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Abstract

Congenital heart disease (CHD) is the most commonly diagnosed birth defect. T2w black
blood MRI provides optimal vessel visualisation, aiding prenatal CHD diagnosis. Common
clinical practice involves manual segmentation of fetal heart and vessels for visualisation and
reporting purposes. We propose an automated multi-label fetal cardiac vessels deep learning
segmentation approach for T2w black blood MRI. Our network is trained using single-label
manual segmentations obtained through current clinical practice, combined with a multi-
label anatomical atlas with desired multi-label segmentation protocol. Our framework
combines deep learning label propagation with 3D residual U-Net segmentation to produce
high-quality multi-label output well adapted to the individual subject anatomy. We train
and evaluate the network using forty fetal subjects with suspected coarctation of the aorta,
achieving a dice score of 0.79 ± 0.02 for the fetal cardiac vessels region. The proposed
network outperforms the label propagation, achieving a comparable performance to a 3D
residual U-Net trained exclusively on manual single-label data.This multi-label framework
therefore represents an advancement over the single-label approach, providing label-specific
anatomical information, particularly useful for assessing specific anomaly areas in CHD.

Keywords: Automated Segmentation, Congenital Heart Disease, Fetal MRI, Fetal Cardiac
Imaging, Label Propagation

1. Introduction

Congenital heart disease (CHD) encompasses a set of cardiac malformations present from
birth (Liu et al., 2019). CHD is the most frequently diagnosed congenital condition, and
the dominant cause of congenital malformation-related deaths (Mendis et al., 2011).

Fetal cardiac MR (CMR) has proven its efficacy as an adjunct to echocardiography for
detecting CHD prenatally (Dong and Zhu, 2018; Salehi et al., 2021), with T2w black blood
MRI being particularly advantageous for vascular assessments (Lloyd et al., 2016, 2019).

Routine clinical practice assessments involve manual segmentation of ROIs, which is
laborious and time consuming. Hence, there is an important clinical need for automated

© 2022 P.R. Gilliland et al.



Gilliland Uus Poppel Grigorescu Steinweg Lloyd Pushparajah King Deprez

fetal CMR segmentation methods, with deep learning being the method of choice for state-
of-the-art automated segmentation approaches (Hesamian et al., 2019) and adult CMR
segmentation (Chen et al., 2020).

Training a CNN for segmentation requires a large number of manually labelled examples.
In this paper we propose a novel deep learning framework that combines label propagation
from a multi-label atlas with manual single-label vascular ROI segmentations (see Fig. 1)
for training of a 3D residual U-Net to predict high quality multi-label segmentations, well
adapted to the individual subject anatomy.

We show that this approach is able to propagate the multi-label protocol from the fetal
cardiac atlas while achieving high accuracy in individual images driven by the manual single
cardiac vessel labels. These highly accurate fully automated multi-label segmentations will
aid visualisation of the fetal cardiac vessels for prenatal diagnostic reporting purposes, and
provide the basis for automated vessel biometry and detection.

Figure 1: 3D models of the two label types used: a multi-label cardiac atlas (left), and
single-label manual segmentations (right).

2. Related Work

2.1. Deep learning segmentation

U-Net (Ronneberger et al., 2015) is one of the most widely used deep neural network
architectures, due to its performance, generalisability and efficiency (Isensee et al., 2018). U-
Net based architectures have been successfully employed for adult cardiac CMR localisation
(Payer et al., 2017), and segmentation in CHD (Xu et al., 2019).

Residual U-Net (Zhang et al., 2018) combines the advantages of Residual connections
(He et al., 2016) with U-Net, to produce an enhanced network that eases training and
information propagation without degradation. This type of architecture has demonstrated
high segmentation performance on adult cardiac segmentation tasks (Kerfoot et al., 2018;
Vesal et al., 2020). However Residual U-Net is restricted to the protocol of the available
manual labels, which in our case is a single-label vessels ROI segmentation (Fig. 2 left).

2.2. Label propagation

In atlas-based label propagation, the label information from a given atlas is transferred to
an individual subject via image registration (Heckemann et al., 2006). With deep learning
becoming an increasingly popular choice for image registration due to high computational
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efficiency and optimal performance (Tustison et al., 2019), we propose the use of VoxelMorph
(Balakrishnan et al., 2019) for label propagation from a multi-label atlas (Fig. 2 right) to
individual subjects. While label propagation can transfer any desired segmentation protocol
from the atlas to the individual images, its accuracy is limited by the registration quality,
and thus residual U-Net may produce more accurate results.

2.3. Automated fetal segmentation

U-Net based architectures have been employed for fetal brain, eye and thorax MRI segmen-
tation (Payette et al., 2020; Salehi et al., 2018; Uus et al., 2021b,a). The only automated
fetal cardiac segmentation method in literature consists of a random forest for global car-
diac, liver and lungs detection (Keraudren et al., 2015). To our knowledge, the present
paper proposes the first multi-label segmentation of fetal cardiac structures in CHD.

2.4. Contribution

Our deep learning framework combines advantages of highly accurate residual U-Net seg-
mentation with deep learning label propagation of any desired protocol, fine-tuned by the
available single-label manual segmentations (see Fig. 3). We show that the resulting multi-
label residual U-Net segmentation outperforms the label propagation, while achieving com-
parable accuracy to the single-label residual U-Net trained on manual labels.

3. Methods

3.1. Data specifications

Our dataset consists of 40 fetal subjects with suspected coarctation of the aorta (CoA),
31.73±1.77 weeks mean GA. The datasets were acquired at Evelina London Children’s Hos-
pital using a 1.5 T Tesla Ingenia MRI system, T2-weighted SSFSE sequence (see Appendix
Section A). All research participants provided written informed consent. The raw datasets
comprised 6-12 multi-slice 2D stacks, covering the fetal thorax in three orthogonal planes,
and were reconstructed using Slice-to-Volume Registration (SVR) (Kuklisova-Murgasova
et al., 2012; Kainz et al., 2015) to 0.75 mm isotropic resolution. Each subject image was
manually segmented by trained clinicians using ITK-SNAP (Yushkevich et al., 2006), en-
compassing the main cardiac vessels region (single label).

We employ 13 manually segmented vascular regions from a 3D CoA cardiac atlas1,
including innominate and azygos veins which are not present in the manual segmentations.
We crop all data to the cardiac vessels region (see Fig. 2). We split the subjects into a
training set (n=32), validation set (n=3) and testing set (n=5), and normalise and rescale
the intensity between 0 and 1 for network training.

3.2. Overall Architecture

The overall framework consists of two main steps: label propagation and automated seg-
mentation (see Fig. 3). First, the label propagation network (VoxelMorph) is fully trained.

1. https://gin.g-node.org/SVRTK/
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Figure 2: Left: 3D SVR reconstructed image with single manual label. Right: 3D T2w
MRI CoA atlas with multi-label vessel segmentations.

Figure 3: Overall architecture presented. The top half and orange arrows depict the label
propagation framework, while the lower half and blue arrows illustrate the seg-
mentation pipeline. Arrows of increased thickness depict the various stages t and
m go through, while thinner arrows indicate the volumes used in the losses.

The resulting propagated multi-class labels are then used to train a residual U-Net on the
task of automated multi-label segmentation.

3.3. Label Propagation

3.3.1. Registration network

We use VoxelMorph (Balakrishnan et al., 2019), which is a CNN-based registration method,
for label propagation. VoxelMorph optimises the aligning deformation field ϕ by considering
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a global function composed of shared parameters of a dataset of volume pairs. This global
function is parametrised via the kernels of the convolutional layers of a CNN.

A Spatial Transformer Network (STN) (Jaderberg et al., 2015) then uses the resultant
deformation field to warp the moving image. We use the subject images as target images
(t), and the atlas as moving image (m).

3.3.2. Label propagation loss functions

We use Local Normalised Cross Correlation loss (LNCCloss) (Balakrishnan et al.,
2019) as a similarity loss function:

LNCCloss(t,m · ϕ) = −
∑
p∈Ω

(∑
pi
(t(pi)− t̂(p))([m · ϕ](pi)− [m̂ · ϕ](p))

)2(∑
pi
t(pi)− t̂(p))2

)(∑
pi
([m · ϕ](pi)− [m̂ · ϕ](p))2

) (1)

Here Ω is the target and moving image spatial domain; m̂ ·ϕ(p) and t̂(p) are the local mean
intensities of an n3 volume of moving and target image, respectively; and pi are the voxels
contained within this n3 volume, which are iterated through.

We also include a smoothness loss (Lsmooth(ϕ)) for the displacement field, to ensure
the registration is physically realistic, as described in (Balakrishnan et al., 2019).

We explored the use of an auxiliary segmentation loss between joined atlas labels and
manual single-labels, however this resulted in insignificant registration overlap improvement.

Thus, in summary, the total registration loss Lreg may be expressed as

Lreg = Lsim(t,m · ϕ) + λ1Lsmooth(ϕ), (2)

where λ1 is the smoothing loss weight.

3.3.3. Registration network implementation details

We employ a U-Net based encoder-decoder architecture with skip connections for registra-
tion. Output channels are 16, 32, 32, 64 for the encoder (blocks of 3D strided convolutions
with leaky ReLU activations); and 32, 32, 32 for the decoder (blocks of strided transpose
3D convolutions and leaky ReLU activations). This is followed by two convolutional blocks.
See Appendix Section B for further details.

We train VoxelMorph registration network for 64,000 iterations, using a linearly decaying
learning rate initialised at 5× 10−4, and an Adam optimiser (default parameters β1 = 0.9,
β2 = 0.999), with a weight decay of 1×10−5. We implement the LNCCloss using n = 9, and
λ1 = 0.2 for Lsmooth(ϕ), following hyperparameter tuning. We set the standard deviation
of the smoothing kernel (applied to the velocity field) to 2.

We affinely register all subject images to the atlas prior to training. We use TorchIO
(Pérez-Garćıa et al., 2021) data augmentation during training (random motion, spike, bias,
blurring, ghosting, gamma and noise).

3.4. Multi-label segmentation

3.4.1. Segmentation network

We use a 3D Residual U-Net (Zhang et al., 2018) for automated segmentation, with five
encoder-decoder blocks (output channels 32, 64, 128, 256 and 512). We use Project MONAI
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implementation2, with convolution and upsampling kernel size of 3, two residual unit con-
volutions, PReLU activation and instance normalisation, and a dropout ratio of 0.5.

We employ an AdamW optimiser (Loshchilov and Hutter, 2017) with learning rate of
1 × 10−4, default β parameters and weight decay of 1 × 10−5. We train the network for
50,000 iterations, using intensity and spatial augmentations from Project MONAI (noise,
smoothing, bias field, affine deformations, intensity shifts).

3.4.2. Segmentation loss function

We train the segmentation network by combination of two losses. The first loss minimises
the difference between individual manual single-label segmentations and predicted multi-
label segmentations, where the multi-class labels are joined into a single label. The second
loss minimises the difference between predicted and propagated multi-label segmentations.
The overall segmentation loss function Lseg is expressed as

Lseg = DiceCEloss(predmulti, [m · ϕ]lab) + λ2DiceCEloss(predsingle, tlab) (3)

where predmulti are the multi-label residual U-Net predictions, predsingle are single-label
predictions (multi-label output labels joined together), λ2 is the single-class loss weight,
[m · ϕ]lab are the propagated labels from the atlas, and tlab are the manual labels (single).
We use the soft dice and cross entropy loss (Hatamizadeh et al., 2021) expressed as

DiceCEloss(P,G) = 1− 2

J

J∑
j=1

∑N
i=1Gi,jPi,j∑N

i=1G
2
i,j +

∑N
i=1 P

2
i,j

− 1

N

N∑
i=1

N∑
j=1

Gi,j logPi,j , (4)

where P is the probabilistic prediction, G is the ground truth, N are the number of voxels,
and J the number of classes. Refer to Fig. 3 for the summarised architecture with all losses.

3.5. Training experiments

Our experiments aim to quantitatively compare our proposed combined segmentation tech-
nique (U-Net LP+manual) with label propagation (LP), U-Net trained on propagated la-
bels (U-Net LP) and U-Net trained on single-label manual segmentations (U-Net manual).
These are summarised as

• LP : Label Propagation using VoxelMorph.

• U-Net LP : Residual U-Net trained with propagated labels (λ2 = 0).

• U-Net manual : Residual U-Net trained with manual single-labels (λ2 = ∞).

• U-Net LP+manual : Residual U-Net trained with both manual single-labels and prop-
agated labels. We first train U-Net LP+manual using λ2 = 0.9 for 50,000 iterations,
to ensure accurate multi-label classification, followed by 1,200 iterations with λ2 = 5.
This is to refine the segmentation of the vessels ROI, reducing any LP -induced biases.

2. https://github.com/Project-MONAI/MONAI/.
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4. Results

4.1. Quantitative evaluation

Table 1 includes results for mean Dice scores, 95% of Hausdorff Distance (HD95), and
average surface distance on test set (n=5); comparing network predictions to manual single-
labels (multi-class predictions are joined to form a single label).

Method Dice HD95 Average surface distance

LP 0.68 (0.02) 4.03 (0.82) 1.1 (0.1)
U-Net manual 0.80 (0.02) 2.70 (0.40) 0.80 (0.06)

U-Net LP 0.72 (0.01) 2.65 (0.33) 0.96 (0.04)
U-Net LP+manual 0.79 (0.02) 2.39 (0.34) 0.81 (0.05)

Table 1: Single-class mean similarity metrics (standard deviation) on test set.

Vessel U-Net manual LP U-Net LP U-Net manual + LP

SVC 0.78 (0.02) 0.75 (0.02) 0.76 (0.03) 0.84 (0.04)
LPA 0.60 (0.12) 0.54 (0.11) 0.59 (0.06) 0.62 (0.06)
RPA 0.72 (0.03) 0.65 (0.04) 0.65 (0.05) 0.69 (0.05)
Aorta 0.56 (0.05) 0.56 (0.04) 0.67 (0.04) 0.77 (0.01)
AD 0.72 (0.06) 0.71 (0.06) 0.72 (0.06) 0.73 (0.07)
DAO 0.88 (0.01) 0.86 (0.02) 0.86 (0.02) 0.89 (0.02)
MPA 0.67 (0.03) 0.67 (0.03) 0.78 (0.03) 0.82 (0.04)
LSA 0.48 (0.18) 0.44 (0.17) 0.60 (0.07) 0.65 (0.06)
BCA 0.36 (0.21) 0.32 (0.18) 0.47 (0.05) 0.52 (0.11)
LCCA 0.33 (0.21) 0.30 (0.19) 0.49 (0.18) 0.53 (0.22)

Pulmonary veins 0.66 (0.06) 0.69 (0.03) 0.53 (0.03) 0.59 (0.04)
Azygos vein - 0.50 (0.15) 0.47 (0.15) 0.50 (0.14)

Innominate vein - 0.62 (0.07) 0.59 (0.05) 0.67 (0.06)

Table 2: Mean dice scores (standard deviation) on test set. Highest scores are highlighted
in bold. Azygos and innominate veins were not available in the manual labels.

The results in Table 1 show that U-Net LP+manual achieves a similar performance as
U-Net manual for segmenting the whole cardiac vessels ROI, with the added value that
using the propagated labels generates multi-class predictions.

Scores for each vessel compared to a multi-class GT are included in Table 2, with ex-
tended discussion and vessel score boxplots in Appendix Section D. We intersect our binary
predictions from U-Net manual with the propagated atlas labels (LP) in order to obtain
rough multi-class results for U-Net manual (label propagation after U-Net). Our multi-class
scores (Table 2) demonstrate that U-Net LP+manual outperforms U-Net manual, partic-
ularly for small vessels (LSA, BCA, LCCA). Targeting these vessels individually leads to
improved segmentation performance, as it imposes constraints on the shape of each vessel.
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4.2. Visual inspection

Fig. 4 depicts an example prediction of each model. An important advantage of our multi-
label approach over U-Net manual is the ability to target small vessels individually. For
instance, LSA (white arrow in Fig. 4) remains unsegmented in the U-Net manual prediction.
Adding multi-class propagated labels enables to detect this vessel.

Figure 4: Single and multi-label prediction results for the different experiments.

5. Discussion

Our results show that the full framework which combines propagated labels with single-
labels leads to synergistic training, with a vessel detection rate of 100%. Targeting labels
individually leads to better segmentation of smaller vessel structures (see Appendix Sections
C and D), while providing multi-class information. Including a vessels ROI manual label
improves overall segmentation performance by refining areas of inaccurate label propagation.

Predictions were inspected by a trained clinician, reporting overall optimal results, with
partial overestimation of pulmonary arteries and upper pulmonary veins, due to scan quality
and close proximity to other respiratory structures. Future work will address this using
alternative reconstruction techniques (Uus et al., 2020).

6. Conclusion

This study demonstrates the feasiblity of deep learning for multi-label vessel segmentation
in black blood T2w reconstructed images, combining label propagation using VoxelMorph
with Residual 3D U-Net segmentation. Training experiments explored the combination of
single labels of the whole vessels ROI (manual labels) with propagated multi-labels from
the atlas, with the inclusion of both labelling information yielding improved predictions.
With promising results for subjects with coarctation of the aorta, future work will extend
this framework to target other cardiac anomalies, including right aortic arch and double
aortic arch.
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Appendix A. Data Acquisition Details

The datasets were acquired at Evelina London Children’s Hospital using a 1.5 T Tesla
Ingenia MRI system, T2-weighted SSFSE sequence (repetition time = 20,000 ms, echo time
= 50ms, flip angle = 90◦, voxel size = 1.25× 1.25 mm, slice thickness = 2.5 mm and slice
overlap = 1.25 mm). Mothers were scanned in a left lateral tilt position using an anterior
torso coil array in combination with a posterior spine coil array to measure signal in 28
receiver channels.

We recruited via the iFIND project, and another long-running fetal MRI study (REC:
14/LO/1806 and REC: 07/H0707/105).

Appendix B. Registration CNN Architecture

Fig. 5 illustrates the CNN architecture employed for label propagation. The input images
(atlas and subject) are concatenated along the channel dimension and inputted into the
network, with Gaussian smoothing being applied to the resultant velocity field, to ensure
diffeomorphism. This is followed by scaling and squaring layers, which yield the final de-
formation field, used to warp the moving image via a Spatial Transformer Network (STN)
(Jaderberg et al., 2015).

Appendix C. Extended Qualitative Evaluation

Here we provide further examples to showcase the advantages of our full multi-label frame-
work (U-Net LP+manual) over the alternative models investigated. Fig. 6 showcases an
example where U-Net LP+manual provides a much more realistic prediction of the shape
of the circled vessel (BCA) over U-Net manual. The fact that each vessel is targeted in-
dividually in our multi-class approach (U-Net LP+manual) therefore leads to favourable
predictions regarding the accuracy of the shape and structure of small vessels.

This is further validated by Fig. 7, where U-Net manual provides a biologically unrealis-
tic prediction: BCA is joined to SVC (see arrow showcasing joined vessels), in contrast with
the prediction from U-Net LP+manual. Thus our full framework also proves advantageous
for ensuring biologically realistic predictions, again due to vessels being targeted separately.
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Figure 5: CNN architecture used for registration. The numbers under each convolution
representation indicate the volume spatial resolution relative to the input volume.
k=kernel size, s=stride.

Appendix D. Multi-class Results

Figures 10 to 22 include boxplots displaying dice scores on test set for all the vessels seg-
mented, against a multi-class ground truth. The mean is indicated by a green triangle, and
the median by an orange intersecting line. Our different implementations are colour coded,
to aid visualisation.

Note that Figures 21 and 22 do not contain results for U-Net trained on manual single
class labels (U-Net manual), as these two vessels (innominate vein and azygos vein) were
not segmented in the single-class manual labels.

Figure 8 includes a visual example of multi-class prediction from our full framework
(U-Net manual + LP) against multi-class GT.

Our full framework (U-Net manual + LP) generally achieves higher scores than U-Net
manual for most vessels with most notable differences in SVC, Aorta, AD, DAO, MPA,
LSA, BCA, LCCA. Importantly, for the condition investigated, which is coarctation of the
aorta, the vessels of interest (i.e. surrounding the anomaly area), which are the aorta, head

13
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Figure 6: 3D Model predictions with BCA circled, showcasing shape prediction improve-
ments with our full framework.

Figure 7: Predictions showcasing inaccurately joined SVC and BCA in the U-Net manual
prediction (white arrow).

and neck vessels (LSA, BCA, LCCA), DAO and AD, present much higher scores in our full
implementation (U-Net manual + LP) than in U-Net manual.

Having multi-class predictions allows to focus on each vessel at a time, which imposes
constraints for generating realistic predictions, as opposed to just having a single-class
prediction such as U-Net manual, where certain vessels may be missed (see Discussion in
Section 4.2). This is quantitatively seen by the higher dice scores from our full framework
(U-Net manual + LP) in the smallest vessels (LSA, BCA, LCCA, vessels in rectangle in
Figure 8), compared to U-Net manual, as well as in Figure 9, where BCA is joined to SVC
in U-Net Manual predictions, the same situation as in Figure 7. Targeting each vessel
individually minimises these issues, as can be seen by our correct predictions from U-Net
manual + LP in Figure 9.
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Figure 8: Example test set subject predictions from our full framework (U-Net manual +
LP) and multi-class GT. BCA, LCCA and LSA are highlighted in a rectangular
box, to display their small size relative to other vessels, which explains their lower
scores.

Figure 9: Arrow depicts BCA joined to SVC in U-Net Manual predictions, as opposed to
U-Net Manual + LP, which aside from providing multi-class information, imposes
constraints, as each vessel is learnt individually.
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Figure 10: Superior Vena Cava (SVC) Dice scores

Figure 11: Left Pulmonary Artery (LPA) Dice scores

Figure 12: Right Pulmonary Artery (RPA) Dice scores
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Figure 13: Aorta Dice scores

Figure 14: Arterial Duct (AD) Dice scores

Figure 15: Descending Aorta (DAO) Dice scores
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Figure 16: Main Pulmonary Artery (MPA) Dice scores

Figure 17: Left Subclavian Artery (LSA) Dice scores

Figure 18: Brachiocephalic Artery (BCA) Dice scores

18



Automated multi-label fetal cardiac vessel segmentation

Figure 19: Left Common Carotid Artery (LCCA) Dice scores

Figure 20: Pulmonary Veins Dice scores

Figure 21: Azygos Vein Dice scores
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Figure 22: Innominate Vein Dice scores
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