
Under review as a conference paper at ICLR 2021

NNGEOMETRY: EASY AND FAST FISHER INFORMA-
TION MATRICES AND NEURAL TANGENT KERNELS IN
PYTORCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Fisher Information Matrices (FIM) and (finite-width) Neural Tangent Kernels
(NTK) are useful tools in a number of diverse applications related to neural net-
works Pascanu & Bengio (2013); Kirkpatrick et al. (2017); Wu et al. (2017); Liang
et al. (2019); Du et al. (2018). Yet these theoretical tools are often difficult to im-
plement using current libraries for practical size networks, given that they require
per-example gradients, and a large amount of memory since they scale as the num-
ber of parameters (for the FIM) or the number of examples × cardinality of the
output space (for the NTK). NNGeometry is a PyTorch library that offers a simple
interface for computing various linear algebra operations such as matrix-vector
products, trace, frobenius norm, and so on, where the matrix is either the FIM or
the NTK, leveraging recent advances in approximating these matrices. We hereby
introduce the library and motivate our design choices, then we demonstrate it on
modern deep neural networks.
Code for this paper is available at this (anonymized) repo: https://github.
com/OtUmm7ojOrv/nngeometry.

Practical and theoretical advances in deep learning have been accelerated by the development of
an ecosystem of libraries allowing practitioners to focus on developing new techniques instead
of spending weeks or months re-implementing the wheel. In particular, automatic differentiation
frameworks such as Theano (Bergstra et al., 2011), Tensorflow (Abadi et al., 2016) or PyTorch
(Paszke et al., 2019) have been the backbone for the leap in performance of last decade’s increas-
ingly deeper neural networks as they allow to compute average gradients efficiently, used in the
stochastic gradient algorithm or variants thereof. While being versatile in neural networks that can
be designed by varying the type and number of their layers, they are however specialized to the
very task of computing these average gradients, so more advanced techniques can be burdensome to
implement.

While the popularity of neural networks has grown thanks to their always improving performance,
other techniques have emerged, amongst them we highlight some involving Fisher Information Ma-
trices (FIM) and Neural Tangent Kernels (NTK). Approximate 2nd order (Schraudolph, 2002) or
natural gradient techniques (Amari, 1998) aim at accelerating training, elastic weight consolida-
tion (Kirkpatrick et al., 2017) proposes to fight catastrophic forgetting in continual learning and
WoodFisher (Singh & Alistarh, 2020) tackles the problem of network pruning so as to minimize its
computational footprint while retaining prediction capability. These 3 methods all use the Fisher
Information Matrix while formalizing the problem they aim at solving, but resort to using different
approximations when going to implementation. Similarly, following the work of Jacot et al. (2018),
a line of work study the NTK in either its limiting infinite-width regime, or during training of actual
finite-size networks.

All of these papers start by formalizing the problem at hand in a very concise math formula, then
face the experimental challenge that computing the FIM or NTK involves performing operations
for which off-the-shelf automatic differentiation libraries are not well adapted. An even greater
turnoff comes from the fact that these matrices scale with the number of parameters (for the FIM)
or the number of examples in the training set (for the empirical NTK). This is prohibitively large for
modern neural networks involving millions of parameters or large datasets, a problem circumvented
by a series of techniques to approximate the FIM (Ollivier, 2015; Martens & Grosse, 2015; George

1

https://github.com/OtUmm7ojOrv/nngeometry
https://github.com/OtUmm7ojOrv/nngeometry

Under review as a conference paper at ICLR 2021

using a KFAC Fisher
1 F_kfac = FIM(model=model,
2 loader=loader,
3 representation=PMatKFAC,
4 n_output=10)
5
6 v = PVector.from_model(model)
7
8 vTMv = F_kfac.vTMv(v)

using implicit computation
1 F_full = FIM(model=model,
2 loader=loader,
3 representation=PMatDense,
4 n_output=10)
5
6 v = PVector.from_model(model)
7
8 vTMv = F_full.vTMv(v)

Figure 1: Computing a vector-Fisher-vector product v>Fv, for a 10-fold classification model de-
fined by model, can be implemented with the same piece of code for 2 representations of the FIM
using NNGeometry, even if they involve very different computations under the hood.

et al., 2018). NNGeometry aims at making use of these approximations effortless, so as to accelerate
development or analysis of new techniques, allowing to spend more time on the theory and less time
in fighting development bugs. NNGeometry’s interface is designed to be as close as possible to
maths formulas. In summary, this paper and library contribute:

• We introduce NNGeometry by describing and motivating design choices.
– A unified interface for all FIM and NTK operations, regardless of how these are ap-

proximated.
– Implicit operations for ability to scale to large networks..

• Using NNGeometry, we get new empirical insights on FIMs and NTKs:
– We compare different approximations in different scenarios.
– We scale some NTK evolution experiments to TinyImagenet.

1 PRELIMINARIES

1.1 NETWORK LINEARIZATION

Neural networks are parametric functions f (x,w) : X × Rd → Rc where x ∈ X are covariates
from an input space, and w ∈ Rd are the network’s parameters, arranged in layers composed of
weight matrices and biases. The function returns a value in Rc, such as the c scores in softmax
classification, or c real values in c-dimensional regression. Neural networks are trained by iteratively
adjusting their parameters w(t+1) ← w(t) + δw(t) using steps δw(t) typically computed using the
stochastic gradient algorithm or variants thereof, in order to minimize the empirical risk of a loss
function.

In machine learning, understanding and being able to control the properties of the solution obtained
by an algorithm is of crucial interest, as it can provide generalization guarantees, or help design
more efficient or accurate algorithms. Contrary to (kernelized) linear models, where closed-form
expressions of the empirical risk minimizer exist, deep networks are non-linear functions, whose
generalization properties and learning dynamics is not yet fully understood. Amongst the recent
advances toward improving theory, is the study of the linearization (in w) of the deep network
function f (x,w):

f (x,w + δw) = f (x,w) + J (x,w) δw + o (‖δw‖) 1 (1)

where J (x,w) = ∂f(x,w)
∂w is the Jacobian with respect to parameters w, computed in (w, x), map-

ping changes in parameter space δw to corresponding changes in output space using the identity
δf (x,w, δw) = J (x,w) δw. For tiny steps δw, we neglect the term o (‖δw‖) thus f is close to its
linearization. It happens for instance at small step sizes, or in the large-width limit with the specific
parameter initialization scheme proposed by Jacot et al. (2018).

1The Landau notation o (pronounced ”little-o”) means a function whose exact value is irrelevant, with the
property that limx→0

o(x)
x

= 0, or in other words that is negligible compared to x for small x.

2

Under review as a conference paper at ICLR 2021

1.2 PARAMETER SPACE METRICS AND FISHER INFORMATION MATRIX

While neural networks are trained by tuning their parameters w, the end goal of machine learning is
not to find the best parameter values, but rather to find good functions, in a sense that is dependent
of the task at hand. For instance different parameter values can represent the same function (Dinh
et al., 2017). On the contrary 2 parameter space steps δw1 and δw2 with same euclidean norm
can provide very different changes in a function (δf (x,w, δw1) 6= δf (x,w, δw2)). In order to
quantify changes of a function, one generally defines a distance2 on the function space. Examples of
such distances are the Lk-norms, Wasserstein distances, or the KL divergence used in information
geometry.

To each of these function space distances correspond a parameter space metric. We continue our
exposition by focusing on the KL divergence, which is closely related to the Fisher Information
Matrix, but our library can be used for other function space distances. Suppose f is interpreted as
log-probability of a density p: log p (x,w) = f (x,w), the KL divergence gives a sense of how
much the probability distribution changes when adding a small increment δw to the parameters of
f (x,w). We can approximate it as:

KL (p (x,w) ‖p (x,w + δw)) =

∫
x∈X

log

(
p (x,w)

p (x,w + δw)

)
dp (x,w) (2)

=
1

2

∫
x∈X

(
1

p (x,w)
J (x,w) δw

)2

dp (x,w) + o
(
‖δw‖2

)
(3)

where we used this form (derived in appendix) in order to emphasize how steps in parameter space
δw affect distances measured on the function space: equation 3 is the result of i) taking a step
δw in parameter space; ii) multiplying with J (x,w) to push the change to the function space; iii)
weight this function space change using p (x,w)

−1; iv) square and sum. In particular, because of
the properties of the KL divergence, there is no second derivative of f involved, even if equation 3
is equivalent to taking the 2nd order Taylor series expansion of the KL divergence. We can rewrite
in a more concise way:

KL (f (x,w) ‖f (x,w + δw)) = δw>Fwδw + o
(
‖δw‖2

)
(4)

which uses the d × d FIM Fw =
∫
x∈X

1
p(x,w)2

J (x,w)
>
J (x,w) dp (x,w). In particular, we can

now define the norm ‖δw‖Fw
= δw>Fwδw used in the natural gradient algorithm (Amari (1998),

also see Martens (2020) for a more thorough discussion of the FIM), in elastic weight consolidation
(Kirkpatrick et al., 2017), or in pruning (Singh & Alistarh, 2020). Other quantities also share the
same structure of a covariance of parameter space vectors, such as the covariance of loss gradients in
TONGA (Roux et al., 2008), the second moment of loss gradients3 (Kunstner et al., 2019; Thomas
et al., 2020), or posterior covariances in bayesian deep learning (e.g. in Maddox et al. (2019)).

1.3 NEURAL TANGENT KERNEL

Another very active line of research around the linearization of equation 1 is to take inspiration from
the rich literature on kernel methods by defining the neural tangent kernel (NTK):

kw (x, y) = J (x,w) J (y,w)
> (5)

In the limit of networks infinite width, Jacot et al. (2018) have shown that the tangent kernel remains
constant through training using gradient descent, which allows to directly apply kernel learning
theory to deep learning. While this regime is of theoretical interest, it arguably does not explain
what happens at finite width, where the NTK evolves during training.

While kernels are functions of the whole input space X ×X , we often only have access to a limited
number of samples in a datasets. We thus resort to using the kernel evaluated at points xi of a

2We here use the notion of distance informally.
3The second moment of loss gradients is sometimes called empirical Fisher.

3

Under review as a conference paper at ICLR 2021

Generator
Computes jacobians

*Mat Representations
 Depending on the representation:

 - Stores required elements in memory

 - Implements linear algebra operations

populates

Layer Collection
Describes the structure (layers) of the

parameter space

*Vectors
 - Stores required elements in memory

matrix-vector operations

Figure 2: Schematic description of NNGeometry’s main components

training or a test set, called the Gram Matrix (Kw)ij = kw (xi, xj). Note that in the case where the
output space is multidimensional with dimension c, then Kw is in fact a 4d tensor.

2 DESIGN AND IMPLEMENTATION

2.1 DIFFICULTIES

Current deep learning frameworks such as PyTorch and Tensorflow are well adapted to neural net-
work training, i.e. computing average gradients over parameters, used in optimizers such as Adam
and others. However, when going to more advanced algorithms or analysis techniques involving
FIMs and NTKs, practitioners typically have to hack the framework’s internal mechanisms, which
is time consuming, error prone, and results in each project having its own slightly different imple-
mentation of the very same technique. We here list the difficulties in computing FIMs and NTKs
using current frameworks:

Per-example gradient FIMs and NTKs require per-example Jacobians J (xi,w) of a dataset
(xi)i. This can be obtained by looping through examples x, but at the cost of not using mini-batched
operations, thus missing the benefit of using GPUs. NNGeometry’s Jacobian generator extensively
use efficient techniques such as Goodfellow (2015)

Memory usage and computational cost A FIM matrix is d × d where d is the total number
of parameters. With a memory cost in O

(
d2
)
, this is prohibitively costly even for moderate size

networks. Typical linear algebra operations have a computational cost in eitherO
(
d2
)

(e.g. matrix-
vector product) or evenO

(
d3
)

(e.g. matrix inverse). NNGeometry instead comes with recent lower
memory intensive approximations.

2.2 NNGEOMETRY’S DESIGN

2.2.1 ABSTRACT OBJECTS

In section 1, we have worked with abstract mathematical objects δw, δf (x,w, δw), J (x,w), Fw

and Kw. We now identify these mathematical objects to Python classes in NNGeometry.

We start with the parameter space, that we previously identified as Rd. Closer to how they are actu-
ally implemented in deep learning frameworks, vectors in the parameter space w can equivalently be
considered as a set of weight matrices and bias vectors w = {W1, b1, . . . ,Wl, bl}. Parameter space
vectors are represented by the class PVector in NNGeometry, which is essentially a dictionary of
PyTorch Parameters, with basic algebra logic: PVectors can be readily added, substracted, and
scaled by a scalar with standard python operators. As an illustration wsum = w1 + w2 internally loops
through all parameter tensors of w1 and w2 and returns a new PVector w_sum.

4

Under review as a conference paper at ICLR 2021

Similarly, and more interestingly, parameter space metrics such as the FIM are represented by classes
prefixed with PMat. For instance, the natural gradient δnat = −ηF−1∇wL applies the linear opera-
tor w 7→ F−1w to the parameter space vector∇wL, and can be implemented cleanly and concisely
using delta_nat = - eta * F.solve(nabla_L), even if it internally involves different operations for
different layer types, and different approximation techniques.

Function space vectors FVector define objects associated to vectors of the output space, evaluated
on a dataset of n examples X . As an example, getting back to the linearization δf (x,w, δw) =
J (x,w) δw, we define δf (X) = (δf (x1,w, δw) , . . . , δf (xn,w, δw)) as the Rc×n function
space vector of output changes for all examples of X . Gram matrices of the NTK are linear op-
erators on this space, represented by objects prefixed with FMat. Borrowing from the vocabulary of
differential geometry, we also define PushForward objects that are linear operator from parame-
ter space to function space, and PullBack objects that are linear operator from function space to
parameter space.

While the following consideration can be ignored upon first glance, the structure of the parame-
ter space is internally encoded using a LayerCollection object. This gives the flexibility of
defining our parameter space as parameters of a subset of layers, in order to treat different layers in
different ways. An example use case is to use KFAC for linear layers parameters, and block-diagonal
for GroupNorm layers, as KFAC is not defined for the latter.

2.2.2 CONCRETE REPRESENTATIONS

These abstract objects are implemented in memory using concrete representations. NNGeometry
comes with a number of representations. Amongst them, most notably, are parameter space approx-
imations proposed in recent literature (Ollivier, 2015; Martens & Grosse, 2015; Grosse & Martens,
2016; George et al., 2018), and an implicit representation for each abstract linear operator, that al-
lows to compute linear algebra operations without ever computing or storing the matrix in memory.

PMatDense (resp PMatDense) and PMatDiag represent the full dense matrix and the diagonal
matrix and need no further introduction. PMatLowRank only computes and stores J (X,w) the
c× n× d stacked Jacobian for all examples of the given dataset.

Next come representations that do not consider neural networks as black-box functions, but instead
are adapted to the layered structure of the networks: PMatBlockDiag uses dense blocks of the
FIM for parameters of the same layer, and puts zeros elsewhere, ignoring cross-layer covariance.
PMatQuasiDiag (Ollivier, 2015) uses the full diagonal and adds to each bias element the in-
teraction with the corresponding row of the weight matrix. PMatKFAC uses KFAC (Martens &
Grosse, 2015) and its extension to convolution layers KFC (Grosse & Martens, 2016) to approxi-
mate each layer blocks with the kronecker product of 2 much smaller matrices, thus saving memory
and compute compared to PMatBlockDiag. PMatEKFAC uses the EKFAC (George et al., 2018)
extension of KFAC.

The last representation that comes with this first release of NNGeometry, PMatImplicit, allows
to compute certain linear algebra operations using the full dense matrix, but without the need to ever
store it in memory, which permits scaling to large networks (see experiments in section 3). As an
illustration, the vector-matrix-vector product v>Fv can be computed using equation 3.

Each representation comes with its advantages and drawbacks, allowing to trade-off between mem-
ory and approximation accuracy. For a new project, we recommend starting with a small network
using the PMatDense representation, then gradually switching to representations with a lower
memory footprint while experimenting with actual modern networks.

While linear algebra operations associated to each representation internally involve very different
mechanisms, NNGeometry’s core contribution is to give easy access to these operations by using
the same simple methods (figure 1).

2.2.3 GENERATORS

In order to compute FIMs and NTKs, we need to compute Jacobians J (x,w) for examples x coming
from a dataset. NNGeometry’s generator is the component that actually populates the representa-
tions by computing the required elements of the matrices, depending on the representation. While

5

Under review as a conference paper at ICLR 2021

a naive idea would be to loop through examples xi, compute f (xi,w) and compute gradients with
respect to parameters using PyTorch’s automatic differentiation, it is rather inefficient as it does not
make usage of parallelism in GPUs. NNGeometry’s generator instead allows to use minibatches of
examples by intercepting PyTorch’s gradients and using techniques such as those in (Goodfellow,
2015) and (Rochette et al., 2019):

Let us consider f (x,w) : X × Rd → Rc. In order to simplify exposition, we focus on fully con-
nected layers and suppose that f can be written f (x,w) = σl ◦ gl (·,w) ◦ σl−1 ◦ gl−1 (·,w) ◦
. . . ◦ σ1 ◦ g1 (x,w) where σk are activation functions and gk are parametric affine transforma-
tions that compute pre-activations sk of a layer using a weight matrix Wl and a bias vector bk
with the following expression: sk = gk (ak−1,w) = Wkak−1 + bk. For each example xi in
a minibatch, we denote these intermediate quantities by superscripting s(i)k and a(i)k . The back-
propagation algorithm applied to computing gradients of a sum S =

∑
i f (xi,w) works by se-

quentially computing intermediate gradients ∂f(xi,w)

∂s
(i)
k

from top layers to bottom layers. Denote

by Dsk =

(
∂f(xi,w)

∂s
(1)
k

>
, . . . , ∂f(xi,w)

∂s
(m)
k

>
)>

the matrix obtained by stacking these gradients for a

minibatch of size m, and ak =
(
a
(1)
k , . . . , a

(m)
k

)
the corresponding matrix of activations of the

same layer. These are already computed when performing the backpropagation algorithm, then
used to obtain the average gradient w.r.t the weight matrix by means of the matrix/matrix product
∂

∂Wl
{
∑

i f (xi,w)} = Ds>k ak. The observation of Goodfellow (2015) is that we can in addition

obtain individual gradients ∂f(xi,w)

∂s
(1)
k

>
a
(i)
k
>, an operation that can be efficiently done simultaneously

for all examples of the minibatch using the bmm PyTorch function.

While we used this already known trick as an example of how to make profit of minibatching,
NNGeometry’s generator incorporate similar tricks in several other places, including in implicit
operations.

Instead of reimplementing backpropagation as is for example done by Dangel et al. (2019), we chose
to use PyTorch’s internal automatic differentiation mechanism, as it already handles most corner
cases encountered by deep learning practitioners: we do not have to reimplement backward compu-
tations for every new layer, but instead we just have to compute individual gradients by intercepting
gradients with respect to pre-activations Dsk.

Other generators are to be added to NNGeometry in the future, either by using different ways of
computing the Jacobians, or by populating representations using other matrices such as the Hessian
matrix, or the KFRA approximation of the FIM (Botev et al., 2017).

3 EXPERIMENTAL SHOWCASE

Equipped with NNGeometry, we experiment with a large network: We train a 24M parame-
ters Resnet50 network on TinyImagenet. We emphasize that given the size of the network, we
would not have been able to compute operations involving the true F without NNGeometry’s
PMatImplicit representation, since F would require 2.3 petabytes of memory (24M×24M×4
bytes for float32).

3.1 QUALITY OF FIM APPROXIMATIONS

We start by comparing the accuracy of several PMat representations at computing various linear
algebra operations. We use a Monte-Carlo estimate of the FIM, where we use 5 samples from
p (y|x) for each example x. Here, since this TinyImagenet is a classification task, p (y|x) is a
multinoulli distribution with the event probabilities given by the softmax layer. We compare the
approximate value obtained for each representation, to a ”true” value, obtained using the full matrix
with the PMatImplicit representation. For trace and v>Fv, we compare these quantities using
the relative difference

∣∣ approx−true
true

∣∣. For Fv, we report the cos-angle 1
‖Fv‖2‖Fapproxv‖2

〈Fv, Fapproxv〉,
and for the solve operation, we report the cos-angle between v and (Fapprox + λI)

−1
(F + λI)v.

6

Under review as a conference paper at ICLR 2021

0

1

co
s

an
gl

e

at init.

10−7 10−4 10−1

λ

0

1

re
si

du
al

0

1

during training

10−7 10−4 10−1

λ

0

1

0

1

best model

10−7 10−4 10−1

λ

0.5

1.0

PMatDiag
PMatQuasiDiag
PMatKFAC
PMatEKFAC

Figure 3: Residual
‖v−v′‖

2

‖v′‖2
and cos angle between v and v′ = (Fapprox + λI)

−1
(F + λI)v for

a 24M parameters Resnet50 at different points during training on TinyImagenet, using different
approximations Fapprox of F , for v uniformly sampled on the unit sphere (higher is better).

0.3

0.4

0.5

co
s

an
gl

e

at init.

PM
atDiag

PM
atQuasiDiag

PM
atKFAC

PM
atEKFAC

0.90

0.95

re
si

du
al

0.1

0.2

during training

PM
atDiag

PM
atQuasiDiag

PM
atKFAC

PM
atEKFAC

0.98

1.00

0.05

0.10

best model

PM
atDiag

PM
atQuasiDiag

PM
atKFAC

PM
atEKFAC

0.995

1.000

Figure 4: Cos angle between Fv and Fapproxv for a 24M parameters Resnet50 at different points dur-
ing training on TinyImagenet, using different approximations Fapprox of F , for v uniformly sampled
on the unit sphere (higher is better).

Since the latter is highly dependent on the Tikhonov regularization parameter λ, we plot the effect
on the cos-angle of varying the value of λ. The results can be observed in figures 3, 4, 5, 6.

From this experiment, there is no best representation for all linear algebra operations. Instead, this
analysis suggest to use PMatKFAC when possible for operations involving the inverse FIM, and
PMatEKFAC for operations involving the (forward) FIM. Other representations are less accurate,
but should not be discarded as they can offer other advantages, such as lower memory footprint, and
faster operations.

3.2 NEURAL TANGENT KERNEL EIGENVECTORS

In the line of Baratin et al. (2020); Paccolat et al. (2020), we observe the evolution of the NTK
during training. We use the Resnet50 on the 200 classes of TinyImagenet, but in order to be able to
plot a 2d matrix for analysis, we extract the function fc1,c2 (x,w) = (f (x,w))c2 − (f (x,w))c1 ,
namely a binary classifier of class c2 vs class c1. We plot at different points during training i) the
Gram matrix of examples from the 2 classes c1 and c2 (figure 7, top row) and ii) a kernel pca of
points from classes c1 and c2 projected on the 2 first principal components (figure 7, bottom row).
The Gram matrix is computed for valid set examples of classes c1 and c2.

On this larger network, we reproduce the conclusion of Baratin et al. (2020); Paccolat et al. (2020)
that the NTK evolution is not purely random during training, but instead adapts to the task in a very
specific way.

4 CONCLUSION

We introduced NNGeometry, a PyTorch library that allows to compute various linear algebra oper-
ations involving Fisher Information Matrices and Neural Tangent Kernels, using an efficient imple-
mentation that is versatile enough given current usages of these matrices, while being easy enough
to save time for the user.

7

Under review as a conference paper at ICLR 2021

PM
atDiag

PM
atQuasiDiag

PM
atKFAC

PM
atEKFAC

0.1

0.2

0.3

0.4

vT
M

v

at init.

PM
atDiag

PM
atQuasiDiag

PM
atKFAC

PM
atEKFAC

0.10

0.15

0.20

0.25

during training

PM
atDiag

PM
atQuasiDiag

PM
atKFAC

PM
atEKFAC

0.0

0.1

0.2

0.3

0.4

best model

Figure 5: Relative difference between v>Fv and v>Fapproxv for a 24M parameters Resnet50 at
different points during training on TinyImagenet, using different approximations Fapprox of F , for v
uniformly sampled on the unit sphere (higher is better).

PM
atDiag

PM
atQuasiDiag

PM
atKFAC

PM
atEKFAC

0.0

0.1

0.2

0.3

0.4

tr
ac

e

at init.

PM
atDiag

PM
atQuasiDiag

PM
atKFAC

PM
atEKFAC

0.1

0.2

0.3

during training

PM
atDiag

PM
atQuasiDiag

PM
atKFAC

PM
atEKFAC

0.0

0.1

0.2

0.3

best model

Figure 6: Relative difference of trace computed using Fapprox and F (lower is better). As we observe,
all 3 representations PMatDiag, PMatQuasiDiag and PMatEKFAC estimate the trace very ac-
curately, since the only remaining fluctuation comes from Monte-Carlo sampling of the FIM. On the
other hand, the estimation provided by PMatKFAC is less accurate.

at init. during training best model

0.12 0.10 0.08
1st component

0.2

0.0

0.2

2n
d

co
m

po
ne

nt

at init.

0.2 0.1
1st component

0.2

0.1

0.0

0.1

2n
d

co
m

po
ne

nt

during training

0.15 0.10 0.05
1st component

0.1

0.0

0.1

0.2

2n
d

co
m

po
ne

nt

best model

Figure 7: NTK analysis for 50 examples of class c1 and 50 examples of class c2 at various points dur-
ing training. (top row) Gram matrix of the NTK. Each row and column is normalized by 1√

diag (G)

for better visualization. We observe that the NTK encodes some information about the task later in
training, since it highlights intra-class examples. (bottom row) Examples are projected on the 1st 2
principal components of the Gram Matrix at various points during training. While points are merely
mixed at initialization, the NTK adapts to the task and becomes a good candidate for kernel PCA
since examples become linearly separable as training progresses.

We hope that NNGeometry will help make progress across deep learning subfields as FIMs and
NTKs are used in a range of applications.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} symposium on operating systems design and imple-
mentation ({OSDI} 16), pp. 265–283, 2016.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–
276, 1998.

Aristide Baratin, Thomas George, César Laurent, R Devon Hjelm, Guillaume Lajoie, Pascal Vin-
cent, and Simon Lacoste-Julien. Implicit regularization in deep learning: A view from function
space. arXiv preprint arXiv:2008.00938, 2020.

James Bergstra, Frédéric Bastien, Olivier Breuleux, Pascal Lamblin, Razvan Pascanu, Olivier De-
lalleau, Guillaume Desjardins, David Warde-Farley, Ian Goodfellow, Arnaud Bergeron, et al.
Theano: Deep learning on gpus with python. In NIPS 2011, BigLearning Workshop, Granada,
Spain, volume 3, pp. 1–48. Citeseer, 2011.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical gauss-newton optimisation for deep
learning. In International Conference on Machine Learning, pp. 557–565, 2017.

Felix Dangel, Frederik Kunstner, and Philipp Hennig. Backpack: Packing more into backprop. In
International Conference on Learning Representations, 2019.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. arXiv preprint arXiv:1703.04933, 2017.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast ap-
proximate natural gradient descent in a kronecker factored eigenbasis. In Advances in Neural
Information Processing Systems, pp. 9550–9560, 2018.

Ian Goodfellow. Efficient per-example gradient computations. arXiv preprint arXiv:1510.01799,
2015.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In International Conference on Machine Learning, pp. 573–582, 2016.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In Advances in neural information processing systems, pp. 8571–
8580, 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approxi-
mation for natural gradient descent. In Advances in Neural Information Processing Systems, pp.
4156–4167, 2019.

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, geom-
etry, and complexity of neural networks. In Proceedings of Machine Learning Research, vol-
ume 89, pp. 888–896, 2019.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson.
A simple baseline for bayesian uncertainty in deep learning. In Advances in Neural Information
Processing Systems, pp. 13153–13164, 2019.

James Martens. New Insights and Perspectives on the Natural Gradient Method. Journal of Ma-
chine Learning Research, 21(146):1–76, 2020. URL http://jmlr.org/papers/v21/
17-678.html.

9

http://jmlr.org/papers/v21/17-678.html
http://jmlr.org/papers/v21/17-678.html

Under review as a conference paper at ICLR 2021

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417, 2015.

Yann Ollivier. Riemannian metrics for neural networks i: feedforward networks. Information and
Inference: A Journal of the IMA, 4(2):108–153, 2015.

Jonas Paccolat, Leonardo Petrini, Mario Geiger, Kevin Tyloo, and Matthieu Wyart. Geometric
compression of invariant manifolds in neural nets, 2020.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural information processing systems, pp.
8026–8037, 2019.

Gaspar Rochette, Andre Manoel, and Eric W Tramel. Efficient per-example gradient computations
in convolutional neural networks. arXiv preprint arXiv:1912.06015, 2019.

Nicolas L Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. Topmoumoute online natural gra-
dient algorithm. In Advances in neural information processing systems, pp. 849–856, 2008.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural computation, 14(7):1723–1738, 2002.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximations for model
compression. In Advances in Neural Information Processing Systems, 2020.

Valentin Thomas, Fabian Pedregosa, Bart Merriënboer, Pierre-Antoine Manzagol, Yoshua Bengio,
and Nicolas Le Roux. On the interplay between noise and curvature and its effect on optimization
and generalization. In International Conference on Artificial Intelligence and Statistics, pp. 3503–
3513. PMLR, 2020.

Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-region
method for deep reinforcement learning using kronecker-factored approximation. In Advances in
neural information processing systems, pp. 5279–5288, 2017.

A APPENDIX

You may include other additional sections here.

10

	Preliminaries
	Network linearization
	Parameter space metrics and Fisher Information Matrix
	Neural Tangent Kernel

	Design and implementation
	Difficulties
	NNGeometry's design
	Abstract objects
	Concrete representations
	Generators

	Experimental showcase
	Quality of FIM approximations
	Neural Tangent Kernel eigenvectors

	Conclusion
	Appendix

