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ABSTRACT

Unsupervised representation learning presents new opportunities for advanc-
ing Quantum Architecture Search (QAS) on Noisy Intermediate-Scale Quantum
(NISQ) devices. QAS is designed to optimize quantum circuits for Variational
Quantum Algorithms (VQAs). Most QAS algorithms tightly couple the search
space and search algorithm, typically requiring the evaluation of numerous quan-
tum circuits, resulting in high computational costs and limiting scalability to larger
quantum circuits. Predictor-based QAS algorithms mitigate this issue by estimat-
ing circuit performance based on structure or embedding. However, these meth-
ods often demand time-intensive labeling to optimize gate parameters across many
circuits, which is crucial for training accurate predictors. Inspired by the classi-
cal neural architecture search algorithm Arch2vec, we investigate the potential of
unsupervised representation learning for QAS without relying on predictors. Our
framework decouples unsupervised architecture representation learning from the
search process, enabling the learned representations to be applied across various
downstream tasks. Additionally, it integrates an improved quantum circuit graph
encoding scheme, addressing the limitations of existing representations and en-
hancing search efficiency. This predictor-free approach removes the need for large
labeled datasets. During the search, we employ REINFORCE and Bayesian Opti-
mization to explore the latent representation space and compare their performance
against baseline methods. Our results demonstrate that the framework efficiently
identifies high-performing quantum circuits with fewer search iterations.

1 INTRODUCTION

Quantum Computing (QC) has made significant progress over the past decades. Advances in quan-
tum hardware and new quantum algorithms have demonstrated potential advantages (Stein et al.,
2023) over classical computers in various tasks, such as image processing (Wang et al., 2022), rein-
forcement learning (Skolik et al., 2022), knowledge graph embedding (Ma et al., 2019), and network
architecture search (Zhang et al., 2022; Giovagnoli et al., 2023; Du et al., 2022). However, the scale
of quantum computers is still limited by environmental noise, which leads to unstable performance.
These noisy intermediate-scale quantum (NISQ) devices lack fault tolerance, which is not expected
to be achieved in the near future (Preskill, 2018). The variational quantum algorithm (VQA), a hy-
brid quantum algorithm that utilizes quantum operations with adjustable parameters, is considered
a leading strategy in the NISQ era (Cerezo et al., 2021). In VQA, the parameterized quantum cir-
cuit (PQC) with trainable parameters is viewed as a general paradigm of quantum neural networks
and has achieved notable success in quantum machine learning. These parameters control quantum
circuit operations, adjusting the distribution of circuit output states, and are updated by a classical
optimizer based on a task-specific objective function. Although VQA faces challenges such as Bar-
ren Plateaus (BP) and scalability issues, it has demonstrated the potential to improve performance
across various domains, including image processing, combinatorial optimization, chemistry, and
physics (Pramanik et al., 2022; Amaro et al., 2022; Tilly et al., 2022). One example of a VQA is the
variational quantum eigensolver (VQE) (Peruzzo et al., 2014; Tilly et al., 2022), which approximates
the ground state and offers flexibility for quantum machine learning. We are considering using VQE
to evaluate the performance of certain quantum circuits.

Unsupervised representation learning seeks to discover hidden patterns or structures within unla-
beled data, a well-studied problem in computer vision research (Radford et al., 2015). One common
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approach is the autoencoder, which is effective for feature representation. It consists of an encoder
and decoder, which first maps images into a compact feature space and then decodes them to recon-
struct similar images. Beyond images, autoencoders can also learn useful features from graphs, such
as encoding and reconstructing directed acyclic graphs (DAGs) or neural network architectures (Yan
et al., 2020; Zhang et al., 2019; Pan et al., 2018; Wang et al., 2016). In most research, architecture
search and representation learning are coupled, which results in inefficient searches heavily depen-
dent on labeled architectures that require numerous evaluations. The Arch2vec framework aims to
decouple representation learning from architecture search, allowing downstream search algorithms
to operate independently (Yan et al., 2020). This decoupling leads to a smooth latent space that
benefits various search algorithms without requiring extensive labeling.

Quantum architecture search (QAS) or quantum circuit architecture search is a framework for de-
signing quantum circuits efficiently and automatically, aiming to optimize circuit performance (Du
et al., 2022). Various algorithms have been proposed for QAS (Zhang et al., 2022; Du et al., 2022;
Zhang et al., 2021; He et al., 2023a; Giovagnoli et al., 2023). However, most algorithms combine
the search space and search algorithm, leading to inefficiency and high evaluation costs. The effec-
tiveness of the search algorithm often depends on how well the search space is defined, embedded,
and learned. Finding a suitable circuit typically requires evaluating different architectures many
times. Although predictor-based QAS He et al. (2023a) can separate representation learning from
the search algorithm, it often relies on labeling different architectures via evaluation, and the training
performance depends heavily on the quantity and quality of evaluations and the embedding. In this
work, we are inspired by the idea of decoupling, and we aim to conduct QAS without labeling. We
seek to explore whether decoupling can embed quantum circuit architectures into a smooth latent
space, benefiting predictor-free QAS algorithms.We summarise our contributions as follows:

• We have successfully incorporated decoupling into unsupervised architecture representa-
tion learning within QAS, significantly improving search efficiency and scalability. By
applying REINFORCE and Bayesian optimization directly to the latent representation, we
eliminate the need for a predictor trained on large labeled datasets, thereby reducing pre-
diction uncertainty.

• Our proposed quantum circuit encoding scheme overcomes limitations in existing repre-
sentations, enhancing search performance by providing more accurate and effective em-
beddings.

• Extensive experiments on quantum machine learning tasks, including quantum state prepa-
ration, max-cut, and quantum chemistry (Liang et al., 2019; Poljak & Rendl, 1995; Tilly
et al., 2022), confirm the effectiveness of our framework. The pre-trained quantum archi-
tecture embeddings significantly enhance QAS across these applications.

2 RELATED WORK

Unsupervised Graph Representation Learning. Graph data is becoming a crucial tool for un-
derstanding complex interactions between real-world entities, such as biochemical molecules (Jiang
et al., 2021), social networks (Shen et al., 2023), purchase networks from e-commerce platforms
(Li et al., 2021), and academic collaboration networks (Newman, 2001). Graphs are typically rep-
resented as discrete data structures, making it challenging to solve downstream tasks due to large
search spaces. Our work focuses on unsupervised graph representation learning, which seeks to
embed graphs into low-dimensional, compact, and continuous representations without supervision
while preserving the topological structure and node attributes. In this domain, approaches such
as those proposed by Perozzi et al. (2014); Wang et al. (2016); Grover & Leskovec (2016); Tang
et al. (2015) use local random walk statistics or matrix factorization-based objectives to learn graph
representations. Alternatively, methods like Kipf & Welling (2016); Hamilton et al. (2017) recon-
struct the graph’s adjacency matrix by predicting edge existence, while others, such as Veličković
et al. (2018); Sun et al. (2019); Peng et al. (2020), maximize the mutual information between local
node representations and pooled graph representations. Additionally, Xu et al. (2019) investigate
the expressiveness of Graph Neural Networks (GNNs) in distinguishing between different graphs
and introduce Graph Isomorphism Networks (GINs), which are shown to be as powerful as the
Weisfeiler-Lehman test (Leman & Weisfeiler, 1968) for graph isomorphism. Inspired by the suc-
cess of Arch2vec (Yan et al., 2020), which employs unsupervised graph representation learning for

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

classical neural architecture search (NAS), we adopt GINs to injectively encode quantum architec-
ture structures, as quantum circuit architectures can also be represented as DAGs.

Quantum Architecture Search (QAS). As discussed in the previous section, PQCs are essential
as ansatz for various VQAs (Benedetti et al., 2019). The expressive power and entangling capacity
of PQCs play a crucial role in their optimization performance (Sim et al., 2019). Poorly designed
ansatz can suffer from limited expressive power or entangling capacity, making it difficult to reach
the global minimum for an optimization problem. Moreover, such ansatz may be more prone to noise
(Stilck França & Garcia-Patron, 2021), inefficiently utilize quantum resources, or lead to barren
plateaus that hinder the optimization process (McClean et al., 2018; Wang et al., 2021). To address
these challenges, QAS has been proposed as a systematic approach to identify optimal PQCs. The
goal of QAS is to efficiently and effectively search for high-performance quantum circuits tailored
to specific problems, minimizing the loss functions while adhering to constraints such as hardware
qubit connections, native quantum gate sets, quantum noise models, training loss landscapes, and
other practical considerations. Quantum architectures share many properties with neural network
architectures, such as hierarchical, directed, and acyclic structures. As a result, QAS methods have
been heavily inspired by techniques from NAS. Specifically, approaches such as greedy algorithms
(Mitarai et al., 2018; Tang et al., 2021), evolutionary or genetic methods (Zhang & Zhao, 2022;
Ding & Spector, 2022), RL-based engines (Kuo et al., 2021; Ostaszewski et al., 2021), Bayesian
optimization (Duong et al., 2022), and gradient-based methods (Zhang et al., 2022) have all been
employed to discover improved PQCs for VQAs. However, these methods require the evaluation
of numerous quantum circuits, which is both time-consuming and computationally expensive. To
mitigate this issue, predictor-based approaches (Zhang et al., 2021; He et al., 2023b) have been
introduced, but they also face limitations. These approaches rely on large sets of labeled circuits
to train predictors with generalized capabilities and introduce additional uncertainty into the search
process, necessitating the reevaluation of candidate circuits. In this work, we propose a framework
aimed at further addressing these challenges.

3 QAS WITH UNSUPERVISED REPRESENTATION LEARNING

(a) Architecture encoding scheme (b) Representation learning and search process

Figure 1: Illustration of our algorithm. In Figure 1a, each circuit’s architecture is first transformed
into a DAG and represented by two matrices. Each row of the gate matrix corresponds to a node in
the graph, with one-hot encoding used to indicate the node type, and additional columns encoding
position information, such as the qubits the gate acts on. For two-qubit gates, −1 and 1 represent
the control and target qubits, respectively. The weights in the adjacency matrix reflect the number of
qubits involved in each interaction. In Figure 1b, the left side depicts the process of representation
learning, where Z represents the latent space of circuit architectures. In the middle, the encoder
is shown as the mechanism used to learn this latent space. On the right, Bayesian optimization
(BO) and reinforcement learning (RL) are employed to explore the latent space for various quantum
machine learning tasks. The algorithm ultimately outputs a set of candidate circuits.

In this work, we present our method, as illustrated in Figure 1, which consists of two indepen-
dent learning components: an autoencoder for circuit architecture representation learning, and a
search process that includes both search and evaluation strategies. The search space is defined
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by the number of gates in a circuit and an operation pool comprising general gate types such as
X, Y, Z, H, Rx, Ry, Rz, U3, CNOT, CY, CZ. A random generator creates a set of
circuit architectures based on predefined parameters, including the number of qubits, the number
of gates, and the maximum circuit depth. These architectures are then encoded into two matrices
and input into the autoencoder. The autoencoder independently learns a latent distribution from
the search space and produces pre-trained architecture embeddings for the search algorithms. The
evaluation strategy takes the circuit architectures generated by the search algorithm and returns a
performance assessment. For evaluating circuit architectures, we use the ground state of a Hamilto-
nian for max-cut and quantum chemistry problems, and fidelity for quantum state preparation tasks.

3.1 CIRCUIT ENCODING SCHEME

We represent quantum circuits as DAGs using the circuit encoding scheme EGSQAS , as described in
He et al. (2023b;a). Each circuit is transformed into a DAG by mapping the gates on each qubit to a
sequence of nodes, with two additional nodes added to indicate the input and output of circuits. The
resulting DAG is described by an adjacency matrix, as shown in Figure 1a. The set of nodes is further
characterized by a gate matrix, which shows the node features including position information.

However, the encoding scheme EGSQAS represents all occupied qubits as 1 without distinguishing
between the control and target positions of two-qubit gates, which limits the effectiveness of cir-
cuit representation learning and leads to confusion during circuit reconstruction. Additionally, the
adjacency matrix weights do not accurately reflect the original gate connections. To address these
limitations, we propose a new encoding scheme. In our method, we explicitly encode positional
information for two-qubit gates, such as CNOT and CZ, by assigning −1 to the control qubit and
1 to the target qubit. Furthermore, we represent the number of qubits involved in an edge as the
connection weights in the adjacency matrix, as shown in Figure 1a. These modifications enhance
circuit representation learning and improve the overall effectiveness of the search.

3.2 VARIATIONAL GRAPH ISOMORPHISM AUTOENCODER

3.2.1 PRELIMINARIES

The most common graph autoencoders (GAEs) consist of an encoder and a decoder, where the en-
coder maps a graph into a feature space, and the decoder reconstructs the graph from those features.
One prominent example is the variational graph autoencoder (VGAE), a promising framework for
unsupervised graph representation learning that utilizes a graph convolutional network as its encoder
and a simple inner product as its decoder (Kipf & Welling, 2016). In this work, however, we do not
employ the common VGAE as a framework for learning latent representations. Instead, we utilize a
more powerful encoder GIN (Xu et al., 2019).
Definition 1. We are given a circuit created by m gate types, h gates and g qubits. Then, the circuit
can be described by a DAG G = {V,E} with n = h + 2 = |V | gate nodes including START and
END. The adjacency matrix of graph G is summarized in n × n matrix A and its gate matrix X is
in size of n× (m+2+ g). We further introduce d-dimensional latent variables zi composing latent
matrix Z = {z1, .., zK}T .

3.2.2 ENCODER

The encoder GIN maps the structure and node features to latent representations Z. An approxima-
tion of the posterior distribution q(Z|X,A) is:

q(Z|X,A) =

K∏
i=1

q(zi|X,A), (1)

where q(zi|X,A) = N (zi|µi, diag(σ2
i )). The L-layer GIN generates the embedding matrix M (s)

for s-layer by:

M (s) = MLP (s)((1 + ϵ(s)) ·M (s−1) + ÂM (s−1)), s = 1, 2, ..., L, (2)

Where M (0) = X , and ϵ(s) is a bias with a standard normal distribution for each layer. The MLP

is a multi-layer perceptron consisting of Linear-BatchNorm-LeakyReLU layers, and Â = A + AT
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transforms a directed graph into an undirected one to capture bi-directional information. In this
work, we introduce a new fusion layer, a fully connected layer that aggregates feature information
from all GIN layers, rather than just the last one. The mean µ = GINµ(X, Â) = FC1(M

(L)) is
computed using the fully connected layer FC1, and similarly, the standard deviation σ is computed
via FC2. We can then sample the latent matrix Z ∼ q(Z|X,A) by zi = µi + σi · ϵi. For all
experiments, we use L = 5 GIN layers, a 16-dimensional latent vector zi, and a GIN encoder with
hidden sizes of 128. More details on the hyperparameters can be found in Appendix A.3.

3.2.3 DECODER

The decoder takes the sampled latent variables Z as input to reconstruct both the adjacency matrix
A and the gate matrix X = [Xt, Xq], where Xt encodes the gate types and Xq encodes the qubits
on which the gates act. The generative process is summarized as follows:

p(A|Z) =

K∏
i=1

K∏
j=1

p(Aij |zi, zj), with p(Aij |zi, zj) = ReLUj(F1(z
T
i zj)), (3)

p(X|Z) =

K∏
i=1

p(xi|zi), with p(xt
i|zi) = softmax(F2(zi)), p(x

q
i |zi) = tanh(F2(zi)), (4)

where both F1 and F2 are trainable linear functions.

3.2.4 OBJECTIVE FUNCTION

The weights in the encoder and decoder are optimized by maximizing the evidence lower bound
(ELBO) L, which is defined as:

L = Eq(Z|X,A)[log p(X
type, Xqubit, A|Z)]− KL[(q(Z|X,A))||p(Z)], (5)

where KL[q(·)||p(·)] represents the Kullback-Leibler (KL) divergence between q(·) and p(·). We
further adopt a Gaussian prior p(Z) =

∏
i N (zi|0, I). The weights are optimized using minibatch

gradient descent, with a batch size of 32.

3.3 ARCHITECTURE SEARCH STRATEGIES

3.3.1 REINFORCEMENT LEARNING (RL)

After conducting initial trials with PPO (Schulman et al., 2017) and A2C (Huang et al., 2022), we
adopt REINFORCE (Williams, 1992) as a more effective reinforcement learning algorithm for archi-
tecture search. In this approach, the environment’s state space consists of pre-trained embeddings,
and the agent uses a one-cell LSTM as its policy network. The agent selects an action, corresponding
to a sampled latent vector based on the distribution of the current state, and transitions to the next
state based on the chosen action. The reward for max-cut and quantum chemistry tasks is defined
as the ratio of energy to ground energy, with values outside the range [0, 1] clipped to 0 or 1. For
the state preparation task, circuit fidelity is used as the reward. We employ an adaptive batch size,
with the number of steps per training epoch determined by the average reward of the previous epoch.
Additionally, we use a linear adaptive baseline, defined by the formula B = α ·B + (1−α) ·Ravg ,
where B denotes the baseline, α is a predefined value in the range [0,1], and Ravg is the average
reward. Each run in this work involves 1000 searches.

3.3.2 BAYESIAN OPTIMIZATION (BO)

As another search strategy used in this work without labeling, we employ Deep Networks for Global
Optimization (DNGO)(Snoek et al., 2015) in the context of BO. We adopt a one-layer adaptive BO
regression model with a basis function extracted from a feed-forward neural network, consisting
of 128 units in the hidden layer, to model distributions over functions. Expected Improvement
(EI)(Mockus, 1977) is selected as the acquisition function. EI identifies the top-k embeddings for
each training epoch, with a default objective value of 0.9. The training begins with an initial set of
16 samples, and in each subsequent epoch, the top-k architectures proposed by EI are added to the
batch. The network is retrained for 100 epochs using the architectures from the updated batch. This
process is iterated until the predefined number of search iterations is reached.
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4 EXPERIMENTAL RESULTS

To demonstrate the effectiveness and generalization capability of our approach, we conduct exper-
iments on three well-known quantum computing applications: quantum state preparation, max-cut,
and quantum chemistry. For each application, we start with a simple example involving 4 qubits and
then progress to a more complex example with 8 qubits. We utilize a random generator to create
100,000 circuits as the search space, and all experiments are performed on a noise-free simulator
during the search process. Detailed settings are provided in Appendix A.2. We begin by evaluating
the model’s pre-training performance for unsupervised representation learning (§4.1), followed by
an assessment of QAS performance based on the pre-trained latent representations (§4.2).

4.1 PRE-TRAINING PERFORMANCE

Observation (1): GAE and VGAE (Kipf & Welling, 2016) are two popular baselines for NAS. In
an attempt to find models capable of capturing superior latent representations of quantum circuit
architectures, we initially applied these two well-known models. However, due to the increased
complexity of quantum circuit architectures compared to neural network architectures, these models
failed to deliver the expected results. In contrast, models based on GINs (Xu et al., 2019) success-
fully obtained valid latent representations, attributed to their more effective neighbor aggregation
scheme. Table 1 presents a performance comparison between the original model using the EGSQAS

encoding and the improved model with our enhanced encoding for 4, 8, and 12 qubit circuits, eval-
uated across five metrics: Accuracyops, which measures the reconstruction accuracy of gate types
in the gate matrix for the held-out test set; Accuracyqubit, which reflects the reconstruction accu-
racy of qubits that the gates act on; Accuracyadj, which measures the reconstruction accuracy of
the adjacency matrix; Falposmean, which represents the mean false positives in the reconstructed
adjacency matrix; and KLD (KL divergence), which indicates the continuity and smoothness of the
latent representation. The results in the table indicate that the improved model with our enhanced
encoding achieves comparable or better than the original. This improvement can be attributed to
two factors: first, the new encoding better captures the specific characteristics of the circuits, and
second, the fusion of outputs from multiple layers of GIN helps retain shallow information, resulting
in more stable training.

Qubit Model Metric
Accuracyops Accuracyqubit Accuracyadj Falposmean KLD

4 GSQAS 99.99 99.99 99.91 100.00 0.061
4 Ours 100 99.97 98.89 23.41 0.045
8 GSQAS 86.69 99.98 99.82 100.00 0.038
8 Ours 100 98.65 97.34 7.35 0.029
12 GSQAS 86.69 99.94 99.70 100.00 0.028
12 Ours 98.67 99.14 97.79 4.75 0.022

Table 1: Pretraining model performance of 4-, 8-, and 12-qubit circuits across the four metrics.

Observation (2): In Figure 2, we employ two popular techniques, PCA (Shlens, 2014) and t-SNE
(Van der Maaten & Hinton, 2008), to visualize the high-dimensional latent representations of 4-
and 12-qubit quantum machine learning (QML) applications based on our pre-trained models. The
results highlight the effectiveness of our new encoding approach for unsupervised clustering and
high-dimensional data visualization. The figures show that the latent representation space of quan-
tum circuits is smooth and compact, with architectures of similar performance clustering together
when the search space is limited to 4 qubits. Notably, high-performance quantum circuit architec-
tures are concentrated on the right side of the visualizations. In particular, PCA yields exceptionally
smooth and compact representations with strong clustering effects, making it easier and more effi-
cient to conduct QAS within such a structured latent space. This provides a robust foundation for
our QAS algorithms.

For the 12-qubit latent space, high-performance circuits (shown in red) are less prominent, likely
due to the fact that the 100,000 circuit structures represent only a finite subset of the possibilities
for 12-qubit circuit. As a result, the number of circuits that can be learned is limited. Most high-
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performance circuits are distributed along the left edge of the latent space, with a color gradient
transitioning from dark to light as one moves from right to left.

Compared with subfigures 2i, 2j, 2k, 2l, 2m, and 2k, which utilize the encoding scheme EGSQAS

and show more loosely distributed red points, our new encoding results in a more concentrated and
smoother latent representation, as demonstrated in subfigures 2a, 2b and 2c.

(a) PCA4 QCH2 (b) PCA4 Max-cut (c) PCA4 Fidelity (d) PCA12 QCLiH

(e) t-SNE4 QCH2 (f) t-SNE4 Max-cut (g) t-SNE4 Fidelity (h) t-SNE12 QCLiH

(i) PCA4 Q (j) PCA4 M (k) PCA4 F (l) t-SNE4 Q (m) t-SNE4 M (n) t-SNE4 F

Figure 2: The 2D smooth visualizations of the latent representations for the 4- and 12-qubit cases,
using PCA and t-SNE. The color encoding reflects the achieved energy of 100,000 randomly gener-
ated circuits. These latent representations are introduced for three QML tasks: Quantum Chemistry,
Max-cut, and fidelity. The graphs illustrate the energy or fidelity distribution of the circuits, where
red denotes circuits with an energy lower than −0.80/ − 0.90/ − 7.01,Ha or a fidelity higher than
0.5. The subfigures in the first two rows display the results of our model with KL divergence, while
the subfigures at the bottom visualize the 4-qubit latent space using the existing encoding scheme
EGSQAS .

4.2 QUANTUM ARCHITECTURE SEARCH (QAS) PERFORMANCE

Observation (1): In Figure 3, we present the average reward per 100 searches for each experiment.
The results show that both the REINFORCE and BO methods effectively learn to navigate the latent
representation, leading to noticeable improvements in average reward during the early stages. In
contrast, Random Search fails to achieve similar improvements. Furthermore, although the plots
indicate slightly higher variance in the average reward for the REINFORCE and BO methods com-
pared to Random Search, their overall average reward is significantly higher than that of Random
Search.

Observation (2): In Figure 4, we illustrate the number of candidate circuits found to achieve a preset
threshold after performing 1000 searches using the three search methods. The results show that the
8-qubit experiments are more complex, resulting in fewer circuits meeting the requirements within
the search space. Additionally, within a limited number of search iterations, both the REINFORCE
and BO methods are able to discover a greater number of candidate circuits that meet the threshold,
even in the worst case, i.e., when comparing the minimal number of candidates. Notably, their
performance significantly surpasses that of the Random Search method, especially REINFORCE,
despite the fact that the difference between the minimal and maximal number of candidates indicates
that REINFORCE is more sensitive to the initial conditions compared to the other two approaches.
These findings highlight the clear improvements and advantages introduced by QAS based on the
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(a) State preparation (b) Max-cut (c) Quantum chemistry

Figure 3: Average rewards from the six sets of experiments. In subfigures (a), (b), and (c), the
left panels show results from the 4-qubit experiments, while the right panels show results from the
8-qubit experiments. Each plot presents the average reward across 50 independent runs (each with
different random seeds) given 1000 search queries. The shaded areas in the plots represent the
standard deviation of the average rewards.

latent representation, which enables the efficient discovery of numerous high-performance candidate
circuits while reducing the number of searches required.

(a) 4-qubit experiments (b) 8-qubit experiments

Figure 4: The candidate quantities for the 4-qubit and 8-qubit applications. RS, RL, and BO refer
to Random Search, REINFORCE, and Bayesian Optimization, respectively. The reward threshold
for all 4-qubit experiments is 0.95, while for the more complex 8-qubit experiments, the thresholds
are softer: 0.75 for state preparation, 0.925 for max-cut, and 0.95 for quantum chemistry. Each
experiment is performed with 1000 queries, meaning only 1000 samples are drawn from a search
space of 100,000 circuits. Additionally, the left-hand side of subfigures (a) and (b) shows the average
results over 50 runs (with different random seeds), while the right-hand side shows the maximum
and minimum candidate quantities across the 50 runs.

Observation (3): In Table 2, we compare various QAS methods with our approach on the 4-qubit
state preparation task, using a circuit space of 100,000 circuits and limiting the search to 1000
queries. GNNURL and GSQASURL represent predictor-based methods from He et al. (2023b) and
He et al. (2023a), respectively, both employing our pre-trained model. QASURL

RL(BO) denotes the
QAS approach with REINFORCE (BO) used in this work. The average results over 50 runs indi-
cate that both the predictor-based methods and our approach are capable of identifying a significant
number of high-performance circuits with fewer samples. However, predictor-based methods rely
on labeled circuits to train predictors, introducing uncertainty as they may inadvertently filter out
well-performing architectures along with poor ones. While a higher Fthr value filters out more low-
performance circuits, increasing the proportion of good architectures in the filtered space, it also
sacrifices many well-performing circuits, which can lead to improved Random Search performance
but at the cost of excluding some optimal circuits. Despite these trade-offs, our method achieves
comparable performance to predictor-based methods, demonstrating higher efficiency in terms of
NQAS/Neval while requiring fewer circuit evaluations. In Appendix A.4, we present the best can-
didate circuits acquired by each of the three methods for every experiment.

Observation (4): In Table 3, we present the search performance across different frameworks and
encoding methods, focusing on 4-, 8-, and 12-qubit quantum chemistry tasks for comparison. In
most cases, our encoding method achieves the highest search efficiency, although the performance
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Method Task Fthr Nlbl Nrest N>0.95 Neval NQAS NQAS/Neval

GNNURL
Fidelity 0.5 1000 21683 780 2000 36 0.0180
Max-Cut 0.9 1000 45960 35967 2000 783 0.3915
QC-4H2

0.8 1000 65598 18476 2000 278 0.1390

GSQASURL
Fidelity 0.5 1000 21014 768 2000 37 0.0185
Max-Cut 0.9 1000 43027 33686 2000 785 0.3925
QC-4H2

0.8 1000 30269 19889 2000 658 0.3290

Random Search
Fidelity - 0 100000 1606 1000 15 0.0150
Max-Cut - 0 100000 57116 1000 568 0.5680
QC-4H2

- 0 100000 37799 1000 371 0.3710

QASURL
RL(BO)

Fidelity - 0 100000 1606 1000 69(63) 0.0690(0.0630)
Max-Cut - 0 100000 57116 1000 898(820) 0.8980(0.8200)
QC-4H2

- 0 100000 37799 1000 817(739) 0.8170(0.7390)

Table 2: Compare the QAS performance of different QAS methods for the 4-qubit tasks. URL
denotes unsupervised representation learning, Fthr is the threshold to filter poor-performance archi-
tectures, Nlbl, Nrest and N>0.95 refer to the number of required labeled circuits, rest circuits after
filtering and the circuits that achieve the performance higher than 0.95 in the rest circuits respec-
tively. Neval represents the number of evaluated circuits, i.e. the sum of the number of labeled and
sampled circuits, NQAS is the number of searched candidates in average of 50 runs.

Method Encoding E Nrest Neval NQAS NQAS/Neval

GSQAS4
GSQAS 25996 2000 625 0.3125
Ours 30269 2000 658 0.3290

GSQAS12
GSQAS 60088 2000 283 0.1415
Ours 60565 2000 276 0.1380

QASRL−4
GSQAS 100000 1000 760 0.7600
Ours 100000 1000 817 0.8170

QASRL−8
GSQAS 100000 1000 160 0.1600
Ours 100000 1000 167 0.1670

QASRL−12
GSQAS 100000 1000 422 0.4220
Ours 100000 1000 392 0.3920

Table 3: We compare the QAS performance of different encodings using various search methods.
For the 4- and 12-qubit quantum chemistry tasks, we select H2 and LiH , respectively, while for the
8-qubit task, we use the TFIM. The results represent the average of 50 runs.

for the 12-qubit task is slightly lower than with another encoding method. Combined with the
representation learning results in Figure 2, we observe that the search is significantly more efficient
when the learned circuit representation is smooth and concentrated. For the 12-qubit experiments,
the circuits used for representation learning may be insufficient to fully capture the search space,
leading to representation learning failures, as shown in Figure 2d, and resulting in a decline in
search efficiency.

5 CONCLUSION

Inspired by the Arch2vec method (Yan et al., 2020), we focus on exploring whether unsupervised
architecture representation learning can enhance QAS. By decoupling unsupervised architecture rep-
resentation learning from the QAS process, we successfully eliminate the need for a large number
of labeled circuits. Additionally, our proposed quantum circuit encoding scheme addresses limita-
tions in existing representations, improving search performance through more accurate and effective
embeddings. Furthermore, our framework conducts QAS without relying on a predictor by directly
applying search algorithms, such as REINFORCE and Bayesian Optimization (BO), to the latent
representations. We have demonstrated the effectiveness of this approach through various experi-
ments. In our framework, the success of QAS depends on the quality of unsupervised architecture
representation learning and the selection of search algorithms. Thus, we recommend further in-
vestigation into architecture representation learning for QAS, as well as the development of more
efficient search strategies within the latent representation space.
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A APPENDIX

A.1 CIRCUIT GENERATOR SETTINGS

The predefined operation pool which defines allowed gates in circuits is important for QAS as well,
because a terrible operation pool such as one with no rotation gates or no control gates cannot
generate numerous quantum circuits with excellent expressibility and entanglement capability. This
makes the initial quantum search space poor, so it will influence our further pre-training and QAS
process. Therefore, we choose some generally used quantum gates in PQCs as our operation pool
{X, Y, Z, H, Rx, Ry, Rz, U3, CNOT, CZ, CY} for the circuit generator to guarantee
the generality of our quantum circuit space. Other settings of the circuit generator are summarized
below:

Table 4: Description of settings predefined for the circuit generator.

Hyperparameter Hyperparameter explanation Value for 4/8/12-
qubit experiments

num-qubits the number of qubits 4/8/12
num-gates the number of gates in a circuit 10/20/30
max-depth the maximal depth in a circuit 5
num-circuits required the number of circuits 105

A.2 APPLICATION SETTINGS

(a) The target circuit of the 4-qubit state preparation (b) The target circuit of the 8-qubit state preparation

Figure 5: The circuits used to generate the target states.

Quantum State Preparation. In quantum information theory, fidelity (Liang et al., 2019) is an
important metric to measure the similarity of two quantum states. By introducing fidelity as the
performance index, we aim to maximize the similarity of the final state density operator with a
certain desired target state. We first obtain the target state by randomly generating a corresponding
circuit, and then with a limited number of sample circuits, we use the search methods to search
candidate circuits that can achieve a fidelity higher than a certain threshold. During the search
process, the fidelity can be directly used as a normalized reward function since its range is [0, 1].
Figure 5 shows the circuits used to generate the corresponding target states.

Max-cut Problems. The max-cut problem (Poljak & Rendl, 1995) consists of finding a decompo-
sition of a weighted undirected graph into two parts (not necessarily equal size) such that the sum of
the weights on the edges between the parts is maximum. Over these years, the max-cut problem can
be efficiently solved with quantum algorithms such as QAOA (Villalba-Diez et al., 2021) and VQE
(using eigenvalues). In our work, we address the problem by deriving the Hamiltonian of the graph
and using VQE to solve it. We use a simple graph with the ground state energy −10 Ha for the
4-qubit experiment and a relatively complex graph with the ground state energy −52Ha in the case
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of the 8-qubit experiment. Furthermore, we convert the energy into a normalized reward function
integral to the search process. The visual representations of these graphs are presented below:

(a) The 4-qubit max-cut graph (b) The 8-qubit max-cut graph

Figure 6: The graphs of the experiments on max-cut problems.

Quantum Chemistry. In the field of QC, VQE (Peruzzo et al., 2014; Tilly et al., 2022) is a hybrid
quantum algorithm for quantum chemistry, quantum simulations, and optimization problems. It is
used to compute the ground state energy of a Hamiltonian based on the variational principle. For
the 4- and 12-qubit quantum chemistry experiment, we use the Hamiltonian of the molecule H2 and
LiH and its common approximate ground state energy −1.136 Ha and −7.88 Ha as the optimal
energy. As for the 8-qubit experiment, we consider n = 8 transverse field Ising model (TFIM) with
the Hamiltonian as follows:

H =

7∑
i=0

σi
zσ

(i+1) mod 6
z + σi

x. (6)

We design some circuits to evaluate the ground state energy of the above Hamiltonian and get an
approximate value −10 Ha as the optimal energy. According to the approximate ground state
energy, we can use our methods to search candidate circuits that can achieve the energy reaching a
specific threshold. In the process of searching for candidates, the energy is normalized as a reward
function with the range [0, 1] to guarantee search stability.

A.3 HYPERPARAMETERS OF PRE-TRAINING

Table 5 shows the hyperparameter settings of the pre-training model for 4-qubit and 8-qubit experi-
ments.

Table 5: Description of hyperparameters adopted for pre-training.

Hyperparameter Hyperparameter explanation Value for 4/8/12-
qubit experiments

bs batch size 32
epochs traning epochs 16
dropout decoder implicit regularization 0.1
normalize input normalization True
input-dim input dimension 2+#gates+#qubits
hidden-dim dimension of hidden layer 128
dim dimension of latent space 16
hops the number of GIN layers (L in eq.2) 5
mlps the number of MLP layers 2
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A.4 BEST CANDIDATE CIRCUITS

Observation (5): In Appendix A.4, we present the best candidate circuits acquired by each of the
three methods for every experiment. These circuits exhibit a higher likelihood of being discovered
by REINFORCE and BO in contrast to Random Search. This observation underscores the supe-
rior search capabilities of REINFORCE and BO in navigating the large and diverse search space
generated by our approach, which is based on a random generator derived from a fixed operation
pool. Unlike conventional approaches that adhere to layer-wise circuit design baselines, our method
excels in discovering circuits with fewer trainable parameters. This characteristic is of paramount
importance when addressing real-world optimization challenges in QAS. In conclusion, our ap-
proach not only enhances the efficiency of candidate circuit discovery but also accommodates the
distinct characteristics of various problem domains through a large and diverse search space.

(a) 4-qubit state preparation (b) 4-qubit max-cut (c) 4-qubit quantum chemistry

(d) 8-qubit state preparation (e) 8-qubit max-cut (f) 8-qubit quantum chemistry

Figure 7: Best candidates of the six experiments in 50 runs.
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