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ABSTRACT

Tagging has been recognized as a successful practice to boost rel-
evance matching for information retrieval (IR), especially when
items lack rich textual descriptions. A lot of research has been done
for either multi-label text categorization or image annotation. How-
ever, there is a lack of published work that targets at item tagging
specifically for IR. Directly applying a traditional multi-label classi-
fication model for item tagging is sub-optimal, due to the ignorance
of unique characteristics in IR. In this work, we propose to formu-
late item tagging as a link prediction problem between item nodes
and tag nodes. To enrich the representation of items, we leverage
the query logs available in IR tasks, and construct a query-item-
tag tripartite graph. This formulation results in a TagGNN model
that utilizes heterogeneous graph neural networks with multiple
types of nodes and edges. Different from previous research, we
also optimize both full tag prediction and partial tag completion
cases in a unified framework via a primary-dual loss mechanism.
Experimental results on both open and industrial datasets show that
our TagGNN approach outperforms the state-of-the-art multi-label
classification approaches.
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1 INTRODUCTION

Information retrieval (IR) is a well-established research area that
deals with our daily information needs, such as Web search, App
search, e-commence product search, image retrieval, music find-
ing, and so on. Although text-based Web search has been widely
studied in the literature, IR in vertical domains faces some unique
challenges. Different from Web search that mostly deals with full-
text documents, textual descriptions of items in some other domains
are not sufficiently rich or concise to convey their semantic infor-
mation. For illustration, we take app search as an example. Figure 1
presents an example app (i.e., Pokemon Go) from Google Play. It
consists of multiple types of information including app name, cat-
egory, developer, screenshot images, and a short description. The
description, however, comprises a promotion news only. Such short
and noisy item descriptions increases the difficulty for retrieving
relevant items.
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In such scenarios, tagging plays a critical role in helping describe
and enrich the semantics of items. Tags are often characterized as
keywords to describe the key information of items such as category,
functionality, style, related entities, target audience, etc. Tagging
has been recognized as a successful practice to boost the retrieval
performance, especially for those items that lack concise textual
descriptions [20]. For instance, the app item in Figure 1 has a set
of tags including "game", "AR" (Augmented Reality), "pikachu”, etc.
These tags make it easier to retrieval the app when a user searches
the query "pikachu game" or "AR game", but this cannot be done
from the textual description only. The collection of tags can not only
boost relevance matching, but also be used for query reformulation
and item recommendation [14]. In addition, displaying tags and
clickable hyperlinks along with their associated items can help
users navigate and explore item collections of interest.

For many industrial IR applications, item tagging serves as a
key building block for better item organization and retrieval. For
user generated content, tags are provided by users themselves for
their posts (e.g., tweets hashtags in Twitter, question tags in Stack-
Overflow). In contrast, for platform generated content (i.e., items),
such as apps, ads and news, tags and their integration to search
may be not visible to users. Item tagging becomes a regular task of
operation teams [1]. However, manual tagging is a time-consuming
process and might result in unmanageable efforts when the item
corpus is too large. To replace or supplement the manual tagging
process, a large body of research has been done toward automatic
item tagging. Typical examples include app tagging [3], news tag-
ging [21, 23], blog posts tagging [17, 27], questions tagging [22, 28],
image annotation [4, 35].

Potential methods for item tagging can be broadly categorized
into two types: keyphrase extraction [8] and multi-label classifica-
tion [32]. Keyphrase extraction methods (e.g., TF-IDF [19], Tex-
tRank [18], PositionRank [5]) have been widely used for textual
documents or websites to identify keywords from original con-
tent that best describe the subject of a document. These methods
mostly follow a two phase procedure (i.e., candidate extraction —
ranking). They work well for long documents but are inappropri-
ate for items without detailed textual descriptions, because tags
might not appear in the item description. As such, item tagging is
often formulated as a multi-label classification problem [32], that
is, assigning relevant tags to items from a collection of predefined
ones. Multi-label classification models have been widely studied in
the literature, and many of them are successfully applied to text
categorization [2, 15, 25]. However, directly applying a traditional
multi-label classification model for item tagging is sub-optimal,
especially in information retrieval tasks.

In this work, inspired by the recent success of graph neural
networks (GNN) [29], we propose to cast item tagging as a link
prediction problem between item nodes and tag nodes, and present
a GNN-based model for item tagging (namely TagGNN). In con-
trast to previous research, our work aims to address the following
limitations.

e Most traditional multi-label classification models cannot
fully exploit the correlations among tags (i.e., labels). Instead,
our formulation enables tag embedding via node representa-
tion, which better captures the correlations among similar

tags. It also enriches the representation of item and tag nodes,
since semantically similar information can be aggregated
from neighbour nodes via message passing. Intuitively, items
and tags are matched not only by themselves, but also by
neighbour items and neighbour tags.

e Item descriptions are usually short and noisy, making it dif-
ficult to extract semantic information from textual descrip-
tions for classification. To alleviate this issue, we propose
to not only utilize the textual descriptions, but also lever-
age the query logs available to enrich the representation
of items. We construct a query-item-tag tripartite graph,
where query-item edges indicate the interactions (e.g., clicks
or downloads) in the query log and item-tag edges repre-
sent the annotation relationships. This tripartite graph is
unique for IR and leads to heterogeneous GNN modeling
with multiple types of nodes and edges. Our TagGNN model
naturally fuses item-tag (w.r.t. TagGNN-IT) and query-item
(w.r.t. TagGNN-QI) graphs.

o In practice, some new items have no existing tags and need
to make full tag prediction. Some old items have partial
incomplete tags (e.g., manually labelled), which only need
tag completion and refinement. Both cases are desired in IR
tasks. While existing work focuses on either one [15] or the
other [34], we optimize both cases in a unified framework.
To achieve this, we join a primary loss and a dual loss during
training to avoid training-testing exposure bias.

We also emphasize that, while some work that leverages GNNs
for text categorization exists [9, 10, 30], we are not aware of any
published work about GNN-based item tagging that is formulated
as a link prediction problem. To evaluate the effectiveness of our
TagGNN approach, we conduct comprehensive experiments on two
large datasets, including an open dataset of ad tagging for sponsored
product search (KDDCup-2012) and a private industrial app tagging
dataset for app search (Huawei-Dataset). The experimental results
show that our TagGNN approach achieves consistent improvements
in precision over 9 baseline models in both "without tags" and
"partial tags" settings. Ablation studies and parameter analyses
have also been conducted to validate our model design choices.

In summary, our work makes the following main contributions:

e Our work formulates item tagging as a link prediction prob-
lem over the query-item-tag graph and present a unique
tripartite-graph neural network based approach.

e We target at both full tag prediction and partial tag com-
pletion, and present a primary-dual losses to optimize both
cases in a unified learning framework.

e Our experimental results show significant improvements
over both text-based and graph-based competing methods.

The remainder of this paper is organized as follows. Section 2
describes our TagGNN approach. Section 3 reports on the experi-
mental results. We review the related work in Section 4 and finally
conclude the paper in Section 5.

2 TAGGNN APPROACH

In this section, we first introduce the motivation of our model
design and present an overview of TagGNN. Then, we describe the



details of our model, including three parts: TagGNN-IT, TagGNN-
QL and their integration TagGNN. Finally, we show the training
and inference strategies for tag prediction.

2.1 Motivation and Overview

2.1.1 Motivation. Nowadays, there is a trend to apply GNNs to
enhancing text categorization tasks [9, 10, 30]. Inspired by these
studies, we explore the use of GNNs for item tagging in IR. Different
from textual categorization, our work aims to address the following
unique challenges.

Firstly, item tagging problems usually have a large tag space
(more than thousands). It is desired to capture the rich semantic
relationships among tags. Taking Figure 1 as an example, Pokemon
has two strongly correlated tags, i.e., AR (Augmented Reality) and
VR (Virtual Reality). Such tag correlations are indicative of the
strong co-existence or non-existence for related tags. Existing GNN
methods mostly model text categorization as a node classification
problem, since the number of categories is usually small (~tens).
This, however, ignores the dependency of category labels.

Secondly, query information is readily available in IR tasks. While
items lack concise textual descriptions, it is desired to join external
information from query logs. For example, when a user search
"chat" and download the app "Facebook", it potentially implies
that the app is functionally related to "chat". Thus, tags like "chat"
and "social" may be good candidates. The frequency of query-item
interactions reveal the strength of such semantic correlations. How
to effectively utilize the large amount of query information is an
essential problem to build an accurate tagging system.

Thirdly, while existing item nodes mostly have edge connections
in the graph, there are many new items everyday in the platform.
These items have no links to either tag nodes or query nodes. This
imposes a unique challenge for GNNs to deal with both full tag
prediction and partial tag completion cases.

2.1.2  Overview. To address the above three challenges, we present
TagGNN, a GNN-based item tagging approach. Figure 2 provides
an overview of TagGNN. Suppose that we have got the related
queries of the items from the IR system, and we also know the
items’ corresponding tags. Then we build an undirected tripartite
graph to link query, item and tag together. The graph has three types
of nodes, i.e., query, item and tag. Note that the item node can be
unilateral or complete isolated if we do not know any related queries
or existing tags (or both) of the item. Then, we employ TagGNN
tailored for item tagging to propagate all of the information in
the graph to get better item and tag representation. Finally, we
compute the similarity between the item and all tags and choose
K tags with the highest similarities as the our topK prediction. In
the following, we introduce TagGNN-IT, TagGNN-QI and TagGNN
detail by detail.

2.2 TagGNN-IT

To fully exploit the interactions between items and tags, as well as
correlations among tags, we treat the item tagging problem from
the view of graph, modeling the multi-label classification as the
link prediction problem in the graph. Specifically, we first build
an undirected bipartite graph which has two types of nodes, i.e.,
item nodes and tag nodes. There will be an edge between the item

node and the tag node if the item has the tag. Then TagGNN-IT
learns new and powerful node representations in the graph for item

tagging.

2.2.1  Node Representation. We choose the item titles and the tag
names as the initial features of item nodes and tag nodes respec-
tively. Without loss of generality, suppose that the node contains a
string of words (content, title, name, description or others) (w1, wa, ..
we can use any models that can deal with the sequence, such as
RNN and CNN, to get the initial representation h of the node. In
particular, since the tag sets are fixed, we add an extra id embed-
ding, which is a one-hot vector, for each tag node. For simplicity,
here we just average all of word embeddings as the initial node
representation:

.

where id is the one-hot id embedding for the tag node.

Note that traditional multi-label text classification approaches
only use the id (one-hot) embeddings of tags, which does not explic-
itly consider the correlations between tags. We set the tags as nodes
in the graph and fuse the semantic information of tags into the
initial representations, not only better modeling the correlations
between tags, but also improving the generalization ability of the
model.

Lyn  wi, if nodeis the item node
Lyn  wi+id, if nodeisthe tagnode

1)

2.2.2  TagGNN-IT Propagation. In the item-tag bipartite graph, the
item node updates its representation by aggregating its neighbour
tag nodes. Inspired by GAT [24], we let the tag node first compute
the similarity between every neighbour tag node with their seman-
tic (node) representations in a common embedding space. Formally,
for the item node v and its neighbour tag node w, the similarity
computation equation is:

exp (LeakyReLU (aT [th,nw;zw]))
Yken, exp (LeakyReLU (al [Who|[Why]))’

Qo = @)
where W € RP is a transformation matrix to transform both the
item node and tag node into a common embedding space, a is a
global context vector to determine the similarity between the two
nodes.

Then, based on their semantic similarity, the item node aggre-
gates messages from all of neighbour tag nodes:

hm = o( Z apwWhyy), ®3)
weN,
where hy, is the incoming aggregated message from neighbour tag
nodes, o is the activation function (e.g., ReLU).

With the help of this attention mechanism, the item node can
put more reasonable weights to its tag neighbours so that it can
distinguish which tags are important, while which tags may be not
informative and should be ignored. In this way, the item can more
benefit from the representative tags and less affected by noisy tags.

Finally, we fuse the message and the original item representation
into a new item embedding space to get the new item representation.
One such propagation is named one layer, and we stack N such
layers to capture higher-order neighbors’ information. However,
GNN often faces the over-smoothing problem as the number of
layers gets deeper. To mitigate this and obtain more comprehensive

- Wn),
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Figure 2: Overview of TagGNN

representations, we adopt a gated skip-connection mechanism. The
update equations are:

flv = 0(Witem(ho + hm)), 4)
z = sigmoid(Uy hy + Uzhy + b), (5)
R = 20 hy+(1-2) O hy (6)

where Wjtem is the transformation matrix to the new item em-
bedding space, Uj, Uy, b are trainable parameters. z controls the
proportion of the original representation and the new representa-
tion to get the final new representation.

The tag nodes follow the similar propagation operations except
that they have their own transformation matrix W;4g when fusing
the aggregated message from item nodes (equation 4).

2.2.3 Loss. We deem the item tagging problem as a link prediction
problem in the graph, i.e., to predict which tag nodes should be
linked to the target item node, which can leverage enriched tag rep-
resentations to improve the performance.Specifically, we compute
dot-product similarity between the item representation h; and tag
representation h;, and compute its binary cross-entropy loss £ p
with the ground truth (0 or 1 represents link or not link):

Lrp(hi, ht,y) = BCE(y, hi - hy 7)

where BCE is binary cross-entropy loss, y is the ground truth for
the edge between the item node and the tag node.

2.3 TagGNN-QI

To effectively leverage the query information which has not been
exploited in previous literature, we design another model named
TagGNN-QI also from the graph view. Specifically, we build a query-
item bipartite graph from the interactions of query logs and items.
There will be an (weighted) edge between the query node and the
item node if they are interacted. The query-item edge can represent
different meanings depending on different real scenarios. For exam-
ple, in the App Store scenario (app tagging), the query-item edge
may represent the click or download behavior for the app under
the query, and the edge weight can be the click times or downloads.

2.3.1 Edge Representation. In TagGNN-QI, both node features and
edge features are used. Similar to TagGNN-IT, we use the query
contents and item titles as the initial features of the query and
item nodes, and also average all the word embeddings as the initial
node representations. Here we focus on edge features. As the edge
may contain useful information, we also encode the initial edge
representation for TagGNN-QI. Specifically, if the edge originally
has a feature vector, we just keep it. If the edge weight is a scalar,
we can use the weight to enhance the message passing through this
edge by simply multiply the message with the weight scalar. Besides,
if the weight range is very large, we can use some feature scaling
strategies like min-max normalization or standardization to rescale.
We can also perform feature discretization, e.g., binning [33] , to
get the initial edge representation. If the edge not has weight, we
just set all edge weights to 1.

2.3.2  TagGNN-QI Propagation. We change the similarity computa-

tion so as to utilize the information contained in the edge. Formally,
if the edge representation ey, is a vector, the similarity is:

exp (LeakyReLU (aT [Whv||WhW||e,,W]))

®)

Xyw =

ZkeNv exp (LeakyReLU (aT [th,||th||ez,k])) ’

While if the edge representation ey,, is a scalar, the similarity is:

exp (LeakyReLU (aT [Whu||th]))
2keN, eXp (LeakyReLU (al [Why|[Wh]))

Ayw = €y X

The notations and other operations are consistent with TagGNN-IT
described in 2.2.2.

2.3.3 Loss. Since TagGNN-QI does not have tag nodes, we model
it as a regular node classification form. We use a multi-layer percep-
tron (MLP) to transform the item representation h; to a N dimen-
sional vector d (where N is the number of tags) and we compute



the mean binary cross-entropy loss £ ¢ with the ground truth:

d = Wpnchi+q, (10)
1 N
Lne(hiy) = 4 ;Bcwt, ) (1)

where Wy, and g are trainable parameters of MLP, y; is the ground
truth between the item and the ¢-th tag, d; is the t-th dimension of
d.

2.4 TagGNN

To solve all the three limitations simultaneously, we integrate
TagGNN-IT and TagGNN-QI to a unified model named TagGNN,
which inherits both their advantages. Specifically, we merge the
former two bipartite graphs to one tripartite graph which has three
types of nodes, i.e., query nodes, item nodes and tag nodes. The
edges are the same as in the original graphs, and the initial represen-
tations of nodes and edges are also the same as before. We perform
message passing in this unified tripartite graph following the same
propagation strategies described in TagGNN-IT and TagGNN-QI.
Therefore, the item node will simultaneously get the messages from
both query nodes and tag nodes to update its representation. Tag-
GNN also deal with the item tagging as a link prediction problem,
So, its loss form is same as TagGNN-IT described in 2.2.3 (i.e., Lrp).

2.5 Training and Inference

In this part, we introduce how the three models are trained and
used for item tagging.

2.5.1 Training. In the graph, there may exist isolated test item
nodes which we are unaware of any query or tag information about
them, and we stipulate that their representations will not be updated
by the GNN propagation. As the majority of training item nodes are
not isolated, there will be a training-testing exposure bias, seriously
reducing the the prediction precision of isolated test item nodes.

To empower the model with the ability to handle this “cold start”
problem, we add a dual loss in addition to the primary loss during
training. Specifically, the primary loss £; is computed with the
new learned item representation and the new learned tag repre-
sentation. While the dual loss £ is computed with the initial item
representation and the new learned tag representation. Finally we
optimize the model by reducing these two losses together with
stochastic gradient descent algorithms. Formally, for TagGNN-IT
and TagGNN:

Ly = Lip(hifn. higg" y). (12)
Ly = Lip(hitem. higg" ), (13)
for TagGNN-QI:
L1 = Lnc(hiom: ), (14)
L2 = Lnc(hitem, y), (15)
The final optimization objective is:
L=Li+yLs (16)

where y is the hyper-parameter to adjust the proportion of £; and
Lo.

2.5.2  Inference. When inference, since the model has been opti-
mized to be able to deal with isolated item nodes, we do not dis-
tinguish whether the item node is isolated or not. For TagGNN-IT
and TagGNN, we compute similarities between the item repre-
sentation (after propagation) and all of tags representations (after
propagation), and choose K tags with the highest similarities as
the result. For TagGNN-QI, we transform the item representation
(after propagation) to a N dimensional vector and choose the K
tags corresponding to the K largest dimensions of the vector as the
result.

3 EXPERIMENT

In this section, we conduct experiments on two datasets about
advertisement tagging and application tagging, aiming to answer
the following questions:

e Q1: How does TagGNN perform compared with the state-
of-the-art item tagging related approaches on our tasks?

e Q2: Does the dual loss L really improve the performance
of TagGNN? What is the impact of tag name embeddings?
Does heterogeneity of TagGNN take effect?

¢ Q3: How do different designs (e.g., the number of TagGNN
layers, the types of GNN) influence the performance of Tag-
GNN?

3.1 Dataset

We perform experiments on the following two real-world datasets.

KDDCup-2012: This public dataset is originally provided by
KDD Cup 2012 track2 competition for CTR prediction. Its train-
ing instances derived from session logs of the Tencent proprietary
search engine, soso.com. From the dataset, we can get the adver-
tisements (items), queries that trigger the advertisements, and the
keywords (tags) of the advertisements. We preprocess this dataset
for advertisement tagging. Specifically, we process the dataset to
satisfy the following three limitations:

e In Query-Ad graph, every advertisement node link at least
20 query nodes, and every query node link at least 20 adver-
tisement nodes.

o In Ad-Keyword graph, every advertisement node link at least
5 keyword nodes, and every keyword nodes link at least 15
advertisement nodes.

e Fach word in the vocabulary should appears at least 5 times.

Huawei-Dataset: It is a industrial dataset derived from a busi-
ness company’s App Store. To make it non-representative of the
online app search traffic, we randomly sample a subset from origi-
nal data, but cover both apps without tags and apps with partial
tags, and use one week query logs. A query is related to the app
when the user clicks or downloads the app searching with this
query. The query-app edges have weights, which represents the
downloads of the app under the query. We use this dataset for app
tagging.

The statistics of the two datasets are presented in Tablel.

3.2 Experimental Setup

We consider two types of tagging tasks. The first is full tag pre-
diction, which means that we do not know any existing tags of



Table 1: Dataset Statistics. "Avg. Queries" and "Avg. Tags" rep-
resent the average number of queries and tags associated to
an item, respectively.

Dataset #Query #Item #Tag #Vocab Avg. Queries Avg. Tags
KDDCup-2012 92380 18861 9140 6620 89.4 13.8
Huawei-Dataset 47305 34166 2636 18601 5.8 3.6

the item and we should predict all of its tags. The second is tag
completion, which means that we have known some tags of the
item and we want to predict its remaining tags. For the second task,
in our experiment, we randomly choose two tags of each item to
predict and set its remaining tags as known tags.

For KDDCup-2012 dataset, we randomly choose 14861, 2000,
2000 advertisements for training, validation and test respectively.
In the validation and test parts, 1000 advertisements are used for
full tag prediction and another 1000 advertisements are used for tag
completion. For Huawei-Dataset, we randomly choose 28166, 3000,
3000 apps for training, validation and test respectively. Similarly,
in the validation and test set, 1500 apps are for full tag prediction
and another 1500 apps are for tag completion.

The embedding size of the node and the word are both set to 200.
The number of TagGNN layer is set to 2. TagGNN is trained with
Adam optimizer, with 0.003 learning rate. Besides, we use standard-
ization to normalize edge weights (we leave feature discretization
in the future work). We apply 0.5 feature dropout rate to alleviate
overfitting. We stop training the model when the validation error
plateaus. We use Precision@K, which is a common metric for
multi-label classification task, as our evaluation metric.

3.3 Baselines

In order to verify the validity of TagGNN, we compare it with the
following baselines!:

o FastText-I: FastText [6] is a simple and efficient text classi-
fication approach which averages the word/n-grams embed-
dings as the document embedding, then feeds the document
embedding into a linear classifier. We use it to do multi-label
text classification with item titles.

o FastText-QI: The only difference with FastText-I is that we
concatenate the item title with its top-10 queries’ contents
as the new initial features.

e Transformer-I: This baseline follows the multi-label clas-
sification model [26] that applies the most commonly used
Transformers as the text encoder. We use item title as input.

o Transformer-QI: The only difference with Transformer-I
is that we concatenate the item titles with its top-10 queries’
contents as the new initial features.

o XmICNN-QI: XmICNN [15] is a multi-label classification
model that follows TextCNN [12] to use CNNs as the text
encoder. We use the concatenation of item title and query
content as input. We set kernel sizes to {2,3,4} and use 100
kernels for each kernel size.

o TextRNN-QI: TextRNN [16] is a frequently-used text classi-
fication method which employ RNN with multi-task learning

! The embedding size is uniformly set to 200 for all baselines if not specified. Part of base-
lines are experimented with https://github.com/Tencent/NeuraINLP-NeuralClassifier.

to encode the text. We use it to do multi-text classification
with query contents and item titles. We use one-layer bidi-
rectional RNN and the hidden embedding size is set to 200.

e SimRank-QI: SimRank [11] is a popular graph-based ap-
proach that exploits the node-to-node relationships based on
the topology of the graph. We propagate tags in the query-
item bipartite graph based on SimRank to predict new tags
for items.

e ML-GCN-I: ML-GCN [4] is a recently published work that
learns the label correlations via GCNs for image-based multi-
label classification. We extend it to text-based classification
and use FastText (performed best in experiments) as the
textual encoder. We set 7 to 0.1 and 0.3 for KDDCup-2012
and Huawei-Dataset respectively to build the needed label
graph. Other settings are consistent with the original paper.

e ML-GCN-QI: The only difference with ML-GCN-I is that
we change the main model to TagGNN-QL

3.4 Performance Comparison (Q1)

The comparative results are summarized in Table 2. In the following,
we discuss the results of two tasks, i.e., full tag prediction and tag
completion respectively.

3.4.1 Results of Full Tag Prediction. We have the following obser-
vations about the results of full tag prediction task:

e Our final TagGNN substantially outperforms all the other
baselines on both two datasets, verifying the effectiveness of
our model to solve the full tag prediction task. In particular,
TagGNN improves the strongest baseline TagGNN-QI (also
ours) by 6.8% and 5.3% in P@1 and P@5 on KDDCup-2012
dataset. We attribute such notable improvements to the novel
and powerful design of TagGNN that can benefit from both
explicit and implicit interactions and representation fusions
among queries, items and tags.

e Query information is very useful and can be easily utilized

to solve the full tag prediction task. It is obvious that the pre-

cision gains a huge improvement (7% to 38.5% for KDDCup-

2012, and 13.7% to 30.7% for Huawei-Dataset) for all baselines

after fusing the query information, which strongly proves

the importance of queries. Note that the gains of ML-GNN-QI
compared with ML-GNN-I are also mostly originated from

TagGNN-QI since their major difference lies in the main mod-

els of ML-GNN. Thus, comparatively speaking, TagGNN’s get

the biggest percentages of boost from the query information,
demonstrating that TagGNNSs can utilize queries better than
other baselines.

Graph-based SimRank-QI and ML-GCN-I are inferior to text-

based FastText-QI and Transformer-I respectively. This phe-

nomenon shows that not all graph-based or graph&text-
based methods can beat the traditional text-based methods.

How to use all the information in the form of graph is the

real key for graph based methods, not the graph form itself.

This also proves that TagGNN can take advantage of graph

information more effectively.

Unexpectedly, ML-GCN-QI performs worse than TagGNN-

QL. Since the main model of ML-GCN-QI we used is just

TagGNN-QL, it demonstrates that the label (tag) embedding


https://github.com/Tencent/NeuralNLP-NeuralClassifier

Table 2: Performance comparison of different models. “Without Tags” indicates that items have no tags before prediction, and
“Partial Tags” means that items have incomplete tags and need tag completion. TagGNN-IT, TagGNN-QI and TagGNN show

our approaches.

KDDCup-2012 Huawei-Dataset

Model Features Without Tags Partial Tags Without Tags Partial Tags
P@1 P@3 P@5 | P@1 P@3 P@5 | P@1 P@3 P@5 |P@1 P@3 P@5
FastText-I Item Text 0.405 0352 0.331 | 0.158 0.134 0.105 | 0.529 0.386 0.286 | 0.392 0.265 0.197
FastText-QI Item & Query Text 0.581 0.510 0.470 | 0.286 0.190 0.143 | 0.688 0.492 0354 | 0.515 0.340 0.246
Text based Transformer-I Item Text 0.373 0.332  0.311 | 0.175 0.124 0.098 | 0.471 0.338 0.249 | 0.358 0.244 0.185
Transformer-QI Item & Query Text 0443 0393 0363 | 0.161 0.124 0.097 | 0.608 0.432 0.313 | 0477 0314 0.227
XmlICNN-QI Item & Query Text 0.371 0327 0302 | 0.112 0.083 0.064 | 0.515 0.356 0.259 | 0.341 0.225 0.163
TextRNN-QI Item & Query Text 0.484 0424 0387 | 0.169 0.117 0.089 | 0.615 0.428 0.308 | 0.379 0.255 0.186
Graph based SimRank-QI Query-Item Graph 0.559 0.510 0479 | 0.171 0.144 0.125 | 0.577 0.421 0.299 | 0499 0342 0.243
ML-GCN-I Tag-Tag Graph 0.365 0.311  0.296 | 0.191 0.148 0.113 | 0.414 0.342 0.251 | 0.414 0.276  0.200
ML-GCN-QI Query-Item & Tag-Tag Graph | 0.742 0.672 0.625 | 0.385 0.273 0.193 | 0.721 0.519 0.371 | 0.612 0.388 0.272
Graph & Text based TagGNN-IT Item-Tag Graph 0.438 0.326 0.280 | 0.342 0.250 0.187 | 0.539 0.362 0.264 | 0.444 0.286 0.209
TagGNN-QI Query-Item Graph 0.755 0.688 0.643 | 0.403 0.295 0.214 | 0.730 0.520 0.379 | 0.618 0.395 0.276
TagGNN Query-Item-Tag Graph 0.823 0.741 0.683 | 0.449 0.330 0.236 | 0.743 0.534 0.381 | 0.644 0.416 0.288

strategy proposed in ML-GCN is not effective on item tag-
ging task, and further proves the effectiveness of the way
that TagGNN leveraging the tags.

3.4.2 Results of Tag Completion. We have the following observa-
tions about the results of tag completion task:

o TagGNN still achieves the best performance across the two
datasets on tag completion task, demonstrating the compre-
hensive superiority of TagGNN than other baselines. Specif-
ically, it can beat the strongest baseline TagGNN-QI (also
ours) by 4.6% and 2.6% in P@1 on KDDCup-2012 dataset
and Huawei-Dataset, and hugely surpasses all the text-based
approaches, which is a relative good performance.

When queries are not available , TagGNN-IT outperforms all
the other baselines, i.e., FastText-I, Transformer-I and ML-
GCN-I on the two datasets. More notably, on KDDCup-2012
dataset, even if the other baselines using queries, TagGNN-
IT can still outperforms them in most cases. It may be be-
cause that the number of tags in KDDCup-2012 is larger
than Huawei-Dataset (as shown in Tabel 1), which boosts
the TagGNN to better release its potency. Such an excellent
performance of TagGNN-IT also verifies that the design of
our TagGNN framework has strong ability to leverage exist-
ing tags so as to improve the performance of tag completion
task.

In addition, some readers may wonder why the results of full
tag prediction seem to be better than the results of tag completion
as shown in Table 2? Here is an illustration:

These two tasks have different numbers of ground truth tags.
Note that there are only 2 ground truth tags for tag completion task.
So, compared with the larger ground truth set of full tag prediction
task, it is more difficult to hit the ground truth tags in tag completion
task, leading to an illusion that the tag completion’s precision is
lower than the full tag prediction’s.

To further demonstrate that TagGNN can really leverage the
existing tags to improve the performance of tag completion, we
remove all the existing tags of items in the test set, and retrain
the model to test its performance. Results are shown in Figure 3.

It is obvious that the performance gets worse after removing the
existing tags, which verifies our illustration.
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Figure 3: Results of removing/keeping existing tags for the
tag completion task.

3.5 Ablation Study (Q2)

In this section, we study how three particular components of Tag-
GNN, i.e., L3 (see 2.5), tag name embeddings (see 2.2.1) and hetero-
geneity affect the performance and answer Q2.

3.5.1 Dual Loss Ly. As described in 2.5, we add the dual loss L2
to deal with the cold start problem of isolated items. Here, we
perform a ablation study to verify the validity of this strategy by
removing £, when training. Table 3 shows the experimental results
of TagGNNSs training with L2 and without L3, and we have the
following findings:

e Without £y, performances of TagGNN-IT for full tag predic-
tion on both two datasets drop sharply, indicating that the
model nearly loses the ability to handle the cold start prob-
lem. Such performance degradation is due to the fact that
When the graph has no query nodes, all training item nodes
still have neighbour tag nodes. However, the test item nodes
for full tag prediction will have no neighbours to aggregate,
leading to a huge gap between training and inference.

Although £, may slightly hurt the precision of TagGNN-IT
on tag completion task, it is trivial compared with the huge
improvement on full tag prediction task. On the whole, our



Table 3: Performance comparison of ablation study. “TagGNN w/o L; & TNE” represents TagGNN without both £, and tag
name embeddings, “TagGNN w/o L,” represents TagGNN only without £, “TagGNN-homogeneous” represents TagGNN using

homogeneous update function. Similar notations for others.

KDDCup-2012 Huawei-Dataset

Model Without Tags Partial Tags Without Tags Partial Tags
P@l P@3 P@5 | P@l P@3 P@5 | P@l P@3 P@5 | P@l P@3 P@5
TagGNN-IT 0.438 0.326 0.280 | 0.342 0.250 0.187 | 0.539 0.362 0.264 | 0.444 0.286  0.209
TagGNN-IT w/o L, 0.016 0.011  0.010 | 0.360 0.274 0.200 | 0.291 0.199 0.149 | 0.447 0.294 0.207
TagGNN-IT w/o L2 & TNE | 0.012  0.010  0.009 | 0.332 0.258 0.192 | 0.289  0.200  0.148 | 0.447 0.293 0.210
TagGNN-IT-homogeneous | 0.439 0.320  0.274 | 0.333  0.241  0.183 | 0.529 0.352  0.261 | 0.428 0.277 0.206
TagGNN-QI 0.755 0.688 0.643 | 0.403 0.295 0.214 | 0.723 0.520 0.379 | 0.618 0.395 0.276
TagGNN-QI w/o L, 0.746  0.679  0.639 | 0.402 0.288 0.211 | 0.723 0.517 0.378 | 0.611 0.393 0.276
TagGNN-QI w/o L3 & TNE | 0.747  0.675 0.635 | 0.401 0.286 0.209 | 0.715 0.516 0.371 | 0.606 0.392  0.272
TagGNN-QI-homogeneous | 0.745 0.675 0.632 | 0.391 0.280 0.207 | 0.722 0.524 0.369 | 0.608 0381  0.268
TagGNN 0.823 0.741 0.683 | 0.449 0.330 0.236 | 0.743 0.534 0.381 | 0.644 0.416 0.288
TagGNN w/o L, 0.791  0.719 0.664 | 0442 0316 0.235 | 0.721 0.521  0.377 | 0.637 0.409 0.282
TagGNN w/o L; & TNE 0.789 0.715 0.661 | 0426 0306 0.227 | 0.711 0519 0.361 | 0.624 0.391  0.275
TagGNN-homogeneous 0.807 0.724 0.673 | 0.417 0.315 0.227 | 0.732  0.527 0.375 | 0.629 0.404 0.282

Table 4: Performance comparison of TagGNN with different number of propagation layers.

KDDCup-2012 Huawei-Dataset
Model Without Tags Partial Tags Without Tags Partial Tags
P@l P@3 P@5 | P@l P@3 DP@5 | P@l P@3 P@5 | P@l P@3 P@>
TagGNN-1 | 0.786 0.697 0.649 | 0.412 0.302 0.218 | 0.676 0.474 0.338 | 0.553 0.351 0.245
TagGNN-2 | 0.823 0.741 0.683 | 0.449 0.330 0.236 | 0.743 0.534 0.381 | 0.644 0.416 0.288
TagGNN-3 | 0.815 0.735 0.674 | 0.432 0.321 0.238 | 0.732 0.515 0.364 | 0.641 0.411 0.284
TagGNN-4 | 0.811 0.728 0.670 | 0.428 0.315 0.234 | 0.728 0.507 0.361 | 0.633 0.409 0.283
Table 5: Performance comparison of different types of GNN.
KDDCup-2012 Huawei-Dataset
Model Without Tags Partial Tags Without Tags Partial Tags
P@l P@3 P@5 | P@l P@3 P@5 | P@l P@3 P@5 | P@l P@3 P@5
GCN 0.771 0.683 0.635 | 0.441 0.313 0.227 | 0.717 0.507 0.359 | 0.594 0.386 0.269
GraphSAGE | 0.793 0.712  0.663 | 0.441 0.305 0.221 | 0.675 0.465 0.331 | 0.592 0.372 0.258
GAT 0.806 0.725 0.671 | 0.424 0306 0.223 | 0.722 0.515 0.364 | 0.623 0.394 0.273
TagGNN 0.823 0.741 0.683 | 0.449 0.330 0.236 | 0.743 0.534 0.381 | 0.644 0.416 0.288

proposed dual loss £ is really an effective way to handle
the isolated nodes.

® Queries are quite informative and powerful to greatly allevi-
ate the gap mentioned above. From the results of “TagGNN-QI
w/o L3” and “TagGNN w/o L3”, we find that when the
query information is available, £2 may be cannot bring very
notable promotion as before. But it is still a valid auxiliary
to improve accuracy.

e Moreover, jointly considered Table 2 and Table 3, we find that
even without query information and £, “TagGNN-IT w/o
L’ is still much better than traditional multi-label text clas-
sification methods on tag completion task. This demonstrates
that the mode of TagGNN-IT can more effectively utilize the
existing tag information to help solve tag completion task.

o We note that the heterogeneous GNN based HGAT model [9]
cannot be directly applied to item tagging. But considering
that it models text categorization as node classification, we

can take "TagGNN-QI w/o L3" as the approximate imple-
mentation of HGAT on item tagging. The results show that
TagGNN is much better than HGAT on both datasets.

3.5.2  Tag Name Emeddings. We introduced in 2.2.1 that the initial
representation of the tag node is the combination of its tag name
embedding and tag id embedding. Note that the tag id embedding
is always available since it is a one-hot embedding which is only
related to the total number of tags. However, the tag name may be
not visible during training the model in some situations (e.g., the
company outsources the project of item tagging to others but it do
not want to disclose the exact names of tags). Thus, here we remove
the tag name embeddings from the initial node representation and
see how it influence the performance of TagGNN. The experimental
results are reported in Table 3.

On the whole, the results show that the tag name embeddings
(TNE) just bring slight improvement. But we believe the potential
of TNE is much more than that. we are also considering how to



better use the semantic information of tag names, such as exploring
more fine-grained word-level interactions among items and tags.
We leave it in our future work.

3.5.3  homogeneity and heterogeneity of TagGNN. Considering that
the query-item-tag tripartite graph is heterogeneous, we also design
TagGNN to be heterogeneous, as embodied in its update function
(equation 4). To demonstrate the effectiveness of this heterogeneous
design, we change the update function to be homogeneous, i.e., not
distinguish the node types, and test the performance of TagGNN-QI,
TagGNN-IT and TagGNN. We report the experimental results in
Table 3.

From the results, we can see that heterogeneous TagGNNss are
nearly consistently better than homogeneous ones, demonstrating
that setting different transformation matrices for different types of
nodes is reasonable and valid, which can bring steady improvement.

3.6 Design Choices of TagGNN (Q3)

In this part, we research how different designs influence the perfor-
mance from two perspectives.

3.6.1 Effect of Layer Numbers. To explore how the number of
propagation layers affects the performance, we vary the number
of model layers. Specially, we conduct experiments with the layer
numbers in range of {1, 2, 3, 4}. Table 4 summarizes the experimental
results, wherein TagGNN-X indicates the model with X layers. From
the results, we have the following observations:

o TagGNN-1 is obviously worse than TagGNN-2,3,4, indicat-
ing that only one propagation layer is not enough to reach
an excellent performance. It is reasonable since one-layer
GNN propagation can only capture the first-order neighbors’
information. Hence, semantic relationships between query
and query, item and item, tag and tag are not explicitly used,
resulting in unsatisfactory performance. So it is necessary
to stack at least two propagation layers.

o Stacking too much (larger than 3) layers will not bring addi-
tional promotion. Compared with TagGNN-2, only TagGNN-
3 got a little gain (0.2%) in P@5 (Paritial Tags of KDDCup-
2012), verifying that two layers are enough for TagGNN. Too
many layers may lead to redundancy that hurts performance.

3.6.2 Effect of Types of GNN. To verify the superiority of the
propagation design of TagGNN, we replace the TagGNN with some
other popular GNN models, e.g., GCN, GraphSAGE and GAT. For
GraphSAGE, we choose its “mean” strategy. All corresponding
settings are consistent with TagGNN. We show the experimental
results in Table 5.

The results shows that our TagGNN is clearly superior to all
these representative GNNs. Specifically, GCN and GraphSAGE beat
each other on two datasets but are worse than GAT. As for GAT, it is
modestly inferior to TagGNN. It may be because that TagGNN can
leverage additional edge information and has better representation
fusion between two layers, which makes TagGNN more effective
for item tagging.

3.7 Expert Evaluation

Before deploying the tagging model for production use, we need to
perform a manual A/B testing by our operation team. Specifically,

we randomly sample 540 apps from the test set of Huawei-Dataset,
half for full tag prediction and half for tag completion. The sampling
is performed uniformly to keep the proportion of each app category
(e.g., game, study) consistent with the whole app corpus. In the full
tag prediction setting, we predict top-5 tags for each app, while in
the tag completion setting, we predict top-k tags to assure that each
item has at least five tags. For example, if an item has 3 existing tags
(3.6 on average), we set k=2. We generate two groups of app-tag
samples predicted using both TagGNN and our production baseline
model. This leads to a total of 4050 app-tag pairs. We randomly
split the test samples and distribute them to four domain experts
from our operation team. They assess the test samples one by one
to check whether a tag is appropriate for an app. Finally, the expert
evaluation results show that TagGNN achieves 81.1% accuracy for
full tag prediction, and 88.2% accuracy for tag completion. Mean-
while, TagGNN achieves a 22.8% relative improvement over the
production baseline. The improvement is significant for production
deployment.

4 RELATED WORK
4.1 Multi-Label Classification

Multi-label classification [32] is a widely-studied research topic,
spanning multiple tasks such as text tagging [15, 26] and image
annotation [4]. Recent research efforts have been devoted to op-
timizing the content representation learning or exploring label
dependencies for improvement. More specifically, Liu et al. [15]
and Chang et al. [26] study the application of CNNs and transform-
ers to enhance text-based multi-label classification, respectively.
Chen et al. [4] investigate the use of GNNs to capture correlations
among labels. All these studies assume rich contents. In contrast,
we have to leverage external information (e.g., query logs) to enrich
items. We also empirically compare TagGNN with them in Table 2.

4.2 Graph Neural Networks

Graph neural networks (GNNs) [29] has become a trending re-
search topic. The research of GNNs successfully extends traditional
convolutional neural networks to graph-structured data, leading
to abundant applications such as text categorization [30], recom-
mendation [31], and link prediction [7]. Our work is inspired by
these successful studies, and has been extended for item tagging.
We empirically compare TagGNN with three representative GNN
models, i.e., GCN [13], GraphSAGE [7], and GAT [24].

4.3 GNN-based Text Categorization

As a promising technique, GNNs have been recently adopted to
boost text categorization tasks. In particular, Yao et al. [30] propose
the first use of graph convolution networks for text classification.
But this work models each document as a graph node and cannot
handle new documents that are not present in the graph during
training. Later work [9, 10] makes some extensions to tackle this
issue. Especially, Hu et al. [9] construct a topic-document-entity
graph and model it using heterogeneous GNNs. This work is mostly
closest to ours. However, the differences lie in that: 1) We model
item tagging as a link prediction problem, instead of the node clas-
sification formulation in [9], which enables both full tag prediction
and tag completion. 2) Our query and tag nodes, which naturally



exist in IR tasks, provide multi-source information to enrich item
representation, but topic and entity nodes are all intermediate in-
formation extracted from documents using preprocessing tools.

5 CONCLUSION

In this paper, we present TagGNN, a tripartite graph neural network
model for item tagging. Our model builds on the heterogeneous
GNN techniques, but differs from other previous studies in three
unique aspects: 1) Instead of node classification, TagGNN formu-
lates item tagging as a novel link prediction problem. 2) TagGNN
leverages query logs to enrich item representation and forms a
query-item-tag tripartite graph that is unique for IR. 3) TagGNN is
capable of making both full tag prediction and partial tag comple-
tion in a unified way. Experimental results on two large datasets
validate the superiority of our TagGNN approach over existing
methods. In addition, we perform an expert evaluation from our
operation team and obtain quite positive results for production use.
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