest model, using parameter gradient perturbation, L2 loss and no debiasing, and incrementally
add components. We use m=1 when adding L1 loss, and p=0.2 when adding semi-debiasing. The
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clipping bound ∆ is tuned separately for the variant with parameter gradient perturbation, while the
other hyperparameters are kept fixed. In Table 2, we see that DP-Sinkhorn with parameter gradients
is already competitive in downstream accuracy, but has poor FID in comparison to using image
gradients. We observe that DP-Sinkhorn with L2 loss yields good downsteam task performance,
but has higher FID than the L1 loss variant. Mixing L1 and L2 loss strikes a balance between
better FID and downstream accuracy. We also observe that using a fully debiased gradient estimator
is detrimental to performance, which we postulate is due to its high variance. The semi-debiased
variant performs better than both the biased and the debiased variants.

5.3 Experimental Results on CelebA

We also evaluate DP-Sinkhorn on downsampled CelebA. We evaluate whether DP-Sinkhorn is able
to synthesize RGB images that are informative for downstream classification. Despite its simplicity,
DP-Sinkhorn generates informative images for gender classification, as seen in Tab. 3 (uninforma-
tive images would correspond to a ≈50% classification ratio). Qualitatively, Fig. 3 shows that
DP-Sinkhorn can learn meaningful representations of each semantic class (male and female) and
produces some in-class variations, while avoiding details that could uniquely identify individuals.
Concurrent to our work, Datalens [14] was also applied to gender-conditioned generation of CelebA
images, albeit with a different image resolution than ours. Images generated by DP-Sinkhorn clearly
resemble faces, while those generated by Datalens are blurrier. We also attempted to train GS-
WGAN on CelebA, but couldn’t obtain meaningful results using the default hyper-parameters.

6 Conclusions

We propose DP-Sinkhorn, a novel optimal transport-based differentially private generative model.
Our approach minimizes a new semi-debiased Sinkhorn loss in a differentially private manner. It
does not require any adversarial techniques that are challenging to optimize. Consequently, DP-
Sinkhorn is easy to train, which we hope will help its adoption in practice. We experimentally
demonstrate superior performance compared to the previous state-of-the-art both in terms of image
quality and on standard image classification benchmarks using data generated under DP. Our model
is applicable for varying privacy budgets and is capable of synthesizing informative RGB images in
a differentially private way without using additional public data. We conclude that robust models
such as ours are a promising direction for differentially private generative modeling.

Limitations and Future Work Our main experiments only used simple pixel-wise L1- and L2-
losses as cost function, yet achieve better performance than GAN-based methods. This suggests
that in the DP setting complexity in model and objective are not necessarily beneficial. Nonetheless,
limited image quality is the main challenge in DP generative modeling and future work includes
designing more expressive generator networks that can further improve synthesis quality, while sat-
isfying differential privacy. To this end, kernel-based cost functions may provide better performance
on suitable datasets. Our experiments were performed on widely-used image benchmarks for dif-
ferentially private generative learning. Future works may extend our method to other data types
and domains. In particular, since privacy is an important consideration for medical data, applying
DP-Sinkhorn to medical datasets (such as those used in [51]) could be of high practical interest.

Broader Impact Our work improves the state-of-the-art in privacy-preserving generative model-
ing. Such advances promise significant benefits to the machine learning community, by allowing
sensitive data to be shared more broadly via privacy-preserving generative models. We believe
the strong performance and robustness of DP-Sinkhorn will facilitate its adoption by practition-
ers. Although DP-Sinkhorn provides privacy protection in generative learning, information about
individuals cannot be eliminated entirely, as no useful model can be learned under (0, 0)-DP. This
should be communicated clearly to dataset participants. We recognize that classifiers learned with
DP can potentially underperform for minority members within the dataset [52, 53, 54], which may
also be the case for classifiers trained on data produced by DP-Sinkhorn. Addressing these types of
imbalances is an active area of research [55, 56, 57, 58].
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