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Abstract

Neural network ensembles have proven effec-
tive in improving performance across a range
of tasks; however, their high computational cost
limits their applicability in resource-constrained
environments or for large models. Ensemble dis-
tillation, the process of transferring knowledge
from an ensemble teacher to a smaller student
model, offers a promising solution to this chal-
lenge. The key is to ensure that the student model
is both cost-efficient and achieves performance
comparable to the ensemble teacher. With this in
mind, we propose a novel ensemble distribution
distillation method, which leverages flow match-
ing to effectively transfer the diversity from the
ensemble teacher to the student model. Our ex-
tensive experiments demonstrate the effective-
ness of our proposed method compared to exist-
ing ensemble distillation approaches.

1. Introduction
The concept of ensembling neural networks has long been
a foundational approach in machine learning (Hansen and
Salamon, 1990), based on the idea of constructing a strong
hypothesis by combining multiple weaker ones (Kearns,
1988). Interestingly, ensemble methods remain highly rel-
evant in the era of deep learning, offering a simple but ef-
fective way to improve the performance of deep neural net-
works (Ciresan et al., 2012; Krizhevsky et al., 2012). How-
ever, despite its benefits, a notable drawback of the ensem-
ble method becomes more pronounced with deep neural
networks: “many ensembles are large and slow” (Buciluǎ
et al., 2006). To address this, the machine learning com-
munity has naturally gravitated toward compressing the en-
sembles into a single, more efficient model (Buciluǎ et al.,
2006; Ba and Caruana, 2014; Hinton et al., 2014).
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Figure 1. How good is ensemble distribution distillation? It il-
lustrates how effectively different ensemble distribution distilla-
tion methods learn the diversity of the ensemble teacher. The x-
axis represents the teacher diversity under different diversification
strategies (§ 5.1), while the y-axis shows the performance of the
distilled student in each setting (NLL; lower is better). The size
of each circle marker indicates the level of diversity learned by
the student, demonstrating how well each distillation method ab-
sorbs the teacher diversity and mimics the ensemble behavior of
producing diverse predictions (§ 5.2). Our proposed EDFM ap-
proach effectively learns teacher diversity as it becomes more pro-
nounced, continually absorbing it and outperforming baselines.

Ensemble distillation is a specific form of knowledge distil-
lation (Hinton et al., 2014), where the teacher model is an
ensemble. Unlike the typical knowledge distillation setup,
in which a single teacher model provides one prediction per
training instance, ensemble distillation incorporates predic-
tions from multiple teacher models, introducing diversity.
While this diversity is a key distinguishing feature, simply
adopting the basic knowledge distillation objective (Ba and
Caruana, 2014; Hinton et al., 2014), i.e., averaging the dis-
tillation losses or teacher predictions, overlooks the diver-
sity within the ensemble teacher. Consequently, the main
goal in the ensemble distillation literature is to effectively
leverage the multiple predictions, or the empirical predic-
tive distribution, produced by the ensemble teacher (Cui et
al., 2020; Malinin et al., 2020; Penso et al., 2022).

Despite recent advances, a significant performance gap re-
mains between ensemble teachers and their distilled stu-
dents. This gap arises primarily from two key limitations:
First, deep neural networks are typically trained to achieve
near-zero training errors, causing ensemble models to pro-
duce highly correlated predictions on the training set. As a
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result, ensemble distillation methods operating on the same
dataset struggle to transfer meaningful diversity to student
models (Nam et al., 2021). Second, the capacity of student
models is inherently constrained. Since ensemble distilla-
tion aims to approximate ensemble predictions efficiently,
there exists a tradeoff between inference speed and pre-
dictive performance, e.g., embedding multiple subnetworks
within a single model (Nam et al., 2021; Penso et al., 2022)
fundamentally limits the expressiveness, making it difficult
to capture the full diversity of ensemble predictions.

Recently, Kim et al. (2024) reformulated ensemble distilla-
tion as a distribution-matching problem, leveraging the dif-
fusion Schrödinger bridge (DSB) to map a single model’s
predictions to ensemble outputs. Unlike traditional meth-
ods, DSB enables flexible student modeling by iteratively
refining predictions through a lightweight score network.
However, their approach remains limited to approximating
the ensemble’s point estimates rather than modeling the full
distribution of teacher predictions.

In this paper, we propose a novel ensemble distribution
distillation algorithm based on flow matching (Lipman et
al., 2023). Our approach introduces a lightweight network
that learns the vector field mapping a single model’s pre-
diction to the distribution of ensemble teacher predictions.
Crucially, we emphasize the role of teacher diversity in
distillation and show that existing methods fail to capture
this diversity effectively, whereas ours succeeds (Fig. 2).
Furthermore, our method enables fast, parallelizable infer-
ence, significantly reducing wall-clock time compared to
prior approaches. We substantiate our claims through ex-
tensive experiments, covering a range of tasks including
image classification and language modeling. Our contribu-
tions are summarized as follows.

• We present a comprehensive analysis of ensemble dis-
tribution distillation with respect to both diversity and
fidelity. In particular, we investigate when ensemble
teachers exhibit diversity (§ 5.1) and how effectively
distillation methods can learn from it (§§ 5.2 and 5.3).

• We propose a novel ensemble distribution distillation
algorithm, Ensemble Distillation via Flow Matching
(EDFM), which, as the name suggests, is based on
the flow matching framework (§ 4). Our extensive ex-
periments on image classification and language tasks
validate both the efficiency (§ 5.4) and effectiveness
(§§ 5.5 and 5.6) of the approach.

2. Preliminaries
Notation. We focus on a K-way classification problem,
where a neural network parameterized by θ ∈ Θ takes in-
puts x ∈ X and produces predictions for the corresponding
labels y ∈ Y , with logits z(x,θ) ∈ RK . We also denote the

categorical probabilities as p(x,θ) = softmax(z(x,θ)),
and their element-wise logarithm as log p(x,θ). For no-
tational simplicity, we will often omit the dependence of
logits and probabilties on inputs, e.g., p(x,θ) is written as
pθ when x is clear from the context.

Ensembles. We view ensembles within a Bayesian frame-
work, where the model parameters θ are treated as random
variables. More precisely, the predictive categorical distri-
bution is approximated by an ensemble of neural networks
defined by the set of parameters {θm}Mm=1:

p(y|x) = Eθ∼q(θ)[p(y|x,θ)] ≈
1

M

M∑
m=1

p(y|x,θm), (1)

assuming the parameters are sampled from the approxi-
mate posterior q(θ). In Bayesian literature, q(θ) is com-
monly modeled using a Gaussian or a mixture of Gaus-
sians to facilitate tractable sampling (Maddox et al., 2019;
Shen et al., 2024). Focusing on the classification problem,
p(y|x,θ) = Cat(y|pθ(x)) represents a K-way categorical
distribution with event probabilities pθ(x).

Ensemble distillation. The most straightforward way to
distill the ensemble teacher, defined by q(θ), into the stu-
dent model, parameterized by ϕ, is to minimize

Eθ∼q(θ)

[
H
(
pθ,pϕ

)]
, (2)

where H[·, ·] computes the cross-entropy between two cat-
egorical probabilities, and pϕ is the categorical output from
the student model. Eq. 2 is the average of standard distilla-
tion losses (Hinton et al., 2014), and it is equivalent to

H
(
Eθ∼q(θ) [pθ] ,pϕ

)
, (3)

which is the standard distillation loss with the mean of the
ensemble predictions. Unfortunately, this basic strategy en-
tirely eliminates the diversity in ensemble predictions.

Ensemble distribution distillation approaches make the stu-
dent model capture the distribution of teacher predictions.
Specifically, p : X ×Θ → ∆K−1 can be interpreted as a
parametric function that maps the input space to the class-
probability simplex. The random variable πx := p(x,θ)
then represents the distribution of categorical probabilities
for a given x under the posterior over parameters q(θ). By
introducing the induced distribution q(πx|x), we obtain

p(y|x) =
∫
Θ

Cat(y|p(x,θ))q(θ)dθ

=

∫
∆K−1

Cat(y|πx)q(πx|x)dπx.

(4)

Ultimately, the core idea of the ensemble distribution dis-
tillation scheme is to use a single student model, parame-
terized by ϕ, to model the induced distribution qϕ(πx|x).

2



Ensemble Distribution Distillation via Flow Matching

For example, a Dirichlet Prior Network (DPN; Malinin and
Gales, 2018) could serve as the student model if we assume
that q(πx|x) follows a Dirichlet distribution. While the
Dirichlet distribution is a common choice for the induced
distribution (Cui et al., 2020; Malinin et al., 2020), due to
its conjugacy with the categorical distribution and its ability
to facilitate tractable integration in Eq. 4, it is not necessar-
ily required. The induced distribution is defined indirectly
through the observations {p(x,θm)}Mm=1, with no guaran-
tee that they follow the Dirichlet distribution. It motivates
modeling the induced distribution as arbitrary, rather than
necessarily Dirichlet (Penso et al., 2022).

Flow matching. Flow Matching (FM; Lipman et al., 2023)
is a framework for training simulation-free continuous nor-
malizing flows (Chen et al., 2018) by learning vector fields
that transport a base density p0(x) to a target density p1(x)
along a deterministic probability path whose density func-
tion at time t is specified as pt(x). The probability path
follows the neural ordinary differential equation (ODE)

dxt = ut(xt)dt, x0 ∼ p0(x0) (5)

where ut(x) represents the vector field that satisfies the
continuity equation for mass conservation. FM is trained to
minimize the discrepancy between the learned vector field
ut and the ground-truth vt derived from data:

LFM(ϕ) = Et,xt

[
λ(t) ∥ut(xt;ϕ)− vt(xt)∥2

]
, (6)

where t ∼ T defined over [0, 1], xt ∼ pt, and λ is a
time-dependent weighting function. However, such a for-
mulation Eq. 6 is challenging in general as obtaining the
(marginal) ground-truth vt(x) is typically intractable. In-
stead, we model FM in logit space conditioned on input x,
requiring a Conditional Flow Matching (CFM) formulation
conditioned by the base density p0, where both the base and
target distributions depend on an auxiliary variable c:

LCFM(ϕ)

= Et,xt,x0

[
λ(t) ∥ut(xt|x0, c;ϕ)− vt(xt|x0, c)∥2

]
,

(7)

where t ∼ T , x0 ∼ p0(x0|c), and xt ∼ pt(xt|x0, c). FM
has been successfully applied to generative modeling due to
improved training stability and computational efficiency.

3. Related Work
Ensemble distillation. In recent years, extensive research
on ensemble distillation using deep neural networks has fo-
cused on three key design components: “how to construct
the ensemble teacher” (Ba and Caruana, 2014; Korattikara
et al., 2015; Bulò et al., 2016), “how to design the student
model” (Cui et al., 2020; Malinin et al., 2020; Tran et al.,
2020; Mariet et al., 2021; Penso et al., 2022), and, most

importantly, “how to distill the ensemble teacher into a sin-
gle student model” (Cui et al., 2020; Malinin et al., 2020;
Du et al., 2020; Ryabinin et al., 2021; Nam et al., 2021;
Nam et al., 2022; Penso et al., 2022). A central philosophy
shared by most of these studies is that “diversity matters
when learning from ensembles” (Nam et al., 2021), high-
lighting the importance of effectively accounting for the di-
versity inherent in the ensemble teacher during the distilla-
tion process. To this end, 1) one-to-one ensemble distilla-
tion approaches design the student model to handle multi-
ple predictions, using methods such as multi-headed mod-
eling (Tran et al., 2020) or weight-sharing techniques (Ma-
riet et al., 2021; Nam et al., 2021), while 2) ensemble dis-
tribution distillation methods model the distribution of the
ensemble predictions (Cui et al., 2020; Malinin et al., 2020;
Ryabinin et al., 2021; Penso et al., 2022).

Fast and efficient ensembling. There has been a per-
sistent demand for more cost-efficient ensemble methods,
as ensembles of deep neural networks are typically asso-
ciated with high computational costs during both train-
ing and inference. Research under the terms fast or effi-
cient ensembling has aimed to address this demand, includ-
ing: “how to reduce training costs for ensemble construc-
tion” (Huang et al., 2017; Garipov et al., 2018; Benton et
al., 2021), and “how to reduce inference costs for ensemble
behaviour” (Lee et al., 2015; Wen et al., 2020; Havasi et
al., 2021; Yun et al., 2023). In particular, Yun et al. (2023)
emphasized the importance of reducing test-time costs for
practical applications and proposed a framework that mim-
ics the output of one ensemble component based on the out-
put of another using a lightweight neural network. Kim et
al. (2024) further extended this approach by utilizing the
Schrödinger bridge algorithm (Liu et al., 2023a), mimick-
ing the mean of the ensemble predictions. Our approach
is most closely related to these works, as it also leverages
the outputs of a single ensemble component. However, the
key difference is that we perform ensemble distribution dis-
tillation via flow matching, sampling from the ensemble’s
predictive distribution rather than producing a single point
estimate, thereby better capturing the ensemble’s diversity.

Flow matching and knowledge distillation. Meanwhile,
there have also been efforts (Shao et al., 2024; Huang et
al., 2023; Yao et al., 2024) to incorporate flow matching or
diffusion models into knowledge distillation. These meth-
ods, however, bear greater resemblance to DBN (Kim et
al., 2024) than to EDFM, as they primarily rely on one-
to-one alignment of logits or intermediate features between
teacher and student models. Distilling the knowledge of
the diffusion model itself, especially in terms of synthe-
sis efficiency, has also been widely investigated (Salimans
and Ho, 2022; Song et al., 2023; Yin et al., 2024a; Yin et
al., 2024b). We expect that these contributions might offer
meaningful insights for further improvements of EDFM.
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4. Approach
4.1. Flow matching in logit space

For a given input x, we consider the logits z(x,θ) with
θ ∼ q(θ), predicted by the ensemble teacher with the ap-
proximate posterior q(θ). These logits are assumed to fol-
low the distribution p1:

zx
1 ∼ p1(z

x
1 |x), (8)

where the dependence on θ is omitted for simplicity, and
we denote zx

1 ≡ z(x,θ). Our goal is to construct a prob-
ability path whose density function at time t is specified
as pt for t ∈ (0, 1), starting from the source distribution
p0(·|x) := N (·;0, σ2I) and transitioning to the target dis-
tribution p1(·|x). To achieve this, we introduce a condi-
tional vector field u : [0, 1] × RK × X → RK in the K-
dimensional logit space:

u(t, zx
t , x) :=

zx
1 − zx

t

1− t
, (9)

which induces a conditional probability path:

pt|1(z
x
t |zx

1 , x) = N (zx
t |tzx

1 , (1− t)2I), (10)

for 0 ≤ t ≤ 1. Conditioned on zx
1 ∼ p1(z

x
1 |x), the random

variables zx
t|1 conditioned on t ∈ [0, 1] are given by:

zx
t|1 = tzx

1 + (1− t)zx
0 ∼ pt|1, (11)

and the marginal random variable zx
t ∼ pt is defined as a

linear combination of zx
0 ∼ p0 and zx

1 ∼ p1:

zx
t = tzx

1 + (1− t)zx
0 ∼ pxt . (12)

Building on these formulations, we model u using uϕ, a
neural network parameterized by ϕ. The network is trained
by minimizing the conditional flow matching loss:

L(ϕ) = Et,zx
0 ,z

x
1

[
λ(t)∥uϕ(t, z

x
t , x)− (zx

1 − zx
0)∥2

]
,

(13)
where t ∼ T , zx

0 ∼ p0, zx
1 ∼ p1, and λ denotes a time-

dependent weighting function (cf. § 4.3).

It is important to note that our formulation of flow matching
represents one of the simplest instances, corresponding to
a rectified flow (Liu et al., 2023b) between Gaussian noise
and the data distribution. More sophisticated approaches
are conceivable, including 1) incorporating the geometric
structure of logits, such as flow matching constrained to
the probability simplex, or 2) modifying the perturbation
schedule, for example, adopting diffusion models instead
of flow matching. Nonetheless, empirical evaluation re-
vealed that many of these more complex formulations un-
derperform relative to the simple approach presented here.
Further ablation studies examining various formulations
are provided in Appendix A.1.

4.2. Student network

The student network uϕ is designed to condition on the in-
put data by incorporating relevant information associated
with x. To this end, we utilize features extracted from the
penultimate layer of a pretrained teacher network—for ex-
ample, representations prior to the average pooling layer
in the ResNet architecture (He et al., 2016)—as condition-
ing inputs. Leveraging such pretrained features not only
enhances the student network’s ability to discriminate be-
tween different inputs but also transfers valuable knowl-
edge embedded in the teacher network, thereby facilitating
faster convergence and improved performance. Since the
pretrained teacher network serving as a feature extractor
remains fixed during flow matching training, the compu-
tational overhead incurred is substantially lower than that
required for training the teacher network itself.

For the student network architecture, we employ a de-
noising multilayer perceptron (MLP) structure as proposed
by Li et al. (2024). This lightweight architecture consists
of a limited number of residual MLP blocks. Within each
block, the perturbed sample zxt is concatenated with the
conditioning input, followed by the integration of time-
embedding information via an adaptive layer normaliza-
tion mechanism with zero initialization (Peebles and Xie,
2023). This processed representation then passes through
an MLP layer with a skip connection. Despite being sim-
ple, this simple architecture proves sufficient to capture the
target distribution, given the inherently low-dimensional
nature of the logit space. Additionally, due to the compu-
tational efficiency of MLP layers on modern hardware ac-
celerators such as GPUs, the MLP-based student network
offers significant advantages in execution time, particularly
for parallel sampling, as will be shown in § 5.4. It should
be noted, however, that the denoising MLP is not the sole
practical option for EDFM. While the MLP architecture of-
fers a favorable balance between computational efficiency
and performance, alternative architectures, such as trans-
formers, may be more suitable in specific contexts, particu-
larly when scalable student networks are required. Further
analysis of the impact of network architecture on EDFM
performance is provided in Appendix A.2.

4.3. Training and inference

We identified the variance of the initial Gaussian noise
σ and the time distribution T as critical factors influenc-
ing the performance of EDFM. Through extensive ablation
studies, we set σ = 4 and defined T as a distribution over
[0, 1] that places exponentially greater weight near t = 1,
i.e., near the data. Additionally, we adopted the precondi-
tioning technique proposed by Karras et al. (2022) for the
student network, ensuring that the network input and loss
function maintain comparable scales with unit variance,
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Algorithm 1 Training EDFM
Require: Train dataset D = {(xi)}Ni=1, noise distribu-

tion p0 := N (·;0, σ2I), time distribution T , time-
dependent weighting function λ, empirical distribu-
tion of ensemble teacher logits conditioned on data x
p1(z

x
1 |x), learning rate η, pretrained teacher network

θ, and student network ϕ
1: repeat
2: Sample x ∼ D
3: Sample zx0 ∼ p0, zx1 ∼ p1(z

x
1 |x), t ∼ T

4: Extract feature x̄ of input x from teacher θ
5: Obtain perturbed sample zxt according to (12)
6: Compute student network output uϕ(t, z

x
t , x̄)

7: Compute loss Lϕ according to (13)
8: Update parameters: ϕ← ϕ− η∇ϕLϕ

9: until ϕ is converged

while the variance of the network output is minimized. The
time-dependent weighting function λ was selected under
this principle. The training algorithm for EDFM is detailed
in Algorithm 1.

For sampling, the choice of ODE solver, the scheduling of
sampling steps, and the total number of steps proved es-
sential to performance. After thorough evaluation, we em-
ployed the Heun solver (Karras et al., 2022) and sched-
uled sampling steps to be exponentially concentrated near
the data. Because our flow matching formulation reduces
to rectified flow, it generates relatively straight trajecto-
ries toward the logits, facilitating efficient sampling with
a reduced number of network function evaluations (NFEs).
Empirically, we observed that high-quality logits can be ob-
tained with as few as two steps (equivalent to five NFEs),
even in relatively high-dimensional spaces of up to 100 di-
mensions. We emphasize here that the iterative nature of
flow matching sampling does not substantially increase the
overall sampling time. This efficiency arises because the
pretrained teacher network, which serves as a fixed feature
extractor, is executed only once per input, as the condition-
ing information remains constant throughout the sampling
iterations. The algorithm for sampling from EDFM is pre-
sented in Algorithm 2. Please refer to Appendix A.3 for
further details on the design choices of EDFM.

5. Experiments
We utilize Multi-SWAG (Wilson and Izmailov, 2020) and
Multi-IVON (Shen et al., 2024) as ensemble teachers for
image and language tasks, respectively, owing to their scal-
ability and proven effectiveness (Wilson et al., 2022). For
the image classification experiments in § 5.5, we use a
ResNet with a depth of 32, projection shortcuts, filter re-
sponse normalization, and Swish activation, as described

Algorithm 2 Sampling from EDFM
Require: Test dataset D = {(xi)}Ni=1, noise distribution

p0 := N (·;0, σ2I), number of sampling steps N , trun-
cation ϵ, sampling step schedule {1 = tN , . . . , t0 =
ϵ}, ODE solver, pretrained teacher network θ, and
trained student network ϕ

1: Sample x ∼ D
2: Sample zx0 ∼ p0
3: Extract feature x̄ of input x from teacher θ
4: z ← zx0
5: for i = N to 2 in reverse do
6: z ← ODE solver(z, ti, ti−1, uϕ(ti, z, x̄))
7: end for
8: z ← z − (t1 − t0)uϕ(t1, z, x̄)
9: Return z

in Kim et al. (2024). For the commonsense reasoning ex-
periments in § 5.6, we employ a pretrained LLaMA-2-7B
base model (Touvron et al., 2023). For details on ensemble
teacher construction, please see Appendices B.1 and B.2.

Unless specified, ‘Mean±Std’ results are reported as the
mean and standard deviation calculated over three trials
across tables. The best and second-best values are high-
lighted using bold-faced underline and underline, respec-
tively. As baselines, we include KD (Hinton et al., 2014),
EnDD (Ryabinin et al., 2021), FED (Penso et al., 2022),
and DBN (Kim et al., 2024), and the ensemble teacher. We
refer readers to Appendices B.3 and B.4 for details on eval-
uation metrics and baseline methods.

5.1. When do teacher predictions get diverse?

The existing ensemble distillation literature emphasizes the
importance of ensuring sufficiently diverse teacher predic-
tions for effective distillation (Malinin et al., 2020; Nam et
al., 2021). However, deep neural networks tend to produce
over-confident predictions on training data, making it diffi-
cult to capture the ensemble diversity of the teachers when
this data is reused during distillation. To address this, vari-
ous strategies have been employed to diversify teacher pre-
dictions. For instance, Malinin et al. (2020) employed aux-
iliary datasets, Nam et al. (2021) and Nam et al. (2022) de-
veloped diversifying perturbations, and Penso et al. (2022),
Yun et al. (2023), and Kim et al. (2024) utilized mixup aug-
mentation applied to the training data.

Building on these established conventions in the ensemble
distillation literature, we present a comprehensive analy-
sis of teacher diversity across various diversification strate-
gies for image classification tasks, including: 1) RandAug-
ment (RA; Cubuk et al., 2020) and 2) mixup (Zhang et al.,
2018), both of which are strong image augmentation tech-
niques; 3) TDiv (Nam et al., 2022), a perturbation-based di-
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Table 1. Diversity analysis of teacher predictions. We analyze
teacher diversity by computing ensemble variance decomposition,
which consists of EnsUnc, AvgUnc, and VAR. Higher VAR indi-
cates greater diversity in ensemble predictions.

Diversification Decomposition

Dataset Split RA mixup TDiv EnsUnc AvgUnc VAR (↑)

C10

TRN 0.0087 0.0069 0.0018
TRN ✓ 0.0705 0.0350 0.0355
TRN ✓ ✓ 0.1212 0.0539 0.0673
TRN ✓ 0.1278 0.0638 0.0640
TRN ✓ ✓ 0.1850 0.0902 0.0948
TRN ✓ ✓ ✓ 0.1868 0.0853 0.1014

VAL 0.0845 0.0409 0.0436
AUX 0.2680 0.1244 0.1436

versifying approach; and 4) AUX, which uses CINIC-10 as
an auxiliary dataset. To quantify diversity without relying
on ground-truth labels, we compute the ensemble variance
(VAR), with higher VAR values indicating greater diversity.
For detailed definitions of EnsUnc, AvgUnc, and VAR, we
refer readers to Appendix B.3.

Table 1 presents the diversity of ensemble teacher predic-
tions across the training (TRN) and validation (VAL) splits
of CIFAR-10/100, as well as the auxiliary (AUX) CINIC-
10 dataset. The results clearly shows that, without ex-
plicit diversification strategies, ensemble teachers produce
predictions with limited diversity on training images. We
hypothesize that this lack of teacher diversity can hinder
effective ensemble distribution distillation when these im-
ages are reused. In § 5.2, we experimentally validate this
hypothesis, demonstrating that ensemble distribution dis-
tillation improves as the teacher provides more diverse pre-
dictions through diversification strategies. In other words,
a good distillation method should capture and leverage as
much diversity as possible from the ensemble teacher.

5.2. When do ensemble distillation methods work?

In our CIFAR-10 setup, we examine the following scenar-
ios for distilling the ensemble teacher, each capturing dif-
ferent levels of teacher diversity: 1) TRN, 2) TRN w/ mixup,
3) TRN w/ mixup and RA, and 4) AUX. As shown in Ta-
ble 1, the diversity of the ensemble teacher gradually in-
creases, with VAR values of [.0018, .0355, .0948, .1436].
In the AUX setup, CINIC-10 is used as an auxiliary dataset,
with images from CIFAR-10 excluded (see Appendix B.1
for details), introducing a slight distribution shift (De Silva
et al., 2023). We also exclude TDiv from our analysis, as
its computation requires a backward pass for perturbation,
which significantly increases training costs.

Fig. 1 summarizes the results of ensemble distribution dis-
tillation using EnDD, FED, and our proposed EDFM algo-
rithms across four setups. The x-axis represents the setups

and their corresponding teacher diversity during distillation
(VAR; higher values indicate greater diversity), while the y-
axis shows the test performance and calibration of the dis-
tilled model (NLL and ECE; lower values indicate better
performance and calibration). The size of the circle mark-
ers reflects the diversity of the distilled model on the test
split (VAR; larger markers indicate greater diversity). The
VAR values are computed by sampling 30 predictions for
each, even for EnDD, which typically omits the sampling
process when computing the mean prediction.

Fig. 1 conveys a key insight into ensemble distribution dis-
tillation: to be where the diversity is. As ensemble dis-
tribution distillation methods are applied to setups where
teacher diversity becomes more prominent, they tend to
more effectively mimic the ensemble behavior of generat-
ing diverse predictions (as reflected by the increasing circle
marker sizes). However, while the student model’s ability
to replicate the teacher’s diversity improves, this does not
always lead to consistent performance gains for EnDD and
FED. For EnDD, the best performance occurs in the sec-
ond setup, while for FED, the highest performance is ob-
served in the third setup. Beyond these points, despite the
increased diversity, performance begins to decline.

Notably, our proposed EDFM approach not only shows
higher prediction diversity but also demonstrates a consis-
tent improvement in performance. As we will discuss in
§ 5.3, our method exhibits strong fidelity to the teacher;
that is, the student learns not merely to generate predictions
with high variance, but to genuinely replicate the ensemble
teacher’s behavior, thereby producing diverse predictions
in a more meaningful way. To summarize, ensemble dis-
tribution distillation only can be done effectively when the
teacher exhibits a certain level of diversity. However, sim-
ply learning to generate high variance is insufficient; the
student must genuinely mimic the ensemble teacher’s be-
havior, and we will validate this in our method.

5.3. How effective ensemble distillation methods are?

We evaluate the effectiveness of ensemble distribution dis-
tillation methods in three aspects: 1) diversity, which mea-
sures how well the student exhibits prediction diversity, a
key characteristic of the ensemble; 2) fidelity, which as-
sesses how closely the student mimics the teacher; and
3) generalization, which determines whether the student
can achieve performance on par with the ensemble teacher
across a range of tasks. The in-depth analysis of general-
ization will be discussed in §§ 5.5 and 5.6, while here we
focus on the diversity and fidelity analyses.

Diversity analysis. The operational principle of ensem-
ble methods is diversity; ensembles achieve better perfor-
mance when their individual members offer diverse predic-
tions (Krogh and Vedelsby, 1994; Dietterich, 2000), a prin-
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Figure 2. Diversity analysis. We compute the ambiguity decom-
position to assess the diversity of the distilled model’s predictions
and its contribution to the ensemble gain, as shown in the shaded
portion of each bar (AMB).

ciple that holds true even in the deep learning era (Lakshmi-
narayanan et al., 2017; Wilson and Izmailov, 2020; Ortega
et al., 2022). To this end, we compute the ensemble ambi-
guity (AMB) decomposition to assess how diverse the set
of predictions is and how much this diversity contributes
to the ensemble gain. In particular, AMB provides insights
into the performance improvement of the ensemble over
the average individual performance through ambiguity de-
composition, revealing the gain derived from diversity. For
more details, please refer to Appendix B.3.

Fig. 2 illustrates the results of our diversity analysis on the
CIFAR-10 test split. The diversity of the distilled student
increase as the distillation setup more effectively captures
the teacher’s diversity; from (A) to (D), the shaded area,
representing AMB, expands. It again highlights that en-
semble distribution distillation methods successfully learn
the ensemble behavior of generating diverse predictions,
particularly when teacher diversity is evident; in the (A)
setup, where no diversification strategies are applied, all
methods fall short of the ensemble teacher’s level of AMB,
resulting in limited performance improvements from AMB.
Notably, our EDFM not only consistently exhibits higher
diversity but also shows significant gains from that diver-
sity, as demonstrated by AMB. It clearly indicates that our
method does not simply learn to generate high-variance
predictions, but instead effectively harnesses diversity to
drive performance improvements.

Fidelity analysis. Next, we analyze the effectiveness of en-
semble distribution distillation methods from the perspec-
tive of fidelity, which quantifies how well a student model
replicates the teacher’s predictions. Since the core philoso-
phy of knowledge distillation is to encourage the student to
mimic the teacher (Ba and Caruana, 2014; Hinton et al.,
2014), measuring the degree to which the student repli-
cates the teacher is essential. While higher fidelity does
not always guarantee better generalization—an example
being the self-distillation setup of Furlanello et al. (2018),
where a student that perfectly matches the teacher can-
not surpass it—fidelity analysis remains crucial for under-
standing the underlying mechanisms, as discussed by Stan-
ton et al. (2021). To quantify teacher-student fidelity, we
compute several metrics: disagreement (AGR), total varia-
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Figure 3. Fidelity analysis. We compute DGR, TVD, KLD, JSD,
and W2 to assess how closely the distilled model’s predictions
align with those of the teacher.

tion distance (TVD), Kullback-Leibler divergence (KLD),
Jensen-Shannon divergence (JSD), and Wasserstein-2 dis-
tance (W2). Lower values for these metrics indicate that
the student’s ensemble predictions are more closely aligned
with those of the ensemble teacher. For detailed definitions
of each metric, we refer readers to Appendix B.3.

Fig. 3 illusrates the results of our fidelity analysis on the
CIFAR-10 test split. For all the metrics we measured, our
EDFM achieves higher fidelity compared to the baselines
across all setups. Notably, even when comparing distribu-
tions (rather than just the mean of ensemble predictions),
as seen withW2, EDFM demonstrates superior fidelity. It
clearly indicates that our approach effectively models the
induced distribution over categorical probabilities q(πx|x)
and closely approximates the ensemble teacher’s predictive
distribution p(y|x) in Eq. 4.

5.4. How efficient ensemble distillation methods are?

To efficiently produce ensemble predictions, Nam et al.
(2022) and Penso et al. (2022) use parallelized inference by
replicating a single test input to form a mini-batch. How-
ever, unless the neural network is extremely small, process-
ing time increases significantly as the batch size grows. On
an RTX A6000, a ResNet processes a single input (batch
size of 1) in 1.404 ms, while batch sizes of [32, 64, 128,
256] take [3.806, 6.993, 13.05, 24.68] ms, exhibiting a
near-linear increase in our CIFAR-100 setup. It suggests
inherent limits in reducing runtime when batched inference
is required for ResNet, as in FED (Penso et al., 2022).
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Figure 4. Runtime analysis on CIFAR-100 setup. Down and left
indicate better performance and cost-efficiency, with the lower-
left corner being the most desirable.

In contrast, our method performs single inference for large
backbone networks (ResNet) and parallelized inference for
smaller student networks (MLP), where the benefits of
batch inference are more pronounced. In the same CIFAR-
100 setup used for the previous analysis, processing a sin-
gle input (mini-batch size of 1) with an MLP model takes
0.053 ms, while processing batched inputs with mini-batch
sizes of [256, 384, 512, 640, 768, 1024] takes [0.101,
0.114, 0.128, 0.149, 0.182, 0.210] ms. Since the process-
ing time remains at a significantly lower cost compared to
ResNet, EDFM demonstrates a strong advantage in scal-
ing ensemble predictions through parallelized inference.
Building on this advantage, we investigated how the num-
ber of ensemble predictions in EDFM can scale within a
constrained execution time budget.

Runtime analysis. Fig. 4 illustrates the evolution of both
NLL and execution time as the number of student ensem-
bles increases. While the execution time of MultiSWA en-
sembles scales proportionally with the number of ensem-
bles, EDFM exhibits only a marginal increase in compu-
tational overhead. Although the execution time of FED
scales at a slower rate than MultiSWA, it introduces a non-
negligible overhead, and more importantly, its performance
merely improves in proportion to the increased execution
time. In contrast, with EDFM, the enhancement in en-
semble NLL closely mirrors that of the MultiSWA teacher.
This not only provides empirical evidence that EDFM ef-
fectively captures the diversity inherent in the teacher en-
semble distribution, but also underscores its practical utility
in enabling efficient fast ensembling.

5.5. Image classification tasks

We validate our proposed EDFM approach in terms of gen-
eralization through image classification experiments on CI-
FAR datasets. Since ensemble approach not only enhances
in-distribution performance but also improves robustness

Table 2. Evaluation results for image classification tasks. We
evaluate ACC, NLL, and ECE to assess how accurate and well-
calibrated the predictions are.

Dataset Method ACC (↑) NLL (↓) ECE (↓)

C10

SWA baseline (w/o distill) 0.932±0.001 0.289±0.001 0.046±0.000

Multi-SWAG teacher 0.946 0.167 0.007
KD (Hinton et al., 2014) 0.931±0.004 0.229±0.005 0.020±0.007

EnDD (Ryabinin et al., 2021) 0.937±0.001 0.228±0.004 0.023±0.001

DBN (Kim et al., 2024) 0.936±0.001 0.218±0.002 0.028±0.001

FED (Penso et al., 2022) 0.922±0.009 0.238±0.023 0.009±0.001

EDFM (ours) 0.931±0.000 0.216±0.001 0.009±0.001

C100

SWA baseline (w/o distill) 0.735±0.004 1.369±0.019 0.173±0.004

Multi-SWAG teacher 0.777 0.835 0.018
KD (Hinton et al., 2014) 0.760±0.003 0.965±0.008 0.073±0.000

EnDD (Ryabinin et al., 2021) 0.761±0.003 1.031±0.002 0.084±0.003

DBN (Kim et al., 2024) 0.757±0.001 1.002±0.004 0.098±0.001

FED (Penso et al., 2022) 0.721±0.022 1.026±0.095 0.028±0.003

EDFM (ours) 0.761±0.001 0.932±0.003 0.056±0.000

Table 3. Robustness to distribution shifts. We evaluate ACC,
NLL, and ECE to assess robustness to distribution shifts.

Dataset Method ACC (↑) NLL (↓) ECE (↓)

C10.1

SWA baseline (w/o distill) 0.859±0.001 0.631±0.007 0.100±0.000

Multi-SWAG teacher 0.875 0.386 0.020
KD (Hinton et al., 2014) 0.859±0.003 0.480±0.027 0.048±0.025

EnDD (Ryabinin et al., 2021) 0.869±0.009 0.482±0.004 0.064±0.004

DBN (Kim et al., 2024) 0.865±0.003 0.481±0.008 0.071±0.002

FED (Penso et al., 2022) 0.839±0.013 0.481±0.047 0.028±0.008

EDFM (ours) 0.858±0.000 0.455±0.000 0.034±0.002

C10.2

SWA baseline (w/o distill) 0.802±0.004 0.990±0.004 0.151±0.005

Multi-SWAG teacher 0.818 0.652 0.066
KD (Hinton et al., 2014) 0.804±0.001 0.715±0.048 0.093±0.032

EnDD (Ryabinin et al., 2021) 0.815±0.005 0.780±0.011 0.112±0.004

DBN (Kim et al., 2024) 0.808±0.001 0.781±0.001 0.118±0.001

FED (Penso et al., 2022) 0.786±0.013 0.758±0.046 0.076±0.011

EDFM (ours) 0.802±0.004 0.666±0.004 0.076±0.002

STL

SWA baseline (w/o distill) 0.789±0.002 1.005±0.008 0.159±0.002

Multi-SWAG teacher 0.807 0.615 0.055
KD (Hinton et al., 2014) 0.788±0.003 0.726±0.060 0.093±0.036

EnDD (Ryabinin et al., 2021) 0.797±0.001 0.770±0.003 0.111±0.002

DBN (Kim et al., 2024) 0.794±0.001 0.759±0.001 0.124±0.001

FED (Penso et al., 2022) 0.777±0.012 0.698±0.040 0.064±0.010

EDFM (ours) 0.787±0.001 0.691±0.006 0.074±0.006

to distribution shifts and out-of-distribution scenarios by
effectively capturing predictive uncertainty (Ovadia et al.,
2019), ensemble distribution distillation methods should
learn these strengths from the ensemble teacher. To assess
this, we evaluate our approach on CIFAR-10/100 test splits,
as well as distribution shift datasets (CIFAR-10.1, CIFAR-
10.2, and STL) and the out-of-distribution dataset (SVHN).
For more details, please refer to Appendix B.1.

Results. Table 2 shows the evaluation results on CIFAR-
10/100 test splits, clearly demonstrating the competitive
performance of our proposed EDFM.

Robustness to Distribution Shifts. Table 3 presents the
evaluation results on datasets associated with CIFAR-10.
Since these datasets share the same 10-class labeling as
CIFAR-10, we evaluate ACC, NLL, and ECE in the same
manner as the standard test split. However, a distinguish-
ing feature from the original CIFAR-10 test split is that,
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Table 4. Out-of-distribution detection. We evaluate AUROC,
TNR95, and TNR99 to assess out-of-distribution dection.

Dataset Method AUROC (↑) TNR95 (↑) TNR99 (↑)

SVHN

SWA baseline (w/o distill) 0.893±0.002 0.706±0.019 0.515±0.063

Multi-SWAG teacher 0.935 0.786 0.679
KD (Hinton et al., 2014) 0.912±0.017 0.731±0.060 0.572±0.043

EnDD (Ryabinin et al., 2021) 0.895±0.002 0.668±0.022 0.450±0.030

DBN (Kim et al., 2024) 0.907±0.003 0.740±0.011 0.605±0.009

FED (Penso et al., 2022) 0.932±0.006 0.778±0.019 0.637±0.052

EDFM (ours) 0.934±0.002 0.784±0.005 0.656±0.035

because these datasets exhibit distribution shifts, predic-
tions must not only be accurate but also well-calibrated.
Our EDFM approach clearly not only achieves competitive
ACC but also excels in NLL and ECE with wide margins,
demonstrating strong robustness to distribution shifts.

Out-of-distribution detection. Table 4 presents the evalu-
ation results for out-of-distribution detection, assessing the
model’s ability to distinguish between in-distribution and
out-of-distribution inputs using receiver operating charac-
teristic (ROC) metrics: area under the curve (AUROC)
and true negative rates at 95% and 99% true positive rate
(TNR95 and TNR99). We employ 1,000 in-distribution
images from the CIFAR-10 test split and 1,000 out-of-
distribution images from the SVHN dataset, ensuring a bal-
anced dataset to maintain the reliability of these metrics.
Our EDFM approach outperforms baselines by producing
higher entropy predictions for out-of-distribution inputs,
reflecting greater uncertainty.

5.6. Commonsense reasoning tasks

We further validate the scalability of our approach through
experiments with large language models. The challenges
of large and slow ensemble methods are amplified in mod-
ern large-scale models, where the computational burden of
performing multiple forward passes through models with
billions of parameters becomes particularly significant. In
this context, addressing the ensemble distribution distilla-
tion problem is highly valuable; it would be more appro-
priate for the ensemble model to remain in the develop-
ment phase, serving as a teacher for distillation rather than
being directly deployed. Consequently, we assess whether
our approach can effectively perform ensemble distribution
distillation from a Multi-IVON teacher, which exhibits im-
proved calibration (Shen et al., 2024; Cong et al., 2024).
For experimental details on the tasks and training specifics,
we refer readers to Appendix B.2.

Table 5 summarizes evaluation results on commonsense
reasoning tasks, including ARC-C, ARC-E, and OBQA.
The lower NLL and ECE of the Multi-IVON teacher com-
pared to the IVON baseline, as presented in the first two
rows of each group, clearly demonstrate that ensembling
with samples from Multi-IVON’s posterior distribution im-

Table 5. Evaluation results for commonsense reasoning tasks.
We evaluate ACC, NLL, and ECE to assess how accurate and
well-calibrated the predictions are.

Dataset Method ACC (↑) NLL (↓) ECE (↓)

ARC-C

IVON baseline (w/o distill) 0.710±0.011 1.874±0.167 0.246±0.009

Multi-IVON teacher 0.675 0.891 0.091
KD (Hinton et al., 2014) 0.662±0.032 1.126±0.080 0.218±0.015

EDFM (ours) 0.715±0.014 1.113±0.036 0.142±0.011

ARC-E

IVON baseline (w/o distill) 0.888±0.006 0.645±0.032 0.094±0.003

Multi-IVON teacher 0.868 0.357 0.026
KD (Hinton et al., 2014) 0.850±0.004 0.570±0.019 0.057±0.002

EDFM (ours) 0.892±0.002 0.390±0.002 0.044±0.006

OBQA

IVON baseline (w/o distill) 0.809±0.009 0.653±0.011 0.111±0.007

Multi-IVON teacher 0.794 0.514 0.032
KD (Hinton et al., 2014) 0.776±0.005 0.720±0.012 0.102±0.005

EDFM (ours) 0.818±0.010 0.537±0.005 0.046±0.004

proves calibration (a slight drop in ACC is consistent with
Cong et al. (2024), as we do not explicitly sharpen the
posterior in our experiments). The results clearly demon-
strate that our EDFM improves upon the IVON baseline
by effectively distilling the Multi-IVON teacher, produc-
ing well-calibrated predictions that significantly outper-
form the KD baseline and closely match the teacher’s cal-
ibration quality. It is worth noting that our approach still
leverages a lightweight MLP architecture for flow mod-
eling in this large language model experiment; the model
consists of three blocks with a hidden dimension of 256,
totaling just 1.6 million parameters—significantly smaller
than the 6.7 billion parameters of the LLaMA-2 backbone
and even more compact than the 4.2 million parameters re-
quired for LoRA fine-tuning. Accordingly, our approach
achieves well-calibrated predictions comparable to those of
the Multi-IVON teacher while incurring virtually no addi-
tional cost beyond a single LLaMA-2 forward pass—unlike
the teacher, which requires multiple passes.

6. Conclusion
We present a novel ensemble distribution distillation ap-
proach using flow matching, where a lightweight neural
network learns the vector field that transforms a single
model’s prediction into the predictive distribution of the
ensemble teacher. Extensive experiments demonstrate that
our flow matching approach effectively captures the di-
versity of the ensemble teacher, unlike prior works that
fail to do so, which leads to substantial improvements in
both accuracy and uncertainty calibration. It also enables
fast, parallelizable inference, significantly reducing infer-
ence costs compared to existing distillation methods, and
remains scalable even for language tasks involving modern
large language models. An intriguing avenue for future re-
search is the development of more advanced flow matching
strategies specifically tailored for ensemble distillation.

9



Ensemble Distribution Distillation via Flow Matching

Acknowledgement
We thank Byoungwoo Park for sharing his insights. This
work was partly supported by Institute of Information &
communications Technology Planning & Evaluation(IITP)
grant funded by the Korea government(MSIT) (No.RS-
2024-00509279, Global AI Frontier Lab; No.RS-2019-
II190075, Artificial Intelligence Graduate School Pro-
gram(KAIST); No.RS-2022-II220713, Meta-learning Ap-
plicable to Real-world Problems; No.RS-2022-II220184,
Development and Study of AI Technologies to Inexpen-
sively Conform to Evolving Policy on Ethics). This mate-
rial is based upon work supported by the Google Cloud Re-
search Credits program with the award GCP19980904 and
Cloud TPUs from Google’s TPU Research Cloud (TRC).

Impact Statement
This paper focuses on enhancing ensemble distillation
frameworks with generative modeling, such as flow match-
ing methods. By improving knowledge distillation through
these approaches, our method contributes to making model
compression and deployment more efficient, particularly in
resource-constrained environments. Although our method
is broadly applicable across various downstream tasks, it
does not inherently raise ethical concerns or pose direct so-
cietal impacts. Nonetheless, as with any advancement in AI
model training, the broader implications of increased effi-
ciency and accessibility in real-world applications warrant
careful consideration in future discussions.

References
Abe, Taiga et al. (2022). “Deep ensembles work, but are

they necessary?” In: Advances in Neural Information
Processing Systems 35 (NeurIPS 2022) (cit. on p. 20).

Ba, Jimmy and Rich Caruana (2014). “Do deep nets really
need to be deep?” In: Advances in Neural Information
Processing Systems 27 (NIPS 2014) (cit. on pp. 1, 3, 7).

Benton, Gregory et al. (2021). “Loss surface simplexes for
mode connecting volumes and fast ensembling”. In: Pro-
ceedings of The 38th International Conference on Ma-
chine Learning (ICML 2021) (cit. on p. 3).
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A. Ablation Study
A.1. Flow matching formulation

Mapping Gaussian noise directly to teacher logits may initially appear overly simplistic, given that logits possess a specific
geometric structure. Notably, teacher logits are invariant under scalar shifts, producing identical outputs after the softmax
transformation. Flow matching formulations can be adapted to respect this geometry. Alternatively, since logits can be
converted into probability vectors via the softmax operation, flow matching could be performed on the probability simplex
instead of the logit space. This section explores several such approaches.

Table 6. Performance of various flow matching formulations on CIFAR-10.

Space Formulation ACC (↑) NLL (↓) ECE (↓)

Probability simplex Statistical flow matching (Cheng et al., 2024) 0.929 0.244 0.019
Flow matching on the probability simplex 0.929 0.243 0.015

Logit space
Flow matching with ILR 0.931 0.218 0.011
EDM (Karras et al., 2022) 0.931 0.224 0.009
EDFM (Ours) 0.931 0.216 0.009

Flow matching on the probability simplex. Various formulations of flow matching on the probability simplex exist, such
as CatFlow (Eijkelboom et al., 2024) and Dirichlet flow matching (Stark et al., 2024). However, most of these methods
are inapplicable in our context as they require categorical (discrete) data, whereas we consider a continuous distribution
of teacher logits defined either in logit space or equivalently on the probability simplex. Statistical flow matching (Cheng
et al., 2024) is the most relevant method here, as it enables mapping from a uniform distribution to an arbitrary distribution
defined on the probability simplex. Another straightforward approach is to perform basic flow matching directly on the
probability simplex to transform a uniform distribution into the teacher logit distribution. This is feasible because the
probability simplex is a Euclidean space where interpolations between points remain within the simplex.

Despite the theoretical appeal, empirical results shown in Table 6 demonstrate that flow matching on the simplex yields
inferior performance. We attribute this to the requirement that the student network match the teacher distribution with high
precision on the simplex, whereas in logit space, minor mismatches are attenuated by the subsequent softmax operation.

Isometric log-ratio (ILR) transform. Given the shortcomings of operating directly on the probability simplex, one may
consider improvements in the logit space. Since teacher logits are invariant under scalar shifts (e.g., logits {−1.5,−2, 2}
are equivalent to {−0.5,−1, 3} post-softmax), enforcing exact matching of logits may be overly restrictive. The isometric
log-ratio (ILR) transformation from compositional data analysis offers a principled way to address this issue: it maps the
D-dimensional probability simplex to a (D − 1)-dimensional Euclidean space. By applying ILR to teacher logits, flow
matching can be trained in RD−1. Nonetheless, empirical results (Table 6) indicate negligible differences compared to the
baseline, likely because the dimensionality reduction by one does not substantially affect the model’s expressiveness in
relatively high-dimensional settings.

Diffusion models. Aside from flow matching, diffusion models present an alternative framework to model the teacher
logit distribution. Exploring such generative approaches for ensemble distribution distillation constitutes a promising
future direction. We implemented the EDM model (Karras et al., 2022) to train the student network and compared it to
our EDFM method. On the CIFAR-10 dataset, EDM achieved an NLL of 0.224 using 35 NFEs, whereas EDFM attained
a better NLL of 0.216 with only 5 NFEs (Table 6). Notably, EDM’s performance deteriorated significantly with 5 NFEs,
achieving an NLL of 0.370, underscoring the superior efficiency and effectiveness of EDFM.

In summary, applying flow matching directly to pre-softmax logits yields superior results compared to modeling on post-
softmax categorical probabilities. This improvement may be explained by the distortion introduced by the softmax transfor-
mation, which can obscure important scale information intrinsic to the logits. For example, the unnormalized density, given
by the log-sum-exp of logits (Duvenaud et al., 2020), may be lost after softmax, thereby negatively impacting ensemble
distribution distillation.
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A.2. Network architecture of student model

We performed an ablation study to evaluate the impact of network architectures of varying scales on performance. The
architectures considered include 1) the denoising MLP (Li et al., 2024) already employed in EDFM, 2) the U-Net (Ron-
neberger et al., 2015), which is commonly used in flow matching for image synthesis and was also previously adopted in
DBN (Kim et al., 2024), and 3) Transformer (Vaswani et al., 2017) models.

Table 7. Performance and efficiency of EDFM with various network architectures on CIFAR-10.

Architecture # of Param. Time (µs) ACC (↑) NLL (↓) ECE (↓)

MLP 0.14M 39 0.929 0.229 0.013
MLP (main text) 0.33M 68 0.931 0.216 0.009
MLP 0.70M 132 0.930 0.218 0.011
Transformer 0.36M 204 0.930 0.218 0.011
Transformer 1.31M 724 0.931 0.213 0.007
U-Net 0.44M 653 0.929 0.222 0.012

The results, summarized in Table 7, reveal that larger Transformers (with 1.31 million parameters) achieve improvements
in NLL and ECE metrics but are not cost-effective, as reflected by the number of parameters and wall-clock time, where
the latter denotes the time required to generate 256 ensemble predictions via batched inference. In contrast, the U-Net
architecture underperforms relative to both the MLP and Transformer, which is likely attributable to its two-dimensional
spatial processing being ill-suited for modeling logits. These findings suggest that the MLP architecture strikes a favorable
balance, delivering sufficient accuracy for ensemble distribution distillation while offering a significant latency advantage.

A.3. Design choice of EDFM

In this section, we elaborate on specific design choices of EDFM presented in Algorithms 1 and 2.

Time distribution T . We swept over uniform, beta, and exponential distributions to find the most suitable T , where the
probability density functions are given in Table 8. The support of T is set to [ϵ, 1] instead of [0, 1] to avoid numerical
instability.

Table 8. PDFs of distributions.

Distribution PDF fT (t)

Uniform fT (t) = 1

Beta fT (t;α, β) = Γ(α+ β)/(Γ(α)Γ(β))tα−1(1− t)β−1

Exponential fT (t;α) = αt logα/(α1−ϵ − 1)

The PDF of the exponential distribution is slightly modified from the conventional one to account for the support [ϵ, 1] and
an arbitrary base. The choice of beta and exponential distributions was inspired by the well-known lesson in the field of
diffusion models (Karras et al., 2022) that the network should learn more near the data. Specifically, the exponential dis-
tribution allocates exponentially more samples as t grows, while the beta distribution achieves a peak somewhere between
t = 0 and t = 1. We assigned the peak to be near the data by setting α = 5 and β = 2. For the exponential distribution,
we set α = 3. The truncation ϵ was set to 0.001.

Experiment results shown in Table 9 indicate that the beta distribution achieved better results in terms of ECE, while
performing on par with the exponential distribution on other metrics. This motivates further explorations for even better
options, possibly inspired by recent progress in flow matching (Lee et al., 2024; Kim et al., 2025). We leave this as future
work.
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Table 9. Ablation study on time distribution.

Dataset Time distribution ACC (↑) NLL (↓) ECE (↓)

C10 Uniform 0.931 0.219 0.011
Beta 0.931 0.216 0.008
Exp. (Ours) 0.931 0.216 0.009

C100 Uniform 0.761 0.966 0.066
Beta 0.760 0.932 0.039
Exp. (Ours) 0.761 0.932 0.056

Time-dependent weighting function λ. The time-dependent weighting function λ was determined according to the
preconditioning technique introduced in EDM (Karras et al., 2022). Specifically, in EDM, the authors first let the neural
network predict the denoiser h(xt, t), namely x-prediction, and controlled the scale of the network input, output, and the
weighting function of the loss so that the network input and the loss function maintain unit variance, and the variance of
the network output is minimized.

Table 10. Comparing between x and v predictions for EDFM.

Dataset Prediction type ACC (↑) NLL (↓) ECE (↓)

C10 x-pred 0.931 0.234 0.024
v-pred (Ours) 0.931 0.216 0.009

C100 x-pred 0.760 1.031 0.090
v-pred (Ours) 0.761 0.932 0.056

However, as shown in Table 10, we found that directly predicting the velocity, namely v-prediction, performs better than x-
prediction for EDFM. Thus, although we followed the principles suggested in EDM, our preconditioning slightly deviates
from the original.

For completeness, we present the derivation for our preconditioning. The student network accepts three inputs: perturbed
sample zx

t , time t, and embedding from the teacher network Emb(x). Two of these three inputs are rescaled to cin(t)z
x
t ,

ctime(t) before being fed into the network. The embedding Emb(x) is left invariant as it already maintains stable variance,
after being processed by the teacher network.

We set ctime(t) = log (1000(1− t) + ϵ)/4, where ϵ is a small number 10−12 to avoid numerical instability. This was
inspired by the original formulation of log t/4, and the transformation t→ 1000(1− t) was introduced to match the scales.

Then we added a skip connection to the output of the student network Fϕ:

Dϕ(z
x
t ) = cskip(t)z

x
t + cout(t)Fϕ(cin(t)z

x
t ) (14)

which is then used to compute the loss function

Et,zx
0 ,z

x
1

[
λ(t)∥Dϕ(z

x
t )− (zx

1 − zx
0)∥2

]
. (15)

Rearranging the terms results in

Et,zx
0 ,z

x
1

[
λ(t)

cout(t)2
∥(tcskip(t)− 1)zx

1 + ((1− t)cskip(t) + 1)zx
0 + Fϕ(cin(t)z

x
t )∥2

]
. (16)

We want the network input, and loss function to maintain unit variance across different time t, while the variance of the

16



Ensemble Distribution Distillation via Flow Matching

network output is minimized. This means that

Varzx
0 ,z

x
1
[cin(t)z

x
t ] = Varzx

0 ,z
x
1
[cin(t)(tz

x
1 + (1− t)zx

0)] = 1 (17)

cskip(t) = argmin
cskip(t)

Varzx
0 ,z

x
1
[(tcskip(t)− 1)zx

1 + ((1− t)cskip(t) + 1)zx
0 ] (18)

cout(t) = Varzx
0 ,z

x
1
[(tcskip(t)− 1)zx

1 + ((1− t)cskip(t) + 1)zx
0 ] (19)

λ(t)/cout(t)
2 = 1 (20)

Note that as zx
0 ∼ N (·;0, σ2I), Var[zx

0 ] = σ2. Also, we let Var[zx
1 ] = σ2

data. Evaluating for cin(t), cout(t), cskip(t), λ(t)
under this principle yields

cin(t) =
1√

t2σ2
data + (1− t)2σ2

(21)

cout(t) =
σσdata√

t2σ2
data + (1− t)2σ2

(22)

cskip(t) =
tσ2

data − (1− t)σ2

t2σ2
data + (1− t)2σ2

(23)

λ(t) =
σ2σ2

data

t2σ2
data + (1− t)2σ2

(24)

ODE solver and sampling step scheduling For ODE solver and sampling step scheduling, we ablated between Euler,
Heun solvers (Karras et al., 2022) and uniform, exponential scheduling. For N steps of sampling, the sampling steps are
{i/N}Ni=0 for uniform scheduling and {(1 − αi)/(1 − αN )}Ni=0 for exponential scheduling. For exponential scheduling,
we set α = 0.7 for CIFAR-10 and α = 0.5 for CIFAR-100. As Fig. 5 indicate, Heun solvers with exponential scheduling
achieved the best NLL at 5 sampling steps, which amounts to 7 NFEs for Heun solver. All experiment results presented in
the main paper were obtained under this configuration.
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Figure 5. Ablation study on ODE solver and sampling step scheduling.
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B. Experimental details
B.1. Image classification tasks

Datasets. Our experiments on image classification tasks utilize the following datasets:

• CIFAR-10/100 (Krizhevsky and Hinton, 2009): It consists of 40,960 training images, 9,040 validation images, and
10,000 test images, each with a resolution of 32 × 32 × 3 across 10/100 classes. As there is no officially predefined
validation split, we manually partitioned the 50,000 training examples into 40,960 for training and 9,040 for validation.
The datasets are publicly available at http://www.cs.toronto.edu/~kriz/cifar.html under unspecified license.

• CINIC-10 (Darlow et al., 2018): It serves as an auxilairy train split consisting of 210,000 images with a resolution
of 32 × 32 × 3. The dataset is publicly available at https://github.com/BayesWatch/cinic-10 under MIT license. The
original dataset contains of a total of 270,000 images, from which we dropped 60,000 CIFAR-originated images to
avoid dataset leakge in our CIFAR-10/100 experiments.

• CIFAR-10.1 (Recht et al., 2018): It serves as a test split consisting of 2,000 images with a resolution of 32× 32× 3.
The dataset is publicly available at https://github.com/modestyachts/CIFAR-10.1 under MIT license.

• CIFAR-10.2 (Lu et al., 2020): It serves as a test split consisting of 2,000 images with a resolution of 32 × 32 × 3.
The dataset is publicly available at https://github.com/modestyachts/cifar-10.2 under unspecified license.

• STL (Coates et al., 2011): It serves as a test split consisting of 7,200 images with a resolution of 32 × 32 × 3. The
dataset is publicly available at https://cs.stanford.edu/~acoates/stl10/ under unspecified license. The original test split
consists of 8,000 images with a resolution of 96×96×3, which we resized to 32×32×3. We excluded the ‘monkey’
class, as it is not present in CIFAR, removing 800 images in the process. Furthermore, the ‘car’ class was mapped to
the ‘automobile’ class to match CIFAR’s class definitions.

• SVHN (Netzer et al., 2011): It serves as an out-of-distribution split consisting of 73, 257 training and 26, 032
test images with colored number digit (0-9) with a resolution of 32 × 32 × 3 The dataset is publicly available at
http://ufldl.stanford.edu/housenumbers/ under unspecified license.

Optimization details. We provide details on the construction of the ensemble teacher and the training procedure for
distilled students in the image classification experiments.

• Multi-SWAG teacher: Multi-SWAG teachers were obtained by adding diagonal covariances to each of 10 different
SWA models. Each SWA model was pretrained for 800 epochs, followed by 200 epochs of SWA training with
frequency 1. Using SGD optimizer with momentum 0.9, cosine decay schedule was applied for pretraining, in which
the learning rate evolves from 0.1 to 0.01 and remains constant of 0.01 whilst SWA training. Batch size is 256.

• KD: KD was trained using SGD optimizer with momentum 0.9, learning rate 0.1 with cosine decay schedule, 1000
epochs, batch size 256. Unlike CIFAR-10, for models trained with CIFAR-100, learning rate was warmed up from 0
to 0.1 for the first 5 steps. Number of teachers to produce the target prediction is 30.

• EnDD: EnDD was trained with almost identical configuration with that of KD, except that the learning rate is de-
creased to 0.05.

• FED: For FED, we strictly followed the configurations provided in the original paper (Penso et al., 2022), except that
we increased the number of epochs from 200 to 250 for coherence with other methods. Training further than 250
epochs showed no improvements in performance.

• DBN: Like FED, we strictly followed the configurations provided in the original paper (Kim et al., 2024), except that
we increased the number of epochs from 800 to 1000 for coherence with other methods.

• EDFM: We used the denoising MLP architecture with four blocks and a hidden dimension of 256 for CIFAR-10 and
512 for CIFAR-100. The model employs a student network distilled with KD using the MultiSWAG teachers as its
backbone and takes its output embedding as input. Evaluation was conducted with seven NFEs, and training was
performed using the SGD optimizer with a batch size of 256, momentum of 0.9, weight decay of 5e-04, learning rates
of 1e-04 for CIFAR-10 and 3e-04 for CIFAR-100, and a cosine decay learning rate schedule over 1,000 epochs.
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B.2. Commonsense reasoning tasks

Datasets. Our experiments on commonsense reasoning tasks build upon the work of Cong et al. (2024). Following their
training and evaluation recipes, all datasets are composed exclusively of multiple-choice questions with four options:

• ARC-Challenge (ARC-C; Clark et al., 2018): It consists of 1,117 questions for training and 295 questions for
evaluation, publicly available at https://huggingface.co/datasets/allenai/ai2_arc under CC-BY-SA-4.0 license.

• ARC-Easy (ARC-E; Clark et al., 2018): It consists of 2,241 questions for training and 567 questions for evaluation,
publicly available at https://huggingface.co/datasets/allenai/ai2_arc under CC-BY-SA-4.0 license.

• OpenBookQA (OBQA; Mihaylov et al., 2018): It consists of 4,957 questions for training and 500 questions for
evaluation, publicly available at https://huggingface.co/datasets/allenai/openbookqa under unspecified license.

Optimization details. We provide details on the construction of the ensemble teacher and the training procedure for
distilled students in the commonsense reasoning experiments.

• Multi-IVON teacher: We obtained the Multi-IVON teacher using the official codebase from Cong et al. (2024),
which is available at https://github.com/team-approx-bayes/ivon-lora under unspecified license. More specifically,
it involves performing LoRA fine-tuning on the pretrained LLaMA-2-7B model, which is publicly available at
https://huggingface.co/meta-llama/Llama-2-7b under the Meta license1, using the IVON optimizer (Shen et al., 2024).
Using their configurations, we trained 10 IVON models with different random seeds and constructed the Multi-IVON
teacher, which generates a total of 100 logits by extracting 10 logits from each individual model.

• KD: We fine-tuned the pretrained LLaMA-2-7B weights using the KD objective, as defined in Eq. 37, with the Multi-
IVON teacher. After several attempts, we found that effective distillation requires not only applying LoRA to the
query and value weights of the attention layers but also training the classification head. As a result, the number of
trainable parameters is 4,194,304, which is 0.062% of the total 6,742,609,920 parameters. Moreover, the KD objective
alone was insufficient for stable learning in our commonsense reasoning experiments. Therefore, as in Hinton et al.
(2014), we combined the KD objective with a cross-entropy loss using ground-truth labels, weighted at 0.5. The
fine-tuning was carried out using the Adam optimizer with a batch size of 4, a maximum sequence length of 320, a
learning rate of 3e-05, and a linear decay learning rate schedule over 50,000 steps.

• EDFM: For flow modeling, we used the denoising MLP architecture with three blocks and a hidden dimension of
256, totaling 1,639,056 parameters. The model employs one ensemble component of the Multi-IVON teacher as its
backbone and takes its output embedding as input. Evaluation was conducted with three NFEs, and training was
performed using the SGD optimizer with a batch size of 256, momentum of 0.9, a learning rate of 1e-04, and a cosine
decay learning rate schedule over 50,000 steps.

B.3. Evaluation metrics

Classification accuracy (ACC), is a metric used to evaluate the performance of a classification model by computing the
proportion of correct predictions. Let yn be the true label, p(k)

n the predicted probability for class k for the nth sample, and
N the total number of samples to be evaluated. We then compute ACC as follows, where [·] denotes the Iverson bracket:

ACC =
1

N

N∑
n=1

[
yn = argmax

k
p(k)
n

]
. (25)

Negative log-likelihood (NLL), also known as cross-entropy loss in classification tasks, is another important metric used
for both training and evaluating classification models. It measures how well the predicted probability distribution matches
the true labels. Let yn be the true label, p(k)

n the predicted probability for class k for the nth sample, and N the total number
of samples to be evaluated. We then compute NLL as follows:

NLL = − 1

N

N∑
n=1

log p(yn)
n . (26)

1https://ai.meta.com/llama/license/
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Expected calibration error (ECE; Pakdaman Naeini et al., 2015), is a metric that evaluates how well a predicted
probabilities correspond to the true likelihood of correct predictions; a well-calibrated model outputs probabilities that
closely align with the observed frequency of correctness. Let yn be the true label, p(k)

n the predicted probability for class
k for the nth sample, and N the total number of samples to be evaluated. The samples are partitioned into B bins based on
the maximum predicted probability, maxk p

(k)
n , where Bb and |Bb| denote the indices and count of samples in the bth bin,

respectively. For b = 1, ..., B, the observed accuracy accb and the average confidence confb are computed as follows:

accb =
1

|Bb|
∑
n∈Bb

[
yn = argmax

k
p(k)
n

]
and confb =

1

|Bb|
∑
n∈Bb

max
k

p(k)
n . (27)

We then compute ECE as follows:

ECE =

B∑
b=1

|Bb|
N
· |accb − confb|. (28)

Ensemble ambiguity (AMB), is a metric used to measure the diversity of ensemble predictions. Let yn be the true label,
z
(k)
m,n and p

(k)
m,n the logit and categorical probability for class k predicted by the mth ensemble member for the nth sample,

M the ensemble size, and N the total number of samples to be evaluated. We then compute AMB as follows:

AMB =
1

NM

N∑
n=1

M∑
m=1

K∑
k=1

p̄(k)
n log

p̄
(k)
n

p
(k)
m,n

, (29)

where p̄ denotes a normalized geometric mean of categorical probability here,

p̄(k)
n =

q̄
(k)
n∑K

j=1 q̄
(j)
n

with q̄(k)
n =

M∏
m=1

(
p(k)
m,n

)1/M
, for k = 1, ...,K. (30)

We also have the following generalized ambiguity decomposition (Wood et al., 2023), which suggests that to minimize
ensemble loss, ensemble ambiguity should increase while average loss decreases:

− 1

N

N∑
n=1

log softmax(yn)

(
1

M

M∑
m=1

zm,n

)
︸ ︷︷ ︸

ensemble loss (EnsLoss)

= − 1

M

M∑
m=1

1

N

N∑
n=1

log softmax(yn)(zm,n)︸ ︷︷ ︸
average loss (AvgLoss)

−AMB.
(31)

In Fig. 2, we compute the ambiguity decomposition after applying temperature scaling (Guo et al., 2017), using the op-
timal temperature obtained by minimizing EnsNLL. This approach offers a more accurate comparison, as EnsNLL uses
ensembled logits instead of ensembled probabilities. When a logit shift occurs for each ensemble member, the probability
ensemble remains unchanged, while the logit ensemble can vary.

Ensemble variance (VAR), is another metric used to measure the diversity of ensemble predictions. Let p(k)
m,n be the

categorical probability for class k predicted by the mth ensemble member for the nth sample, M the ensemble size, and N
the total number of samples to be evaluated. We then compute VAR as follows:

VAR =
1

N

N∑
n=1

K∑
k=1

Variance
m=1,...,M

[
p(k)
m,n

]
(32)

We also have the following uncertainty decomposition (Abe et al., 2022), which suggests that the variance quantifies the
extent to which predictive uncertainty increases after ensembling:

1

N

N∑
n=1

[
1−

K∑
k=1

(
p̄(k)
n

)2]
︸ ︷︷ ︸

ensemble uncertainty (EnsUnc)

=
1

NM

N∑
n=1

M∑
m=1

[
1−

K∑
k=1

(
p(k)
m,n

)2]
︸ ︷︷ ︸

average uncertainty (AvgUnc)

+VAR.
(33)
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Agreement (AGR), is a commonly used metric in classification tasks to measure how often two predictions match each
other. Let p(k)

n and q
(k)
n be the two categorical probabilities for class k predicted for the nth sample, and N the total number

of samples to be evaluated. We then compute AGR as follows:

AGR =
1

N

N∑
n=1

[
argmax

k
p(k)
n = argmax

k
q(k)
n

]
(34)

Total variation distance (TVD), is a metric that measures the difference between two probability distributions. It quan-
tifies the maximum discrepancy in probability mass between them. p(k)

n and q
(k)
n be the two categorical probabilities for

class k predicted for the nth sample, and N the total number of samples to be evaluated. We then compute TVD as follows:

TVD =
1

2N

N∑
n=1

K∑
k=1

∣∣∣p(k)
n − q(k)

n

∣∣∣ (35)

Wasserstein-2 distance (W2), measures the distance between two probability distributions by quantifying the optimal
cost of transporting one distribution to another. Fréchet Inception Distance (FID) (Heusel et al., 2017), a widely used
metric in generative models literature, is also a specific instance of W2. Inspired by this, we also evaluated the fidelity
of generated logits to teacher logits by measuring Wasserstein-2 distance between the two distributions. Let P and Q be
two discrete probability distributions with support {x1, . . . , xn} and {y1, . . . , ym} respectively, so that P =

∑n
i=1 piδxi

and Q =
∑m

j=1 qjδyj
where pi, qj are probability masses and δx Dirac delta function. We then compute Wasserstein-2

distance between two discrete distributions as:

W2(P,Q) =

(
inf

γ∈Γ(P,Q)

n∑
i=1

m∑
i=1

γi,j∥xi − yj∥2
) 1

2

(36)

where γi,j is the transport plan meaning how much mass from pi to qj , Γ(P,Q) is the set of all possible valid transport
plans that satisfy the marginal constraint

∑
j γi,j = pi,

∑
i γi,j = qi. Evaluating this involves linear programming, and can

efficiently be solved using Hungarian algorithm. Note thatW2 distance differs from TVD, in that it measures the similarity
between the whole predictive distributions, where as TVD only compares their means.

B.4. Ensemble distillation methods

Knowledge distillation (KD; Hinton et al., 2014) is considered the simplest method for transferring knowledge from a
large and complex teacher model to a smaller student model. The training objective for knowledge distillation is given as
follows:

LKD(ϕ) = H
(
p̄, qϕ

)
=

1

M

M∑
m=1

H(pm, qϕ), (37)

which simply is the cross-entropy loss widely used in classification tasks. One thing that differs is, that it is typical to
soften (or harden) the teacher logits by dividing them with a temperature T , for better performance.

Ensemble distribution distillation (EnDD; Malinin et al., 2020; Ryabinin et al., 2021) assumes that the categorical
predictions from the ensemble teacher follow a Dirichlet distribution. In other words, the induced distribution in Eq. 4
is assumed to be Dirichlet, i.e., p1, ...,pM ∼ q(πx|x) = Dir(β), where the concentration parameter β is estimated in
closed-form using the approximate maximum likelihood procedure (Minka, 2000):

β(k) ≈ p̄(k) · K − 1

2
· 1∑K

j=1 p̄
(j) · (log p̄(j) − log p

(j)
)

for k = 1, ...,K, (38)

where p̄ = 1
M

∑M
m=1 pm and log p = 1

M

∑M
m=1 log pm are computed over M observations p1, ...,pM . Then, a student

Drichlet Prior Network (DPN; Malinin and Gales, 2018), which models qϕ(πx|x) = Dir(αϕ), can be trained by minimiz-
ing the KL divergence between two Dirichlet distributions Dir(β) and Dir(αϕ). While the seminal work of Malinin et al.
(2020) originally minimized the forward KL divergence, DKL(Dir(β) || Dir(αϕ)), subsequent research by Ryabinin et al.
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(2021) showed that minimizing the reverse KL divergence, DKL(Dir(αϕ) || Dir(β)), improves training stability. They
also constrained the concentration parameters to be greater than one by α̂ϕ ← αϕ +1 and β̂ ← β+1, to further enhance
stability. Accordingly, we adopted the loss function proposed by Ryabinin et al. (2021) to train the EnDD baseline:

LEnD2(ϕ) = Eq∼Dir(α̂ϕ) [H (p̄, q)]︸ ︷︷ ︸
reconstruction term

+
1∑K

k=1 β̂
(k)
·DKL (Dir(α̂ϕ) || Dir(1))︸ ︷︷ ︸

prior term

.
(39)

During test time, we compute the categorical probabilities as the mean of the student Dirichlet distribution, which is given
by Eq∼Dir(α̂ϕ)

[
q(k)

]
= α̂

(k)
ϕ /

∑K
j=1 α̂

(j)
ϕ for k = 1, ...,K. Notably, this is equivalent to applying the softmax operation

to the DPN output, making the inference procedure identical to standard softmax-based classification neural networks.

Functional ensemble distillation (FED; Penso et al., 2022) aims to distill the whole distribution of predictions from
the ensemble teacher, unlike previous approaches that are capable only of predicting the mean of the teacher predictions.
Specifically, it proposed to minimize the maximum mean discrepancy between the predictions produced by the teachers and
predictions produced by student. Enabling the student network to be a generative model that approximates the ensemble
teacher distribution, FED has advantages over tasks that require covariance between predictions. As EDFM also proposes
to distill ensemble teacher distribution via flow matching, FED is the most alike approach to ours among other baselines.

Diffusion bridge network (DBN; Kim et al., 2024) adopted I2SB, an image reconstruction algorithm based on Diffusion
Schrödinger Bridge to map predictions of a single teacher model to the mean of predictions of ensemble teachers. Although
DBN proposed a fast ensembling algorithm based on a concurrent generative model, it fundamentally deviates from EDFM
in that it does not distill the whole ensemble distribution.

22


	Introduction
	Preliminaries
	Related Work
	Approach
	Flow matching in logit space
	Student network
	Training and inference

	Experiments
	When do teacher predictions get diverse?
	When do ensemble distillation methods work?
	How effective ensemble distillation methods are?
	How efficient ensemble distillation methods are?
	Image classification tasks
	Commonsense reasoning tasks

	Conclusion
	Ablation Study
	Flow matching formulation
	Network architecture of student model
	Design choice of EDFM

	Experimental details
	Image classification tasks
	Commonsense reasoning tasks
	Evaluation metrics
	Ensemble distillation methods


