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ABSTRACT

Growing attention has been paid to Reinforcement Learning (RL) algorithms when
optimizing long-term user engagement in sequential recommendation tasks. One
challenge in large-scale online recommendation systems is the constant and com-
plicated changes in users’ behavior patterns, such as interaction rates and retention
tendencies. When formulated as a Markov Decision Process (MDP), the dynamics
and reward functions of the recommendation system are continuously affected by
these changes. Existing RL algorithms for recommendation systems will suffer
from distribution shift and struggle to adapt in such an MDP. In this paper, we
introduce a novel paradigm called Adaptive Sequential Recommendation (AdaRec)
to address this issue. AdaRec proposes a new distance-based representation loss to
extract latent information from users’ interaction trajectories. Such information
reflects how RL policy fits to current user behavior patterns, and helps the policy to
identify subtle changes in the recommendation system. To make rapid adaptation
to these changes, AdaRec encourages exploration with the idea of optimism under
uncertainty. The exploration is further guarded by zero-order action optimization
to ensure stable recommendation quality in complicated environments. We conduct
extensive empirical analyses in both simulator-based and live sequential recommen-
dation tasks, where AdaRec exhibits superior long-term performance compared to
all baseline algorithms.

1 INTRODUCTION

Recent sequential recommendation algorithms have achieved preliminary success in optimizing long-
term user engagement with the assistance of Reinforcement Learning (RL) (Zou et al., 2019; Xue
et al., 2023a; Cai et al., 2023a). Long-term engagement is considered more desirable than immediate
feedback as it is directly linked to practical metrics such as daily active users (DAU). RL (Sutton &
Barto, 1998) is well suited to optimize long-term engagement because it can efficiently handle delayed
reward signals (Sutton, 1992) and facilitate efficient exploration (Ciosek et al., 2019). However,
large-scale online recommendation platforms in the real world can exhibit constant changes in users’
behavior patterns and their willingness of long-term engagement. For example, stock traders may be
more willing to get back to a news recommendation application when there are exciting financial
news they care about. This phenomenon will lead to evolving dynamics and reward functions of the
Markov Decision Process (MDP) in the sequential recommendation task. Therefore, the complexity
of real-world recommendation systems calls for algorithms that can identify environment changes
and make rapid adaptation.

Unfortunately, the issue of evolving user behavior patterns has largely been overlooked by current
state-of-the-art RL algorithms for recommendation systems (Zhang et al., 2022; Xue et al., 2023a;
Cai et al., 2023b;a). When these algorithms are deployed in real-world tasks, recommendation agents
will suffer from distribution shift between different trajectories, leading to unstable training and poor
practical performance. Although several RL algorithms have been proposed to address the issue
of distribution shift, optimizing long-term user engagement in sequential recommendation poses
unique challenges that current methods struggle to address. For example, algorithms focused on
representation learning (Zhang et al., 2021; Mazoure et al., 2022) aim to learn state representations
that are insensitive to visual disturbances in policy inputs. But in sequential recommendation the
policy inputs are dense features of users and videos, and the disturbances occur in the environment
dynamics. Other algorithms in Meta-RL or zero-shot policy generalization (Rakelly et al., 2019; Luo
et al., 2022) attempt to explicitly identify environment parameters (e.g., robot arm masses or joint
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frictions), as additional policy input. But several factors that influence user behavior in sequential
recommendation are interrelated, making it challenging to explicitly represent each behavior pattern
with the environment parameters.

In this paper, we first perform data-driven analyses on the open-source KuaiRand dataset (Gao et al.,
2022) for unbiased sequential recommendation. Through the analyses, we observe that in different
time periods, user behaviors indeed exhibit different patterns in terms of preferences, frequencies of
immediate feedback, and the distribution of return time. We then propose a novel paradigm called
Adaptive Sequential Recommendation (AdaRec) for training adaptive policies. AdaRec introduces
a context encoder in the policy network that enables RL policies to identify and adapt to different
user behavior patterns. The encoder is trained by a distance-based loss, minimizing the discrepancy
between the l2-distance in the encoder output space and a performance-related distance measure in the
state space. To make rapid adaptation to environment changes, AdaRec also encourages exploration
with the idea of optimism under uncertainty. The exploration is further guarded by zero-order action
optimization to ensure a stable recommendation quality in complicated environments.

To evaluate AdaRec in optimizing long-term user engagement, we conduct experiments in both the
KuaiSim user retention simulator (Zhao et al., 2023) and a real-world short video recommendation
platform, which supports continuous experiments for several weeks involving millions of users and
billions of interactions. By manually altering the simulator feedback in each episode, we manage
to simulate the evolving user behaviors that occur in practical scenarios. Experimental results in
the modified simulator and the online platform demonstrate that AdaRec surpasses state-of-the-art
methods in terms of both training stability and adaptation ability in complex environments with
distribution shift.

2 BACKGROUD

2.1 PRELIMINARIES

The sequential recommendation problem can be represented as a Markov Decision Process (MDP),
defined by the tuple < S,A, T, r, γ >. In this formulation, S represents the state space, A denotes
the action space, T is the transition function, r corresponds to the reward function, and γ is the
discount factor. Figure 1(a) illustrates the connection between the MDP formulation and the actual
recommendation procedure. In this framework, users are treated as environments and the recommen-
dation model operates by taking actions within this environment. At timestep t, the state st is formed
by incorporating various features, including user profile, user interaction history, and candidate item
profiles. A deep scoring model is used to predict a k dimensional score xi = (xi1, xi2, · · · , xik) for
each selected item i, where each dimension evaluates the item in a particular aspect. Details of the
scoring model can be found in the literature (Cai et al., 2023a) and will be treated as a black box
in this paper. The deterministic RL policy π is responsible for generating a k-dimensional action
at = π(st). Subsequently, a pre-defined ranking function f is employed to compute the final ranking
score f(at, xi) for each selected item i. The system then recommends the top-n items to the user. In
this paper, we set k = 7 and the action space is a 7-dimentional continuous space. The immediate
feedback provided by the user is utilized to calculate the immediate reward rimt . The interaction
information is used to update the user profile and browsing history, resulting in a deterministic
transition function T . The episode concludes when the user leaves. When the same user returns,
the time of their return is used to calculate the delayed retention reward rret . The reward function
r(st, at) is a linear combination of the immediate and delayed rewards.

RL aims at maximizing the accumulated return of the policy π: ηT (π)= Eπ,T [
∑∞
t=0 γ

tr(st, at)],
where the expectation is computed with at ∼ π(·|st), and st+1 ∼ T (·|st, at). In an MDP with a
policy π, the state-action value function QπT (s, a) denotes the expected return after taking action a at
state s: QπT (s, a)= Eπ,T

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a]. It is also referred to as the Q-function.
The state value function, or the V-function, is defined as V πT (s) = Ea∼π(·|s)QπT (s, a).

2.2 RELATED WORK

RL for Sequential Recommendation In Reinforcement Learning (RL) (Sutton & Barto, 1998), a
learning agent interacts with the environment (Silver et al., 2017) or exploits offline dataset (Fujimoto
et al., 2019) to optimize the cumulative reward obtained throughout a trajectory. RL is particularly
well-suited for sequential recommendation tasks, where users are considered as environments and
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Figure 1: Left: The MDP for optimizing long-term user engagement with Reinforcement Learning.
Upper Right: The distribution of user return time in three weeks. Lower Right: Normalized
frequencies of immediate user feedback, compared on different dates in one month and different
hours in one day.

immediate user feedback is utilized to compute the reward (Shani et al., 2005; Chen et al., 2018;
Zhang et al., 2022). Traditional approaches propose to learn an additional world model (Bai et al.,
2019) or explicitly construct high-fidelity simulators (Shi et al., 2019) to enhance the sample efficiency
of RL algorithms. Recently, increasing attention has been paid to optimizing long-term user retention
with RL (Zou et al., 2019). RLUR (Cai et al., 2023a) comprehensively deals with issues that comes
along in this field, including delayed reward, uncertainty, and instability of training. Other approaches
focus on reward engineering, employing the constrained actor-critic method (Cai et al., 2023b) or
incorporating human preferences (Xue et al., 2022). Our paper also aims at optimizing long-term
user engagement and focuses on mitigating the challenge of distribution shift that has largely been
ignored in previous methods.

Adaptive Policy Training with RL There are a handful of RL algorithms that train adaptive
policies in evolving environments with distribution shift. Meta-RL algorithms (Rakelly et al., 2019;
Beck et al., 2023) can adapt to new environments by fine-tuning a small amount of data from the
test environment. Zero-shot adaptation algorithms like ESCP (Luo et al., 2022) and SRPO (Xue
et al., 2023b) can fit new environments without additional data. A key component enabling rapid
adaptation of RL policies is the context encoder (Xu et al., 2021), which takes a stack of history
states as input and generates a dense vector that represents different contexts. The encoder can be
trained with variational inference (Zintgraf et al., 2020) or auxiliary losses (Luo et al., 2022). Its
output can be used as additional inputs to the environment model (Lee et al., 2020) or the policy
network (Chen et al., 2021). Other approaches focus on representation learning (Zhang et al., 2021)
or importance sampling (Liu et al., 2022). However, none of these methods specifically consider
the practical requirements of sequential recommendation tasks and may be unreliable or inefficient
when applied directly. In our proposed approach, we introduce a new distance-based loss to train the
context encoder that is directly related to the estimated length of user retention.

We leave relevant researches on recommendation with evolving user interests in Appendix B.

3 EVOLVING USER BEHAVIORS IN SEQUENTIAL RECOMMENDATION TASKS

The main focus of this paper is to address the issue of distribution shift arisen from evolving patterns
of user behaviors in sequential recommendation. To empirically justify the existence of such issue in
practical recommendation systems, we conduct a data-driven study on the KuaiRand dataset (Gao
et al., 2022)1, which is a comprehensive and unbiased sequential recommendation dataset. It collects
the recommendation logs of a popular video-sharing mobile application from 8 April to 8 May 2022,

1In this paper, we choose the KuaiRand-Pure branch.
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involving 27,285 users, 7,551 items, and 188,562 interactions. To avoid the influence of different
interaction histories, we select interactions that happen at the start of each recommendation session,
i.e., the s0 of the trajectory. Regarding the three aspects of user behaviors, the user preferences are
extensively studied in previous methods (Zhao et al., 2020; 2021) and not related to our formulation.
For the purposes of this paper, we are primarily interested in investigating the users’ return-time
distribution and frequencies of immediate interactions, including like, follow, comment, and hate.

In Fig. 1 (right), we visualize the distribution of the user return time in three weeks, as well as the
normalized interaction rates between different dates and hours. We observe that the return probability
and interaction frequency exhibit variability over time in a range from 10% to 50%, depending on
the type of feedback. For example, the average probability of user returning to the application in
the next day can be as low as about 70% in week 1, and as high as about 81% in week 2. Among
immediate signals, the “like” signal exhibits relatively more stability, while the other three signals
deviate significantly from the average. For example, the “follow” signal is about twice more frequent
on day 5 than on day 9. Furthermore, we can hardly identify any clear pattern in the changes of
interaction frequency between dates within a month or hours within a day. Hence, it is hard to
manually extract environmental information with predefined rules and feed it to the policy network.

The aforementioned fluctuations in user return probability and interaction frequency will significantly
influence the Markov Decision Process (MDP) that describes the task of sequential recommendation.
To optimize long-term user engagement, the reward function r(st, at) of the MDP is related to
the users’ return-time distribution. As previously discussed, given the same distribution of states
st and actions at, the users’ return time exhibits fluctuations across different weeks. This implies
that the reward distribution R(r|st, at) on (st, at) is time-variant, i.e., it depends on the timestep t.
Meanwhile, the history of immediate user feedback is incorporated in the state space S of the MDP.
When the same pair of state-action (st, at) is considered, variations in feedback at timestep t result in
a different distribution of subsequent state st+1. This leads to time-varying environment dynamics
T (st+1|st, at), which is also influenced by evolving user behavior patterns. Such time-variant
environment dynamics and reward functions give rise to the issue of distribution shift in training
data collected at different timesteps, which current recommendation algorithms in RL struggle to
handle (Chen et al., 2021; Xue et al., 2023b).

4 ADAREC: ADAPTIVE SEQUENTIAL RECOMMENDATION
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Figure 2: The framework of AdaRec.

Analyses in the previous section have high-
lighted the continuous changes in the MDPs
describing sequential recommendation tasks. In
such MDPs, the RL model faces two major
challenges to produce high-quality recommen-
dations: accurately identifying different user be-
havior patterns and rapidly adapting to sudden
pattern changes. To address the first challenge,
we incorporate context encoders into the policy
and value network. These encoders are trained
using a specific distance-based loss, and is ca-
pable of detecting transitions in user behavior
patterns and notifying the learning policy ac-
cordingly. To achieve rapid policy adaptation,
we encourage exploration during training with
the idea of optimism under uncertainty. Additionally, we introduce an extra action optimization step
to ensure performance stability. Summarizing these contributions, we propose the AdaRec (Adaptive
Sequential Recommendation) algorithm. Its architecture is shown in Fig. 2 and the algorithm proce-
dure is listed in Appendix C. We discuss in detail the mechanism of encoder training and optimistic
exploration in Sec. 4.1 and Sec. 4.2, respectively.

4.1 IDENTIFYING USER BEHAVIOR PATTERNS WITH CONTEXT ENCODERS

To identify changes in dynamic environments and address the challenge of distribution shift, previous
methods employ context encoders to identify latent environment parameters that directly capture
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the evolution of environments (Lee et al., 2020; Luo et al., 2022). For example, in the autonomous
driving scenario with an evolving road friction coefficient (Li et al., 2023), the encoder output should
align with the changes in friction. However, in the context of sequential recommendation, a variety of
latent factors can collaboratively influence how the environment changes. Users will exhibit different
behavior patterns on various dates of the month, days of the week, hours of the day, and in response
to different social media trends, among other factors. Therefore, it is difficult, if not impossible, to
explicitly identify environment parameters that correspond to environment changes.

Instead of expecting context encoders to generate environment parameters, in this paper we propose
to directly relate encoder outputs to the expected performance of the current policy. When the
performance is degraded, the policy can adapt accordingly and adjust output patterns. To achieve this,
we enforce the l2-distance in the encoder output space to be close to a specific distance measure d
that reflects policy performance. The loss function for updating the context encoder ϕ can then be
expressed as

J(ϕ) =
∑
i,j

[
∥ϕ (si)− ϕ (sj)∥2 − d (si, sj)

]2
. (1)

In the Actor-Critic architecture of RL, the state value function V can serve as the critic and can
evaluate the performance of the learning policy. If both two states si, sj have high state values, the
policy will perform well on both of them, so the latent variable ϕ(si) should be close to ϕ(sj). If two
states have different state values, their corresponding latent variables should be far from each other.
Therefore, we choose the following distance measure based on the state value function V :

d (si, sj) =

{
0 if V (si) and V (sj) are close,
∞ otherwise.

(2)

To determine whether V (si) and V (sj) are close, we rank a batch of input states s1, s2, · · · , sB
with size B by their state values and divide them into n categories C1, C2, · · · , Cn, where n is a
hyperparameter. States that are assigned to the same category are considered to have similar values.
We denote j ∈ N(i) if si and sj fall into the same category. Plugging Eq. (2) into the original loss
function Eq. (1), we get2

J(ϕ) =
∑
i

 ∑
j∈N(i)

∥ϕ (si)− ϕ (sj)∥22 −
∑

j /∈N(i)

∥ϕ (si)− ϕ (sj)∥22

 , (3)

where the first term makes encoder outputs of states in the same category closer, and the second term
pushes states in different categories away from each other.

In practice, the state-value function V is updated alongside policy training and the state batch is
randomly sampled from the replay buffer that keeps updating. Therefore, the output ϕ(si) can be
unstable, which is undesirable when using ϕ(si) as part of the policy input. To mitigate this problem,
we incorporate the moving average ϕ̃k = (1− η)ϕ̃k +

η
|Ck|

∑
si∈Ck

ϕ(si), k = 1, 2, · · · , n of each
state categories to both terms in Eq. (3). We transform Eq. (3) to make it related with the average
encoder output ϕ̄k = 1

|Ck|
∑
si∈Ck

ϕ(si). With regard to the first term (denoted as Jsame(ϕ)), we have

Jsame(ϕ) =

n∑
k=0

∑
si,sj∈Ck

∥ϕ (si)− ϕ (sj)∥22 =
2B

n

n∑
k=0

∑
si∈Ck

∥∥ϕ(si)− ϕ̄k
∥∥2
2
. (4)

To maximize J(ϕ) with states from different categories (denoted as Jdiff(ϕ)), we have

Jdiff(ϕ) = −
n∑
k=0

∑
m>k

∑
si∈Ck

∑
sj∈Cm

∥ϕ (si)− ϕ (sj)∥22 ⩽ −B
2

n2

n∑
k=0

∑
m>k

∥∥ϕ̄k − ϕ̄m
∥∥2
2
. (5)

By minimizing the last term in Eq. (5), we are minimizing an upper-bound of the original loss
function. The average encoder output ϕ̄k can be replaced with the moving average ϕ̃k, giving rise to
the final loss function that is used during training:

J(ϕ) =
2B

n

n∑
k=0

∑
i

∥∥∥ϕ(si)− ϕ̃k

∥∥∥2
2
− B2

n2

n∑
k=0

∑
m>k

∥∥∥ϕ̃k − ϕ̃m

∥∥∥2
2
. (6)

2The detailed derivations in this section are listed in Appendix A.
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Figure 3: Left: The demonstration of the gradient-based exploration action selection with optimistic
state-action values. The action can miss the local optimums of the state-action value function; Right:
The state-action value function on two example state-action pairs. The vertical lines show the relative
values of the original and exploration action in one dimension. The exploration action generated with
a fixed step size can lead to a lower value than the original action.

In practice, in addition to the distance-based loss function J(ϕ), the policy optimization loss is
also backpropagated to the context encoder during training to accelerate the training process. As
demonstrated in Fig. 2, the encoder output ϕ(s) is also used as the input to the state-value function V
for a more accurate value estimation.

4.2 ADAPTING TO PATTERN CHANGES WITH OPTIMISTIC EXPLORATION

Previously we discussed how context encoders can identify specific patterns of the user behavior
using latent variables ϕ(s). These latent variables are concatenated with the original state s and fed
into the policy network π, which outputs the action aT = π(s, ϕ(s)). When representing two distinct
behavior patterns, we expect ϕ(s) to exhibit significant differences between them. This increases the
diversity of inputs to the policy network and necessitates a larger amount of training data. To improve
the training efficiency, we explore the concept of optimism in face of uncertainty, which encourages
the agent to engage in exploration.

Instead of evaluating the state-action pair (s, a) pessimistically with the minimum of a pair of Q
networks (Fujimoto et al., 2018; Haarnoja et al., 2018), the optimistic state-action value estimation is
defined as QUB(s, a) = µQ(s, a) + βσQ(s, a), where µQ and σQ represent the mean and standard
deviation of the outputs from the Q networks, respectively, and β is a hyper-parameter. According
to (Ciosek et al., 2019), the exploration action aE can be calculated by extending the original
policy output aT in the direction of gradient ascent of QUB(s, a): aE = aT + δ · ∆

∥∆∥ , where
∆ = [∇aQUB(s, a)]a=aT is the gradient of QUB with respect to the action, and δ is the step size
hyperparameter. However, determining the extent to which the original action should be extended,
i.e., the step size δ, can be challenging, as a small step size may lead to inefficient exploration, while
a large step size can result in inaccurate linear approximation. As illustrated in Fig.3 (left), the
state-action function can exhibit multiple peaks, and an improper step size may cause the exploration
action to miss a local optimum, resulting in poorer exploration.

The challenge of selecting an appropriate step size δ is more pronounced in sequential recommenda-
tion tasks, as the landscape of state-action values in such tasks can exhibit high complexity, which
is illustrated in Fig. 3 (middle and right). This complexity arises from the presence of numerous
peaks and significant oscillations. Consequently, it becomes difficult to identify a fixed step size that
consistently performs well throughout the training process. Another reason is that recommendation
tasks can be risk-sensitive: users may disengage from the application and cease the recommendation
process if they encounter recommended items that fail to capture their interest. To mitigate the afore-
mentioned issues, we use the practice in zero-order optimization. A set of actions ak, k = 1, 2, · · · , n
are located near the original policy output π(s, ϕ(s)), in the direction of the gradient ∇aQUB(s, a).
The exploration action aE is sampled form the action set in a softmax manner:

p(ak|s) ∝ exp(QUB(s, aT + kδ [∇aQUB(s, a)]a=π(s))), (7)

where δ is the hyper-parameter controlling the gap of action particles. It can be set to a small value
and does not need extra tuning. By choosing from several candidate actions, the exploration module
manages to find actions with higher state-action values more efficiently and reduces the risk of
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adopting dangerous actions that have low values. We demonstrate the effectiveness of this exploration
technique in Sec. 5.4.

5 EXPERIMENTS

To evaluate and analyse the practical performance of AdaRec, we conduct extensive experiments in
the task of short video recommendation to investigate the following research questions (RQs): RQ1:
Can the framework of AdaRec lead to performance improvement in long-term user engagement
when applied to environments with distribution shift? RQ2: How does each component of AdaRec
contribute to overall performance? RQ3: Can AdaRec perform well in online A/B tests of large-
scale live recommendation platforms? To answer these questions, AdaRec is first used to generate
recommendation policies in the KuaiSim retention simulator (Zhao et al., 2023) with a manually
designed level of distribution shift. It is then deployed in a dynamic, large-scale, real-world short
video recommendation platform to perform live A/B test. We also conduct ablation studies and
visualizations to investigate the contribution of each component of AdaRec to the overall performance.

5.1 SETUP

Simulator AdaRec adopts a novel paradigm that focuses on optimizing long-term user engagement,
rather than immediate user feedback. However, recommendation simulators that have been widely
used (Shi et al., 2019; Ie et al., 2019; Wang et al., 2021) cannot simulate long-term user behaviors,
such as the probability of returning to the application in a few days. Instead, we select the KuaiSim
retention simulator (Zhao et al., 2023) that aims to simulate long-term user behavior on short video
recommendation platforms. It has been used by various recommendation algorithms (Liu et al.,
2023a;b; Cai et al., 2023a) that also investigate long-term user behaviors. The KuaiSim simulator
contains a leave module, which predicts whether the user will leave the session and terminate the
episode; and a return module, which predicts the probability of the user returning to the platform on
each day as a multinomial distribution. The average user return time is used to calculate the reward r
of an episode. As AdaRec is designed to handle the issue of distribution shift, we manually alter the
probabilities of user leaving and returning by up to 20% in each episode. This allows us to capture
the dynamic nature of user behaviors. More information on the simulator setup is in Appendix D.

Baselines In simulator-based experiments, we compare AdaRec with various baselines, such as 1)
state-of-the-art value-based RL algorithms, including TD3 (Fujimoto et al., 2018) and SAC (Haarnoja
et al., 2018); 2) RL algorithms that facilitate efficient exploration, including OAC (Ciosek et al., 2019)
and RND (Burda et al., 2019); 3) a context encoder-based RL algorithm ESCP (Luo et al., 2022);
4) an RL-based recommendation algorithm for optimizing long-term user engagement RLUR (Cai
et al., 2023a); 5) non-RL recommendation method, including CEM (Deng, 2006) and DIN (Zhou
et al., 2018). We did not compare with few-shot Meta-RL methods (Rakelly et al., 2019) because the
recommendation system changes constantly and unpredictably. It is impossible to obtain trajectories
in each target environment for policy finetuing before deployment. Previous non-RL recommendation
algorithms that take evolving user interests into account (Brown & Agarwal, 2022; Zhao et al.,
2020; 2021) are not included, as they all focus on immediate feedback and cannot naturally fit to
recommendation tasks that optimize the long-term user experience. In live experiments, we only select
TD3, ESCP, and RLUR as baseline algorithms due to the potential negative impact of suboptimal
policies. Details of the baseline algorithms are described in Appendix D.

Evaluation Metrics In simulator-based experiments, we choose three criteria to evaluate the
algorithms: the users’ average return days (the lower the better), the users’ return probability on
the next day (the higher the better), and the cumulative retention reward (the higher the better). All
algorithms for comparison are run for 50,000 training steps with five different random seeds. In live
experiments, a crucial metric we use is the rate of users returning to the platform in 7 days, which is
in accordance with the goal of maximizing long-term user retention. We also focus on the application
dwell time, as well as immediate user responses including video click-through rate (CTR) (click and
watch the video), like (like the video), comment (provide comments on the video), and unlike (unlike
the video). These metrics are standard evaluation criteria for recommendation algorithms and are
empirically shown to be related to long-term user experiences (Wang et al., 2022).
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Figure 4: Performance comparison of different algorithms in the modified KuaiSim simulator. Metrics
with the up arrow (↑) are better with larger values and vice versa.

Table 1: Performance comparison of different algorithms with the RLUR baseline in live experiments.
Metrics with the up arrow (↑) are better with larger values and vice versa.

7d Retention Rate
‰, ↑

Dwell Time
‰, ↑

Click-through Rate
‰, ↑

Like Rate
‰, ↑

Comment Rate
‰, ↑

Unlike Rate
%, ↓

TD3 0.041±0.148 -0.685±0.297 1.412±0.619 1.798±1.127 1.715±1.782 -0.567±0.820
ESCP 0.123±0.073 -0.115±0.277 0.703±0.313 0.302±0.952 -1.975±1.204 -0.116±0.791
AdaRec (Ours) 0.138±0.089 0.263±0.181 3.260±0.332 2.821±0.925 8.392±1.881 -1.874±0.781

5.2 PERFORMANCE COMPARISON IN SIMULATOR

The training curve for AdaRec, as well as baseline algorithms CEM, TD3, SAC, ESCP, and RLUR are
shown in Fig. 4. The table for comparisons with all baseline algorithms is in Appendix D. The CEM
algorithm performs worse than the other RL-based algorithms. This highlights the effectiveness of RL
in optimizing long-term user engagement. The performance of TD3 and SAC exhibits improvements
in the early stage of training, but deteriorates as training proceeds. Without explicit modeling of
the environment distribution shift, the policies they obtain are loosely coupled with specific user
behavior patterns, leading to suboptimal performance. The RLUR algorithm takes into account
the bias of the sequential recommendation task and outperforms TD3 and SAC. But it suffers from
unstable training and takes more steps to converge than AdaRec. The ESCP algorithm incorporates
a context encoder that can capture the distribution shift to some extent. But it explicitly relies on a
single environment parameter, and cannot model environment changes thoroughly. As a result, it
has a stable training curve, but exhibits suboptimal overall performance. Compared with baseline
algorithms, AdaRec shows a stable training curve and the best overall performance. The stability is
due to the context encoder module which enables the algorithm to fit different environment dynamics
and reward functions. The good asymptotic performance can be attributed to the safe and efficient
exploration module that quickly navigates to high-reward regions when the environment changes.

5.3 LIVE EXPERIMENTS

The MDP setup in the live experiments is similar to that described in Sec. 2.1. The algorithms are
incorporated in a candidate-ranking system of a popular short-video recommendation platform. The
live experiment is run continuously for two weeks. It involves an average of 25 million active users
and billions of interactions each day. With such long time period and large scale of involved users,
the recommendation environment can exhibit large deviations, as analysed in Sec. 3. This calls for
the ability to adapt and explore in complex environments of online algorithms. To compare different
algorithms, users are randomly split into several buckets. The first bucket runs the default RLUR
algorithm, and the remaining buckets run models AdaRec, TD3, and ESCP.

The comparative results are shown in Tab. 1. The statistics are permillage or percentage improvements
compared with RLUR. AdaRec exhibits superior performance in all evaluation metrics than baseline
algorithms, including TD3, ESCP, and RLUR. Specifically, AdaRec is the only algorithm that
achieves performance improvement in the application dwell time. AdaRec also improves the rate of
user comments by 8.392‰, which is almost 5 times larger than the improvements of TD3. These
empirical results demonstrate AdaRec’s effectiveness and scalability when applied to real-world
recommendation platforms.
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Table 2: Results of ablation studies in the modified KuaiSim simulator.
Average Return Days (↓) Return Probability @ Day 1 (↑) Retention Reward (↑)

AdaRec (no exploration) 1.868±0.061 0.708±0.015 -0.018±0.000
AdaRec (no encoder) 1.803±0.109 0.732±0.034 -0.018±0.001
AdaRec (no distance-based loss) 1.672±0.208 0.776±0.068 -0.017±0.002
AdaRec 1.541±0.056 0.819±0.017 -0.015±0.001
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Figure 5: Left: Visualizations of the outputs of the context encoder in Sec. 4.1. States with different
values are assigned with different colors. Middle and Right: The state-action value function on
two example state-action pairs. The vertical lines show the relative values of the original action, the
exploration action with a fixed step size, and the AdaRec exploration action.

5.4 ABLATIONS AND ANALYSES

We conduct ablation studies in the modified KuaiSim simulator to analyze the role of each module
in AdaRec, namely the context encoder, the auxiliary loss to train the context encoder, and the
selection of exploratory actions. As shown in Tab. 2, removing any of these components will lead to
a drop in the overall algorithm’s performance. Among them, the exploration module has the most
significant impact. Without the safe and efficient exploration, the policy’s performance is even lower
than TD3 and RLUR as discussed in the previous section. This is because TD3 and RLUR have
their respective exploration techniques. The comparison emphasizes the necessity of exploration in
sequential recommendation tasks. We also analyse the computation cost of AdaRec’s exploration
module in Appendix D. The performance of AdaRec will also decrease without the context encoder or
training the context encoder only with the policy loss (without the auxiliary loss related to l2-distance
in the latent space). This demonstrates the effectiveness of the context encoder and the loss function
proposed in Sec. 4.1.
We visually demonstrate two of the key components of the AdaRec algorithm in Fig. 5. The left
figure illustrates the outputs of the context encoders with a batch of states as input. The outputs
are projected into two dimensions with PCA for visualization and colored according to the state
values. As shown in the figure, states with similar values exhibit closely gathered encoder outputs
, while those in different value categories tend to have distinct encoder outputs. In this way, the
context encoder can help the learning policy identify whether it will perform well in the current
environment. The middle and right figures show the landscapes of state-action values when the action
is altered in one dimension. Our exploration policy can find a better action (vertical green line) than
the exploration action generated with a fixed step size (vertical red line).

6 CONCLUSION

In this work, we address the challenge of distribution shift in optimizing long-term user engagement
with sequential recommendation. Through data-driven analyses, we identify evolving patterns in
user behavior, such as feedback frequencies and the return time distribution, as the main causes of
distribution shift. To tackle this challenge, we propose the AdaRec algorithm for training adaptive
recommendation policies. AdaRec utilizes a context encoder in the policy network that enables
RL policies to identify different user behavior patterns. To facilitate fast policy adaptation, we
combine the idea of optimism under uncertainty with zero-order optimization to boost exploration.
Experimental results demonstrate that AdaRec outperforms state-of-the-art methods in optimising
long-term user engagement and ensures stable recommendation quality in face of environment
distribution shift.
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Ethics Statement While our approach involves real user logs, the user data we used have been
stripped of all sensitive privacy information. Each user is denoted by an anonymous user-id, and
sensitive features are encrypted.
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A DETAILED DERIVATIONS

The loss Jsame(ϕ)) can be derived as follows:
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The loss Jdiff(ϕ) can be derived as follows:
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B ADDITIONAL RELATED WORK

B.1 RECOMMENDATION WITH EVOLVING USER INTERESTS

Previous point-wise or list-wise recommendation models have incorporated the concept of evolving
user behavior, primarily focusing on changes in the distribution of user interests (Steck, 2018; Kaya
& Bridge, 2019). However, our paper considers other user behaviors related to the long-term user
experience, such as the rate of immediate response and the distribution of user return time. To model
the evolving user interests, Zhou et al. (2018; 2019) learn the representation of user interests from
historical behaviors and performs click-through rate prediction. Brown & Agarwal (2022) proposes to
ensure that sufficiently diversified content is recommended to the user in face of adaptive preferences.
But the algorithm is analysed in the bandit setting without empirical justifications. Zhao et al. (2021)
predicts users’ shift in tastes during training and incorporates these predictions into a post-ranking
network. Another approach involves predicting the distributions of the top-k target customers and
training the recommendation model accordingly (Zhao et al., 2020). It is also worth noting that some
studies have indicated that these forms of distribution adjustment may negatively impact the overall
recommendation accuracy (Kleinberg et al., 2017; Zhao et al., 2020). Instead of predicting user
behaviors and train recommendation models beforehand, our paper focus on the identification of new
distributions and the ability to rapidly adapt to them.

13



Under review as a conference paper at ICLR 2024

Table 3: The hyperparameters for the AdaRec algorithm.
Hyperparameter Value

Training
Optimizer Adam

Learning rate 3 · 10−4

Batch size B 256

Deepnet
Number of transformer layers 2

Dimension of feedforward networks 64
Number of attention heads 4

RL

Discount factor γ 0.9
Replay buffer size 5× 104

Target smoothing coefficient 0.005
Target update interval 1

AdaRec

Number of clusters n 4
β in exploration 30
δ in exploration 1

Number of candidate actions 6

C ALGORITHM

The detailed algorithm procedure of AdaRec is shown in Alg. 1. The main differences between
AdaRec and TD3 are: 1. The policy takes an additional latent variable zt as input (line 3). The
latent variable is the output of the context encoder ϕφ, which is trained with the loss specified in
Eq. (6) (line 9). 2. The exploration action aE is generated with Eq. (7) (line 6) rather than by adding
Gaussian noise to the original action aT .

Algorithm 1 The workflow of AdaRec
1: Input: The context encoder ϕφ, the deterministic policy πθ, the state-action value function Qψ ,

the replay buffer D, training steps N , and the training horizon H .
2: Initialize the networks and the replay buffer.
3: for 1, 2, 3, . . . , N do
4: for t = 1, 2, . . . , H do
5: Obtain zt from ϕφ (st) and then sample aT from πθ (st, zt).
6: Get the exploration action aE with Eq. (7) and set at = aE .
7: Interact with the simulator, get transition data (st+1, rt, dt+1, st, at, zt), and add it to D.
8: end for
9: Update the context encoder ϕφ according to Eq. (6).

10: Use the replay buffer D and the TD3 (Fujimoto et al., 2018) algorithm to update the policy
and value network parameters θ and ψ.

11: end for

D ADDITIONAL EXPERIMENT DETAILS

D.1 SETUP

The network architecture of the retention simulator is simular to the policy network. We assume the
immediate user response follows a Bernoulli distribution and the user return time in days follows a
geometric distribution. The simulator is trained in a style of supervised learning and is updated by
likelihood maximization on the training data. The hyperparameters for the AdaRec algorithm during
training are specified in Tab. 3.

D.2 DETAILS OF BASELINE ALGORITHMS

We consider the following algorithms as baseline methods:
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• TD3 (Fujimoto et al., 2018): A value-based off-policy RL algorithm that incorporates a pair
of Q-networks to mitigate overestimation.

• SAC (Haarnoja et al., 2018): A value-based off-policy RL algorithm with a stochastic policy
and the maximum-entropy RL objective.

• OAC (Ciosek et al., 2019): An RL-based exploration algorithm that incorporates the idea
of optimism-under-uncertainty, and obtains a separate optimistic action during the training
phase.

• RND (Burda et al., 2019): An RL-based exploration algorithm that encodes the state input
to fit the output of a random network. States with larger encoding error will be assigned
with higher intrinstic reward.

• ESCP (Luo et al., 2022): A typical environment sensitive contextual Meta-RL approach that
explicitly identifies environment parameters as additional policy inputs.

• RLUR (Cai et al., 2023a): An RL-based recommendation algorithm especially designed for
optimizing long-term user engagement.

• CEM (Deng, 2006): The Cross Entropy Method, which is commonly used as a surrogate for
RL algorithms in recommendation tasks.

• DIN (Zhou et al., 2019): The Deep Interest Network that learns the representation of user
interests from historical behaviors and performs click-through rate prediction.

D.3 TABLE FOR FINAL PERFORMANCE COMPARISONS

We show the final performance comparisons of AdaRec and all baseline algorithms in Tab. 4. The
exploration algorithms OAC and RND show inferior performance due to the unprotected action
selection mechanism. One improper choice of recommendation item risks boring the user and
terminating the whole episode. DIN also performs worse than AdaRec, in that supervised-learning
algorithms can only learn from the immediate response, which is the click-through rate in DIN’s
formulation. Instead, AdaRec is a RL algorithm that has the ability to capture the long-term effect of
the recommended items and is more suitable for optimizing long-term user engagement.

Table 4: The final performance comparisons of AdaRec and all the baseline algorithms. The scores
are computed at the final timestep (50K) of training.

Average Return Days (↓) Return Probability at Day 1 (↑) Reward (↑)

CEM 1.841±0.214 0.720±0.067 -0.017±0.001
DIN 1.725±0.029 0.755±0.005 -0.017±0.001
TD3 2.023±0.012 0.659±0.002 -0.020±0.000
SAC 2.023±0.012 0.659±0.002 -0.020±0.000
OAC 1.778±0.122 0.738±0.040 -0.017±0.001
RND 1.704±0.131 0.765±0.045 -0.016±0.001
ESCP 1.719±0.098 0.759±0.032 -0.017±0.000
RLUR 1.910±0.066 0.693±0.019 -0.019±0.000
AdaRec (Ours) 1.541±0.056 0.819±0.017 -0.015± 0.000

D.4 COMPUTATION COST OF THE EXPLORATION MODULE

AdaRec requires addtional steps in action selection, computing the gradient of the Q-function and
sampling among candidate actions. But apart from action selection, RL training involves interacting
with the environment and updating the policy with gradient decent. These two parts will take up
more time than action selection. We conduct empirical studies and exhibit in Tab. 5 the average
time cost of action selection in one training step. The total time cost of one training step is also
shown for comparison. According to the results, although the exploration module lead to an addtional
129% of computation cost, it only costs less than 10% more total time. Also, during deployment the
exploration module is not included, so it adds no more computation cost.
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Table 5: Average time cost of action selection in one training step.
Action Selection (s) Total Time (s)

AdaRec 0.259 1.738
AdaRec (no exploration) 0.113 1.595
Exploration Time Cost 129 % 8.966 %

Figure 6: The critic training loss of selected value-based algorithms.

D.5 CURVE FOR CRITIC LOSS

We also exhibit the curve of the value function training loss in Fig. 6. Thanks to the additional
encoder output ϕ(s) as input of the value function, AdaRec has the lowest and most stable critic loss
among selected value-based algorithms. TD3 has a higher but stable critic loss mainly because of its
insufficient exploration. Although SAC and RLUR have their respective exploration modules, they
cannot adapt to environment changes and have an unstable critic loss curve.
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