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Abstract

SHAP (SHapley Additive exPlanations) values are a widely used method for local
feature attribution in interpretable and explainable Al. We propose an efficient
two-stage algorithm for computing SHAP values in both black-box setting and
tree-based models. We assume the black-box predictor or tree model accepts
binary (zero-one) features. Motivated by spectral bias in real-world predictors, we
first approximate the predictor using compact Fourier representations, exactly for
trees and approximately for black-box models. In the second stage, we introduce
a closed-form formula for exactly computing SHAP values using the Fourier
representation, that “linearizes” the computation into a simple summation and is
amenable to parallelization. As the Fourier approximation is computed only once,
our method enables amortized SHAP value computation, achieving significant
speedups over existing methods and a tunable trade-off between efficiency and
precision.

1 Introduction

Interpretability of machine learning models is paramount, especially in high-stakes applications
in areas such as medicine, fraud detection, or credit scoring. This is crucial to the extent that in
Europe, the General Data Protection Regulation (GDPR) mandates the /egal right to an explanation
of algorithmic decisions [[Voigt and Von dem Busschel 2017]. Say we are given a predictor/model
h : X™ — R which maps an input (data) instance x* € X™ to a prediction h(z*). Instance-wise
a.k.a. local feature attribution methods assign “importances” to each of the features 27 € & of the
instance x* which quantify how influential that feature was in the model predicting the value h(x*).

A widely used method for deriving attributions (importances) is the notion of SHapley Additive
exPlanations, commonly referred to simply as SHAP values. Originally, the notion of Shapley values
was introduced in the seminal work of [Shapley|[[1952] in the context of cooperative game theory. The
Shapley value is a mathematically well-founded and “fair” way of distributing a reward among all
the members of a group playing a cooperative game and it is computed based on the rewards that
would be received for all possible coalitions. The Shapley value is the unique way of distributing
the reward that satisfies several reasonable mathematical properties that capture a notion of fairness
[Shapleyl [1952]]. In the context of machine learning and statistics, the players become features, the
reward is the prediction of the predictor h and the SHAP value is the “contribution” or “influence” of
that feature on the prediction. Shapley values are widely used due to their mathematical soundness
and desirable properties (Gromping [2007]], gtrumbelj et al.[[2009], (Owen| [2014], [Datta et al.|[2016],
Owen and Prieur|{[2017]], Lundberg and Lee [2017]], Lundberg et al.|[2020] |Aas et al.| [2021])).

Despite their prevalence, computing SHAP values is challenging, as it involves an exponential
summation, i.e., a summation over exponentially many terms , see Equation |l} This is because
the formula accounts for a feature’s importance in the context of all possible “coalitions” of
other features, and therefore the formula covers all possible subsets of other features. Therefore,
approximating them and speeding up the computation has received attention in a variety of settings.

*Equal contribution.
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SHAP value computation can easily dominate the computation time of industry-level machine
learning solutions on datasets with millions or more entries [[Yang, 2021]. Yang [2021]] point out that
industrial applications sometimes require hundreds of millions of samples to be explained. Examples
include feed ranking, ads targeting, and subscription propensity models. In these modeling pipelines,
spending tens of hours in model interpretation becomes a significant bottleneck [Yang, [2021]] and
one usually needs to resort to multiple cores and parallel computing.

Significant work has gone into speeding up the computation of SHAP values for a variety of settings.
In the (ensemble of) trees setting, full access to the tree structure is assumed. [Yang| [2021]], Bifet et al.
[2022] provide theoretical and practical computational speedups to the classic TREESHAP [Lundberg
et al.l|2020]]. Similar to these results, in this work, we provide significant speedups for the tree setting
over previous methods.

As opposed to the tree setting, which is a “white box™ setting, in the model-agnostic a.k.a black-box
setting, we only have query access to the model. Here, our only means of access to the predictor is that
we can pick an arbitrary z € X and query the predictor for its value h(z). The usual approach here
is to approximate the exponential sum of the SHAP value computations using stochastic sampling
[Covert and Lee, 2020, Mitchell et al., 2022a), |Lundberg and Lee| |2017]. In this setting, |(Covert
and Lee| [[2020], Mitchell et al.|[2022a]] provide sampling methods that require fewer queries to the
black-box compared to vanilla KERNELSHAP [Lundberg and Leel 2017] for equal approximation
accuracy. FASTSHAP Jethani et al.| [2021]], which introduces a method for estimating Shapley values
in a single forward pass using an end-to-end learned explainer neural network model. Our algorithm
FOURIERSHAP falls into the query-access black-box setting as well. However, we take a different
approach. We are guided by the key insight that many models used in practice have a “spectral
bias”. [Yang and Salman| [2019], |Valle-Perez et al.|[2018]] provably and experimentally show that
fully connected neural networks with binary (zero-one) inputs learn low-degree — and therefore
sparse — functions in a basis called the Walsh-Hadamard a.k.a Fourier basis. It is well known that the
Walsh-Hadamard transform (WHT) of an ensemble of T trees of depth d is also of degree at most d
and moreover, k = O(T4d)-sparse [Kushilevitz and Mansour, 1993, Mansour, |1994].

Our contributions: Guided by the aforementioned insights, we provide an algorithm to compute
SHAP values using the Fourier representation of the tree or black-box model. We first approximate
the black-box function by taking its sparse Fourier transform. We theoretically justify, and show
through extensive experiments, that for many real-world models such as fully connected neural
networks and (ensembles of) trees this representation is accurate. Subsequently, we prove that
SHAP values for a single Fourier basis function admit a closed-form expression not involving an
exponential summation. Therefore, using the Fourier representation we overcome the exponential
sum and can utilize compute power effectively to compute SHAP values. Furthermore, the closed-
form expression we derive effectively “linearizes” the computation into a simple summation and
is amenable to parallelization on multiple cores or a GPU. The Fourier approximation step is
only done once, therefore FOURIERSHAP amortizes the cost of computing explanations for many
inputs. Subsequently, SHAP computations using the Fourier approximation are orders of magnitude
faster compared to other black-box SHAP approximation methods such as KERNELSHAP and other
variations of it which all involve a computationally expensive optimization. We show speedups over
other methods such as DEEPLIFT [Shrikumar et al.l 2017|] and FASTSHAP [Jethani et al., |2021]]
as well. In addition to the speedup, our algorithm enables a reliable continuous trade-off between
computation and accuracy, controlled in a fine manner by the sparsity of the Fourier approximation.

2 Background

This section reviews the notion of SHAP values, and sparse and low-degree Fourier transforms.

2.1 Shapley values

In game theory, a cooperative game is a function v : 2" — R that maps a subset (coalition) S C [n]
of a group of players [n] = {1,...,n} to their total reward (when they cooperate). If all the players
cooperate they win a total reward of value v([n]). The main question is how they would distribute
this reward among themselves. [Shapley|[1952] resolved this problem by a deriving a unique value
based on “fairness axioms” proposed in his seminal work [Shapley, [1952]]. The Shapley value of



player i € [n] is:

1 > w(S U {i}) — o(S) 0

¢1(U) = n—1
" sclal\{i} (ls1)

Intuitively, one can view the term v(S U {i}) — v(S) as the marginal contribution of player ¢ when
they are added to the coalition S. This marginal value is weighted according to the number of
permutations the leading | S| players and trailing n — |.S| — 1 players can form.

In the machine learning context, we have a predictor h : X™ — R mapping an n-dimensional feature
vector to a value. In this context, the players become features z; € X and the reward is the prediction
of the predictor h and the Shapley value is the “contribution” or “influence” of the 7’th feature on
the prediction. We define v(,S) accordingly to capture this notion [Lundberg and Lee, 2017]:

v(S) = Ew[n]\SNP(w[n]\s)) [h(zs, m[n]\S)]’

where x* € X" is the instance we are explaining. This definition implicitly captures the way we
handle the missing features (feature not present in the coalition): we integrate the missing features
with respect to the marginal distribution p(x[,}\s)). In practice, the marginalization is performed
with an empirical distribution by taking a subset of the training data as background dataset.

The choice of which distribution to average the missing features from has been discussed thoroughly
in the relevant literature. As mentioned before, in this work, we focus on the SHAP values as defined
in KERNELSHAP introduced by [Lundberg and Lee| [2017]], Lundberg et al.|[2020] also known as
“Interventional” [Janzing et al.| 2020, |Van den Broeck et al., 2021]] or “Baseline” [Sundararajan and
Najmi, [2020] SHAP, where the missing features are integrated out from the marginal distribution
P(Tn)\s), as opposed to the conditional distribution p(x,)\s|Ts). We refer the reader to Ap-
pendix for a comprehensive overview of the literature discussing these two notions and their
conceptual differences.

Since we will be using the well-known KERNELSHAP [Lundberg and Lee}, 2017]] and its variant
LINREGSHAP [Covert and Leel 2020] as a baseline, we briefly review their method here. |[Lundberg
and Lee| [2017]] propose the “least squares characterization” of SHAP values. They prove that SHAP
values are the solution to the following minimization problem:

Bs,...,B5 = arg min Z M<50+Zﬂi—v(s)>

n
oy 25 (§)1S1(n = 1S]) ies
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i=1
Then ¢;(v) = S;.

Unfortunately, the above optimization still involves an exponential sum. Therefore, Lundberg and
Lee| [2017] propose to sample subsets .S uniformly at random. (Covert and Lee| [2020]], Mitchell
et al.|[2022a] provide better ways of sampling and solving the optimization to get approximations
with lower variances and biases. Nevertheless, all these methods require solving a least squares
minimization subject to constraints for each explained instance x* and, therefore, are computationally
expensive.

Later, we also compare our method to FASTSHAP [Jethani et al., [2021]], a model-agnostic algorithm
for computing SHAP values. In FASTSHAP, a parametric explainer ¢ (e.g., MLP) is trained to
directly generate SHAP values given data samples. Since training is only done once, this, similar to
us, it amortizes the cost of generating SHAP values across multiple instances. Computing SHAP
values only requires a forward pass on the trained model and therefore can be done very quickly.

2.2 Fourier representations

Here we review the notions of the Fourier basis and what we mean by sparsity. We will later use
sparse Fourier representation of functions to compute SHAP values. In this work, we focus on the
setting where the inputs to the black-box function (predictor) are binary, i.e., X¥™ = {0, 1}". This
means, we assume we have binary features and/or categorical features, through standard one-hot
representations Continuous features can be discretized into quantiles, enabling their transformation



into categorical features. The Fourier representation of the pseudo-boolean function h : {0,1}" — R

is the unique expansion of 4 as follows: h(z) = lzn > ﬁ(f)(fl)“*”.
fefo1}m

The inner product of two vectors f,z € {0,1}" is defined as: (f,z) = > fiz;,Vf,z € {0,1}™

The unique function % : {0,1}" — R is called the Fourier transform of h. For any f € {0,1}",
h(f) is called the Fourier coefficient corresponding to the frequency f. The family of functions
%ﬁ\llf(;r) = (=1)%=) f € {0,1}" are the 2"-many Fourier basis functions. These basis functions

/!
are orthonormal: Y. U,(2)Vp(z) = {(1) ;Z f ;, , [, f €{0,1}". Therefore, they form a
ze{0,1}n =

basis for the vector space of all pseudo-boolean functions h : {0,1}™ — R.

We define the support of & to be supp(h) = {f € {0, 1}"|?L(f) # 0}. We say that a function h is

k-sparse if at most & of the 2" Fourier coefficients h( f) are non-zero, i.e., |supp(h)| < k. The degree
of a vector f € {0,1}" is denoted by deg(f) and is defined as the number of ones in the vector. For
example, if n = 5 then f = (1,0,0, 1,0) is a vector of degree deg(f) = 2. We say a function is
degree d when the frequencies f € {0,1}" corresponding to non-zero Fourier coefficients are of
degree less or equal to d i.e. Vf € supp(h) it holds that deg(f) < d.

By definition of the Fourier basis, a k-sparse degree d function can be written as a summation of &
(Fourier basis) functions, each one depending on at most d input variables. The converse is also true:

P
Proposition 1. Assume h : {0,1}" — R can be decomposed as follows: h(x) = Y hi(zs,),S; C
i=1

[n]. That is, each function h; : {0,1}/5:| — R depends on at most |S;| variables. Then, h is
p
k= 0(Y 21%)-sparse and of degree d = max(|Sy|, ..., |Sp|). (Proof in Appendix

i=1

The sparsity k and degree d capture a notion of complexity for the underlying function. Intuitively
speaking, the sparsity factor k puts a limit on the number of functions in the decomposition, and the
degree d puts a limit on the order of interactions among the input variables.

One can see from Propositionm that modular functions, i.e., functions that can be written as a sum
of functions each depending on exactly one variable, are k = O(n)-sparse and of degree d = 1. A
slightly more “complex” function capturing second-order interactions among the input variables, i.e.,
a function that can be written as a sum where each term depends on at most two variables is going
to be k = O(n?)-sparse and of degree d = 2. The following proposition generalizes this result.

Proposition 2. Let, h : {0,1}" — R be a pseudo-boolean function and let d € N be some constant
(w.r.t. n). If h is of degree d, then, it is k = O(n®)-sparse. (Proof in Appendix

This proposition formally shows that limiting the order of interactions among the input variables
implies an upper bound on the sparsity.

3 Many real-world black-box predictors have sparse Fourier transforms

In this section, we discuss the sparsity of the Fourier transforms of ensembles of trees and why neural
networks can be approximated by a sparse Fourier representation because of their spectral bias. This
shows both these classes of functions can be compactly represented in the Fourier basis. The results
here will become useful in the next section, where we present our main contribution on how we can
leverage this compact representation, to precisely compute SHAP values cheaply.

3.1 Spectral bias of fully connected neural networks

The function a fully connected neural network represents at initialization is a sample from a Gaussian
Process (GP) [Rasmussen, 2004] in the infinite-width limit. Here, the randomness is over the initial
weights and biases. The kernel K of this GP is called the Conjugate Kernel (CK) [Daniely et al.,
2016, Lee et al.,[2017]. As mentioned before, here we investigate the case where the inputs to the
neural network are binary, i.e., X d— {0, 1}d, similar to [[Yang and Salman, [2019} |Valle-Perez et al.,
2018]. The CK kernel Gram matrix formed on the whole input space X% = {0, 1}, has a simple



eigenvalue decomposition: K € RQdXQd, K= > X fu 7> Where uy € R2" is the eigenvector
refo,1n
formed by evaluating the Fourier basis function ¥ ; for different values of « € {0, 1}". Moreover,
Yang and Salman| [2019]] show a weak spectral bias result in terms of the degree of f. Namely, the
eigenvalues corresponding to higher degree frequencies have smaller values|’| Given the kernel, K,
and viewing a randomly initialized neural network function evaluated on the boolean {0,1}™ as a
sample from a GP one can see the following: This sample, roughly speaking, looks like a linear
combination of the eigenvectors with the largest eigenvalues. This is due to the fact that a sample of

the GP can be obtained as Z Aiw;ug, wi ~ N(0,1). Combining this with the spectral bias results

implies that neural networks are low-degree functions when randomly initialized.

Going beyond neural networks at initialization, numerous studies have investigated the behavior of
fully connected neural networks trained through (stochastic) gradient descent. |Chizat et al.|[2019],
Jacot et al.|[2018b], Du et al.|[2018]], |/Allen-Zhu et al.|[2019alb] found that the weights of infinite-
width neural networks after training do not deviate significantly from their initialization, which has
been dubbed "lazy training" by |Chizat et al.|[2019]]. [Lee et al.| [2018] [2019] showed that training
the last layer of an infinite-width randomly initialized neural network for an infinite amount of time
corresponds to Gaussian process (GP) posterior inference with a certain kernel. Jacot et al.|[2018b]]
extended the aforementioned results to training all the layers of a neural network (not just the final
layer). They showed the evolution of an infinite-width neural network function can be described
by the “Neural Tangent Kernel” [NTK, Jacot et al.l2018a] with the trained network yielding, on
average, the posterior mean prediction of the corresponding GP after an infinite amount of training
time. Lee et al.|[2019]] empirically showed the results carry over to the finite-width setting through

extensive experiments. [Yang and Salman| [2019]] again showed that the u; € R2" defined above
are eigenvectors of the NTK Gram matrix and spectral bias holds. |Gorji et al.| [2023]] validated
these theoretical findings through extensive experiments in finite-width neural networks by showing
that neural networks have “less tendency” to learn high-degree frequencies. We refer the reader to
Appendix [A.T|for a more comprehensive review.

The aforementioned literature shows that neural networks can be approximated by low-degree
functions. By Proposition |2} they can be approximated by sparse functions for a large enough
sparsity factor k. Our experiments in Section [5| provide further evidence that neural networks
trained on real-world datasets are approximated well with sparse (and therefore compact) Fourier
representations.

3.2 Sparsity of ensembles of decision trees

In our context, a decision tree is a rooted binary tree, where each non-leaf node corresponds to one
of n binary (zero-one) features, and each leaf node has a real number assigned to it. We denote the
function a decision tree represents by ¢ : {0, 1} — R. Let ¢ € [n] denote the feature corresponding
to the root, and let tief; : {0,1}" 1 — R and gt : {0,1}" ! — R be the left and right sub-trees,
respectively. Then the tree can be represented as:

14 (_1)(61-71')

1— (=1)fe

2 tright ((E) (2)

where, e; € {0, 1}" is 7’th indicator vector.

Thus, the Fourier transform of a decision tree can be computed recursively [Kushilevitz and Mansour,
1993, [Mansour, [1994]. The degree of a decision tree function of depth d is d, and if |supp(ties;)| =
Kier, and [supp(tright)| = Kright, then [supp(t)| < 2(Kier + Krignt). As a result, a decision tree
function is k-sparse, where k& = O(4%), although in some cases, when the decision tree is not
balanced or cancellations occur, the Fourier transform can be sparser, i.e., admit a lower k, than the
above upper bound on the sparsity suggests.

Due to the linearity of the Fourier transform, the Fourier transform of an ensemble of trees, such as
those produced by the random forest, cat-boost [Dorogush et al., 2018]], and XGBoost [Chen and
Guestrin,, [2016] algorithms/libraries, can be computed by taking the average of the Fourier transform

?To be more precise, they show that the eigenvalues corresponding to even and odd degree frequencies form
decreasing sequences. That is, even and odd degrees are considered separately.



of each tree. If the random forest model has T trees, then its Fourier transform is k = O(T'4%)-sparse
and of degree d equal to its maximum depth of the constituent trees.

4 Computing SHAP values with Fourier representation of functions

In the previous section, we saw that many real-world models trained on tabular/discrete data can be
exactly represented (in the case of ensembles of decision trees), or efficiently approximated (in the
case of neural networks) using a compact (sparse) Fourier representation. We saw neural networks
have a tendency to learn approximately low-degree, and hence by Proposition [2| sparse functions.
This has been attributed in numerous works to the reason why they generalize well and do not
overfit despite their over-parameterized nature [Valle-Perez et al., 2018|, |Yang and Salman, 2019} |Huh
et al., |2022| Durvasula and Liter; [2020} [Kalimeris et al.,|2019| Neyshabur et al., 2017, |Arpit et al.|
2017]]. We also saw that (ensembles) of decision trees, by nature, have sparse Fourier representations
[Kushilevitz and Mansour, [1993| Mansour} |1994]. More generally, as made formal in Propositionﬂ]
and the remarks after, any “simple” function that can be written as a summation of a “few” functions
each depending on a “few” of the input variables is sparse and low-degree in the Fourier domain.

We propose the following method to approximate SHAP values for black-box functions. In the first
step, given query access to a black-box function, we utilize a sparse Fourier approximation algorithm
such as [Li and Ramchandran, 2015 |Amrollahi et al.| 2019} [Li et al., 2015] to efficiently extract
its sparse and hence compactly represented Fourier approximation. See Appendix for a more
detailed explanation. Next, in our second step presented here, we use the Fourier representation to
exactly compute SHAP values.

Let h: {0,1}™ — R be some predictor that we assume to be k-sparse. Assume [n] = {1,...,n} as

the set of features and let z* € {0, 1}" be the instance we are explaining. Aligned with [Lundberg

and Lee, [2017], we use vy, (S) = ﬁ ( 2):‘517 h(z§, 2(n)\s) as the value function, which is the average
.y

prediction when fixing x5 in the (background) dataset D. We compute the Shapley values for a single

Fourier basis function ¥ ;(z) = (—1)/® f € {0,1}" according to Equation
\I/f . 1 |S|'(n*|s|*1)' <f7w*ui dTi, Ui > (f,CE*EBZn >
oy = B Z ) Z ((,1) sut®mnsutar) _ (1) 2582mns )

|D| ) n!
SCln]\{3} (z,y)€D

3
The @ operator concatenates two vectors along the same axis.
This expression still has an exponential sum (in n), since we are summing over all subsets S. As

a main contribution, we find a closed-form analytic expression for the inner summation using a
combinatorial argument. This results in the following key Lemma:

Lemma 1. Let Vs (x) = (—1)%) be the Fourier basis function for some f € {0,1}". Then the
SHAP value of the Fourier basis function V y with respect to the background dataset D is given as:

(z,y)€D

where A = {j € [n]|z; # x¥,j # i, fj = 1}. (Proof in Appendix

Intuitively, feature ¢ contributes to the prediction only if the Fourier basis function 1) is sensitive
to the value of feature 7 i.e. f; = 1 and otherwise its contribution is zero. The SHAP values is also
dependent on the parity of the number of differences between the query and background samples
within support of f: many positive and negative terms cancel during the exponential summation. The
key combinatorial insight is that we can count the number of cancellations in the exponential sum
without computing it and therefore this collapses into a closed-form factor depending on the parity of
the “overlap set” A.

Finally, by the linearity of SHAP values w.r.t. the explained function k, and by utilizing Lemma [I| we
arrive at the final expression for SHAP values of h. We present this closed-form expression alongside
its computational complexity in our main Theorem:

Theorem 2. Let h : {0,1}" — R be a k-sparse pseudo-boolean function with Fourier frequencies
Y., % € supp(h) and amplitudes h(f),Vf € supp(f). Let D be a background dataset of size



|D|. Then, Equation|5|provides a precise expression for the SHAP value vector ¢" = (¢, ... o).
One can compute this vector with ©(n - |D| - k) flops (floating point operations).

9 =R » (JA|+1) mod 2
of == D hDfi D Ly (-1 1A A) 1 ©)
P | A+
fé€supp(h) (z,y)€D

where A is the same as in Lemmall] (Proof in Appendix|[B.3)

Theorem [2| provides a computationally efficient method for deriving SHAP values from a Fourier
representation of a function h. The resulting SHAP values are exact, that is, if the Fourier represen-
tation is precise, then the SHAP values are also exact. This contrasts with KERNELSHAP, which
approximates SHAP values via stochastic sampling, requiring convergence checks to ensure accuracy.
In our method, any approximation arises solely from estimating a sparse Fourier representation, and
only in the black-box setting.

More importantly, the sum in Equation [3]is tractable. This is because we overcome the exponential
sum involved in Equation [T| by analytically computing the sum, with a combinatorial argument, for a
single Fourier basis function. We show that the number of flops that are required to compute SHAP
values in Theorem 2] is asymptotically equal to ©(n - |D| - k). We note that the |D| and k factors
in the asymptotic computational complexity arise from the two summations present in Equation 3]
Through this expression, we are able to “linearize” the computation of SHAP values to a summation
over the Fourier coefficients and the background data set. This allows us to maximize parallelization
on multiple cores and/or GPUs to speed up the computation significantly. Therefore, in the presence
of multiple cores or a GPU, we can get a speedup equal to the level of parallelization, as each core or
worker can compute one part of this summation.

We implement our algorithm called FOURIERSHAP using JAX [Bradbury et al.l 2018]], which
allows fast vectorized operations on GPUs. Each term within the summations of Equation [5] can
be implemented with simple vector operations. Furthermore, summations over the k different
frequencies in the support of h and also background data points can both be efficiently implemented
and parallelized using this library using its VMAP operator. We perform all upcoming experiments on
a single GPU. Nevertheless, we believe faster computation can also be achieved by crafting dedicated
code designed to efficiently compute Equation [5|on GPU.

Finally, we note that the function approximation (first step) is only done once, i.e., we compute the
sparse Fourier approximation of the black-box only once. This is typically the most expensive part
of the computation. For any new query to be explained, we resort to an efficient implementation of
Equation 5] As our experiments will show, this yields orders of magnitudes faster computation than
previous methods such as KERNELSHAP where, as mentioned before in Section[2] each explained
instance requires solving an expensive optimization problem.

5 Experiments

We assess the performance of our algorithm, FOURIERSHAP, on four different real-world datasets
of varying nature and dimensionality. Three of our datasets are related to protein fitness landscapes
[Poelwijk et al., 2019 |Wu et al.l 2016 [Sarkisyan et al., 2016] and are referred to as “Entacmaea”
(dimension n = 13), “GB1” (n = 80), and “avGFP” (n = 236) respectively. The fourth dataset
is a GPU-tuning [Nugteren and Codreanul, |2015]] dataset referred to as “SGEMM” (n = 40). The
features of these datasets are binary (zero-one) and/or categorical with standard one-hot encodings.
See Appendix [C]for dataset details.

For the Entacmaea and SGEMM datasets, we train fully connected neural networks with 3 hidden
layers containing 300 neurons each. For GB1 we train ensembles of trees models of varying depths
using the random forest algorithm and for avGFP we train again, ensembles of trees models of varying
depths using the cat-boost algorithm/library [Dorogush et al., 2018]].

Black-box setting. The first step of the FOURIERSHAP algorithm is to compute a sparse Fourier
approximation of the black-box model. We use a GPU implementation of a sparse Walsh-Hadamard
Transform (sparse WHT) a.k.a Fourier transform algorithm [[Amrollahi et al., 2019] for each of
the four trained models. The algorithm accepts a sparsity parameter k£ which is the sparsity of
the computed Fourier representation. Higher sparsity parameter k results in a better function
approximation but the sparse-WHT runtime increase linearly in k as well. In Figure[I]we plot the
accuracy of the Fourier function approximation as measured by the R2-score for different values of
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Figure 1: Step 1 of FOURIERSHAP: Accuracy of the Fourier transform (in approximating the black-
box function) vs. runtime of the sparse Fourier algorithm. The accuracy is evaluated by R? score
and comparing the outputs of the black-box and the Fourier representation on a uniformly generated
random dataset on the Boolean cube {0, 1}". For a fixed level of accuracy, higher depth trees require
a higher number of Fourier coefficients k therefore a higher runtime. For the case of trees, we
eventually are able to reach a perfect approximation since the underlying function is truly sparse.
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Figure 2: Speedup vs. Accuracy. Speedup of different algorithms is reported as a multiple compared
to the runtime of KERNELSHAP. Accuracy is quantified by the R2-score against ground truth SHAP
values. DEEPLIFT is a white-box algorithm for neural networks. LINREGSHAP is a black-box
algorithm and a variance-reduced version of KERNELSHAP. FASTSHAP, a black-box algorithm, is a
trained MLP to output SHAP values given inputs in one forward pass. We test MLPs of three different
sizes for FASTSHAP. FOURIERSHAP is ours. We are 10-10000x faster than LINREGSHAP on all
dataset/model variations. More notably, we outperform DeepLift in the neural network model setting
even though we assume only query access (black-box setting). We achieve higher accuracy than
FASTSHAP in 3/4 settings, while enabling a fine-grained control over the speed-accuracy trade-off.

K (which result in different runtimes). The R? score is computed over a dataset formed by randomly
sampling the Boolean cube {0, 1}".

The second step of FOURIERSHAP utilizes the Fourier approximation to compute SHAP values
using Equation[5] We implement this step using JAX library [Bradbury et al.,2018]], and run it on a
GPU. For each model to be explained, we choose four different values for the number of background
samples and four different values for the number of query points to be explained, resulting in a total of
16 runs of FOURIERSHAP for each model. Error bars capture these variations. We take the runtime
of KERNELSHAP, with Github repo default settings, to be the base runtime all other methods are
compared to, i.e., we assume its runtime is 1 unit.

In order to measure the accuracy of the SHAP values produced by our and other algorithms we
need ground truth SHAP values. We use KERNELSHAP to this extent. Note that KERNELSHAP
is inherently an approximation method for computing interventional SHAP values. However, this
approximation becomes more precise by sampling more coalition subsets. Therefore, to generate



ground truth values, for each dataset, we sample more and more coalition subsets and check for
convergence in these values. A more detailed explanation can be found in Appendix [E.3]

We compute the R? values of Shapley values computed by FOURIERSHAP (ours) vs. ground truth
values to evaluate accuracy. For our method, a higher sparsity & for the Fourier representation results
in a more accurate function approximation therefore higher R? values for the SHAP value quality.
On the other hand, a higher & results in a slower runtime as Equation [5|is a sum over the k different
frequencies. In Figure 2| we plot this trade-off.

We compare against the following baselines in Figure 2] The first is LINREGSHAP, a variance-
reduced version of KERNELSHAP [[Covert and Leel 2020]. We found that although this algorithm
requires fewer queries from the black-box, it takes orders of magnitudes longer to run compared to
ours. Secondly, for the neural network models, we also compare against a state-of-the-art white-box
method — DEEPLIFT [Shrikumar et al., 2017]]. This algorithm, requires access to the neural network’s
activations in all layers. In comparison, we achieve a 10-100x speedup while being both more
accurate and only assuming query access to the neural net (true black-box setting).

Finally, we compare against FASTSHAP [Jethani et al.,[2021]], which is the most comparable to our
setting, i.e., model-agnostic with amortized cost. We provide a higher accuracy for similar speedup
values compared to FASTSHAP in 3/4 settings. More importantly, we can see that by controlling
the sparsity parameter k of the Fourier function approximation, we can control the tradeoff between
accuracy and speed in a reliable and fine-grained manner. Whereas for FASTSHAP, the accuracy of
the SHAP values relies on the functional approximation properties of the MLP which directly produce
SHAP values. As seen in Figure |2} the MLP can behave in unpredictable ways. In this figure, we
can see that increasing the depth of the model (and hence the approximation capability of the MLP)
does not have a reliable effect on SHAP accuracy. Finally, in FASTSHAP, for a different choice of
background dataset, a new MLP model has to be trained from scratch since the MLP approximates the
process of directly computing SHAP values. In contrast, we can support different sets of background
datasets since our Fourier functional approximation is performed on the black-box predictor, and not
on the whole process of producing SHAP values end-to-end (FASTSHAP).

Tree setting. FOURIERSHAP can also be utilized for the computation of SHAP values for (ensembles
of) trees in the white-box setting, i.e., where full access to the tree’s structure is available. In this
setting, the exact sparse Fourier representation of an ensemble of trees can be efficiently computed (the
first step of FOURIERSHAP) using Equation [2] With the exact Fourier representation at hand, SHAP
values can be efficiently and exactly computed using Equation[5] the second step of FOURIERSHAP.
This makes our method a highly parallelizable alternative for TREESHAP [Lundberg et al., [2020]]
with the potential for order of magnitude speedups.

To demonstrate our method’s ability in fast computation of SHAP values in this setting, we compute
SHAP values for random forests fitted on all aforementioned real-world datasets. We compare
FOURIERSHAP’s speedup over TREESHAP [Lundberg et al.| | 2020]], to FASTTREESHAP [Yang,
2021]], a fast implementation of TREESHAP, the GPU implementation of TREESHAP [Mitchell
et al.l 2022b] and PLTREESHAP [Zern et al., [2023]. To the best of our knowledge, these are
the fastest available frameworks for computation of the “interventional” SHAP values. Figure[3]
shows the superior speed of our method over all state-of-the-art algorithms in most settings, which
weakens with increased depth and number of features, resulting in a higher count of frequencies and
greater computational overhead. Note that the SHAP values computed by all methods are precise and
identical to the values produced by TREESHAP, which is to be expected for FOURIERSHAP, given
access to exact Fourier representation of random forests.

Conclusions

We illustrated in theory and practice how many black-box functions can be represented or efficiently
approximated by a compact Fourier representation. We proved that SHAP values of Fourier basis
functions admit a closed form expression, and therefore, we can compute SHAP values efficiently
using the compact Fourier representation. Moreover, this closed form expression is amenable to
parallelization. These two factors helped us in gaining speedups of 10-10000x over baseline methods
for the computation of SHAP values. We discuss the limitations & future works in Appendix [F}
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Figure 3: Speedup vs. depth of tree, for different algorithms, reported as a multiple compared to the
runtime of TREESHAP. FOURIERSHAP is ours. As other baselines we have a GPU implementation
of TREESHAP, FASTTREESHAP, and PLTREESHAP. We achieve order of magnitude speedups
over all depths on the Entacmaea and SGEMM datasets. We also achieve significant speedups in the
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other two datasets; however, the edge diminishes as the maximum depth increases.

Acknowledgments

This work was supported by the Swiss National Science Foundation (SNSF) through National Centre
of Competence in Research (NCCR) Catalysis (Grant No. 180544). We thank Bhavya Sukhija for

valuable feedback and help during the review and rebuttal process.

10




References

Kjersti Aas, Martin Jullum, and Anders Lgland. Explaining individual predictions when features are
dependent: More accurate approximations to shapley values. Artificial Intelligence, 298:103502,
2021.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pages 242-252. PMLR,
2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. Advances in neural information processing systems, 32, 2019b.

Andisheh Amrollahi, Amir Zandieh, Michael Kapralov, and Andreas Krause. Efficiently learning
fourier sparse set functions. In Advances in Neural Information Processing Systems, pages
15120-15129, 2019.

Marco Ancona, Enea Ceolini, Cengiz Oztireli, and Markus Gross. Towards better understanding
of gradient-based attribution methods for deep neural networks. In International Conference on
Learning Representations, 2018.

Marcelo Arenas, Pablo Barcel6, Leopoldo Bertossi, and Mika€l Monet. The tractability of shap-
score-based explanations for classification over deterministic and decomposable boolean circuits.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 6670-6678,
2021.

Devansh Arpit, Stanistaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S.
Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, and Simon Lacoste-Julien.
A Closer Look at Memorization in Deep Networks. In Proceedings of the 34th International
Conference on Machine Learning, pages 233-242. PMLR, July 2017. ISSN: 2640-3498.

Ronen Basri, Meirav Galun, Amnon Geifman, David Jacobs, Yoni Kasten, and Shira Kritchman.
Frequency bias in neural networks for input of non-uniform density. In International Conference
on Machine Learning, pages 685-694. PMLR, 2020.

Albert Bifet, Jesse Read, Chao Xu, et al. Linear tree shap. Advances in Neural Information Processing
Systems, 35:25818-25828, 2022.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jaxl

Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards understanding the
spectral bias of deep learning. arXiv preprint arXiv:1912.01198, 2019.

Hugh Chen, Joseph D Janizek, Scott Lundberg, and Su-In Lee. True to the model or true to the data?
arXiv preprint arXiv:2006.16234, 2020.

Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785-794, 2016.

Mahdi Cheraghchi and Piotr Indyk. Nearly optimal deterministic algorithm for sparse walsh-hadamard
transform. ACM Transactions on Algorithms (TALG), 13(3):1-36, 2017.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in Neural Information Processing Systems, 32, 2019.

Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. Advances in neural information
processing systems, 22, 2009.

Ian Covert and Su-In Lee. Improving kernelshap: Practical shapley value estimation via linear
regression. arXiv preprint arXiv:2012.01536, 2020.

11


http://github.com/google/jax

Amit Daniely. Sgd learns the conjugate kernel class of the network. Advances in Neural Information
Processing Systems, 30, 2017.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks: The
power of initialization and a dual view on expressivity. Advances in neural information processing
systems, 29, 2016.

Anupam Datta, Shayak Sen, and Yair Zick. Algorithmic transparency via quantitative input influence:
Theory and experiments with learning systems. In 2016 IEEE symposium on security and privacy
(SP), pages 598-617. IEEE, 2016.

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: gradient boosting with
categorical features support. arXiv preprint arXiv:1810.11363, 2018.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Karthik Durvasula and Adam Liter. There is a simplicity bias when generalising from ambiguous
data. Phonology, 37(2):177-213, May 2020. ISSN 0952-6757, 1469-8188. doi: 10.1017/
S0952675720000093. Publisher: Cambridge University Press.

Zhou Fan and Zhichao Wang. Spectra of the conjugate kernel and neural tangent kernel for linear-
width neural networks. Advances in neural information processing systems, 33:7710-7721, 2020.

Ali Gorji, Andisheh Amrollahi, and Andreas Krause. A scalable walsh-hadamard regularizer to
overcome the low-degree spectral bias of neural networks. In Uncertainty in Artificial Intelligence,
pages 723-733. PMLR, 2023.

Ulrike Gromping. Estimators of relative importance in linear regression based on variance decompo-
sition. The American Statistician, 61(2):139-147, 2007.

Tamir Hazan and Tommi Jaakkola. Steps toward deep kernel methods from infinite neural networks.
arXiv e-prints, pages arXiv—1508, 2015.

Y. Huang, Y. Chen, and J. Lee. Updates on the complexity of shap scores. In Proceedings of the 33rd
International Joint Conference on Artificial Intelligence (IJCAI), 2024.

Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola.
The Low-Rank Simplicity Bias in Deep Networks, April 2022. arXiv:2103.10427 [cs].

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018a.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel: Convergence and
Generalization in Neural Networks. In Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018b.

Dominik Janzing, Lenon Minorics, and Patrick Bloebaum. Feature relevance quantification in
explainable ai: A causal problem. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of
the Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of
Proceedings of Machine Learning Research, pages 2907-2916. PMLR, 26-28 Aug 2020. URL
https://proceedings.mlr.press/v108/janzing20a.htmll

Neil Jethani, Mukund Sudarshan, Ian Connick Covert, Su-In Lee, and Rajesh Ranganath. Fastshap:
Real-time shapley value estimation. In International Conference on Learning Representations,
2021.

Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin Edelman, Tristan Yang, Boaz Barak,
and Haofeng Zhang. SGD on Neural Networks Learns Functions of Increasing Complexity. In
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum. SIAM
Journal on Computing, 22:1331-1348, 1993.

12


https://proceedings.mlr.press/v108/janzing20a.html

Yongchan Kwon, Manuel A Rivas, and James Zou. Efficient computation and analysis of distributional
shapley values. In International Conference on Artificial Intelligence and Statistics, pages 793-801.
PMLR, 2021.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165,
2017.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as gaussian processes. In International Conference on
Learning Representations, 2018.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019.

Xiao Li and Kannan Ramchandran. An active learning framework using sparse-graph codes for
sparse polynomials and graph sketching. Advances in Neural Information Processing Systems, 28,
2015.

Xiao Li, Joseph K Bradley, Sameer Pawar, and Kannan Ramchandran. Spright: A fast and robust
framework for sparse walsh-hadamard transform. arXiv preprint arXiv:1508.06336, 2015.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Advances
in Neural Information Processing Systems, volume 30, 2017. URL https://proceedings,
neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767 -Paper . pdf!

Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair, Ronit
Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to global
understanding with explainable ai for trees. Nature machine intelligence, 2(1):56-67, 2020.

Yishay Mansour. Learning boolean functions via the fourier transform. In Theoretical advances in
neural computation and learning, pages 391-424. Springer, 1994.

A. Marzouk, V. Belle, and G. Van den Broeck. On the tractability of shap explanations under
markovian distributions. In Proceedings of the 41st International Conference on Machine Learning
(ICML), 2024.

A. Marzouk, V. Belle, and G. Van den Broeck. On the computational tractability of the (many)
shapley values. In Proceedings of the 28th International Conference on Artificial Intelligence and
Statistics (AISTATS), 2025.

Rory Mitchell, Joshua Cooper, Eibe Frank, and Geoffrey Holmes. Sampling permutations for shapley
value estimation. Journal of Machine Learning Research, 23(43):1-46, 2022a.

Rory Mitchell, Eibe Frank, and Geoffrey Holmes. Gputreeshap: Massively parallel exact calculation
of shap scores for tree ensembles, 2022b.

Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks, pages
29-53. Springer, 1996.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. Exploring Gener-
alization in Deep Learning, July 2017. arXiv:1706.08947 [cs].

Cedric Nugteren and Valeriu Codreanu. CLTune: A Generic Auto-Tuner for OpenCL Kernels. In
2015 IEEE 9th International Symposium on Embedded Multicore/Many-core Systems-on-Chip,
pages 195-202, September 2015. doi: 10.1109/MCSo0C.2015.10.

Art B Owen. Sobol indices and shapley value. SIAM/ASA Journal on Uncertainty Quantification, 2
(1):245-251, 2014.

Art B Owen and Clémentine Prieur. On shapley value for measuring importance of dependent inputs.
SIAM/ASA Journal on Uncertainty Quantification, 5(1):986-1002, 2017.

Judea Pearl. Causality. Cambridge university press, 2009.

13


https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Frank J. Poelwijk, Michael Socolich, and Rama Ranganathan. Learning the pattern of epistasis linking
genotype and phenotype in a protein. Nature Communications, 10(1):4213, September 2019. ISSN
2041-1723. doi: 10.1038/s41467-019-12130-8. Number: 1 Publisher: Nature Publishing Group.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Conference
on Machine Learning, pages 5301-5310. PMLR, 2019.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on machine
learning, pages 63-71. Springer, 2004.

Basri Ronen, David Jacobs, Yoni Kasten, and Shira Kritchman. The convergence rate of neural
networks for learned functions of different frequencies. Advances in Neural Information Processing
Systems, 32, 2019.

Karen S. Sarkisyan, Dmitry A. Bolotin, Margarita V. Meer, Dinara R. Usmanova, Alexander S.
Mishin, George V. Sharonov, Dmitry N. Ivankov, Nina G. Bozhanova, Mikhail S. Baranov, Onuralp
Soylemez, Natalya S. Bogatyreva, Peter K. Vlasov, Evgeny S. Egorov, Maria D. Logacheva,
Alexey S. Kondrashov, Dmitry M. Chudakov, Ekaterina V. Putintseva, [lgar Z. Mamedov, Dan S.
Tawfik, Konstantin A. Lukyanov, and Fyodor A. Kondrashov. Local fitness landscape of the
green fluorescent protein. Nature, 533(7603):397-401, May 2016. ISSN 1476-4687. doi:
10.1038/nature17995. Number: 7603 Publisher: Nature Publishing Group.

Robin Scheibler, Saeid Haghighatshoar, and Martin Vetterli. A fast hadamard transform for signals
with sublinear sparsity in the transform domain. IEEE Transactions on Information Theory, 61(4):
2115-2132, 2015.

Lloyd S. Shapley. A Value for N-Person Games. RAND Corporation, Santa Monica, CA, 1952. doi:
10.7249/P0295.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In International conference on machine learning, pages 3145—
3153. PMLR, 2017.

Erik Strumbelj, Igor Kononenko, and M Robnik Sikonja. Explaining instance classifications with
interactions of subsets of feature values. Data & Knowledge Engineering, 68(10):886-904, 2009.

Mukund Sundararajan and Amir Najmi. The many shapley values for model explanation. In
International conference on machine learning, pages 9269-9278. PMLR, 2020.

Guillermo Valle-Perez, Chico Q Camargo, and Ard A Louis. Deep learning generalizes because the
parameter-function map is biased towards simple functions. arXiv preprint arXiv:1805.08522,
2018.

Guy Van den Broeck, Anton Lykov, Maximilian Schleich, and Dan Suciu. On the tractability of shap
explanations. In Proceedings of the 35th Conference on Artificial Intelligence (AAAI), 2021.

Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). A Practical
Guide, 1st Ed., Cham: Springer International Publishing, 10(3152676):10-5555, 2017.

Christopher Williams. Computing with infinite networks. Advances in neural information processing
systems, 9, 1996.

Nicholas C Wu, Lei Dai, C Anders Olson, James O Lloyd-Smith, and Ren Sun. Adaptation in protein
fitness landscapes is facilitated by indirect paths. eLife, 5:e16965, July 2016. ISSN 2050-084X.
doi: 10.7554/eLife.16965. Publisher: eLife Sciences Publications, Ltd.

Greg Yang and Hadi Salman. A fine-grained spectral perspective on neural networks. arXiv preprint
arXiv:1907.10599, 2019.

14



Jilei Yang. Fast treeshap: Accelerating shap value computation for trees. arXiv preprint
arXiv:2109.09847, 2021.

Artjom Zern, Klaus Broelemann, and Gjergji Kasneci. Interventional shap values and interaction
values for piecewise linear regression trees. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 11164—11173, 2023.

15



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: —
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: —
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: —
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: —
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: —
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: —
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: —
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

18


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[Yes]
Justification: —
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: —
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: While our method may enable beneficial applications in model interpretability,
it does not introduce foreseeable risks or harms.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No models or datasets with misuse risk are released.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: -
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: -
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or research with human subjects is performed in this work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No crowdsourcing or research with human subjects is performed in this work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No LLM is used as a core component in this work.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Relevant work

A.1 Neural network theory and simplicity biases

With regards to simplicity biases in fully connected neural networks, a substantial amount of research
has been dedicated to analyzing neural networks in function space. This line of research is dedicated
to firstly showing that “infinite-width”, randomly initialized (with Gaussian distribution) neural
networks are distributed as Gaussian Processes (GPs) and secondly computing the kernel associated
to the GP [Neal, |1996| [Williams, 1996/, |Cho and Saul, 2009} [Hazan and Jaakkolal, [2015| [Lee et al.|
2017, |Ancona et al., 2018} [Daniely, 2017]]. The kernel associated with the GP is commonly known
as the “conjugate kernel” [Daniely, [2017] or the “NN-GP kernel”[Lee et al.l |2017]]. Other works
show that in infinite-width neural networks weights after training via SGD do not end up too far
from the original [Chizat et al.,|2019, Jacot et al.||2018a, [Du et al.l 2018 |Allen-Zhu et al., 2019alb],
referred to as “lazy training” by |Chizat et al.| [2019]]. This allowed Jacot et al.| [2018a] to prove that
the evolution of an infinite-width neural network during training can be described by a kernel called
the “Neural Tangent Kernel”. |Lee et al.|[2019]] showed, through extensive experiments that the same
behavior holds even for the more realistic case of neural nets of finite width. Empirically speaking,
it was shown by Rahaman et al.|[2019] that a neural net with one input tends to learn sinusoids of
lower frequencies in earlier epochs than those with higher frequencies. By analyzing the spectrum
of the NTK’s Gram matrix, |[Ronen et al|[2019], Basri et al.|[2020] were able to formally prove this
empirical finding. [Yang and Salman|[[2019]],|[Fan and Wang|[2020] analyze the spectra of the NTK
gram matrix for higher dimensional inputs. Specifically, Yang and Salman|[2019], Valle-Perez et al.
[2018] provide simplicity bias results for the case where the inputs to the neural net are Boolean
(zero-one) vectors.

A.2 Sparse and low-degree Fourier transform algorithms

‘We now discuss algorithms that efficiently approximate general black-box predictors by a Fourier
sparse representation. Let i : {0,1}"™ — R be a any function. We assume we have query access to
h. That is, we can arbitrarily pick € {0,1}" and query & for its value h(z). Without any further
assumptions, computing the Fourier transform requires us to query exponentially, to be precise 27,
many queries: one for every z € {0,1}". Furthermore, classical Fast Fourier Transform (FTT)
algorithms are known to take at least £2(2" log(2")) time.

Under the additional assumption that % is k-sparse, works such as |Cheraghchi and Indyk! [2017]],
Amrollahi et al.|[2019], Scheibler et al.|[2015], Kushilevitz and Mansour| [1993]], Li and Ramchandran
[2015], [Li et al.| [2015] provide algorithms that obtain the Fourier transform more efficiently. In
particular, /Amrollahi et al.| [2019] provide algorithms with query complexity O(nk) and time
complexity O(nk log k) time. Assuming further that the function is of degree d = o(n), the query
complexity reduces to O(kdlogn), with run time still polynomial in n, k, d. Crucially, even if the
function A is not k-sparse, Algorithm ROBUSTSWHT of |Amrollahi et al.[[2019]] yields the best
k-sparse approximation in the {5 — {5 sense. More precisely, let us denote by hy : {0,1}" — the
function that is formed by only keeping the top k£ non-zero Fourier coefficients of h and setting the
rest to zero. Then the algorithm returns a O(k)-sparse function g such that:

S @H-RH<CO+e min S (G - he(f)

all k-sparse g
fefo,1}n fefo,13n
where C' is a universal constant. By Parseval’s identity, the same holds if the summations were over
the time (input) domain instead of the frequency domain.

A.3 Shapley values in the context of Machine learning

In the context of ML, many works have derived a different notion of Shapley value depending on what
they mean by data distribution, deleted features, etc. We refer the reader to the survey by |Sundararajan
and Najmi| [2020]], Janzing et al.| [2020] for a comprehensive overview. In this work we focus on
the notion of SHAP introduced by Lundberg and Lee|[2017]], Lundberg et al.| [2020] also known as
“Interventional” [Janzing et al., 2020, Van den Broeck et al.,2021]] or “Baseline” SHAP [Sundararajan
and Najmi} [2020]] where the missing features are integrated out from the marginal distribution as
opposed to the conditional distribution (see Section[2). As pointed out by Janzing et al.|[2020] there
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are two main ways to define the SHAP value “interventional” and “observational” SHAP. These are
referred to by Sundararajan and Najmi|[2020]] as “baseline” and “conditional” SHAP respectively.

As pointed out by Janzing et al.| [2020] the difference between these definitions can be better viewed
with the lens of causality [Pearl, 2009]. Roughly speaking “observational” SHAP tells us about how
influential a feature is to the prediction of the predictor if it goes from the state of being unobserved to
observed. “Interventional” SHAP is causal and tells us how influential a feature is if we were to reach
in (through a process called an intervention) and change that feature in order to change the prediction.
Put into the context of credit scores and loan approvals, “observational” SHAP will provide us with
important features which are “observed” by the predictor and hence are influential in predicting if a
particular loan request will be rejected or approved. Interventional SHAP would tell us which feature
we could change or “intervene” in order to change the outcome of the loan request.

The original (ML) SHAP paper [Lundberg and Lee, [2017]] proposes “observational” (conditional)
SHAP as the correct notion of SHAP. [Van den Broeck et al.|[2021]], |/Arenas et al.|[2021]] provide
intractability results for observational SHAP in a variety of simple distributional assumptions on the
data and simple predictors f. This line of research on observational SHAP has been extended in
subsequent work, which provides computational theoretical results on the hardness of computing
observational SHAP values for various classes of predictors and data distribution assumptions. [Huang
et al., [2024] Marzouk et al., [2024} 2025]]. The definition of SHAP in the original work of [Lundberg
and Lee, [2017] has also lead to many attempts to approximate observational SHAP values [Lundberg
et al.; 2020, [Covert and Leel 2020, |Aas et al., |2021, [Kwon et al., 2021}, |Sundararajan and Najmi,
2020]). It is interesting to note that the version of “Kernel”-SHAP in|Lundberg and Lee|[2017] is also
an approximation for observational SHAP values that ends up coinciding precisely with interventional
SHAP values, which explains a lot of the confusion in the community. Janzing et al.[[2020]] boldly
claims that researchers should stop the pursuit of approximations to “observation” SHAP values as it
lacks certain properties, for example, sensitivity i.e. the SHAP value of a feature can be non-zero
while the predictor f has no dependence on that feature. This phenomenon happens because when
features are correlated, the presence of a feature can provide information about other features that the
predictor does depend on. This does not happen in interventional SHAP. Finally, |Chen et al.| [2020]
argues that both SHAP definitions are worthy of pursuit. They emphasize that the interventional
framework provides explanations that are more “true to the model”, and the observational approach’s
explanations are more “true to the data”.

B Proofs

Before we start with the proofs we review the Fourier analysis and synthesis equations. As we
mentioned in the Background Section [2] the Fourier representation of the pseudo-boolean function
h:{0,1}™ — R is the unique expansion of h as follows:

1 ~
ha) = = Y RNDU
frefo,1pn
This is the so called Fourier “synthesis” equation.

The Fourier coefficients ﬁ( f) are computed by the Fourier “analysis” equation:

~ 1
h(t) = W) (=15
=7 we{%)l}n (z)(-1) (©6)

B.1 Proof of propositions

We can now prove Proposition I}

p

Proposition 1. Assume h : {0,1}" — R can be decomposed as follows: h(x) = Y hi(zs,), S C
i=1

[n]. That is, each function h; : {0,1}/%! — R depends on at most |S;| variables. Then, h is

P
k=0 21%)-sparse and of degree d = max(|Sy|, ..., |S,|). (Proof in Appendix
i=1
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Proof. Let g : {0,1}" — R be a function dependent on exactly d variables z;,, ..., z;,, where
i1,...,1q € [n] are distinct indices. We show that for any frequency f € {0,1}",if f; = 1 for some

j¢ S & {il, ..., 14}, then, g(f) = 0. From the Fourier analysis Equation@we have:

a(f) = \/7 Z <f@> _ Z Z g(z)(,l)(fs,xﬁ(,1)(f[n]\s@[n]\s>

z€{0,1}" z;:1€8 xj:5€[N]\S

(ii)
— Z (fs zs) Z (_1)<f[n]\SvI[n]\S> — Z g(x)(_l)(fsymﬂ .0=0

;€S zj:j€M]\S ;€S

Where Equation [l holds because g is only dependent on the variables in S and Equation [ii] holds by
checking the inner sum has an equal number of 1 and —1 added together.

The proof of the proposition follows by the linearity of the Fourier transform. O

Moving on to Proposition 2}
Proposition 2. Let, h : {0,1}" — R be a pseudo-boolean function and let d € N be some constant

(w.r.t. n). If h is of degree d, then, it is k = O(n?)-sparse. (Proof in Appendix

Proof. We simply note that the number of frequencies f € {0, 1}"™ of degree at most d is equal to
d

> (%). This sum is O(n?) for d constant w.r.t n. O

i=0
B.2 Proof of Lemmalll

Proof. We start from Equation [3}

I(n — —1)! * *
¢;I’f. - Z |S]!(n |'S| ! ﬁ Z <(_1)(f,xsu{i}@x[n]\swm _ (_1)(f,ms@w[n]\s))
n:
[ NG z,y)€D

Z Z |S|'(7’l _n"S| - 1) (_1)<f—i,xg@x["]\su{i}) (( 1)f1 i ( 1)fLTL)

(I y)€D SCn]\{i}

By checking all 8 possible combinations of z;,z¥, f; € {0,1}, one can see that (—1)/i%i —
(=1)fi® = 2f;(x; — x¥). This is simply because the two exponents only differ when f; = 1
and z; # x}.

To determine (—1){/-i:#s®@mnsui1) | we partition [n] \ {i} into two subsets A 2 {j € [n]|z; #
x3,j #4,fj=1}and B £ [n]\ AU{i}. Doing this, we can factor out (—1)¢f~#~¢ and determine
the rest of the sign based on the number of indices in S where = and «* disagree and f; = 1. This is
equalto |[ANS|:

v,  2fi . . IS|!(n —|S| — 1)!
¢i T= ‘D| Z (:177 - xi)(71)<f7“ -+ Z ol (71)‘14(]5‘
(z,y)€D SCnI\{i} '
A and B partition [n] \ {i}, therefore we split the inner sum as follows:
v, 2f; i o Al + |B)Y(n — (|A] + |B|) — 1)! i
=2 5 ey Yy ULBNO QA S0y
(x,y)eD BCB ACA ’

Since the inner expression only depends on the cardinalities of A and B we can recast the inner sum
to be over numbers instead of subsets by counting the number of times each cardinality appears in
the summation:

n—|A|—1 |A|

q;f:2fi A fﬁ o |A|—1 AN (¢ +b)l(n—a—0b—1)! e
P 2 (e Z< )(%) T -
) of, Z o x:)(_l)u,i,z,n §<_1)a n—|A|-1 (\1;1\) (n—l?\—l) -
D] (z,y)€D a=0 b=0 n(ais)
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Now we find a closed-form expression for the innermost summation in the above Equation, which is
a summation over b where a is fixed:

B ) [ U = (=Y

) R PR i

b=0 a+b b=0 HW(IQ‘) (n*|fg‘|*1)
_ 1 nil(a—&-b)(n—a—b—l)
n(7ll;\|1) b=0 a Al —a
(ii) 1 < n )
A
1

T A+ 1 ®

In Equation , we use the following identity: (%) (410 (”leib;l) = (’ljll) (141 ("1 This

can be checked algebraically by simply writing down each binomial term as factorials and doing the
cancellations:

n—1 a+b\/n—a—->b-1
) ()

(n—1)! (a+b)! (n—a—->b-—1)!
(a+b)l(n—a—b—11  abl (A —a)ln—a—b—1—(|A—a))
_ (n—1)!

T abl(JAl—a)l(n— [A]—b—1)I'
_ (n—1)! A (=4 =)
|All(n — [A] = 1)! " al(JA] —a)! bl(n— |A] —1—0b)!

=Cd) (D0

In Equation we use Y5 AT (et ("4 ) = ({af'+1) which holds because of the following

a

double-counting argument. The term (| AT+1) counts the number of ways to choose a subset of size
|A] + 1 from a set of n elements. Imagine elements are numbered from 1 to n, and m < mo <
... < T al+1 € [n] represent |A| + 1 chosen elements. Let’s condition on 7,11 = (a + b + 1) where
possible values for b can only be 0 < b < n — |A| — 1. This is due to the fact that 7,11 < a + 1
implies 1, ..., T, are chosen from less than a elements, and similarly 7,1 > n — |A| + a implies
Tat2s - T A|+1 (|A| — a chosen elements) are chosen from less than |A| — a elements, which are
both impossible. Given the condition, a elements numbered lower than (a + b + 1) and |4| — a

elements numbered larger than (a + b+ 1) are also chosen. This is possible in (“Ib) (”Tzl__ba_l) ways.

n—l4l-1 (“+b) ("_“_b_l) should give the number of

Therefore, keeping in mind that a is fixed, > 5, M A|—a
ways to choose a subset of size |A| + 1 from a set of n elements, through the new perspective.
Based on Equation [§} we see that the innermost summation in Equation is only dependent on | A|.
Thus, we rewrite Equation [/|as follows:

‘_I’fZin V(1 <f7i7x77,>(\x4|+1) mod 2
o =ppp 2 (@i—aD() ET

(z,y)€D

By absorbing the sign of (x; — x}) into the (—1){/~i:*~¢) term we arrive at Equation

(Z)‘-Ilf :_in Z 1 2 *(_1)(f,x>(|A‘+1) mod 2

D Al+1
Dl oren Al +
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B.3 Proof of Theorem2]

Proof. Proof of Equation [5] simply follows from the fact that SHAP values are linear w.r.t. the
explained function. Regarding the computational complexity we restate Equation [3]

2 ~ » (Al +1) mod 2
== > h(f)fi > Lapar (DU
D] |A]+1
fesupp(h) (z,y)€D

WhereAé {j € [n]"rj 7é$;7] #ivfj = 1}

We first do a pre-processing step for amortizing the cost of computing | A|: we compute AL {je
[n]|z; # x}, f; = 1} which takes ©(|D|n) flops.

We assume we are computing the whole vector " = (&% ... ®"), that is we are compute SHAP
values for all ¢ € [n] at the same time. Going back to the inner summation above, computing A (and
| A|) for different values of i € [n] is ©(n) if we utilize the pre-computed A. The inner product (f, x)
is not dependent on 7 and is ©(n) flops. Computing 1, .- for different values of i € [n] is ©(n).
Therefore, the inner expression of the summand takes ©(n) flops for a fixed data-point = € D and
f € supp(h).

Computing the inner sum for any fixed frequency f € supp(h) is ©(n|D|), because we are summing
over |D| vectors each of size n (the vector which holds SHAP value for each ¢ € [n]). Moving on to
the outer sum each evaluation of the inner sum is ©(n|D|) and it results in a vector of size n (one

element for each SHAP value). The multiplication of ﬁ( f) - fi is ©(n). Therefore the cost of the
inner sum dominates i.e. ©(n|D|). Since we are summing over the whole support the total number
of flops is: ©(n|D|k) where k = |supp(h)|. O

C Datasets
We list all the datasets used in the Experiments Section 3]

Entacmaea quadricolor fluorescent protein. (Entacmaea) [Poelwijk et al.|[2019] study the
fluorescence brightness of all 23 distinct variants of the Entacmaea quadricolor fluorescent protein,
mutated at 13 different sites.

GPU kernel performance (SGEMM). |Nugteren and Codreanu| [2015]] measures the running
time of a matrix product using a parameterizable SGEMM GPU kernel, configured with different
parameter combinations. The input has 14 categorical features. After one-hot encoding the dataset is
40-dimensional.

Immunoglobulin-binding domain of protein G (GB1). [Wu et al|[2016] study the “fitness” of
variants of protein GB1, that are mutated at four different sites. Fitness, in this work, is a quantitative
measure of the stability and functionality of a protein variant. Given the 20 possible amino acids
at each site, they report the fitness for 20 = 160, 000 possible variants, which we represent with
one-hot encoded 80-dimensional binary vectors.

Green fluorescent protein from Aequorea victoria (avGFP). [Sarkisyan et al.|[2016] estimate the
fluorescence brightness of random mutations over the green fluorescent protein sequence of Aequorea
victoria (avGFP) at 236 amino acid sites. We transform the amino acid features into binary features
indicating the absence or presence of a mutation at each amino acid site. This converts the original
54,024 distinct amino acid sequences of length 236 into 49, 089 236-dimensional binary data points.

D FourierShap Implementation

We implemented four versions of our algorithm, i.e., Equation[5] using Google JAX library [Bradbury
et al., |2018]]. JAX provides a flexible framework for developing high-performace functions for
vectorized computations. JAX enables automatic performance optimisation of algebraic computation
as well as just-in-time (JIT) compilation of the vectorized functions for faster iterations at runtime.
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The full code base is provided as supplementary material to the paper. We refer the reader there
for more details. Here we give a high level overview of the four versions we implemented and
experimented with:

* Base: In this version, frequencies are represented as n-dimensonal binary vectors. A simple
implenetation is provided for computing the SHAP values given a single frequency, a
single background instance, and a single query instance. This is next extended to multiple
frequencies, multiple background instances, and multiple query instances using multiple
JAX wvmaps.

¢ Precompute: This version is a modified version of the Base version. We take a closer look
at Equation [5] and pre-compute terms dependent only on frequencies f and background
dataset points = (not including terms dependent on the query point *). These are then
loaded from memory at run-time. This version was faster than Base in all of our experiments,
but inherently requires more memory; in our case, more GPU memory.

* Sparse: Here we utilize the sparsity of frequencies f € {0,1}™ i.e. the fact that frequencies
have mostly zero entries in practice. In this version, for each frequency f, we focus on
positions ¢ where f; = 1. Inspecting Equation [5] these are the only positions where f can
affect the final SHAP value vector.

* Positional: This version brings again builds on the previous and computes SHAP values
separately for each coordinate ¢ € [n]. This adds one extra precomputation step to map
frequencies to coordinates they affect, but enables mathematical simplifications as well as
potential for extra vectorization. We observed that although this extra precomputation step
could become time-consuming for large set of frequencies, it can result in a significantly
faster SHAP value computation at run-time in the case of low-degree Fourier spectrums,
compared to the Sparse version.

E Experiment Details

The code for running the experiments and the implementations of all modules are open-sourced and is
publicly available at https://github.com/andisheh94/fouriershap. We run all experiments
on a machine with one NVIDIA GeForce RTX 4090 GPU, on servers with Intel(R) Xeon(R) CPU
E3-1284L v4 @ 2.90GHz, restricting the memory/RAM to 20 GB, which was managed with Slurm.

E.1 Black-box

For the Entacmaea and SGEMM datasets, we train fully connected neural networks with 3 hidden
layers containing 300 neurons each. The network is trained using the means-squared loss and ADAM
optimizer with a learning rate of 0.01. For GB1 we train ensembles of trees models of varying
depths using the random forest algorithm using the sklearn library [Pedregosa et al., 2011]. For
avGFP we train again, ensembles of trees models with 10 trees of varying depths using the cat-boost
algorithm/library[Dorogush et al.l 2018]]. All other setting are set to the default in both cases. Model
accuracy for different depths are plotted in Figure ]

Accuracy Random Forest model on GB1 vs depth Accuracy Catboost model on avGFP vs depth

0.45 4 0.45
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() ()
T .25 T 25

0.20 1 0.20
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Figure 4: Model accuracy of tree models evaluated on the test set for different depths
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For each dataset, we use all possible combination of number of background samples and query
instances (instances to be explained) from {10, 20, 30,40}, resulting in a total of 16 runs per dataset.
Error bars in Figure [J] capture the variation in speedups.

E.1.1 FourierSHAP

For the first step of the FOURIERSHAP, i.e., computing a sparse Fourier approximation of the
black-box model, we use an implementation of a sparse Walsh-Hadamard Transform (sparse WHT)
a.k.a Fourier transform algorithm [[Amrollahi et al., 2019]] for each of the four trained models. The
implementation is done using Google JAX [Bradbury et al., 2018]] library as part of this work, and is
available in the project repository.

For the second step of FOURIERSHAP, i.e., utilizing the approximated Fourier spectrum to compute
SHAP values as per Equation[5] we use our “Precompute” implementation. We discussed the details
in the previous Section, Section

To showecase the flexibility of our method in controlling the trade-off between speed and accuracy in
Figure [2] we prune the computed sparse Fourier spectrum in the first step, and remove frequencies
with amplitudes smaller than a specific threshold from the spectrum. For the threshold, we use 10
values between 0.0001 and 0.05 and specified a minimal descriptive subset of them as points in

Figure [2]

E.1.2 KernelShap

For KERNELSHAP, we use the standard library provided by the writers of the paper [Lundberg and
Leel 2017]] E]With its default settings. As part of the default setting, the paired sampling trick is also
enabled, which shown to be beneficial for faster convergence of KERNELSHAP. KERNELSHAP is
written in C and is to our knowledge the fastest implementation of this algorithm.

To ensure a fair comparison, we run models on GPU wherever possible, i.e., for Neural Networks on
Entacmaea and SGEMM datasets.

To emphasize the practical significance of speedups of FOURIERSHAP over KERNELSHAP, we
report the absolute runtimes of KERNELSHAP (in seconds) in our experiment on the SGEMM dataset
in Table[I] The runtimes correspond to the setting used in the main text, where background sizes were
kept relatively small. This decision was made intentionally; during experimentation, we observed that
larger background sizes caused LINREGSHAP and KERNELSHAP to become prohibitively slow,
making it impractical to include full-scale results across datasets and seeds. Despite this limitation,
our method already achieved orders-of-magnitude speedups.

Query Size | / Background Size — 10 20 30 40

10 20s 39s 565 7.8s
20 29s 58s 87s 11.7s
30 39s 7.5s 11.0s 144s
40 49s 96s 14.0s 179s

Table 1: KERNELSHAP runtimes in seconds in our experiment on the SGEMM dataset across
varying sizes of the query and background sets.

To further emphasize the practical gains of FOURIERSHAP, we conducted additional experiments
with significantly larger query and background sets, closer to what might be used in real-world
deployments. Table [2reports the runtimes in this setting. Despite the background dataset still being
modest in size (100-400), KERNELSHAP runtimes quickly increase to minutes, while FOURIER-
SHAP continues to run in milliseconds. These results reinforce that our reported relative speedups
(often 100x—10,000x) translate into meaningful real-world runtime improvements.

*https://github.com/slundberg/shap
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Query Size | / Background Size — 100 200 300 400

100 35s 71s 104s 133s
200 43s 84s 129s 169s
300 52s 107s 161s 212s
400 69s 132s 197s 265s

(a) KERNELSHAP runtimes (in seconds)

Query Size | / Background Size — 100 200 300 400

100 14ms 28 ms 43 ms 57 ms
200 29ms 58 ms 86ms 110 ms
300 40ms 79ms 119ms 159 ms
400 53ms 106ms 160ms 213 ms

(b) FOURIERSHAP runtimes (in milliseconds)

Table 2: KERNELSHAP runtimes vs. FOURIERSHAP runtimes across significantly larger sizes of
the query and background sets than the setting used in the experiment on the SGEMM dataset.

E.1.3 Fast-SHAP

We tried our best to capture the full potential of FASTSHAP in predicting SHAP values in terms
of speed and accuracy, to ensure a practical and grounded comparison to our method. Here are the
details on training Fast-SHAP as a baseline for computing interventional SHAP values:

* Imputer: "Imputer” is a FastSHAP module used in the computation of neural networks’
loss, acting as the value function in SHAP formula, that generates model’s prediction
using a strategy for treating features excluded in the subset, given the predictor and a
subset of features. To compute interventional SHAP values, we use MarginalImputer,
implemented in the original FastSHAP repo, which computes mean predictions when using
the backgorund dataset’s values for excluded features. Therefore, each trained FastSHAP
model is specific to a fixed background dataset, as the Imputer used in its loss is. In our
experiments, we use four different background datasets with multiple sizes per (real-world)
dataset, which lead to training four FastSHAP models per setting.

* Feature Subset Sampling: We train FastSHAP models with 1, 4, and 16 feature subset
samples per input. Although we did not observe monotonic improvements by increasing the
number of feature subset samples, we decided to use the models trained with 16 samples per
input to compare our method with, as it was mostly performing the best in terms of accuracy.

* Paired Sampling: We enable paired sampling in FastSHAP, which is a trick to pair each
feature subset sample s € {0, 1}" with its complement 1 — s, that is shown to be beneficial
in reducing the variance and improving the accuracy, in both KernelSHAP and FastSHAP.

¢ Neural Network Architectures: We use MLPs with three different sizes to train FastSHAP,
and reported the results for each separately:
— Small (2-layer): in x 128 x out.
— Medium (4-layer): in x 128 x 128 x 128 X out.
— Large (6-layer): in x 128 x 128 x 128 x 128 x 128 X out.

We use ReLLU as the activation function in all models.

* Hyperparameters: We use the training batch size of 64 and FastSHAP’s defaults for all
other components and hyper-parameters. We train each model with early stopping and up to
200 epochs.

Table 3| shows the time required to train the FASTSHAP models used in our black-box experi-

ments. Both FOURIERSHAP (ours) and FASTSHAP are amortized methods that have a heavier
“pre-computation” step. For FASTSHAP this pre-computation appears as training an MLP that directly
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predicts SHAP values and for us this appears as computing a Fourier transform. When compar-
ing FASTSHAP’s initial training time to ours (reported in Figure[T), we can see our method has a
considerably lower pre-computation time.

Training time (m) . .
Dataset Black-box FastSHAP for background dataset size TOt‘fll training
model size time (m)
| 10 20 30 40
Small 5 8 15 18 46
Entacmaea MLP Medium 2 4 6 10 22
Large 3 6 11 11 31
Small 47 130 249 173 599
SGEMM MLP Medium 55 52 162 128 397
Large 72 73 152 91 388
Random Forest Small 114 148 42 173 477
GB1 (depth=5) Medium 83 207 55 130 475
pth= Large 54 102 155 184 495
Catboost Small 24 28 36 39 127
avGFP (depth=5) Medium 35 58 41 62 196
pth= Large 11 20 22 25 78

Table 3: Training times of FASTSHAP models used in our black-box experiments (in minutes).
Unlike FOURIERSHAP (ours), FASTSHAP needs to be separately trained for each background
dataset. Part of the difference in the training times are due to the variance in the number of training
epochs before the early stopping occurs. Original datasets are also of varying sizes that lead to
different number of training samples per epoch.

E.1.4 LinRegShap

LINREGSHAP, is a variance-reduced version of KERNELSHAP [Covert and Lee, |2020]. We again
use the implementation of the original writersﬂ Their implementation includes automatic detection
of the convergence of stochastic sampling which is meant to speed up the algorithm by taking less
samples from the black box. Furthermore, as per the default setting, we also allowed paired sampling.

To ensure a fair comparison, we run models on GPU wherever possible, i.e., for Neural Networks on
Entacmaea and SGEMM datasets.

E.1.5 DeepLift

For DeepLift we as well use the library of [Lundberg and Lee[2017] E]with default settings. In this
setting the neural network is passed to the algorithm on a GPU to make sure this algorithm is as fast
as possible.

E.2 Trees

We fit random forests of maximum depths ranging from 3 to 8 with 20 estimators on 90% of
all four datasets used in the black-box setting. We compare performance of four algorithms in
computing SHAP values for these random forest models; the classic TREESHAP as well as its GPU
implementationﬂ FASTTREESHAP/('| and our FOURIERSHAP. We always use 100 datapoints as
the background data samples, and 100 datapoints to explain and compute the SHAP values for. We
report the speedup of each algorithm over classic TREESHAP in Figure 3] with error bars showing
the standard deviation in speedup over five independent runs.

*https://github.com/iancovert/shapley-regression
https://github.com/slundberg/shap
https://github.com/slundberg/shap
"https://github.com/linkedin/FastTreeSHAP
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Figure 5: From left to right, 1- SHAP values generated by KERNELSHAP, 2- SHAP values generated
by FourierSHAP (ours), 3- and the ground truth SHAP values computed by the original exponential
SHAP formula EquationT|on the Entacmaea dataset. In 3, Computation of ground truth SHAP values
using the exponential formula is possible due to the dataset containing all 2'® possible boolean feature
vectors. 10 query points and a background dataset points are chosen at random and are of size 10.
This figure shows that both KernelSHAP and our method compute exact ground truth SHAP values.

For the first step of the FOURIERSHAP, we derive the exact sparse Fourier representation from the
ensemble of trees, accessing the tree structures and using Equation 2} We also perform a pruning on
the exact sparse Fourier representation derived from the ensemble of trees, and keep the frequencies
with largest amplitudes that cover at least 99.95% of the original Fourier spectrum’s energy. We also
make sure to only remove frequencies with apmlitudes smaller than 0.005.

To run FOURIERSHAP, we use our “Precompute” implementation for Entacmaea, and “Positional”
version for other datasets, given larger feature spaces and the low-degreeness of the spectrum as
a result of bounded maximum depth. See Section [D|for implementation details. We compare the
resulted SHAP values with TREESHAP results and achieve R? of at least 0.99, ensuring precise
values computed by FOURIERSHAP.

E.3 Using KernelShap to produce ground truth SHAP values

As mentioned before, in order to measure the accuracy of the SHAP values produced by our and other
algorithms we need ground truth SHAP values. We use KERNELSHAP to this extent. KERNELSHAP
is an approximation method for computing interventional SHAP values. This approximation becomes
more precise by sampling more coalition subsets. Therefore, to generate ground truth values, for each
dataset, we sample more and more and check for convergence in these values.

In order to check if KERNELSHAP values have converged to ground truth interventional SHAP values,
we update the number of subset samples KERNELSHAP uses to generate SHAP values for each
instance. Looking into KERNELSHAP repo EL this is the default number of samples in the code:

self .nsamples = 2 * self.M + 2x*x*11

Here, self .M is the number of indices where the instance is different from the background dataset.

To understand the convergence dynamics of KERNELSHAP, we multiply this number by multiple
“sample factor”s and run the algorithm. This allows us to experiment with the number of subsets sam-
pled, and find a sample factor that ensures convergence while avoiding unnecessary extra computation.
We test sample factors in the set {0.02,0.03,0.04,0.1,1.0, 2.0, 10.0}.

For instance, for GB1 dataset, we compute the R? score of the KERNELSHAP SHAP values with
different sample factors to sample factor 10 (as the ground truth). For this dataset, the default setting,
i.e., sample factor = 1, seems good enough to make sure we are producing ground truth values and
that the algorithm has converged. This is the general procedure we use for all datasets.

%https://github.com/shap/shap/blob/master/shap/explainers/_kernel.py
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Sample Factor | Runtime R? w.r.t Ground Truth

0.02 4.031 0.902
0.03 4.274 0.934
0.04 4.530 0.967

0.1 5.399 0.991

1.0 19.452 0.999

2.0 34.451 1.0

10.0 160.251 1.0 (R? w.r.t itself trivially=1)

Table 4: Table of sample factor, runtime, and R~ with respect to sample factor 10, on GB1 dataset.

F Limitations & Future Work

F.1 Extending to continuous features

A limitation of FOURIERSHAP is that it currently does not natively support continuous features
and they have to be handled by quantization into categorical features. However, there is value
in computing efficient SHAP values for models with continuous features and this is an important
potential future work. In the following, we discuss how we think such an extension would work for
the two classes of models we extensively covered in this work, namely trees and MLPs.

Trees in the white-box setting. Trees can be seen as inherently discrete structures even though they
perfectly work for continuous features. By setting a threshold, i.e., a continuous number to define a
split of the node, all trees are inherently in fact binary. This way of thinking gives one very simple
but crude extension of the current framework: To assign to each node of the tree a binary feature
specifying whether a certain continuous feature is bigger or smaller than its threshold. This would
increase the feature dimension of the problem to the number of nodes in the tree in the worst case
scenario. With the careful design of the transformation of continuous features into node-based binary
features, this could be a potential extension for which the current work can lay a foundation.

A second and more principled and less crude way to think about the case of trees is to not use a
Fourier transform that we are using now which is over Zs X Z5 x ...Z5 (n times where n is the
number of features). But rather use a transform over Z, , X, Zg, where K is the number of distinct
thresholds feature ¢ has in the tree. Coming up with a closed form solution for the SHAP values in
this Fourier basis is an interesting question that we also plan to look at. It is not too far-fetched to
think that we can also find a closed form solution to this discrete Fourier basis. This would perfectly
handle the case of any tree. Note that by a recursive formula one can readily compute the Fourier
transform of trees as well.

MLPs. Regarding the case of MLPs with continuous input features, one can not simply resort
to the discrete Fourier transform of type Zy X ... Zj to perfectly capture this structure as it is
no longer inherently discrete (like trees). This is a slightly tricky scenario because it requires us
to characterize the relationship of continuous and discrete Fourier transforms of neural networks
functions. In classical signal processing there are results which characterize what level of granularity
in discretization is required to reconstruct continuous transform with the discrete one for a given level
of error. These results depend on the Spectrum of the continuous transform. For example the case of
super imposition of sinusoids, where the spectrum has a bounded domain give rise to the Nyquist rate
etc.

For Neural network functions, if one had clear theoretical results on the spectral behavior of con-
tinuous transforms of neural networks it is not too hard to come up with conditions on the level of
quantization required for the discrete transform to approximate them. One result that computes the
spectrum appears over a multi dimensional inputs is (Theorem 1 of Rahaman et al.|[2019]) but we
are not aware of any spectral bias bounds on the continuous spectrum derived from this equation.
However, for Neural networks with a single input dimension, bounds have been derived on the spec-
trum |Cao et al.|[2019] (in addition to the empirical results of [Rahaman et al.| [2019]). This intuitively
means that single input Neural networks provably have a tendency to approximate functions with
lower frequency sinusoids in the continuous domain. This implies that a discrete Fourier transform
over Zx can approximate these function correctly for a sufficiently large discretization parameter K.
This gives hope that a empirically a discrete Fourier transform of type Zx X ... Zi for a sufficiently
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large K would also approximate neural network function with higher dimensional inputs for a large
enough discretization parameter K. Therefore, an extension of our closed-form solution for SHAP to
Zk X ...Zk transform could be a potential direction for the future work.

F.2 Conditional SHAP values

Another direction for future work is extending this work to compute conditional SHAP values. In this
work, we only cover interventional SHAP values (the difference of interventional and conditional
SHAP versions is discussed in detail in Appendix [A.3).

In model-based methods like TREESHAP [Lundberg et al|[2020], one can use the tree itself to
approximate conditional distributions of the data in a tractable way. One idea for extending this
work is to attempt to tractably find a representation of the conditional distribution of the data using a
sparse Fourier approximation of the predictor. Next, computing conditional SHAP Values using this
conditional approximation.
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