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ABSTRACT

Existing adversarial attacks on vision-language models (VLMSs) primarily use joint
occurrence likelihoods to capture interdependency, often missing the true relation-
ship between the text and the image.This paper presents a novel attack, CASh, on
VLMs by manipulating latent causal representations between images and text in
pre-trained models. We leverage the cross-attention matrix to capture causality
alignment and exploit its singular properties to develop an efficient perturbation
algorithm that modifies VLM tasks. Our attack targets the core causal relationships
that exist independently of specific VLMs, ensuring transferability across models.
Unlike existing attacks that primarily perturb inputs using correlation-based pat-
terns, our approach accounts for causality, offering interpretability by showing how
causal shifts lead to changes in VLM behavior. We evaluate CASh across various
VLMs and compare it to existing attack methods. Our results demonstrate a signifi-
cant performance boost, with an average improvement of 20.88% in transferable
attack capability.

1 INTRODUCTION

Using the combined power of vision and language, Vision-Language Models (VLMs) have shown
effectiveness in capturing the complex interplay between images and text. Thus, they have gained
significant popularity in advanced tasks such as vision-language retrieval (VLR) Cao et al. (2022),
visual entailment (VE) Li et al. (2023), visual grounding (VG) Hong et al. (2022), Visual Reason-
ing(VR)Chen et al. (2023b) and visual question answering (VQA) Alayrac et al. (2022); Tsimpoukelli
et al. (2021).

However, the crucial interdependencies between visual and textual modalities that underpin VLM
capabilities also expose a significant vulnerability: these models are highly susceptible to adversarial
attacks specifically designed to disrupt inter-modality interactions. Existing attacks can be broadly
categorized into two paradigms. The first and more prevalent paradigm, exemplified by works such
as SGA Lu et al. (2023), Co-Attack Zhang et al. (2022a), VLATTACK Yin et al. (2024a), and TMM
Wang et al. (2024a), employs surrogate models to craft broadly applicable adversarial examples by
exploiting statistical biases like object co-occurrence probabilities in a shared latent space TMM
Wang et al. (2024a); Yin et al. (2024b), This strategy aims to address the challenges of real-world
deployment and offers a robust means to test VLM resilience Lu et al. (2023); Wang et al. (2024a).
In contrast, a distinct second paradigm, including studies like Ying et al. (2025) and Qi et al. (2024)
, operates by injecting adversarial perturbations directly into image pixels to jailbreak the model’s
safety alignment and elicit harmful responses, often without explicitly targeting nuanced inter-modal
relationships.

Despite the effectiveness of the predominant co-occurrence-based approach, it suffers from two
fundamental limitations. First, the exploited co-occurrence probabilities often reflect superficial
statistical regularities rather than meaningful semantic relationships. For instance, in a household
setting, images of both a ’dog’ and a ’cat’ might frequently appear indoors, potentially leading a
model to erroneously associate a ’dog’ image with the text ’a cat on the sofa’ based solely on this
environmental correlation rather than genuine visual evidence. Second, and more critically, this
reliance on shallow, dataset-specific correlations severely hinders attack transferability. Generating
effective transferable attacks requires capturing robust, invariant inter-modal dependencies across
diverse tasks and modalities. However, current co-occurrence-based methods primarily capture
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transient patterns from their training data, which fail to generalize to unseen data distributions or
related tasks, resulting in weak transferability across different VLM architectures.

To address these limits, we closely explored the inference mechanisms of the open-source VLMs
Li et al. (2021); Yang et al. (2022); Wu et al. (2024b); Kim et al. (2021); Bai et al. (2025); Xiao
et al. (2023) and observed that the core challenge in designing effective attacks against VLMs is
achieving fine-grained relationship alignment: an adversary must identify exactly which image regions
correspond to specific textual cues, then inject perturbations that subvert the model’s joint reasoning
without introducing conspicuous artifacts. Such precise alignment is crucial because it ensures that
perturbations target the intrinsic semantic structure actually used by the model, allowing high attack
success with minimal changes while preserving stealthiness, and also improves transferability, since
these causal relationships are more likely to remain invariant across different VLM architectures
than shallow correlations. Motivated by this observation, we adopt a causal perspective—leveraging
Pearl’s Structural Causal Model (SCM) Pearl (2009) and Wang et al. (2025)—to explicitly model the
causal links between image regions and textual tokens. This enables us to disentangle true causal
effects from spurious correlations and design more precise, counterfactual interventions. While some
methods Peng & Wei (2024); Abbasnejad et al. (2020); Scholkopf et al. (2021); Yang et al. (2021);
Wang et al. (2024b) leverage SCMs or counterfactual interventions to assess how specific words shape
attention to visual areas or how visual features influence language output, this research adopts a token-
or object-level causality approach, with graph nodes representing visual or linguistic components
rather than abstract high-level variables—a contrast to traditional causality models in medicine or
social science, which connect defined interventions to outcomes.

To this end, we propose CASh (Causality Alignment Shifting Attack), a novel attack method
that perturbs latent causal representations in pre-trained vision-language models. Our approach
models causal dependencies within and across modalities using SCMs, and aligns image and
text features via a regularized cross-attention mechanism. We then identify the high-impact
directions in the causal alignment space using singular value decomposition (SVD) and inject
norm-bounded perturbations to selectively break these links. The resulting adversarial exam-
ples are minimally altered in input space, but highly disruptive to the model’s causal connection
alignment—Ileading to significant performance degradation across multiple downstream tasks.
For example, Figure 1 shows that

the “kitchen” and “microwave” form a Clean
causal relationship due to “food”. After
applying perturbation to the image and
altering “kitchen’ to “room” in the text
using our CASh method, the model mis-
fdlign the original relationship between Q: Is there a microwave
image and text that lead to its answer | ~ ;. nic room? A: No
from “Yes” to “No”.

Q: Is there a microwave
in this kitchen? A: Yes

Attack

In summary, our primary contributions
include: 1) First Attempt to Exploit
Causality for VLM Adversarial At- Figure 1: Causal Relationship Alignment Shift.

tacks: To the best of our knowledge,

this is the first work that enhances adversarial attacks by explicitly shifting the causality alignment
between image and text, rather than merely perturbing their raw statistical features. 2) Causal
Dependency Quantification: We propose the novel application of cross-attention matrices as a
diagnostic tool for quantifying causal dependencies across multimodel representations. 3) Good
Experimental Performance: We evaluate the effectiveness of the CASh method across multiple
downstream tasks, revealing significant performance degradation. Our findings highlight the need for
improved causality alignment mechanisms to strengthen the robustness of VLMs against such threats.

2 RELATED WORK

2.1 CAUSAL RELATIONSHIPS IN VLMS

Understanding causal relationships in VLMs has gained attention as a means to move beyond
correlation-driven predictions and improve robustness in multimodal tasks. Foundational works on
causality Pearl (2009); Scholkopf et al. (2012) have inspired studies like Lopez-Paz et al. (2015),
which delve into counterfactual reasoning to distinguish genuine cause-effect relationships from
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spurious associations in multimodal datasets. Additionally, Yang et al. (2021) introduced causal
attention mechanisms, significantly improving performance in tasks such as image captioning by
modeling the cause-effect dynamics between visual regions and textual tokens. Likewise, Wang
et al. (2024b) developed a causal learning framework for vision-and-language navigation, using
SCMs to disentangle spurious correlations in navigation instructions and visual scenes, achieving
better generalization across diverse environments. Recent benchmarks, including Causal3DLiu et al.
(2025), further highlight the importance of causality in VLMs by providing datasets with structured
causal graphs to evaluate models on complex visual reasoning tasks. Furthermore, for visual question
answering tasks, Chen et al. (2024) proposed a causal intervention framework enabling models to
make predictions based on causal relationships rather than spurious correlations.

2.2 ADVERSARIAL ATTACKS IN VLMSs

Adversarial attacks on VLMs have exposed significant vulnerabilities, particularly in their multimodal
nature, where attackers exploit the visual modality to bypass safety mechanisms. Previous research
has utilized gradient-based methods to generate perturbations across image and text modalities,
assuming full model accessibility, as demonstrated in works such as Luo et al. (2024); Gao et al.
(2024); Wu et al. (2024a). Other studies Wang et al. (2024a); Zhao et al. (2023b); Dong et al. (2023);
Wang et al. (2024c); Wu et al. (2024a) have explored scenarios where attackers with limited VLM
knowledge employ surrogate models to target other systems, with Wang et al. (2024a) employing
attention-directed feature perturbation and Zhao et al. (2023b) leveraging pretrained CLIP and BLIP
models. Additionally, Chen et al. (2023a) further explored adaptive ensemble attacks, showing that
synchronizing outputs from diverse surrogate models, can amplify transferability across architectures
like CNNs and ViTs. Similarly, Chen et al. (2025) proposed a multimodal feature heterogeneous
attack framework, leveraging triplet contrastive learning to enhance the transferability of adversarial
examples across medical imaging VLMs, highlighting the underutilization of modal differences
in prior attacks. Moreover, Zhao et al. (2023a) evaluated the robustness of large VLMs under
black-box settings, crafting targeted adversarial examples against models like CLIP and transferring
them to others like LLaVA, revealing the ease of deceiving VLMs into producing incorrect outputs.
However, these methods focus on shallow features and overlook deeper model structures. In contrast,
our transfer-based attack leverages the causal relationships between text and images to enhance
effectiveness and transferability.

2.3 CAUSALITY-INFORMED ADVERSARIAL ATTACKS

Integrating causality into adversarial attacks offers a promising avenue to create more robust and
transferable perturbations in VLMs by targeting semantically grounded relationships. For instance,
CausalAdv by Zhang et al. (2022b) aims to improve model resilience by reducing discrepancies
between natural and adversarial distributions, whereas our approach differs by exploiting causal
misalignment, to enhance attack effectiveness. Similarly, the CADE framework Cai et al. (2024)
uses counterfactual reasoning for attack optimization, while we focus on disrupting causal alignment
in cross-attention mechanisms. In addition, the paper Koyuncu et al. (2023) addresses adversarial
manipulations in causal inference, but our study targets multimodal alignment, to degrade perfor-
mance. Together, these studies lay the groundwork for causality-driven adversarial strategies, with
our method providing a fresh angle on exploiting multimodal vulnerabilities.

3 THE CASH ATTACK

In this section, we specifically introduce our CASh attack method. Let F*° be a publicly available,
pre-trained VLM, and F“ denote the unknown, black-box target VLM. Given a clean image—text pair
(I, T) and norm bounds €, e, we solve

(I',T") = F*(A°,G"(1,61), 67 (T, 1)),

(D
[01llcc < €1, 107]lcc < €T,

where GT,GT, A® is our attack strategy chosen so that F*(I,T) produces some (I',7"). By

transferability, the resulting adversarial example (I, T") satisfies F*(I',T") ¢ ), even though the

attacker has no access to the architectures, parameters, or training data of the 7.
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Figure 2: CASh Framework. Inputs are encoded via Image and Text Encoders, processed with SCMs, and
aligned using Cross Attention (A(i- G',t - GT)). Causal Attention (A®) and SVD generate perturbations
((Ai, At)) with the do-operator, guided by Lcausar and Lagy losses, while Lyecon produces a manipulated output
(e.g., “A little girl in a red shirt... standing on the floor”).

Our CASh attack procedure is shown in Fig. 2. The goal of the attacker is to shift the alignment
relationship from inherent causality in the image and text modalities. Specifically, we integrate an
image I and its text description 1" (e.g., “a little girl in a pink shirt and a little girl in an orange
shirt sitting on the grass.”). The encoded features i and t are extracted through F°’s image or text
encoding blocks. We then apply structural causal relationships (G!, G captured by our SCM
(Section 3.1) to these features, which are aligned via a causal cross-attention module computing
A% = A(i-GT t - GT),loss Leausa- The causal 10ss Ly ensures robust causality capture in cross-
attention (Section 3.2). Then we find the most possible attack direction by SVD decomposition of the
causal cross-attention matrix, with the perturbation lower bound guaranteed by Theorem 1. Next,
an adversarial intervention do(A!, At) perturbs modality latent features of both modalities. Finally,
the adversarial samples I and T" are reconstructed by jointly optimizing losses £1,.., and LI (see
Section 3.3). For instance, the attacker changes ess from “sitting” to * standing” or changes t5 from
the “grass” to “floor”. As a result, the causal relationship between the text semantic information and
the image space is misaligned, leading to the generated text not matching the image.

3.1 MODELING CAUSAL RELATIONSHIPS IN IMAGE AND TEXT

Current attack methods Lu et al. (2023); Zhang et al. (2022a); Yin et al. (2024a), which depend entirely
on VLM backbones (e.g. ViTDosovitskiy et al. (2021) and CNNLeCun et al. (1989)), can only exploit
superficial co-occurrence patterns, missing specific critical causal structures such as “sunlight angle”
— “shadow formation” or “rain” leads to “wet ground”—thus leading to reduced attack efficiency in
disrupting critical cause-effect dynamics. However, images I and texts 1" are compositional, with
entities (e.g., “car”) and relations (e.g., “car on road”) implying causal structures that current VLM
encoders—such as CNNs, RNNs, or Transformers—collapse into flat vectors, hindering correlation-
based attacks. In contrast, SCMs model modalities as DAGs Thulasiraman & Swamy (1992) whose
nodes and edges encode entities and causal dependencies, exposing vulnerabilities that enable more
effective attacks than correlation-only approaches.

In this way, we construct the SCM G! = (I, Ey) for an image, including nodes I = {I;}2,, each
with a feature vector i; € RP derived from a visual encoder, i; = ViT(I); + v; and v; ~ N (0, 02),
which is node-specific exogenous noise capturing unmodeled factors. Edges E; capture causal
relationships, defined by

g{(Pa(L;),fy,;) = Z G{jij +7, G eRNtxNr )
j€Pa(l;)

where Pa(I;) denotes parent nodes. In the same way, the SCM G7 = (T, Er) represents nodes
T =A{T; };V:T 1 as linguistic entities with embeddings t; € RP, extracted from a language encoder ,
t; = BERT(T); + n; and n; ~ N (0, 07.) is node-specific exogenous noise capturing unmodeled
linguistic variations with each node 7} governed by:

g;T (Pa(TJ)777J) = Z Gkatk + Njs GT € RNTXNTa 3
kePa(T;)
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where Pa(T;) are parent nodes. GT and G' represent the text’s adjacency matrix and image’s
adjacency matrix. Each element G777 is set to 1 if there exists a directed edge from node j to node
k, indicating that j is a parent of k in the graph; otherwise, G/ (j, k) = 0.

3.2 CROSS-ATTENTION FOR ALIGNMENT

A key challenge in VLMs is aligning diverse image and text modalities, where cross-attention assigns
fine-grained weights «;; linking nodes (e.g., the textual “sun” to its image region), enabling highly
targeted attacks with minimal perturbations. Compared to coarse global alignment, embedding
causal relationships from SCMs via regularization (see Eq. (4)) further boosts attack success and
interpretability, while simultaneously exposing vulnerabilities that attackers can exploit. Accordingly,
we employ causal cross-attention to align the G; and G based on their causal adjacency matrices G/

i:. I T .. T . .
and GT by a;; = softmaxj(AZ-C;)7 AiGj = Walii:G )z/D(J,}VK (G ) where attention score matrix

AG € RN1XNT captures the raw similarity between nodes, ay;; provides the weighted distribution for
integration, Wg, Wx € RP R projects the features into a shared space (with D’ as the projected
dimension), while softmax; normalizes over j to ensure j i =1, and the attended representation

isi; =3, ai (W (t; -GT)). To ensure generalization and adaptability across different downstream

tasks, we define M, , as the causal features of either image or text modalities (i - Glort-GT).

e
Thus, the causal cross-attention can be expressed as Ag = M\/ﬁ(’WKMQ)' This alignment

relationship provides an attacker with a direct target, as perturbing attention weights can effectively
disrupt causal alignments between M; and M, from two different modalities, thereby exposing
VLM vulnerabilities. To ensure the alignment adheres to the causal structure, we introduce a causal
regularization term:

Ecausal = Z ||041k - Z aijGMQ (]7 k)H§7 (4)
i,k

Jj€Pa(k)

where «;. is the i-th causal feature from M;. This formulation ensures that alignments strictly
adhere to causal pathways, as demonstrated through three fundamental reasoning patterns: 1)Deduc-
tive Reasoning: Explicit rule-based alignment(e.g., mapping visual “shadow” to textual “sunlight”
through the causal rule “if sun, then shadow” ). 2)Inductive Reasoning: Pattern generalization
across instances(e.g., consistent alignment of “cars on roads” relationships). 3)Abductive Reasoning:
Explanatory inference from observations (e.g., deducing a light source from shadow features and the
textual “sunlight” concept).

3.3 EFFICTIVELY CROSS-ATTENTION ATTACK

For effectively adding perturbation, we consider two points: (1) which target layers yield perturbations
that both fool the surrogate model and transfer well to black-box VLMs, and (2) how to find
perturbations that trigger attacks more efficiently. We tackle these by (i) exploring the core attack
direction of the causality relationship matrix, which captures the coherent text-image relationship,
thereby enhancing transferability and (ii) exploring perturbation bound to ensure more efficient
discovery of adversarial-triggering perturbations.

3.3.1 EXPLORING THE CORE ATTACK DIRECTION

A simple method to disrupt causality in cross-attention mechanisms is to maximize the difference
between the adversarial attention matrix AS and the original A typically using a loss function like

Laive = — ||AG/ — AG ||%.. However, this naive approach lacks effectiveness, efficiency, and stability
because it does not target the most influential components of attention alignment and cannot discover
perturbations that trigger faster adversarial attacks after locating the most likely attack component.
For instance, some changes may be large in magnitude but low in functional impact, meaning that
the model might still preserve its decision-making capabilities despite a large perturbation in A%,
Crucially, it ignores attention matrix structure, often perturbing low-impact directions. An optimal
attack must instead target the most sensitive alignment directions to ensure both substantial magnitude
and maximal reasoning disruption.
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To address the issues, we introduce a more structured attack strategy that leverages SVD decom-
position of the attention matrix A® = ULV T, where ¥ = diag(A1, Aoy ..., M), U € RVMyXT
V € RM: X7 and r = min(Nw, , Nu, ). We select the top-k singular components AY = Uy X, V"
to identify critical alignment relationships, then project them to generate perturbations A%vh and
A;\/Iz for image and text features by

k k
Ai‘vh = Z /\n(Mllg)m(WQ—)run)a A;\/Iz = Z )‘N(Mg)JW(WI—(rVn)’ (5)

n=1 n=1

. . My 2 Moy (12

where u,, and v,, are basis vectors, constraints >, A3 < em,, D25 [[A2]3 < em, are
enforced via projection. With A%VII and A;vb determined in Eq. (5), we map them back to input
perturbations ¢; and dr to generate I’ and T”, we optimize the reconstruction loss:

Lion = D NFIT) = (i 4+ AMIE, Lo = D IIFHT) = (5 + AY[5. ()
i J

For texts, since T is discrete, we via discrete search (e.g., synonym replacement) to approximate dp
get (T,97) — T". This approach ensures targeted causality shifting by leveraging the perturbation
matrix’s spectral properties. For input layer, we employ BERT-Attack Li et al. (2020) to generate
adversarial text 7’ as input text and perturbated image calculated by adding perturbation d; to
generate I’

3.3.2 EXPLORING PERTURBATION BOUND

Instead of applying arbitrarily large perturbations, we quantify perturbation sensitivity and provide
a theoretical justification for the attack strategy. In VLM models with L layers and one layer
containing H heads, capture different features from the alignment relation in cross-attention, the
perturbation introduced at the input layer propagates through to the output layer. As a result, the entire
space is often considered during the search process, which significantly increases computational
cost. To address this issue, we analyze the perturbation for layers according to the Theorem 1 (See
Appendix A.1), the perturbation sensitivity of causality relationship Afh in layer [ and head £ satisfy

Wkl% | [Well®
Ta(Af) > ( - : )
L ”WK”% ”WQH% 1.h

Therefore, we set the low bound to initial value of perturbation A 4 for the AS, | the perturbation

sensitivity bound for layer [ is calculated by T'xr(A¥) = Ethl Cn(Af), 1 ={1,2,...,L}.
Then we find the most vulnerable target layer ¢ by AY = arg max; (Dar(Af), ..., Ta(AY)). This
identifies the layer ¢ will experience the greatest change in output with perturbations in its input. From
Theorem 1 and Eq. (5), we simulate the effect of intervention denoted as do(-) in a causal model and
derive the KL-divergence between the original output distribution P()’) and the post-intervention

distribution P()’ | do(AS = AS")) as follows(specific calculation see Appendix A.5),

Dy (PO | do(AS = AF) || PO)) = Do, (PO | do({ APM AMMHL ) || P(D)) .
@)

We maximize the KL divergence for making the perturbed distribution as different as possible from
the original distribution, defining this loss as adversarial effect loss:

Laay = —Dx(P(YV' | do(AS = AS")) | P(V)). ©)

We use 31 and 5 to control the perturbation strength when optimize overall loss function :
. I T
arg Inlll’\l/l Lady + Leausal + 51 ‘Crecon + B2 Erecon'
S, P (10)
M
st 160lloe < e, 10110 < er, AN [loo 2 Ta(AGy), h = 1,2,... H.

4 EXPERIMENTS

In this section, we present the experimental results evaluating the effectiveness of our proposed attack
strategy on these VLM downstream tasks: VLR, VE, VG, VR and VQA.

6
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Table 1: The ASR(%) results of VLR on Flickr30K datasets.

Source ‘Attack ‘ ALBEF ‘ TCL ‘ DS-VL2 ‘ ViLT ‘ QW-VL ‘ Flor2
| TR IR | TR IR | TR IR |TR IR | TR IR | TR IR

Co-Attack 77.16 83.86|15.21 29.49|10.21 12.51|20.31 23.54|11.34 12.65|13.65 12.75

SGA 97.24 97.28 | 4542 55.25|43.31 53.21 [42.21 54.56 |41.34 53.32|43.65 54.35
ALBEF | CMI-Attack | 97.08 97.43 | 62.17 69.64 | 65.11 64.21 | 51.54 53.54|65.32 67.43 | 62.87 64.35
T™MM 97.53 97.51 | 64.97 69.60 | 62.76 6531 | 64.21 63.21|67.82 64.82|72.13 73.14

CASh(Ours) | 98.21 98.03 | 72.29 76.01 | 65.68 56.21 | 68.68 62.43 | 72.43 79.68 | 82.43 79.31
Co-Attack 23.15 40.04 | 77.94 85.59 | 22.34 43.25|32.14 23.15|31.24 33.21 |41.52 43.21

SGA 48.91 60.34 | 98.37 98.81|49.12 58.19 | 50.31 60.21|58.12 57.13 |59.12 59.34
TCL CMI-Attack | 61.52 71.73|98.00 98.67 | 62.31 72.31|62.34 72.31|61.34 69.34 | 54.31 58.42
T™MM 68.10 72.30 | 97.87 97.60 | 69.12 73.14 | 72.34 71.45|72.45 69.32 | 65.31 66.31

CASh(Ours) | 72.43 76.32 | 99.12 98.89 | 70.08 73.18 | 80.34 81.23 | 83.15 84.35|82.11 79.13
Co-Attack 21.35 34.62|2245 35.62|78.62 84.35|23.45 24.65|2298 31.24|26.39 30.13

SGA 43.21 5534|5632 57.82|98.32 98.45|47.89 52.37|43.56 55.12|49.75 58.24
DS-VL2 | CMI-Attack | 62.34 63.42 | 71.23 70.34 | 98.56 98.02 | 64.77 59.45|61.08 67.93 | 56.21 63.68
T™MM 69.32 7234|7341 72.54|98.01 98.32|71.04 72.50|64.86 68.62|66.19 70.33

CASh(Ours) | 73.45 75.62 | 85.62 83.42 | 98.98 99.01 | 80.35 82.34 | 80.52 83.24 | 78.32 79.34
Co-Attack 2225 33.52(32.65 38.62|25.61 3145|3425 32.61|7536 83.21|35.62 32.14

SGA 48.75 56.23 | 52.41 59.06 | 58.29 59.13 | 60.21 60.32|98.35 98.76 | 62.35 63.12
QW-VL | CMI-Attack | 62.35 65.18 | 68.94 61.07 | 66.52 69.83 | 63.40 67.29 | 97.32 97.31 | 72.14 73.14
TMM 72.56 7539 |78.14 71.82|76.03 79.47 |73.25 77.68|98.99 97.97 | 80.12 79.34

CASh(Ours) | 80.19 89.32 | 90.31 90.45 | 89.23 88.34 | 85.23 87.34 | 99.12 99.32 | 85.36 89.13

4.1 EXPERIMENTAL SETTINGS

Datasets: Based on the above five downstream tasks, we collect 1000 test samples from Flickr30K
and 5000 val samples from MSCOCO for VLR task. For varifying the causality performance of
our attack method, we select all test samples from SNLI-VE for VE task and randomly select 5000
test samples from NLVR2 for VR task. Furthermore, we randomly select 5000 val samples from
VQAV2 for VQA task. For VG task, we select all TestA and TestB samples from RefCOCO+ to test
the performance.

VLM Models and Attack Methods: All above dataset will used on on several popular vision-
language models, including ALBEF Li et al. (2021),TCLYang et al. (2022), DeepSeek-VL2(DS-
VL2)Wu et al. (2024b), ViLT Kim et al. (2021), Qwen2.5-VL(QW-VL) Bai et al. (2025), Florence-
2(Flor2)Xiao et al. (2023). To validate our attack’s practical threat, we evaluate its transferability
on leading black-box API models, OpenAI’'s GPT-40(GPT)OpenAl (2024) and Google’s Gemini
2.5-Pro(Gemini)Comanici et al. (2025), the most advanced commercial VLMs. For demonstrating
our attack method, we compare our proposed method CASh with current multi-model attack methods
considering the multimodal features in VLM model, such as SGALu et al. (2023), Co-Attack Zhang
et al. (2022a), VLATTACK Yin et al. (2024a), TMM Wang et al. (2024a),MI-Attack Fu et al. (2024),
VQATTACKYin et al. (2024b).

Table 2: The ASR (%) results of VG tasks on RefCOCO+ datasets.

| ALBEF | TCL | DSVL2 | QW-VL | Flor2
| TestA TestB | TestA TestB | TestA TestB | TestA TestB | TestA TestB

Co-Attack 2233 13.99 | 40.52 34.18 | 32.45 34.52 | 40.23 35.67 | 34.21 30.14
VLATTACK | 2536 24.35 | 41.24 35.67 | 32.54 35.67 | 36.87 36.87 | 36.72 30.12
SGA 55.74 50.63 | 43.53 37.74 | 45.67 51.24 | 38.62 40.13 | 42.51 41.23
TMM 67.14 59.26 | 57.49 50.85 | 52.34 51.34 | 53.45 53.47 | 62.31 61.15
CASh(Ours) | 69.32 60.35 | 62.34 61.43 | 68.35 65.41 | 60.32 58.92 | 64.31 65.32

Attack

Evaluation Metrics: In this work, we utilize the Attack Success Rate (ASR) metric to evaluate both
the efficacy of white-box attacks and the transferability of black-box attacks against VLP models. We
also use IR and TR to denote the percentage of top-1 image and subtitle retrievals, respectively, that
fail to include the correct match.
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Table 3: ASR (%) for VQA, VE and VR on VQAV2, TextVQA, SNLI-VE and NLVR?2 datasets.

Tasks | Dataset | Attack | ALBEF | TCL | DS-VL2 | ViLT | QW-VL | Flor2 | GPT | Gemini
Co-Attack 11.36 |27.24 15.61 19.34 | 2235 |24.56|10.15| 10.56

VQAV2 VQAttack 21.60 |61.32| 25.67 |25.67| 37.68 |32.61|11.25| 10.98
VLATTACK | 48.35 |5532| 4893 |49.54| 50.13 |49.87|15.21 | 1391

VQA CASh(Ours) | 69.23 | 60.12 | 65.78 |60.98 | 67.89 | 62.89 | 22.89 | 23.29
Co-Attack 2345 2050 | 40.68 |38.56| 39.32 |40.35]|20.34 | 18.67

TextVQA VQAttack 38.79 [43.70 | 39.25 |36.87| 39.12 |40.12|21.23 | 19.07
VLATTACK | 32.54 |35.78 | 33.54 |3576| 37.23 |36.67|21.67 | 20.01

CASh(Ours) | 40.13 |43.23 | 44.32 | 4532 | 48.32 |49.32 | 2237 | 21.37

Co-Attack 80.66 | 40.68 | 60.12 |54.23 | 54.32 |50.13 |21.31 | 20.98

SGA 86.81 |51.36| 6143 |64.31| 6234 | 6245|2534 | 23.12

VE SNLI-VE | VLATTACK 84.21 | 50.43 62.32 | 61.34| 63.12 | 6245|2624 | 24.19
TMM 9336 |6535| 68.14 |69.34| 66.34 |67.98|27.45| 26.89

CASh(Ours) | 95.62 |70.92| 7292 |69.92| 70.89 |89.22 3523 | 33.42

VR NLVR2 VLATTACK | 66.54 |62.13| 64.54 |65.12| 5432 |53.21 1234 | 11.23
CASh(Ours) | 68.32 |69.36 | 68.56 |69.87 | 69.52 |70.36 | 15.13 | 13.23

Implementation Details: We use VLMs with cross-attention blocks (e.g. ALBEF, TCL, DS-
VL2,QW-VL) as a surrogate model, without finetuning, to attack white- and black-box VLMs. For
images, we set the perturbation bound ¢; = 16/255 to control adversarial noise, and for text, we
apply bounded lexical substitutions e = 1 based on semantic similarity. To improve robustness and
transferability, we incorporate a momentum term 4 = 1 in gradient updates. This setup ensures a
fair evaluation of our causality-based attack on cross-modal retrieval. In our experiments, we set
B1 = 0.05 and B2 = 0.1, which achieve strong attack performance. All experiments run on an
NVIDIA A100 GPU with 40GB.

4.2 ATTACKING PERFORMANCE

This section details extensive experimental evaluations to demonstrate our attack performance via
VLR, VG, VE, VQA, and VR tasks. The performance of the models and the different attack methods
is shown in the Tables, our method consistently outperforms the other attack strategies across all
models and datasets for both TR and IR tasks.

1) Significant Advantage in White-box Attacks: In Table 1, gray shading shows our attack method
performance under white-box attacks, our method achieves the highest ASR in both TR and IR tasks.
For instance, on the Flickr30K dataset, the TR task achieves over 98.21%, and IR achieves 98.01%,
significantly outperforming other methods such as Co-Attack 77.16% and SGA to 97.24% .

2) Outstanding Transferability in Black-box Attacks. Our method achieves state-of-the-art
transferability in cross-structure black-box attacks. Using TCL as a surrogate to attack QW-VL, we
obtain 84.35% in IR (+15.02% over TMM) and 83.15% in TR (+10.7%). Similarly, attacking TCL
with DS-VL2 yields 85.62% in TR (+12.21%) and 83.42% in IR (+10%), outperforming all baselines.
Even when transferring from cross-attention models to Flor2 (without cross-attention), our approach
still surpasses others by at least +15.39%. Even on strong black-box models such as GPT and Gemini,
CASh improves ASR to 22.89% and 23.29% on VQAv2, exceeding VLATTACK by +4.68% and
+9.38%. Compared to all other models, our method achieves an average ASR at least increase of
11.50%, demonstrating its advantage in cross-model transferability by jointly modeling causality
from both text and image.

3) Strong Generalization Across Datasets. On Flickr30K and MSCOCO (See in Appendix A.3),
our method maintains stable performance. For instance, the QW-VL model, when tested on the
MSCOCO dataset in the IR task, achieves 32.98%, which is +1.66% over TMM. The DS-VL2 model,
when tested on Flickr30K in the TR task, achieves 32.15%, which is +10.72% over TMM. This
demonstrates the robustness of the method across different data scales and task types.

4) Comprehensive Performance on different downstream tasks. For the VG ,VE, VR and VQA
tasks, we use ALBEF as our surrogate model to attack other black-box models. The experimental
results demonstrate the superior performance of our proposed CASh (Ours) attack method across all
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evaluated tasks and datasets. In the VG task (Table 2 ), CASh achieves the highest attack success
rates (ASR) on all target models, with particularly strong performance on TCL (62.34% -70.32%)
and DS-VL2/QW-VL (64.31%-68.35% ), outperforming the second-best baseline TMM by 5.8%-
12.1% ASR points. Similarly, in VQA/VE/VR tasks (Table 3), CASh maintains leading performance
with ASR scores up to 65.32 % on Flor2. These consistent gains across diverse VL tasks validate
CASh’s robust multimodal fusion approach and adaptive thresholding mechanism, establishing it as a
new state-of-the-art for transfer-based attacks. The method’s effectiveness is particularly notable in
complex reasoning tasks (VQA/VE/VR), where it achieves 60.32 % ASR on ViLT, demonstrating
superior generalization capability compared to existing approaches.

ei6=17 ~1s _qa2[*L6+L7 L8 ETCL =DS-VL2
_ |[=L9=L10=LIl ¥ |#+L9+L10+LIl . 30 EIVILT mQW-VL
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(a) ASR for different layers. (b) ASR Gain for different layers (a) Iters in Top k% As (b) Attempt times M for T'(A%)
Figure 3: Performance on Top k% As. Figure 4: Effectiveness of SCM in different models.

4.3 ABLATION STUDY

In this section, we further explore the key factors impacting the effectiveness of our CASh framework
in generating transferable adversarial examples, using ALBEF as the surrogate model with six
cross-attention layers to fuse text and image modalities.

Figure 3 analyzes the ASR across different layers (L6 to L11) of the ALBEF model, considering
the top k% of As. The ASR generally increases as k% grows from 5% to 20% for all layers in
subfigure 3a. Notably, higher layers (e.g., L11) consistently achieve higher ASR (around 0.95 to 1.0)
compared to lower layers (e.g., L6, around 0.9 to 0.95). This suggests that attacking higher layers is
more effective, likely due to their greater influence on the model’s final predictions. Subfigure 3b
shows the ASR gain (in %) across the same layers and k% values. The gain is relatively stable across
layers, fluctuating between 1.0 and 1.2, with L11 showing a slight edge at higher k% (e.g., 1.15 at
k=20%). This indicates that while higher layers have a higher baseline ASR, the relative improvement
(gain) from the attack method is consistent across layers, with a marginal advantage in deeper layers.

Figure 4 evaluates the transferable effectiveness of SCM when attack black-box models. Subfigure 4a
evaluates the number of iterations (N) required to achieve the top k%As for various models (TCL,
DS-VL2, ViLT, QW-VL, Flor2). All of their results shows that the needed optimal iterations higher
with use the more singular values to locate the most perturbation direction. This is because more
singular values also enlarge the search space while they achieve higher ASR. We also measure the
perturbation sensitivity I' for different models in subfigure 4b. Our results demonstrate that adding
perturbations to cross-attention layers closer to the output layer (e.g., L11) requires fewer attempts
(M) compared to shallower layers (e.g., L6). This trend indicates higher perturbation sensitivity
in deeper cross-attention layers, as they not only align complex features across modalities but also
maintain greater similarity to the output layer than shallower layers. Furthermore, additional findings
(Appendix A.3) confirm that cross-attention layers nearer to the output layer more effectively capture
the alignment between image and text, enhancing their role in multimodal feature integration.

5 CONCLUSION

In this study, we proposed a novel attack, CASh, which disrupted the causal alignment between images
and text in pre-trained surrogate VLMs. We add SCMs of image and text to the cross-attention matrix ,
and then systematically analyze its properties to develop an efficient perturbation generation algorithm.
By targeting a subset of elements with high-impact within the matrix, and leveraging a theoretically
guided initialization during optimization, we enhanced the attack’s effectiveness and efficiency. We
evaluated CASh across multiple VLM tasks, including VLR, VE,VG, VR and VQA, experimental
results demonstrated that our attack achieved strong transferability by significantly degrading the
performance of various VLMs with no less than 52.36% reduction in accuracy. Furthermore, unlike
traditional attacks that directly add perturbations to the input, CASh manipulates causality, causing the
perturbation to propagate across all input elements after matrix reconstruction and backpropagation.



Under review as a conference paper at ICLR 2026

REFERENCES

Ehsan Abbasnejad, Damien Teney, Amin Parvaneh, Javen Shi, and Anton van den Hengel. Coun-
terfactual vision and language learning. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 10041-10051, 2020. doi: 10.1109/CVPR42600.2020.01006.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, lain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katie Millicah, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan
Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian
Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo
Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a visual language
model for few-shot learning. In Proceedings of the 36th International Conference on Neural
Information Processing Systems, NIPS *22, Red Hook, NY, USA, 2022. Curran Associates Inc.
ISBN 9781713871088.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach, 2018. URL https://arxiv.org/abs/1802.05296.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jiangiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025.

Ruichu Cai, Yuxuan Zhu, Jie Qiao, Zefeng Liang, Furui Liu, and Zhifeng Hao. Where and how
to attack? a causality-inspired recipe for generating counterfactual adversarial examples. In
Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth
Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on
Educational Advances in Artificial Intelligence, AAAT 24/TAAT'24/EAAT’ 24. AAAI Press, 2024.
ISBN 978-1-57735-887-9. doi: 10.1609/aaai.v38i10.28990. URL https://doi.org/10.1609/
aaai.v38110.28990.

Min Cao, Shiping Li, Juntao Li, Ligiang Nie, and Min Zhang. Image-text retrieval: A survey
on recent research and development. In Lud De Raedt (ed.), Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI-22, pp. 5410-5417. International
Joint Conferences on Artificial Intelligence Organization, 7 2022. doi: 10.24963/ijcai.2022/759.
URL https://doi.org/10.24963/ijcai.2022/759. Survey Track.

Bin Chen, Jiali Yin, Shukai Chen, Bohao Chen, and Ximeng Liu. An adaptive model ensemble
adversarial attack for boosting adversarial transferability. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 4489—4498, October 2023a.

Liangyu Chen, Bo Li, Sheng Shen, Jingkang Yang, Chunyuan Li, Kurt Keutzer, Trevor Darrell,
and Ziwei Liu. Language models are visual reasoning coordinators. In ICLR 2023 Workshop
on Mathematical and Empirical Understanding of Foundation Models, 2023b. URL https:
//openreview.net/forum?id=kdHpWogtX6Y.

Long Chen, Yuling Chen, Zhi Ouyang, Hui Dou, Yangwen Zhang, and Haiwei Sang. Boosting adver-
sarial transferability in vision-language models via multimodal feature heterogeneity. Scientific
Reports, 15(1):7366, March 2025. ISSN 2045-2322. doi: 10.1038/s41598-025-91802-6. URL
https://doi.org/10.1038/s41598-025-91802-6.

Meiqi Chen, Bo Peng, Yan Zhang, and Chaochao Lu. Cello: Causal evaluation of large vision-
language models. In Conference on Empirical Methods in Natural Language Processing, 2024.
URL https://api.semanticscholar.org/CorpusID:270764390.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 1310-1320. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.press/
v97/cohen19c.html.

10



Under review as a conference paper at ICLR 2026

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
context, and next generation agentic capabilities, 2025. URL https://arxiv.org/abs/2507.
06261.

Yinpeng Dong, Huanran Chen, Jiawei Chen, Zhengwei Fang, Xiao Yang, Yichi Zhang, Yu Tian,
Hang Su, and Jun Zhu. How robust is google’s bard to adversarial image attacks?, 2023. URL
https://arxiv.org/abs/2309.11751.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In Proceedings of the International Conference on Learning Representations (ICLR), 2021.

Jiyuan Fu, Zhaoyu Chen, Kaixun Jiang, Haijing Guo, Jiafeng Wang, Shuyong Gao, and Wenqiang
Zhang. Improving adversarial transferability of vision-language pre-training models through
collaborative multimodal interaction, 2024. URL https://arxiv.org/abs/2403.10883.

Kuofeng Gao, Yang Bai, Jindong Gu, Shu-Tao Xia, Philip Torr, Zhifeng Li, and Wei Liu. Inducing
high energy-latency of large vision-language models with verbose images. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=BteuUysuXX.

Richang Hong, Daqing Liu, Xiaoyu Mo, Xiangnan He, and Hanwang Zhang. Learning to compose
and reason with language tree structures for visual grounding. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(2):684-696, 2022. doi: 10.1109/TPAMI.2019.2911066.

Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convo-
lution or region supervision. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pp. 5583-5594. PMLR, 18-24 Jul 2021. URL http://proceedings.mlr.press/
v139/kim21k.html.

Deniz Koyuncu, Alex Gittens, Biilent Yener, and Moti Yung. Deception by omission: Using
adversarial missingness to poison causal structure learning. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’23, pp. 1164-1175,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701030. doi:
10.1145/3580305.3599297. URL https://doi.org/10.1145/3580305.3599297.

Yann LeCun, Bernhard Boser, John S. Denker, Donnie Henderson, Richard E. Howard, Wayne
Hubbard, and Lawrence D. Jackel. Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1(4):541-551, 1989. doi: 10.1162/neco.1989.1.4.541.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 9694-9705. Curran
Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/505259756244493872b7709a8a01b536-Paper . pdf.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. BERT-ATTACK: Adversarial
attack against BERT using BERT. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu
(eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6193-6202, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-main.500. URL https://aclanthology.org/2020.emnlp-main.
500/.

Nan Li, Pijian Li, Dongsheng Xu, Wenye Zhao, Yi Cai, and Qingbao Huang. Scene-text oriented
visual entailment: Task, dataset and solution. In Proceedings of the 31st ACM International
Conference on Multimedia, MM °23, pp. 5562-5571, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9798400701085. doi: 10.1145/3581783.3612593. URL
https://doi.org/10.1145/3581783.3612593.

11



Under review as a conference paper at ICLR 2026

Disheng Liu, Yiran Qiao, Wuche Liu, Yiren Lu, Yunlai Zhou, Tuo Liang, Yu Yin, and Jing Ma.
Causal3d: A comprehensive benchmark for causal learning from visual data, 2025. URL https:
//arxiv.org/abs/2503.04852.

David Lopez-Paz, Krikamol Muandet, Bernhard Schélkopf, and Iliya Tolstikhin. Towards a learning
theory of cause-effect inference. In Francis Bach and David Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pp. 1452-1461, Lille, France, 07-09 Jul 2015. PMLR. URL https://proceedings.
mlr.press/v37/lopez-paz15.html.

Dong Lu, Zhigiang Wang, Teng Wang, Weili Guan, Hongchang Gao, and Feng Zheng. Set-level
Guidance Attack: Boosting Adversarial Transferability of Vision-Language Pre-training Models
. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 102-111, Los
Alamitos, CA, USA, October 2023. IEEE Computer Society. doi: 10.1109/ICCV51070.2023.00016.
URL https://doi.ieeecomputersociety.org/10.1109/ICCV51070.2023.00016.

Haochen Luo, Jindong Gu, Fengyuan Liu, and Philip Torr. An image is worth 1000 lies: Transferabil-
ity of adversarial images across prompts on vision-language models. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
nc5GgFAvtk.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

OpenAl. Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276.

Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, USA, 2nd
edition, 2009. ISBN 052189560X.

Daowan Peng and Wei Wei. Towards deconfounded visual question answering via dual-causal
intervention. In Proceedings of the 33rd ACM International Conference on Information and
Knowledge Management, CIKM 24, pp. 1867-1877, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400704369. doi: 10.1145/3627673.3679594. URL
https://doi.org/10.1145/3627673.3679594.

Xiangyu Qi, Kaixuan Huang, Ashwinee Panda, Peter Henderson, Mengdi Wang, and Prateek Mittal.
Visual adversarial examples jailbreak aligned large language models. In Proceedings of the Thirty-
Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative
Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in
Artificial Intelligence, AAAT' 24/TAAT’24/EAAT’24. AAAI Press, 2024. ISBN 978-1-57735-887-9.
doi: 10.1609/aaai.v38i19.30150. URL https://doi.org/10.1609/aaai.v38i19.30150.

Bernhard Scholkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, and Joris Mooij. On
causal and anticausal learning. In Proceedings of the 29th International Coference on International
Conference on Machine Learning, ICML’12, pp. 459-466, Madison, WI, USA, 2012. Omnipress.
ISBN 9781450312851.

Bernhard Scholkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of the
IEEE, 109(5):612-634, 2021. doi: 10.1109/JPROC.2021.3058954.

K. Thulasiraman and M. N. S. Swamy. Graphs: theory and algorithms. John Wiley & Sons, Inc.,
USA, 1992. ISBN 0471513563.

Maria Tsimpoukelli, Jacob Menick, Serkan Cabi, S. M. Ali Eslami, Oriol Vinyals, and Felix Hill.
Multimodal few-shot learning with frozen language models. In Proceedings of the 35th Interna-
tional Conference on Neural Information Processing Systems, NIPS 21, Red Hook, NY, USA,
2021. Curran Associates Inc. ISBN 9781713845393.

Haodi Wang, Kai Dong, Zhilei Zhu, Haotong Qin, Aishan Liu, Xiaolin Fang, Jiakai Wang, and
Xianglong Liu. Transferable multimodal attack on vision-language pre-training models. In 2024
IEEE Symposium on Security and Privacy (SP), pp. 1722-1740, 2024a. doi: 10.1109/SP54263.
2024.00102.

12



Under review as a conference paper at ICLR 2026

Liuyi Wang, Zongtao He, Ronghao Dang, Mengjiao Shen, Chengju Liu, and Qijun Chen. Vision-
and-language navigation via causal learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 13139-13150, June 2024b.

Qidong Wang, Junjie Hu, and Ming Jiang. V-seam: Visual semantic editing and attention modulating
for causal interpretability of vision-language models, 2025. URL https://arxiv.org/abs/2509.
14837.

Xunguang Wang, Zhenlan Ji, Pingchuan Ma, Zongjie Li, and Shuai Wang. Instructta: Instruction-
tuned targeted attack for large vision-language models, 2024c. URL https://arxiv.org/abs/
2312.01886.

Colin Wei and J Zico Kolter. Certified robustness for deep equilibrium models via interval bound
propagation. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=y1PXylgrXZ.

Chen Henry Wu, Rishi Shah, Jing Yu Koh, Ruslan Salakhutdinov, Daniel Fried, and Aditi Raghu-
nathan. Dissecting adversarial robustness of multimodal Im agents, 2024a. URL https:
//arxiv.org/abs/2406.12814.

Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
Ma, Chengyue Wu, Bingxuan Wang, Zhenda Xie, Yu Wu, Kai Hu, Jiawei Wang, Yaofeng Sun,
Yukun Li, Yishi Piao, Kang Guan, Aixin Liu, Xin Xie, Yuxiang You, Kai Dong, Xingkai Yu,
Haowei Zhang, Liang Zhao, Yisong Wang, and Chong Ruan. Deepseek-vl2: Mixture-of-experts
vision-language models for advanced multimodal understanding, 2024b. URL https://arxiv.
org/abs/2412.10302.

Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu,
and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks. arXiv
preprint arXiv:2311.06242, 2023.

Jinyu Yang, Jiali Duan, Son Tran, Yi Xu, Sampath Chanda, Liqun Chen, Belinda Zeng, Trishul
Chilimbi, and Junzhou Huang. Vision-language pre-training with triple contrastive learning. 2022.

Xu Yang, Hanwang Zhang, Guojun Qi, and Jianfei Cai. Causal attention for vision-language tasks.
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9842-9852,
2021. URL https://api.semanticscholar.org/CorpusID:232135026.

Ziyi Yin, Muchao Ye, Tianrong Zhang, Tianyu Du, Jinguo Zhu, Han Liu, Jinghui Chen, Ting
Wang, and Fenglong Ma. Vlattack: multimodal adversarial attacks on vision-language tasks via
pre-trained models. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, NIPS 23, Red Hook, NY, USA, 2024a. Curran Associates Inc.

Ziyi Yin, Muchao Ye, Tianrong Zhang, Jiaqi Wang, Han Liu, Jinghui Chen, Ting Wang, and Fenglong
Ma. Vqattack: Transferable adversarial attacks on visual question answering via pre-trained models.
In AAAI Conference on Artificial Intelligence, 2024b. URL https://api.semanticscholar.
org/CorpusID:267751461.

Zonghao Ying, Aishan Liu, Tianyuan Zhang, Zhengmin Yu, Siyuan Liang, Xianglong Liu, and
Dacheng Tao. Jailbreak vision language models via bi-modal adversarial prompt. IEEE Trans-
actions on Information Forensics and Security, 20:7153-7165, 2025. doi: 10.1109/TIFS.2025.
3583249.

Runtian Zhai, Chen Dan, Di He, Huan Zhang, Boqing Gong, Pradeep Ravikumar, Cho-Jui Hsieh, and
Liwei Wang. Macer: Attack-free and scalable robust training via maximizing certified radius. In
International Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=rJx1Na4Fwr.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jordan.
Theoretically principled trade-off between robustness and accuracy. In International Conference
on Machine Learning, 2019.

Jiaming Zhang, Qi Yi, and Jitao Sang. Towards adversarial attack on vision-language pre-training
models. In Proceedings of the 30th ACM International Conference on Multimedia, 2022a.

13



Under review as a conference paper at ICLR 2026

Yonggang Zhang, Mingming Gong, Tongliang Liu, Gang Niu, Xinmei Tian, Bo Han, Bernhard
Scholkopf, and Kun Zhang. Causaladv: Adversarial robustness through the lens of causality,
2022b. URL https://arxiv.org/abs/2106.06196.

Yunqging Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Cheung, and Min Lin.
On evaluating adversarial robustness of large vision-language models. In Proceedings of the 37th
International Conference on Neural Information Processing Systems, NIPS *23, Red Hook, NY,
USA, 2023a. Curran Associates Inc.

Yunqging Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan Li, Ngai man Cheung, and Min
Lin. On evaluating adversarial robustness of large vision-language models. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023b. URL https://openreview.net/
forum?id=xbbknN9QFs.

14



Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LLM DISCLAIMER

In the preparation of this manuscript, we employed a Large Language Model (LLM) as a tool for
proofreading and grammar checking. The use of the LLM was strictly limited to the identification
and correction of surface-level language errors after the scientific content had been fully finalized by
the authors. All suggestions provided by the model were critically reviewed and manually verified to
ensure they did not alter the technical meaning or nuance of the content.

A.2 BOUNDING PERTURBATION SENSITIVITY FOR EFFICIENT ADVERSARIAL ATTACKS

To determine which layer to attack, in Section 3.3, we leverage the perturbation sensitivity as
introduced in Arora et al. (2018), defined as follows:

Definition A.1. Let C' be a cross-attention matrix mapping input signal to output of relationship.
Given a perturbation distribution P, the perturbation sensitivity of C' at an input x with respect to

P is defined as: )

Ot + 8]a]) ~ C(w)| )
1C(@)]? ’
where § is a perturbation sampled from the perturbation distribution P,||C(x + n||z||) — C(x)|?

measures the squared change in the output of A due to the perturbation. The perturbation sensitivity
of C with respect to PP on a set of inputs x € D denoted as I'p (C, x).

I'p(C,x) = Esep

A direct estimation of perturbation sensitivity requires Monte Carlo sampling over the perturbation
distribution, which is computationally expensive in practice. Instead, we employ a surrogate lower
bound to approximate it efficiently.

Theorem 1. In a VLM model, the causality perturbation sensitivity " N(AG) has a lower bound
W |7 + Wa %
WklZ ' Wel3
and Wy € R%>*4k and the perturbation distribution of Gaussian distribution N'(0,1).

if a cross-attention mechanism defined by query and key matrices W¢ € R *

Proof. In VLM models, the input consist of image x; and text x;. In here, we represent m1, mso as
two modality. After encoding, the input of C' is (M7, M5). Then we calculate the low bound of
adding perturbation for input. For the M, we calculate the perturbation sensitivity low bound for
Wq with respect by Eq. (11), get

JC(M, + 8IML ) — C(My)
1C(My)]]?
Esen|C(My + 8[| M) — C(My)]?
= Esen| (MaWe) (M +8|[M: [ )W) — (M2Wo) (Mi W) |1”
= Esen || (M2Wo) (3 Mu]|W) " | (12)
= Esen[|M2Wo |?[|] My | W]
= Esen [ MaWol[*|IM || 6 Wil |?)
= Esen(|M2Wo *|IM ||*tr (W30 W)
= [MaWoq 31| Wi |7 1ML 13-
Then the perturbation sensitivity is IMzWo P IWic £ IMLI® e ¢ | (M1 Wg) M Wi) || <

(M1 We)(My W) T |12
(IM2Wo 2l (MlVVK)—r ll2 < [M2Woll2l|Wk||2]|M1||2, the low bound of perturbation is

Car(C,My) = Esen

Ta(C,My) > HWKH%. (13)
Will2
Similarly, we can get the low bound from perturbation on M, is
Well%
L (C, My) > ) 14
MM 2 v g ()
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According to cross-attention of AiGj calculated by
(Wo(ii- GT) " (Wk(t; - GT))
VD' |

Combine Eq. (13),(14) and Eq. (15), we represent the perturbation low bound of causality relationship
AC as

Qi = softmaxj(AiCj-)7 Ag = (15)

['p(A%) = T (C,My) + Tar(C, My). (16)
O

Our Theorem 1 also implies that perturbations aligned with high singular directions of W and Wx
will have the greatest impact on A%, making them more effective for attacks. This motivates the use
of SVD to identify these vulnerable directions and design adversarial perturbations accordingly, as
discussed in Section 3.3.2.

A.3 DEFENSE DISCUSSION

Recent advances such as adversarial training (e.g., PGD-based robust training Madry et al. (2018),
TRADES Zhang et al. (2019)) and certified defenses (e.g., randomized smoothing Cohen et al. (2019),
interval bound propagation Zhai et al. (2020), Lipschitz regularization Wei & Kolter (2022)) have
achieved impressive robustness on vision benchmarks like CIFAR-10 and ImageNet. However,
their computational cost scales poorly to modern VLMs with billions of parameters. For example,
PGD-based adversarial training requires 3—10x more forward—backward passes per iteration, making
fine-tuning a large model such as Qwen2.5-VL prohibitively expensive. Similarly, certified defenses
often rely on tight worst-case bounds or Monte Carlo sampling with thousands of noisy evaluations,
which is infeasible for long-sequence multimodal tasks. Moreover, most certified defenses are
designed for closed-set classification with a finite label space, whereas VLM tasks involve open-
ended generation (e.g., free-form QA, captioning) and complex reasoning. This mismatch means
that even a model with a certified ¢, robustness guarantee can still produce semantically incorrect or
malicious text under a causal adversarial attack.

More importantly, our threat model is not restricted to imperceptible perturbations. CASh explicitly
targets causal relationships between image regions and text tokens, which can produce semantically
meaningful perturbations. This renders many small-norm robustness guarantees ineffective, as their
perturbation budgets do not cover such causally aligned attacks.

To explore more practical protection mechanisms, we investigate input-level preprocessing defenses
that can be readily deployed in VLM pipelines, with evaluation on the MSCOCO dataset. Specifically,
we evaluate three representative techniques: (i) JPEG compression (Q=75), (ii) Gaussian blur
(o0 = 1), and (iii) randomized smoothing with Gaussian noise (¢ = 0.25). These defenses are
task-agnostic and model-independent, making them suitable for plug-and-play deployment.

Table 4: ASR (%) of CASh under different defenses in the TCL — DS-VL2 transfer setting.

Defense Method TR (ASR %) IR (ASR %) A (Avg.)
No Defense 75.61 82.12 -

JPEG (Q=75) 63.28 69.75 —12.35
Gaussian Blur (c = 1) 59.84 66.10 —15.90
Randomized Smoothing (¢ = 0.25) 57.42 62.31 —19.00

Observation. As shown in Table 4, all three defenses significantly reduce CASh’s ASR, with
randomized smoothing achieving the largest drop (= 19%). Nevertheless, CASh maintains over 57%
ASR even under the strongest defense, indicating that perturbations exploiting causal alignment are
more robust than pixel-level noise and are not completely removed by simple transformations.

These findings highlight the need for more principled defenses against causality-based attacks.
Promising future directions include robust training with causally aligned adversarial examples,
regularization of cross-attention stability, and causal consistency checking at the model level. We
leave the systematic investigation of such defenses and their interaction with CASh as important
future work.
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A.4 MORE EXPERIMENTAL RESULTS AND ANALYSIS

We also test the performance on MSCOCO datasets in Table 5. It also shows that our attack methods
over other baselines not only in white-box but black-box attack. Table 5 highlights the cross-model
transferability of CASh on MSCOCO. CASh consistently achieves the highest ASR across all
surrogate-target combinations, outperforming TMM, SGA, and CMI-Attack by a large margin. For
instance, when using TCL as the surrogate model, CASh achieves 79.98% (TR) and 88.67% (IR) on
Flor2, surpassing the strongest baseline by +6.0% and +8.9%, respectively. Similar improvements
are observed in other cross-architecture settings, confirming that CASh generates perturbations that
remain effective even under substantial model heterogeneity.

Interestingly, the choice of surrogate model significantly affects attack transferability. Surrogates with
deep cross-attention and stronger joint alignment (e.g., QW-VL, TCL) lead to higher ASR compared
to ALBEF, which adopts a dual-stream architecture with weaker intermediate fusion. This indicates
that attacks relying solely on shallow correlation (as in prior work) are less generalizable when the
surrogate lacks strong multimodal coupling. CASh alleviates this limitation by explicitly modeling
causal dependencies between text and image, producing more semantically grounded perturbations
that transfer better across models. As a result, CASh narrows the performance gap between ALBEF
and cross-attention surrogates, showing +7.1% ASR improvement on Flor2 (IR) even when ALBEF
is the source. Overall, this experiments reveals two key insights: 1)Cross-attention surrogates yield
stronger transfer attacks, suggesting that models with better multimodal fusion provide more universal
adversarial directions. 2)CASh improves robustness to surrogate choice, delivering consistent gains
and mitigating transferability failures caused by shallow relationships.

Table 5: The ASR(%) results of VLR on MSCOCO datasets

Source ‘Attack | ALBEF | TCL | DS-VL2 | ViLT | QW-VL |  Flor2
| TR IR | TR IR | TR IR |[TR IR |TR IR | TR IR

Co-Attack 79.87 87.83|32.62 43.09|22.34 35.62|33.56 4123|3256 35.67|36.78 43.76

SGA 96.75 96.95 | 58.56 65.38|56.32 54.13|56.34 5891 |61.07 62.45|63.89 64.22
ALBEF | CMI-Attack | 97.40 97.51|72.09 75.57 |70.13 69.35|69.34 70.58 | 71.92 72.15 | 73.86 74.41
TMM 96.79 97.73|70.19 74.02|71.23 74.13|70.15 7128|7236 73.49|74.57 74.93

CASh(Ours) | 98.01 97.25 | 71.35 75.32 | 72.35 75.15|73.15 74.16 | 72.65 73.16 | 74.13 75.01
Co-Attack 46.08 57.09 | 85.38 91.39|45.12 46.87|48.53 50.24 | 52.69 54.31|56.78 57.95

SGA 45.93 7330|9897 99.15|45.27 68.39 [47.15 70.82|49.63 72.14 | 51.28 73.45
TCL CMI-Attack | 78.63 83.55|98.94 99.30 | 76.23 82.34|76.25 82.98 | 79.38 86.56 | 79.42 85.67
T™MM 73.62 7838 |97.00 97.92|75.15 84.52 (7834 83.47|77.33 8452|7841 86.63

CaSh(Ours) | 75.32 82.13 | 98.99 99.15 | 75.61 82.12|77.32 84.18 | 78.12 86.19 | 79.98 88.67
Co-Attack 45.12 5834 | 46.78 59.67 | 72.12 85.56 | 46.15 58.92|47.83 59.64 | 48.37 60.00

SGA 55.23 64.56 | 56.78 65.00 | 96.34 97.15 | 55.12 64.89 | 56.34 65.00 | 57.78 63.45
DS-VL2 | CMI-Attack | 70.12 84.15 | 71.23 83.27 | 98.78 98.56 | 70.15 81.32|71.28 80.45 | 72.56 81.01
T™MM 72.34 82.39|73.45 81.51|98.32 98.21 |74.56 80.63|75.67 79.75|76.78 78.87

CASh(Ours) | 80.32 81.35 | 79.82 83.47 | 98.67 99.01 | 80.23 82.35|79.31 81.23 |79.14 81.23
Co-Attack 45.12 59.87|46.23 58.76|47.34 57.65|48.45 56.54|75.32 83.24|49.56 5543

SGA 55.12 69.87 | 56.23 68.76 | 57.34 67.65 | 58.45 66.54 | 93.35 95.13 | 59.56 65.43
QW-VL | CMI-Attack | 70.11 84.99 | 71.12 84.01 | 72.13 83.02 | 73.14 82.03 | 97.23 97.54 | 74.15 81.04
T™MM 75.16 80.05|76.17 79.06|77.18 78.07|78.19 77.08 | 98.01 97.00|79.20 76.09

CASh(Ours) | 79.21 82.01 | 80.11 85.91 | 78.91 84.12 | 79.13 83.14 | 98.12 98.03 | 80.12 83.06

Quantitative comparisons of adversarial transferability are summarized in Table 6, where our CASh
framework demonstrates superior ASR against baseline methods in cross-modal retrieval tasks on
MSCOCO benchmarks under white-box attack and transferable attack. For the MSCOCO dataset, the
TR task achieves 95.72%, which is +4.19% over TMM, and IR achieves 96.31%, which is +4.96%
over TMM. This aligns with the later description that TMM enhances attack capability by exploiting
modality discrepancy features, but our method achieves even better performance by further optimizing
modality consistency feature fusion. In cross-structure black-box attacks (e.g., CLIP, BLIP, and other
dual-stream models), our method significantly outperforms other methods. For instance, the BLIP
model in TR achieves 49.12% (+7.51% over TMM) and IR 58.12% (+1.91% over TMM). In addition,
CLIPy;7 in TR achieves 40.32%, which is equal to TMM, and IR achieves 46.87%, which is +1.55%
over TMM. Compared to Co-Attack and SGA, our method achieves an average ASR increase of
20.47%, demonstrating its advantage in cross-model transferability by jointly modeling both modality
consistency and discrepancy. For the X-VLM model, when tested on the MSCOCO dataset in the IR
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Table 6: The ASR(%) results of Image-text retrieval results on Flickr30K and MSCOCO dataset.

| | Flickr30K (1K test set) | MSCOCO (5K test set)

Models ‘ Attack | TR IR ‘ TR R
X-VLM Co-Attack | 15.31 24.19 21.32 29.29
VLATTACK | 24.23 27.13 24.13 31.29
CMI-Attack | 21.32 23.13 22.89 26.32
TMM 16.31 23.14 24.82 30.25
CASh(Ours) | 25.89 31.35 28.11 32.33
CLIPyit Co-Attack | 21.45 32.15 38.26 43.15
VLATTACK | 29.12 31.13 39.39 44.28
CMI-Attack | 26.35 32.98 36.12 43.12
TMM 22.31 33.25 38.32 45.78
CASh(Ours) | 30.31 35.32 40.98 47.09
CLIPcnN | Co-Attack | 21.43 33.21 42.43 53.32
VLATTACK | 24.36 36.28 39.24 54.32
CMI-Attack | 20.19 28.35 41.34 43.12
TMM 22.43 29.32 43.32 53.11
CASh(Ours) | 30.23 35.32 45.98 60.29
BLIP Co-Attack | 24.23 42.35 42.61 52.22
VLATTACK | 25.32 4298 46.12 51.87
CMI-Attack | 26.21 40.22 45.38 53.24
TMM 23.18 45.36 42.35 55.25
CASh(Ours) | 33.25 47.21 49.98 58.76

task, achieves 32.98%, which is +1.66% over TMM. The CLIPc-yn model, when tested on Flickr30K
in the TR task, achieves 32.15%, which is +10.72% over TMM. This demonstrates the robustness
of the method across different data scales and task types.In all model and task combinations, our
method consistently achieves higher ASR than baseline methods such as Co-Attack, VLATTACK,
and others. For the TCL model with the MSCOCO dataset, the ASR in the TR task is 36.27%, which
is +3.15% over VLATTACK.

A.5 DETAILED EXPLANATION OF CASH ATTACK STEPS

Our visualize experiments shows in the Figure 5 and Figure 6 which provide qualitative evidence
supporting the effectiveness of CASh. Since Figures 5 and 6 share similar attack steps, we show
the specific steps for Figure 5 . Here is a step-by-step explanation of how CASH is demonstrated in
Figure 5:

Is the girl holding a colander?

W".

Question: Change the color
of microwave to black.

e Y

Question: Is there microwave ol 2 TN
in this picture? Answer: No. Clean: No Attack: Yes.
Figure 5: Our Attack on Causality Figure 6: Our Attack on VQA

1. Baseline: A clean image of a kitchen is paired with a simple question, “Is there a microwave
in this picture?” A well-behaved VLM correctly answers, “No.”

2. CASH Attack: First, we construct the causal graphs G and G” for the image and text
(“Is there a microwave in this picture?” with “No.”). Then, we insert G’ and G” into the
cross-attention module of a surrogate model (Qwen2.5-VL) and use SVD to explore the
perturbations added to the image and text that alter the alignment from the original causal
connection between G’ and GT.
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3. Adversarial Sample Generation: CASH subtly perturbs the image (the changes are
imperceptible but targeted) to mislead the black-box VLM into incorrectly detecting a
microwave in the image.

4. Impact on Model Behavior: When prompted with “Change the color of the microwave to
black.”, the perturbed image causes the VLM to hallucinate a black microwave, demonstrat-
ing a successful attack on the model’s safety and reasoning capabilities.

This example demonstrates our attack performance on the VQA task. In Figure 5, CASh explicitly
modifies the microwave region when answering “Is there microwave in this picture?”, generating
perturbations that are semantically aligned with the causal concept of “microwave.” Similarly, in
Figure 6, CASh focuses on the colander region, flipping the model’s prediction from No to Yes.

These results indicate that CASh does not merely exploit spurious correlations or shallow token-level
biases, but instead targets causal features that drive model decisions. This explains the superior
transferability observed in Table 5: by perturbing semantically and causally relevant regions, CASh
produces perturbations that generalize across architectures, even when the surrogate model (e.g.,
ALBEF) has weaker multimodal coupling. In other words, CASh narrows the performance gap
caused by architecture heterogeneity (e.g., dual-stream vs. cross-attention), leading to consistently
higher ASR regardless of surrogate choice.

A.6 EQUATION FOR POST-INTERVENTION DISTRIBUTION

To quantify the effect of our causal intervention on the model’s output distribution, we specifically
compute the KL divergence between the original output distribution P())) and the intervened

distribution P()’|do(AS = AS")). This measures how much the model’s behavior changes when
we deliberately alter the causal structures in the cross-attention mechanism. The derivation proceeds
as follows:

D (PO | do(AF = AF)) || P))
=D (PO | do({ A; = AFYL)) | )

H p / P(y' | Al%h/)
=3 Y Py | AF, ) log (P(ylz4§fh)>

Yy h=1
d (e 5 ep(S1) -
_ "1 AC Vo :
=2 2 P 1AL log ( DS/ Y /expwﬁ,h))
11 4G ! exp(Syy,) > exp(Se n)
_;};P y' | Ay ) log (exp(Sf h)> + ;};P Y| A log (Zy/ eXp(Sé,,h)>

(S — Sun) + log (Zy, exp(st,ﬁ))] |

>y exp(Sy )

where S; = (My W) (MaWi) T and Sj = (M + AP™M)Wo)((Ma + APM2) W) represent
the original and perturbed attention matrices, respectively. The third line holds since both distributions
are derived from the softmax function over the attention matrices.

A.7 ATTACK ALGORITHM
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Algorithm 1: CASh: Causality Shifting Attack

Input: Image I, Sentence S, VLM model F° with imge encoder F;; and text encoder F,,
VLM output function h, constraints €, e, AMiz2, attempt times M, max iterations [V,
step size 11, n2.

Output: Perturbed inputs I’, T or perturbed output ).

// Step 1: Model SCMs and Align with Cross-Attention

Extract features: i; = FJ;(I) fori = 1to Ny, t; = F5,(T) for j = 1 to Np;

Build image SCM G/ with Eq. (2) and text SCM G” with Eq. (3);

Compute initial causal attention weights A by Eq. (15) and attended features:

i; =32 0 (Wyt;);
// Step 2: Two-Step Attack

form =1t M do
// Step 2.1: Derive Feature Perturbations via causal cross-attention with

Spectral Noise
Perform SVD on A: A® = ULV T and select top-k single values and vectors
AkG = UkaVkT 5
Calculate and get the causal feature perturbation AM’ and AM7 of image and text by Eq.( 5)

Optimize feature perturbations by Eq. (4) and Eq. (8) ;
Update AMla(t+1) — Projev (AMh(t) + nlvAMl Ccausa[) )

A?dzx(t+1) — Projeu (A;\/Iz’(t) + UQVAMQ £causal>;

forn =11 N do
// Step 2.2: Reverse Mapping to Input Perturbations
Optimize image perturbation and text perturbation by Eq. (6) ;
// Step 2.3: Optimization with Total Loss
Compute total loss by Eq. (10) ;
Update perturbations based on Eq. (10), etc ;

end

end
Compute perturbed output: V' = F*(I',T') ;
return I’ = I + 6y, (T, 6r) = T and )’
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