CASH: CAUSALITY ALIGNMENT SHIFTING TO UNVEIL VULNERABILITIES IN VISUAL-LANGUAGE MODEL

Anonymous authors

Paper under double-blind review

ABSTRACT

Existing adversarial attacks on vision-language models (VLMs) primarily use joint occurrence likelihoods to capture interdependency, often missing the true relationship between the text and the image. This paper presents a novel attack, CASh, on VLMs by manipulating latent causal representations between images and text in pre-trained models. We leverage the cross-attention matrix to capture causality alignment and exploit its singular properties to develop an efficient perturbation algorithm that modifies VLM tasks. Our attack targets the core causal relationships that exist independently of specific VLMs, ensuring transferability across models. Unlike existing attacks that primarily perturb inputs using correlation-based patterns, our approach accounts for causality, offering interpretability by showing how causal shifts lead to changes in VLM behavior. We evaluate CASh across various VLMs and compare it to existing attack methods. Our results demonstrate a significant performance boost, with an average improvement of 20.88% in transferable attack capability.

1 Introduction

Using the combined power of vision and language, Vision-Language Models (VLMs) have shown effectiveness in capturing the complex interplay between images and text. Thus, they have gained significant popularity in advanced tasks such as vision-language retrieval (VLR) Cao et al. (2022), visual entailment (VE) Li et al. (2023), visual grounding (VG) Hong et al. (2022), Visual Reasoning(VR)Chen et al. (2023b) and visual question answering (VQA) Alayrac et al. (2022); Tsimpoukelli et al. (2021).

However, the crucial interdependencies between visual and textual modalities that underpin VLM capabilities also expose a significant vulnerability: these models are highly susceptible to adversarial attacks specifically designed to disrupt inter-modality interactions. Existing attacks can be broadly categorized into two paradigms. The first and more prevalent paradigm, exemplified by works such as SGA Lu et al. (2023), Co-Attack Zhang et al. (2022a), VLATTACK Yin et al. (2024a), and TMM Wang et al. (2024a), employs surrogate models to craft broadly applicable adversarial examples by exploiting statistical biases like object co-occurrence probabilities in a shared latent space TMM Wang et al. (2024a); Yin et al. (2024b), This strategy aims to address the challenges of real-world deployment and offers a robust means to test VLM resilience Lu et al. (2023); Wang et al. (2024a). In contrast, a distinct second paradigm, including studies like Ying et al. (2025) and Qi et al. (2024), operates by injecting adversarial perturbations directly into image pixels to jailbreak the model's safety alignment and elicit harmful responses, often without explicitly targeting nuanced inter-modal relationships.

Despite the effectiveness of the predominant co-occurrence-based approach, it suffers from two fundamental limitations. First, the exploited co-occurrence probabilities often reflect superficial statistical regularities rather than meaningful semantic relationships. For instance, in a household setting, images of both a 'dog' and a 'cat' might frequently appear indoors, potentially leading a model to erroneously associate a 'dog' image with the text 'a cat on the sofa' based solely on this environmental correlation rather than genuine visual evidence. Second, and more critically, this reliance on shallow, dataset-specific correlations severely hinders attack transferability. Generating effective transferable attacks requires capturing robust, invariant inter-modal dependencies across diverse tasks and modalities. However, current co-occurrence-based methods primarily capture

transient patterns from their training data, which fail to generalize to unseen data distributions or related tasks, resulting in weak transferability across different VLM architectures.

To address these limits, we closely explored the inference mechanisms of the open-source VLMs Li et al. (2021); Yang et al. (2022); Wu et al. (2024b); Kim et al. (2021); Bai et al. (2025); Xiao et al. (2023) and observed that the core challenge in designing effective attacks against VLMs is achieving fine-grained relationship alignment: an adversary must identify exactly which image regions correspond to specific textual cues, then inject perturbations that subvert the model's joint reasoning without introducing conspicuous artifacts. Such precise alignment is crucial because it ensures that perturbations target the intrinsic semantic structure actually used by the model, allowing high attack success with minimal changes while preserving stealthiness, and also improves transferability, since these causal relationships are more likely to remain invariant across different VLM architectures than shallow correlations. Motivated by this observation, we adopt a causal perspective—leveraging Pearl's Structural Causal Model (SCM) Pearl (2009) and Wang et al. (2025)—to explicitly model the causal links between image regions and textual tokens. This enables us to disentangle true causal effects from spurious correlations and design more precise, counterfactual interventions. While some methods Peng & Wei (2024); Abbasnejad et al. (2020); Schölkopf et al. (2021); Yang et al. (2021); Wang et al. (2024b) leverage SCMs or counterfactual interventions to assess how specific words shape attention to visual areas or how visual features influence language output, this research adopts a tokenor object-level causality approach, with graph nodes representing visual or linguistic components rather than abstract high-level variables—a contrast to traditional causality models in medicine or social science, which connect defined interventions to outcomes.

To this end, we propose CASh (Causality Alignment Shifting Attack), a novel attack method that perturbs latent causal representations in pre-trained vision-language models. Our approach models causal dependencies within and across modalities using SCMs, and aligns image and text features via a regularized cross-attention mechanism. We then identify the high-impact directions in the causal alignment space using singular value decomposition (SVD) and inject norm-bounded perturbations to selectively break these links. The resulting adversarial examples are minimally altered in input space, but highly disruptive to the model's causal connection alignment—leading to significant performance degradation across multiple downstream tasks.

For example, Figure 1 shows that the "kitchen" and "microwave" form a causal relationship due to "food". After applying perturbation to the image and altering "kitchen" to "room" in the text using our CASh method, the model misalign the original relationship between image and text that lead to its answer from "Yes" to "No".

In summary, our primary contributions include: 1) **First Attempt to Exploit Causality for VLM Adversarial Attacks:** To the best of our knowledge,

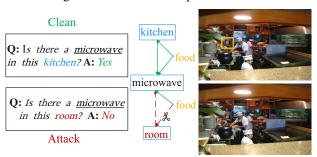


Figure 1: Causal Relationship Alignment Shift.

this is the first work that enhances adversarial attacks by explicitly shifting the causality alignment between image and text, rather than merely perturbing their raw statistical features. 2) **Causal Dependency Quantification:** We propose the novel application of cross-attention matrices as a diagnostic tool for quantifying causal dependencies across multimodel representations. 3) **Good Experimental Performance:** We evaluate the effectiveness of the CASh method across multiple downstream tasks, revealing significant performance degradation. Our findings highlight the need for improved causality alignment mechanisms to strengthen the robustness of VLMs against such threats.

2 RELATED WORK

2.1 Causal Relationships in VLMs

Understanding causal relationships in VLMs has gained attention as a means to move beyond correlation-driven predictions and improve robustness in multimodal tasks. Foundational works on causality Pearl (2009); Schölkopf et al. (2012) have inspired studies like Lopez-Paz et al. (2015), which delve into counterfactual reasoning to distinguish genuine cause-effect relationships from

spurious associations in multimodal datasets. Additionally, Yang et al. (2021) introduced causal attention mechanisms, significantly improving performance in tasks such as image captioning by modeling the cause-effect dynamics between visual regions and textual tokens. Likewise, Wang et al. (2024b) developed a causal learning framework for vision-and-language navigation, using SCMs to disentangle spurious correlations in navigation instructions and visual scenes, achieving better generalization across diverse environments. Recent benchmarks, including Causal3DLiu et al. (2025), further highlight the importance of causality in VLMs by providing datasets with structured causal graphs to evaluate models on complex visual reasoning tasks. Furthermore, for visual question answering tasks, Chen et al. (2024) proposed a causal intervention framework enabling models to make predictions based on causal relationships rather than spurious correlations.

2.2 ADVERSARIAL ATTACKS IN VLMS

Adversarial attacks on VLMs have exposed significant vulnerabilities, particularly in their multimodal nature, where attackers exploit the visual modality to bypass safety mechanisms. Previous research has utilized gradient-based methods to generate perturbations across image and text modalities, assuming full model accessibility, as demonstrated in works such as Luo et al. (2024); Gao et al. (2024): Wu et al. (2024a). Other studies Wang et al. (2024a): Zhao et al. (2023b): Dong et al. (2023): Wang et al. (2024c); Wu et al. (2024a) have explored scenarios where attackers with limited VLM knowledge employ surrogate models to target other systems, with Wang et al. (2024a) employing attention-directed feature perturbation and Zhao et al. (2023b) leveraging pretrained CLIP and BLIP models. Additionally, Chen et al. (2023a) further explored adaptive ensemble attacks, showing that synchronizing outputs from diverse surrogate models, can amplify transferability across architectures like CNNs and ViTs. Similarly, Chen et al. (2025) proposed a multimodal feature heterogeneous attack framework, leveraging triplet contrastive learning to enhance the transferability of adversarial examples across medical imaging VLMs, highlighting the underutilization of modal differences in prior attacks. Moreover, Zhao et al. (2023a) evaluated the robustness of large VLMs under black-box settings, crafting targeted adversarial examples against models like CLIP and transferring them to others like LLaVA, revealing the ease of deceiving VLMs into producing incorrect outputs. However, these methods focus on shallow features and overlook deeper model structures. In contrast, our transfer-based attack leverages the causal relationships between text and images to enhance effectiveness and transferability.

2.3 Causality-Informed Adversarial Attacks

Integrating causality into adversarial attacks offers a promising avenue to create more robust and transferable perturbations in VLMs by targeting semantically grounded relationships. For instance, CausalAdv by Zhang et al. (2022b) aims to improve model resilience by reducing discrepancies between natural and adversarial distributions, whereas our approach differs by exploiting causal misalignment, to enhance attack effectiveness. Similarly, the CADE framework Cai et al. (2024) uses counterfactual reasoning for attack optimization, while we focus on disrupting causal alignment in cross-attention mechanisms. In addition, the paper Koyuncu et al. (2023) addresses adversarial manipulations in causal inference, but our study targets multimodal alignment, to degrade performance. Together, these studies lay the groundwork for causality-driven adversarial strategies, with our method providing a fresh angle on exploiting multimodal vulnerabilities.

3 THE CASH ATTACK

In this section, we specifically introduce our CASh attack method. Let \mathcal{F}^s be a publicly available, pre-trained VLM, and \mathcal{F}^a denote the unknown, black-box target VLM. Given a clean image–text pair (I,T) and norm bounds ϵ_I, ϵ_T , we solve

$$(I', T') = \mathcal{F}^s(A^G, \mathcal{G}^I(I, \delta_I), \mathcal{G}^T(T, \delta_T)),$$

$$\|\delta_I\|_{\infty} \le \epsilon_I, \ \|\delta_T\|_{\infty} \le \epsilon_T,$$

(1)

where G^I, G^T, A^G is our attack strategy chosen so that $\mathcal{F}^s(I,T)$ produces some (I',T'). By transferability, the resulting adversarial example (I',T') satisfies $\mathcal{F}^a(I',T') \notin \mathcal{Y}$, even though the attacker has no access to the architectures, parameters, or training data of the \mathcal{F}^a .

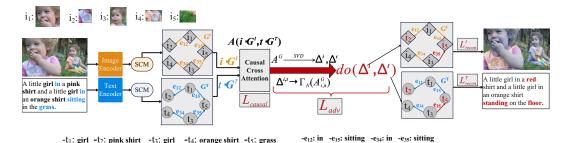


Figure 2: CASh Framework. Inputs are encoded via Image and Text Encoders, processed with SCMs, and aligned using Cross Attention $(A(\mathbf{i} \cdot \mathbf{G}^I, \mathbf{t} \cdot \mathbf{G}^T))$. Causal Attention (A^G) and SVD generate perturbations $((\Delta^i, \Delta^t))$ with the do-operator, guided by L_{causal} and L_{adv} losses, while L_{recon} produces a manipulated output (e.g., "A little girl in a red shirt... standing on the floor").

Our CASh attack procedure is shown in Fig. 2. The goal of the attacker is to shift the alignment relationship from inherent causality in the image and text modalities. Specifically, we integrate an image I and its text description T (e.g., "a little girl in a pink shirt and a little girl in an orange shirt sitting on the grass."). The encoded features \mathbf{i} and \mathbf{t} are extracted through \mathcal{F}^s 's image or text encoding blocks. We then apply structural causal relationships $(\mathbf{G}^I, \mathbf{G}^T)$ captured by our SCM (Section 3.1) to these features, which are aligned via a causal cross-attention module computing $A^G = A(\mathbf{i} \cdot \mathbf{G}^I, \mathbf{t} \cdot \mathbf{G}^T)$, loss $\mathcal{L}_{\text{causal}}$. The causal loss $\mathcal{L}_{\text{causal}}$ ensures robust causality capture in cross-attention (Section 3.2). Then we find the most possible attack direction by SVD decomposition of the causal cross-attention matrix, with the perturbation lower bound guaranteed by Theorem 1. Next, an adversarial intervention $do(\Delta^i, \Delta^t)$ perturbs modality latent features of both modalities. Finally, the adversarial samples I' and I' are reconstructed by jointly optimizing losses $\mathcal{L}_{\text{recon}}^I$ and $\mathcal{L}_{\text{recon}}^I$ (see Section 3.3). For instance, the attacker changes \mathbf{e}_{35} from "sitting" to "standing" or changes \mathbf{t}_5 from the "grass" to "floor". As a result, the causal relationship between the text semantic information and the image space is misaligned, leading to the generated text not matching the image.

3.1 MODELING CAUSAL RELATIONSHIPS IN IMAGE AND TEXT

Current attack methods Lu et al. (2023); Zhang et al. (2022a); Yin et al. (2024a), which depend entirely on VLM backbones (e.g. ViTDosovitskiy et al. (2021) and CNNLeCun et al. (1989)), can only exploit superficial co-occurrence patterns, missing specific critical causal structures such as "sunlight angle" \rightarrow "shadow formation" or "rain" leads to "wet ground"—thus leading to reduced attack efficiency in disrupting critical cause-effect dynamics. However, images I and texts T are compositional, with entities (e.g., "car") and relations (e.g., "car on road") implying causal structures that current VLM encoders—such as CNNs, RNNs, or Transformers—collapse into flat vectors, hindering correlation-based attacks. In contrast, SCMs model modalities as DAGs Thulasiraman & Swamy (1992) whose nodes and edges encode entities and causal dependencies, exposing vulnerabilities that enable more effective attacks than correlation-only approaches.

In this way, we construct the SCM $\mathcal{G}^I = (I, E_I)$ for an image, including nodes $I = \{I_i\}_{i=1}^{N_I}$, each with a feature vector $\mathbf{i}_i \in \mathbb{R}^D$ derived from a visual encoder, $\mathbf{i}_i = \mathrm{ViT}(I)_i + \gamma_i$ and $\gamma_i \sim \mathcal{N}(0, \sigma^2)$, which is node-specific exogenous noise capturing unmodeled factors. Edges E_I capture causal relationships, defined by

$$\mathcal{G}_i^I(\operatorname{Pa}(I_i), \gamma_i) = \sum_{j \in \operatorname{Pa}(I_i)} \mathbf{G}_{ij}^I \mathbf{i}_j + \gamma_i, \quad \mathbf{G}^I \in \mathbb{R}^{N_I \times N_I},$$
(2)

where $\mathrm{Pa}(I_i)$ denotes parent nodes. In the same way, the SCM $\mathcal{G}^T=(T,E_T)$ represents nodes $T=\{T_j\}_{j=1}^{N_T}$ as linguistic entities with embeddings $\mathbf{t}_j\in\mathbb{R}^D$, extracted from a language encoder, $\mathbf{t}_j=\mathrm{BERT}(T)_j+\eta_j$ and $\eta_j\sim\mathcal{N}(0,\sigma_T^2)$ is node-specific exogenous noise capturing unmodeled linguistic variations with each node T_j governed by:

$$\mathcal{G}_j^T \left(\operatorname{Pa}(T_j), \eta_j \right) = \sum_{k \in \operatorname{Pa}(T_j)} \mathbf{G}_{jk}^T \mathbf{t}_k + \eta_j, \quad \mathbf{G}^T \in \mathbb{R}^{N_T \times N_T}, \tag{3}$$

where $Pa(T_j)$ are parent nodes. G^T and G^I represent the text's adjacency matrix and image's adjacency matrix. Each element $G^{T/I}$ is set to 1 if there exists a directed edge from node j to node k, indicating that j is a parent of k in the graph; otherwise, $G^{T/I}(j,k) = 0$.

3.2 Cross-Attention for Alignment

A key challenge in VLMs is aligning diverse image and text modalities, where cross-attention assigns fine-grained weights α_{ij} linking nodes (e.g., the textual "sun" to its image region), enabling highly targeted attacks with minimal perturbations. Compared to coarse global alignment, embedding causal relationships from SCMs via regularization (see Eq. (4)) further boosts attack success and interpretability, while simultaneously exposing vulnerabilities that attackers can exploit. Accordingly, we employ causal cross-attention to align the \mathcal{G}_I and \mathcal{G}_T based on their causal adjacency matrices \mathbf{G}^I and \mathbf{G}^T by $\alpha_{ij} = \operatorname{softmax}_j(A_{ij}^G)$, $A_{ij}^G = \frac{(W_Q(\mathbf{i}_i \cdot \mathbf{G}^I))^\top (W_K(\mathbf{t}_j \cdot \mathbf{G}^T))}{\sqrt{D^I}}$, where attention score matrix $A^G \in \mathbb{R}^{N_I \times N_T}$ captures the raw similarity between nodes, α_{ij} provides the weighted distribution for integration, $W_Q, W_K \in \mathbb{R}^{D' \times D}$ projects the features into a shared space (with D' as the projected dimension), while softmax_j normalizes over j to ensure $\sum_j \alpha_{ij} = 1$, and the attended representation is $\mathbf{i}_i' = \sum_j \alpha_{ij} (W_V(\mathbf{t}_j \cdot \mathbf{G}^T))$. To ensure generalization and adaptability across different downstream tasks, we define $\mathbf{M}_{1,2}$ as the causal features of either image or text modalities ($\mathbf{i} \cdot \mathbf{G}^I$ or $\mathbf{t} \cdot \mathbf{G}^T$). Thus, the causal cross-attention can be expressed as $A_{ij}^G = \frac{(W_Q \mathbf{M}_1)^\top (W_K \mathbf{M}_2)}{\sqrt{D'}}$. This alignment relationship provides an attacker with a direct target, as perturbing attention weights can effectively disrupt causal alignments between \mathbf{M}_1 and \mathbf{M}_2 from two different modalities, thereby exposing VLM vulnerabilities. To ensure the alignment adheres to the causal structure, we introduce a **causal regularization term**:

$$\mathcal{L}_{\text{causal}} = \sum_{i,k} \|\alpha_{ik} - \sum_{j \in \text{Pa}(k)} \alpha_{ij} \mathbf{G}_{\mathbf{M}_2}(j,k)\|_2^2, \tag{4}$$

where α_i is the *i*-th causal feature from M_1 . This formulation ensures that alignments strictly adhere to causal pathways, as demonstrated through three fundamental reasoning patterns: 1)Deductive Reasoning: Explicit rule-based alignment(e.g., mapping visual "shadow" to textual "sunlight" through the causal rule "if sun, then shadow"). 2)Inductive Reasoning: Pattern generalization across instances(e.g., consistent alignment of "cars on roads" relationships). 3)Abductive Reasoning: Explanatory inference from observations (e.g., deducing a light source from shadow features and the textual "sunlight" concept).

3.3 EFFICTIVELY CROSS-ATTENTION ATTACK

For effectively adding perturbation, we consider two points: (1) which target layers yield perturbations that both fool the surrogate model and transfer well to black-box VLMs, and (2) how to find perturbations that trigger attacks more efficiently. We tackle these by (i) **exploring the core attack direction** of the causality relationship matrix, which captures the coherent text-image relationship, thereby enhancing transferability and (ii) **exploring perturbation bound** to ensure more efficient discovery of adversarial-triggering perturbations.

3.3.1 EXPLORING THE CORE ATTACK DIRECTION

A simple method to disrupt causality in cross-attention mechanisms is to maximize the difference between the adversarial attention matrix $A^{G'}$ and the original A^G , typically using a loss function like $\mathcal{L}_{\text{na\"ive}} = -\|A^{G'} - A^G\|_F^2$. However, this näve approach lacks effectiveness, efficiency, and stability because it does not target the most influential components of attention alignment and cannot discover perturbations that trigger faster adversarial attacks after locating the most likely attack component. For instance, some changes may be large in magnitude but low in functional impact, meaning that the model might still preserve its decision-making capabilities despite a large perturbation in A^G . Crucially, it ignores attention matrix structure, often perturbing low-impact directions. An optimal attack must instead target the most sensitive alignment directions to ensure both substantial magnitude and maximal reasoning disruption.

To address the issues, we introduce a more structured attack strategy that leverages SVD decomposition of the attention matrix $A^G = U\Sigma V^\top$, where $\Sigma = \mathrm{diag}(\lambda_1,\lambda_2,\ldots,\lambda_n)$, $U \in \mathbb{R}^{N_{\mathbf{M}_1}\times r}$, $V \in \mathbb{R}^{N_{\mathbf{M}_2}\times r}$, and $V = \min(N_{\mathbf{M}_1},N_{\mathbf{M}_2})$. We select the top-V singular components $V_k^G = U_k \Sigma_k V_k^\top$ to identify critical alignment relationships, then project them to generate perturbations $V_k^G = U_k \Sigma_k V_k^\top$ and $V_k^G = U_k \Sigma_k V_k^\top$ for image and text features by

$$\Delta_i^{\mathbf{M}_1} = \sum_{n=1}^k \lambda_n(\mathbf{M}_1^k)_{in}(W_Q^{\mathsf{T}} \mathbf{u}_n), \quad \Delta_j^{\mathbf{M}_2} = \sum_{n=1}^k \lambda_n(\mathbf{M}_2^k)_{jn}(W_K^{\mathsf{T}} \mathbf{v}_n), \tag{5}$$

where \mathbf{u}_n and \mathbf{v}_n are basis vectors, constraints $\sum_i \|\Delta_i^{\mathbf{M}_1}\|_2^2 \leq \epsilon_{\mathbf{M}_1}$, $\sum_j \|\Delta_j^{\mathbf{M}_2}\|_2^2 \leq \epsilon_{\mathbf{M}_2}$ are enforced via projection. With $\Delta_i^{\mathbf{M}_1}$ and $\Delta_j^{\mathbf{M}_2}$ determined in Eq. (5), we map them back to input perturbations δ_I and δ_T to generate I' and T', we optimize the **reconstruction loss**:

$$\mathcal{L}_{\text{recon}}^{I} = \sum_{i} \|\mathcal{F}^{s}(I') - (\mathbf{i}_{i} + \Delta_{i}^{\mathbf{M}_{I}})\|_{2}^{2}, \quad \mathcal{L}_{\text{recon}}^{T} = \sum_{i} \|\mathcal{F}^{s}(T') - (\mathbf{t}_{j} + \Delta_{j}^{\mathbf{M}_{T}})\|_{2}^{2}.$$
(6)

For texts, since T is discrete, we via discrete search (e.g., synonym replacement) to approximate δ_T get $(T,\delta_T)\to T'$. This approach ensures targeted causality shifting by leveraging the perturbation matrix's spectral properties. For input layer, we employ BERT-Attack Li et al. (2020) to generate adversarial text T' as input text and perturbated image calculated by adding perturbation δ_I to generate I'.

3.3.2 EXPLORING PERTURBATION BOUND

Instead of applying arbitrarily large perturbations, we quantify perturbation sensitivity and provide a theoretical justification for the attack strategy. In VLM models with L layers and one layer containing H heads, capture different features from the alignment relation in cross-attention, the perturbation introduced at the input layer propagates through to the output layer. As a result, the entire space is often considered during the search process, which significantly increases computational cost. To address this issue, we analyze the perturbation for layers according to the Theorem 1 (See Appendix A.1), the perturbation sensitivity of causality relationship $A_{l,h}^G$ in layer l and head h satisfy

$$\Gamma_{\mathcal{N}}(A_{l,h}^G) \ge \left(\frac{\|W_K\|_F^2}{\|W_K\|_2^2} + \frac{\|W_Q\|_F^2}{\|W_Q\|_2^2}\right)_{l,h}.$$
(7)

Therefore, we set the low bound to initial value of perturbation $\Delta_{A_{l,h}^G}$ for the $A_{l,h}^G$, the perturbation sensitivity bound for layer l is calculated by $\Gamma_{\mathcal{N}}(A_l^G) = \sum_{h=1}^H \Gamma_{\mathcal{N}}(A_{l,h}^G)$, $l = \{1, 2, \dots, L\}$. Then we find the most vulnerable target layer t by $A_t^G = \arg\max_l \left(\Gamma_{\mathcal{N}}(A_1^G), \dots, \Gamma_{\mathcal{N}}(A_L^G)\right)$. This identifies the layer t will experience the greatest change in output with perturbations in its input. From Theorem 1 and Eq. (5), we simulate the effect of intervention denoted as $do(\cdot)$ in a causal model and derive the KL-divergence between the original output distribution $P(\mathcal{Y})$ and the post-intervention distribution $P(\mathcal{Y}' \mid do(A_t^G = A_t^{G'}))$ as follows(specific calculation see Appendix A.5),

$$D_{\mathrm{KL}}\left(P(\mathcal{Y}'\mid do(A_t^G=A_t^{G'}))\parallel P(\mathcal{Y})\right) = D_{\mathrm{KL}}\left(P(\mathcal{Y}'\mid do(\{\Delta_i^{h,\mathbf{M}_1}, \Delta_j^{h,\mathbf{M}_2}\}_{h=1}^H))\parallel P(\mathcal{Y})\right). \tag{8}$$

We maximize the KL divergence for making the perturbed distribution as different as possible from the original distribution, defining this loss as **adversarial effect loss**:

$$\mathcal{L}_{\text{adv}} = -D_{\text{KL}}(P(\mathcal{Y}' \mid do(A^G = A_t^{G'})) \parallel P(\mathcal{Y})). \tag{9}$$

We use β_1 and β_2 to control the perturbation strength when optimize overall loss function:

$$\arg \min_{\delta_{I,T},\Delta_h^{\mathbf{M}_{1,2}}} \mathcal{L}_{adv} + \mathcal{L}_{causal} + \beta_1 \mathcal{L}_{recon}^I + \beta_2 \mathcal{L}_{recon}^T.$$
s.t. $\|\delta_T\|_{\infty} \le \epsilon_T, \|\delta_I\|_{\infty} \le \epsilon_I, \|\Delta_h^{\mathbf{M}_{1,2}}\|_{\infty} \ge \Gamma_{\mathcal{N}}(A_{t,h}^G), h = 1, 2, \dots, H.$

4 EXPERIMENTS

In this section, we present the experimental results evaluating the effectiveness of our proposed attack strategy on these VLM downstream tasks: VLR, VE, VG, VR and VQA.

Table 1: The ASR(%) results of VLR on Flickr30K datasets.

Source	Attack	AL	BEF	TO	TCL		DS-VL2		ViLT		QW-VL		or2
		TR	IR	TR	IR	TR	IR	TR	IR	TR	IR	TR	IR
	Co-Attack	77.16	83.86	15.21	29.49	10.21	12.51	20.31	23.54	11.34	12.65	13.65	12.75
	SGA	97.24	97.28	45.42	55.25	43.31	53.21	42.21	54.56	41.34	53.32	43.65	54.35
ALBEF	CMI-Attack	97.08	97.43	62.17	69.64	65.11	64.21	51.54	53.54	65.32	67.43	62.87	64.35
	TMM	97.53	97.51	64.97	69.60	62.76	65.31	64.21	63.21	67.82	64.82	72.13	73.14
	CASh(Ours)	98.21	98.03	72.29	76.01	65.68	56.21	68.68	62.43	72.43	79.68	82.43	79.31
	Co-Attack	23.15	40.04	77.94	85.59	22.34	43.25	32.14	23.15	31.24	33.21	41.52	43.21
	SGA	48.91	60.34	98.37	98.81	49.12	58.19	50.31	60.21	58.12	57.13	59.12	59.34
TCL	CMI-Attack	61.52	71.73	98.00	98.67	62.31	72.31	62.34	72.31	61.34	69.34	54.31	58.42
	TMM	68.10	72.30	97.87	97.60	69.12	73.14	72.34	71.45	72.45	69.32	65.31	66.31
	CASh(Ours)	72.43	76.32	99.12	98.89	70.08	73.18	80.34	81.23	83.15	84.35	82.11	79.13
	Co-Attack	21.35	34.62	22.45	35.62	78.62	84.35	23.45	24.65	22.98	31.24	26.39	30.13
	SGA	43.21	55.34	56.32	57.82	98.32	98.45	47.89	52.37	43.56	55.12	49.75	58.24
DS-VL2	CMI-Attack	62.34	63.42	71.23	70.34	98.56	98.02	64.77	59.45	61.08	67.93	56.21	63.68
	TMM	69.32	72.34	73.41	72.54	98.01	98.32	71.04	72.50	64.86	68.62	66.19	70.33
	CASh(Ours)	73.45	75.62	85.62	83.42	98.98	99.01	80.35	82.34	80.52	83.24	78.32	79.34
	Co-Attack	22.25	33.52	32.65	38.62	25.61	31.45	34.25	32.61	75.36	83.21	35.62	32.14
	SGA	48.75	56.23	52.41	59.06	58.29	59.13	60.21	60.32	98.35	98.76	62.35	63.12
QW-VL	CMI-Attack	62.35	65.18	68.94	61.07	66.52	69.83	63.40	67.29	97.32	97.31	72.14	73.14
	TMM	72.56	75.39	78.14	71.82	76.03	79.47	73.25	77.68	98.99	97.97	80.12	79.34
	CASh(Ours)	80.19	89.32	90.31	90.45	89.23	88.34	85.23	87.34	99.12	99.32	85.36	89.13

4.1 EXPERIMENTAL SETTINGS

Datasets: Based on the above five downstream tasks, we collect 1000 test samples from Flickr30K and 5000 val samples from MSCOCO for VLR task. For varifying the causality performance of our attack method, we select all test samples from SNLI-VE for VE task and randomly select 5000 test samples from NLVR2 for VR task. Furthermore, we randomly select 5000 val samples from VQAv2 for VQA task. For VG task, we select all TestA and TestB samples from RefCOCO+ to test the performance.

VLM Models and Attack Methods: All above dataset will used on on several popular vision-language models, including ALBEF Li et al. (2021), TCLYang et al. (2022), DeepSeek-VL2(DS-VL2)Wu et al. (2024b), ViLT Kim et al. (2021), Qwen2.5-VL(QW-VL) Bai et al. (2025), Florence-2(Flor2)Xiao et al. (2023). To validate our attack's practical threat, we evaluate its transferability on leading black-box API models, OpenAI's GPT-4o(GPT)OpenAI (2024) and Google's Gemini 2.5-Pro(Gemini)Comanici et al. (2025), the most advanced commercial VLMs. For demonstrating our attack method, we compare our proposed method CASh with current multi-model attack methods considering the multimodal features in VLM model, such as SGALu et al. (2023), Co-Attack Zhang et al. (2022a), VLATTACK Yin et al. (2024a), TMM Wang et al. (2024a), MI-Attack Fu et al. (2024), VQATTACKYin et al. (2024b).

Table 2: The ASR (%) results of VG tasks on RefCOCO+ datasets.

Attack	ALI	BEF	TO	CL	DS-	VL2	QW	-VL	Flo	or2
	TestA	TestB								
Co-Attack	22.33	13.99	40.52	34.18	32.45	34.52	40.23	35.67	34.21	30.14
VLATTACK	25.36	24.35	41.24	35.67	32.54	35.67	36.87	36.87	36.72	30.12
SGA	55.74	50.63	43.53	37.74	45.67	51.24	38.62	40.13	42.51	41.23
TMM	67.14	59.26	57.49	50.85	52.34	51.34	53.45	53.47	62.31	61.15
CASh(Ours)	69.32	60.35	62.34	61.43	68.35	65.41	60.32	58.92	64.31	65.32

Evaluation Metrics: In this work, we utilize the Attack Success Rate (ASR) metric to evaluate both the efficacy of white-box attacks and the transferability of black-box attacks against VLP models. We also use IR and TR to denote the percentage of top-1 image and subtitle retrievals, respectively, that fail to include the correct match.

Table 3: ASR (%) for VQA, VE and VR on VQAv2, TextVQA, SNLI-VE and NLVR2 datasets.

Tasks	Dataset	Attack	ALBEF	TCL	DS-VL2	ViLT	QW-VL	Flor2	GPT	Gemini
		Co-Attack	11.36	27.24	15.61	19.34	22.35	24.56	10.15	10.56
	VQAv2	VQAttack	21.60	61.32	25.67	25.67	37.68	32.61	11.25	10.98
	VQAV2	VLATTACK	48.35	55.32	48.93	49.54	50.13	49.87	15.21	13.91
VQA		CASh(Ours)	69.23	60.12	65.78	60.98	67.89	62.89	22.89	23.29
	TextVQA	Co-Attack	23.45	20.50	40.68	38.56	39.32	40.35	20.34	18.67
		VQAttack	38.79	43.70	39.25	36.87	39.12	40.12	21.23	19.07
		VLATTACK	32.54	35.78	33.54	35.76	37.23	36.67	21.67	20.01
		CASh(Ours)	40.13	43.23	44.32	45.32	48.32	49.32	22.37	21.37
		Co-Attack	80.66	40.68	60.12	54.23	54.32	50.13	21.31	20.98
		SGA	86.81	51.36	61.43	64.31	62.34	62.45	25.34	23.12
VE	SNLI-VE	VLATTACK	84.21	50.43	62.32	61.34	63.12	62.45	26.24	24.19
		TMM	93.36	65.35	68.14	69.34	66.34	67.98	27.45	26.89
		CASh(Ours)	95.62	70.92	72.92	69.92	70.89	89.22	35.23	33.42
N/D	NI VD2	VLATTACK	66.54	62.13	64.54	65.12	54.32	53.21	12.34	11.23
VR	NLVR2	CASh(Ours)	68.32	69.36	68.56	69.87	69.52	70.36	15.13	13.23

Implementation Details: We use VLMs with cross-attention blocks (e.g. ALBEF, TCL, DS-VL2,QW-VL) as a surrogate model, without finetuning, to attack white- and black-box VLMs. For images, we set the perturbation bound $\epsilon_I=16/255$ to control adversarial noise, and for text, we apply bounded lexical substitutions $\epsilon_T=1$ based on semantic similarity. To improve robustness and transferability, we incorporate a momentum term $\mu=1$ in gradient updates. This setup ensures a fair evaluation of our causality-based attack on cross-modal retrieval. In our experiments, we set $\beta_1=0.05$ and $\beta_2=0.1$, which achieve strong attack performance. All experiments run on an NVIDIA A100 GPU with 40GB.

4.2 ATTACKING PERFORMANCE

This section details extensive experimental evaluations to demonstrate our attack performance via VLR, VG, VE, VQA, and VR tasks. The performance of the models and the different attack methods is shown in the Tables, our method consistently outperforms the other attack strategies across all models and datasets for both TR and IR tasks.

- 1) Significant Advantage in White-box Attacks: In Table 1, gray shading shows our attack method performance under white-box attacks, our method achieves the highest ASR in both TR and IR tasks. For instance, on the Flickr30K dataset, the TR task achieves over 98.21%, and IR achieves 98.01%, significantly outperforming other methods such as Co-Attack 77.16% and SGA to 97.24%.
- **2) Outstanding Transferability in Black-box Attacks.** Our method achieves state-of-the-art transferability in cross-structure black-box attacks. Using TCL as a surrogate to attack QW-VL, we obtain 84.35% in IR (+15.02% over TMM) and 83.15% in TR (+10.7%). Similarly, attacking TCL with DS-VL2 yields 85.62% in TR (+12.21%) and 83.42% in IR (+10%), outperforming all baselines. Even when transferring from cross-attention models to Flor2 (without cross-attention), our approach still surpasses others by at least +15.39%. Even on strong black-box models such as GPT and Gemini, CASh improves ASR to 22.89% and 23.29% on VQAv2, exceeding VLATTACK by +4.68% and +9.38%. Compared to all other models, our method achieves an average ASR at least increase of 11.50%, demonstrating its advantage in cross-model transferability by jointly modeling causality from both text and image.
- **3) Strong Generalization Across Datasets.** On Flickr30K and MSCOCO (See in Appendix A.3), our method maintains stable performance. For instance, the QW-VL model, when tested on the MSCOCO dataset in the IR task, achieves 32.98%, which is +1.66% over TMM. The DS-VL2 model, when tested on Flickr30K in the TR task, achieves 32.15%, which is +10.72% over TMM. This demonstrates the robustness of the method across different data scales and task types.
- **4)** Comprehensive Performance on different downstream tasks. For the VG ,VE, VR and VQA tasks, we use ALBEF as our surrogate model to attack other black-box models. The experimental results demonstrate the superior performance of our proposed CASh (Ours) attack method across all

evaluated tasks and datasets. In the VG task (Table 2), CASh achieves the highest attack success rates (ASR) on all target models, with particularly strong performance on TCL (62.34% -70.32%) and DS-VL2/QW-VL (64.31%-68.35%), outperforming the second-best baseline TMM by 5.8%-12.1% ASR points. Similarly, in VQA/VE/VR tasks (Table 3), CASh maintains leading performance with ASR scores up to 65.32% on Flor2. These consistent gains across diverse VL tasks validate CASh's robust multimodal fusion approach and adaptive thresholding mechanism, establishing it as a new state-of-the-art for transfer-based attacks. The method's effectiveness is particularly notable in complex reasoning tasks (VQA/VE/VR), where it achieves 60.32% ASR on ViLT, demonstrating superior generalization capability compared to existing approaches.

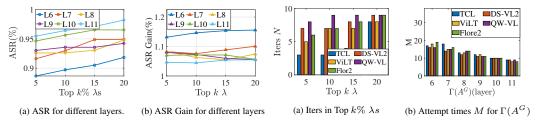


Figure 3: Performance on Top $k\% \lambda s$.

Figure 4: Effectiveness of SCM in different models.

4.3 ABLATION STUDY

In this section, we further explore the key factors impacting the effectiveness of our CASh framework in generating transferable adversarial examples, using ALBEF as the surrogate model with six cross-attention layers to fuse text and image modalities.

Figure 3 analyzes the ASR across different layers (L6 to L11) of the ALBEF model, considering the top k% of λ s. The ASR generally increases as k% grows from 5% to 20% for all layers in subfigure 3a. Notably, higher layers (e.g., L11) consistently achieve higher ASR (around 0.95 to 1.0) compared to lower layers (e.g., L6, around 0.9 to 0.95). This suggests that attacking higher layers is more effective, likely due to their greater influence on the model's final predictions. Subfigure 3b shows the ASR gain (in %) across the same layers and k% values. The gain is relatively stable across layers, fluctuating between 1.0 and 1.2, with L11 showing a slight edge at higher k% (e.g., 1.15 at k=20%). This indicates that while higher layers have a higher baseline ASR, the relative improvement (gain) from the attack method is consistent across layers, with a marginal advantage in deeper layers.

Figure 4 evaluates the transferable effectiveness of SCM when attack black-box models. Subfigure 4a evaluates the number of iterations (N) required to achieve the top $k\%\lambda$ s for various models (TCL, DS-VL2, ViLT, QW-VL, Flor2). All of their results shows that the needed optimal iterations higher with use the more singular values to locate the most perturbation direction. This is because more singular values also enlarge the search space while they achieve higher ASR. We also measure the perturbation sensitivity Γ for different models in subfigure 4b. Our results demonstrate that adding perturbations to cross-attention layers closer to the output layer (e.g., L11) requires fewer attempts (M) compared to shallower layers (e.g., L6). This trend indicates higher perturbation sensitivity in deeper cross-attention layers, as they not only align complex features across modalities but also maintain greater similarity to the output layer than shallower layers. Furthermore, additional findings (Appendix A.3) confirm that cross-attention layers nearer to the output layer more effectively capture the alignment between image and text, enhancing their role in multimodal feature integration.

5 CONCLUSION

In this study, we proposed a novel attack, CASh, which disrupted the causal alignment between images and text in pre-trained surrogate VLMs. We add SCMs of image and text to the cross-attention matrix, and then systematically analyze its properties to develop an efficient perturbation generation algorithm. By targeting a subset of elements with high-impact within the matrix, and leveraging a theoretically guided initialization during optimization, we enhanced the attack's effectiveness and efficiency. We evaluated CASh across multiple VLM tasks, including VLR, VE, VG, VR and VQA, experimental results demonstrated that our attack achieved strong transferability by significantly degrading the performance of various VLMs with no less than 52.36% reduction in accuracy. Furthermore, unlike traditional attacks that directly add perturbations to the input, CASh manipulates causality, causing the perturbation to propagate across all input elements after matrix reconstruction and backpropagation.

REFERENCES

- Ehsan Abbasnejad, Damien Teney, Amin Parvaneh, Javen Shi, and Anton van den Hengel. Counterfactual vision and language learning. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10041–10051, 2020. doi: 10.1109/CVPR42600.2020.01006.
- Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katie Millicah, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a visual language model for few-shot learning. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.
- Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for deep nets via a compression approach, 2018. URL https://arxiv.org/abs/1802.05296.
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv* preprint arXiv:2502.13923, 2025.
- Ruichu Cai, Yuxuan Zhu, Jie Qiao, Zefeng Liang, Furui Liu, and Zhifeng Hao. Where and how to attack? a causality-inspired recipe for generating counterfactual adversarial examples. In *Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence*, AAAI'24/IAAI'24/EAAI'24. AAAI Press, 2024. ISBN 978-1-57735-887-9. doi: 10.1609/aaai.v38i10.28990. URL https://doi.org/10.1609/aaai.v38i10.28990.
- Min Cao, Shiping Li, Juntao Li, Liqiang Nie, and Min Zhang. Image-text retrieval: A survey on recent research and development. In Lud De Raedt (ed.), *Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22*, pp. 5410–5417. International Joint Conferences on Artificial Intelligence Organization, 7 2022. doi: 10.24963/ijcai.2022/759. URL https://doi.org/10.24963/ijcai.2022/759. Survey Track.
- Bin Chen, Jiali Yin, Shukai Chen, Bohao Chen, and Ximeng Liu. An adaptive model ensemble adversarial attack for boosting adversarial transferability. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 4489–4498, October 2023a.
- Liangyu Chen, Bo Li, Sheng Shen, Jingkang Yang, Chunyuan Li, Kurt Keutzer, Trevor Darrell, and Ziwei Liu. Language models are visual reasoning coordinators. In *ICLR 2023 Workshop on Mathematical and Empirical Understanding of Foundation Models*, 2023b. URL https://openreview.net/forum?id=kdHpWogtX6Y.
- Long Chen, Yuling Chen, Zhi Ouyang, Hui Dou, Yangwen Zhang, and Haiwei Sang. Boosting adversarial transferability in vision-language models via multimodal feature heterogeneity. *Scientific Reports*, 15(1):7366, March 2025. ISSN 2045-2322. doi: 10.1038/s41598-025-91802-6. URL https://doi.org/10.1038/s41598-025-91802-6.
- Meiqi Chen, Bo Peng, Yan Zhang, and Chaochao Lu. Cello: Causal evaluation of large vision-language models. In *Conference on Empirical Methods in Natural Language Processing*, 2024. URL https://api.semanticscholar.org/CorpusID:270764390.
- Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized smoothing. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 1310–1320. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/cohen19c.html.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
context, and next generation agentic capabilities, 2025. URL https://arxiv.org/abs/2507.
06261.

Yinpeng Dong, Huanran Chen, Jiawei Chen, Zhengwei Fang, Xiao Yang, Yichi Zhang, Yu Tian, Hang Su, and Jun Zhu. How robust is google's bard to adversarial image attacks?, 2023. URL https://arxiv.org/abs/2309.11751.

- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2021.
- Jiyuan Fu, Zhaoyu Chen, Kaixun Jiang, Haijing Guo, Jiafeng Wang, Shuyong Gao, and Wenqiang Zhang. Improving adversarial transferability of vision-language pre-training models through collaborative multimodal interaction, 2024. URL https://arxiv.org/abs/2403.10883.
- Kuofeng Gao, Yang Bai, Jindong Gu, Shu-Tao Xia, Philip Torr, Zhifeng Li, and Wei Liu. Inducing high energy-latency of large vision-language models with verbose images. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=BteuUysuXX.
- Richang Hong, Daqing Liu, Xiaoyu Mo, Xiangnan He, and Hanwang Zhang. Learning to compose and reason with language tree structures for visual grounding. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(2):684–696, 2022. doi: 10.1109/TPAMI.2019.2911066.
- Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convolution or region supervision. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 5583–5594. PMLR, 18–24 Jul 2021. URL http://proceedings.mlr.press/v139/kim21k.html.
- Deniz Koyuncu, Alex Gittens, Bülent Yener, and Moti Yung. Deception by omission: Using adversarial missingness to poison causal structure learning. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '23, pp. 1164–1175, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701030. doi: 10.1145/3580305.3599297. URL https://doi.org/10.1145/3580305.3599297.
- Yann LeCun, Bernhard Boser, John S. Denker, Donnie Henderson, Richard E. Howard, Wayne Hubbard, and Lawrence D. Jackel. Backpropagation applied to handwritten zip code recognition. *Neural Computation*, 1(4):541–551, 1989. doi: 10.1162/neco.1989.1.4.541.
- Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum distillation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 9694–9705. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/505259756244493872b7709a8a01b536-Paper.pdf.
- Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. BERT-ATTACK: Adversarial attack against BERT using BERT. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 6193–6202, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.500. URL https://aclanthology.org/2020.emnlp-main.500/.
- Nan Li, Pijian Li, Dongsheng Xu, Wenye Zhao, Yi Cai, and Qingbao Huang. Scene-text oriented visual entailment: Task, dataset and solution. In *Proceedings of the 31st ACM International Conference on Multimedia*, MM '23, pp. 5562–5571, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701085. doi: 10.1145/3581783.3612593. URL https://doi.org/10.1145/3581783.3612593.

- Disheng Liu, Yiran Qiao, Wuche Liu, Yiren Lu, Yunlai Zhou, Tuo Liang, Yu Yin, and Jing Ma. Causal3d: A comprehensive benchmark for causal learning from visual data, 2025. URL https://arxiv.org/abs/2503.04852.
 - David Lopez-Paz, Krikamol Muandet, Bernhard Schölkopf, and Iliya Tolstikhin. Towards a learning theory of cause-effect inference. In Francis Bach and David Blei (eds.), *Proceedings of the 32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*, pp. 1452–1461, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/lopez-paz15.html.
 - Dong Lu, Zhiqiang Wang, Teng Wang, Weili Guan, Hongchang Gao, and Feng Zheng. Set-level Guidance Attack: Boosting Adversarial Transferability of Vision-Language Pre-training Models. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 102–111, Los Alamitos, CA, USA, October 2023. IEEE Computer Society. doi: 10.1109/ICCV51070.2023.00016. URL https://doi.ieeecomputersociety.org/10.1109/ICCV51070.2023.00016.
 - Haochen Luo, Jindong Gu, Fengyuan Liu, and Philip Torr. An image is worth 1000 lies: Transferability of adversarial images across prompts on vision-language models. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=nc5GgFAvtk.
 - Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In *International Conference on Learning Representations*, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.
 - OpenAI. Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276.
 - Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, USA, 2nd edition, 2009. ISBN 052189560X.
 - Daowan Peng and Wei Wei. Towards deconfounded visual question answering via dual-causal intervention. In *Proceedings of the 33rd ACM International Conference on Information and Knowledge Management*, CIKM '24, pp. 1867–1877, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400704369. doi: 10.1145/3627673.3679594. URL https://doi.org/10.1145/3627673.3679594.
 - Xiangyu Qi, Kaixuan Huang, Ashwinee Panda, Peter Henderson, Mengdi Wang, and Prateek Mittal. Visual adversarial examples jailbreak aligned large language models. In *Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence*, AAAI'24/IAAI'24/EAAI'24. AAAI Press, 2024. ISBN 978-1-57735-887-9. doi: 10.1609/aaai.v38i19.30150. URL https://doi.org/10.1609/aaai.v38i19.30150.
 - Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, and Joris Mooij. On causal and anticausal learning. In *Proceedings of the 29th International Coference on International Conference on Machine Learning*, ICML'12, pp. 459–466, Madison, WI, USA, 2012. Omnipress. ISBN 9781450312851.
 - Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. *Proceedings of the IEEE*, 109(5):612–634, 2021. doi: 10.1109/JPROC.2021.3058954.
 - K. Thulasiraman and M. N. S. Swamy. *Graphs: theory and algorithms*. John Wiley & Sons, Inc., USA, 1992. ISBN 0471513563.
 - Maria Tsimpoukelli, Jacob Menick, Serkan Cabi, S. M. Ali Eslami, Oriol Vinyals, and Felix Hill. Multimodal few-shot learning with frozen language models. In *Proceedings of the 35th International Conference on Neural Information Processing Systems*, NIPS '21, Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.
 - Haodi Wang, Kai Dong, Zhilei Zhu, Haotong Qin, Aishan Liu, Xiaolin Fang, Jiakai Wang, and Xianglong Liu. Transferable multimodal attack on vision-language pre-training models. In 2024 *IEEE Symposium on Security and Privacy (SP)*, pp. 1722–1740, 2024a. doi: 10.1109/SP54263. 2024.00102.

- Liuyi Wang, Zongtao He, Ronghao Dang, Mengjiao Shen, Chengju Liu, and Qijun Chen. Vision-and-language navigation via causal learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 13139–13150, June 2024b.
- Qidong Wang, Junjie Hu, and Ming Jiang. V-seam: Visual semantic editing and attention modulating for causal interpretability of vision-language models, 2025. URL https://arxiv.org/abs/2509. 14837.
 - Xunguang Wang, Zhenlan Ji, Pingchuan Ma, Zongjie Li, and Shuai Wang. Instructia: Instruction-tuned targeted attack for large vision-language models, 2024c. URL https://arxiv.org/abs/2312.01886.
 - Colin Wei and J Zico Kolter. Certified robustness for deep equilibrium models via interval bound propagation. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=y1PXylgrXZ.
 - Chen Henry Wu, Rishi Shah, Jing Yu Koh, Ruslan Salakhutdinov, Daniel Fried, and Aditi Raghunathan. Dissecting adversarial robustness of multimodal lm agents, 2024a. URL https://arxiv.org/abs/2406.12814.
 - Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang Ma, Chengyue Wu, Bingxuan Wang, Zhenda Xie, Yu Wu, Kai Hu, Jiawei Wang, Yaofeng Sun, Yukun Li, Yishi Piao, Kang Guan, Aixin Liu, Xin Xie, Yuxiang You, Kai Dong, Xingkai Yu, Haowei Zhang, Liang Zhao, Yisong Wang, and Chong Ruan. Deepseek-vl2: Mixture-of-experts vision-language models for advanced multimodal understanding, 2024b. URL https://arxiv.org/abs/2412.10302.
 - Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu, and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks. *arXiv* preprint arXiv:2311.06242, 2023.
 - Jinyu Yang, Jiali Duan, Son Tran, Yi Xu, Sampath Chanda, Liqun Chen, Belinda Zeng, Trishul Chilimbi, and Junzhou Huang. Vision-language pre-training with triple contrastive learning. 2022.
 - Xu Yang, Hanwang Zhang, Guojun Qi, and Jianfei Cai. Causal attention for vision-language tasks. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9842–9852, 2021. URL https://api.semanticscholar.org/CorpusID:232135026.
 - Ziyi Yin, Muchao Ye, Tianrong Zhang, Tianyu Du, Jinguo Zhu, Han Liu, Jinghui Chen, Ting Wang, and Fenglong Ma. Vlattack: multimodal adversarial attacks on vision-language tasks via pre-trained models. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2024a. Curran Associates Inc.
 - Ziyi Yin, Muchao Ye, Tianrong Zhang, Jiaqi Wang, Han Liu, Jinghui Chen, Ting Wang, and Fenglong Ma. Vqattack: Transferable adversarial attacks on visual question answering via pre-trained models. In *AAAI Conference on Artificial Intelligence*, 2024b. URL https://api.semanticscholar.org/CorpusID:267751461.
 - Zonghao Ying, Aishan Liu, Tianyuan Zhang, Zhengmin Yu, Siyuan Liang, Xianglong Liu, and Dacheng Tao. Jailbreak vision language models via bi-modal adversarial prompt. *IEEE Transactions on Information Forensics and Security*, 20:7153–7165, 2025. doi: 10.1109/TIFS.2025. 3583249.
 - Runtian Zhai, Chen Dan, Di He, Huan Zhang, Boqing Gong, Pradeep Ravikumar, Cho-Jui Hsieh, and Liwei Wang. Macer: Attack-free and scalable robust training via maximizing certified radius. In *International Conference on Learning Representations*, 2020. URL https://openreview.net/forum?id=rJx1Na4Fwr.
 - Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jordan. Theoretically principled trade-off between robustness and accuracy. In *International Conference on Machine Learning*, 2019.
 - Jiaming Zhang, Qi Yi, and Jitao Sang. Towards adversarial attack on vision-language pre-training models. In *Proceedings of the 30th ACM International Conference on Multimedia*, 2022a.

Yonggang Zhang, Mingming Gong, Tongliang Liu, Gang Niu, Xinmei Tian, Bo Han, Bernhard Schölkopf, and Kun Zhang. Causaladv: Adversarial robustness through the lens of causality, 2022b. URL https://arxiv.org/abs/2106.06196.

Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Cheung, and Min Lin. On evaluating adversarial robustness of large vision-language models. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023a. Curran Associates Inc.

Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan Li, Ngai man Cheung, and Min Lin. On evaluating adversarial robustness of large vision-language models. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023b. URL https://openreview.net/forum?id=xbbknN9QFs.

A APPENDIX

A.1 LLM DISCLAIMER

In the preparation of this manuscript, we employed a Large Language Model (LLM) as a tool for proofreading and grammar checking. The use of the LLM was strictly limited to the identification and correction of surface-level language errors after the scientific content had been fully finalized by the authors. All suggestions provided by the model were critically reviewed and manually verified to ensure they did not alter the technical meaning or nuance of the content.

A.2 BOUNDING PERTURBATION SENSITIVITY FOR EFFICIENT ADVERSARIAL ATTACKS

To determine which layer to attack, in Section 3.3, we leverage the perturbation sensitivity as introduced in Arora et al. (2018), defined as follows:

Definition A.1. Let C be a cross-attention matrix mapping input signal to output of relationship. Given a perturbation distribution \mathcal{P} , the **perturbation sensitivity** of C at an input x with respect to \mathcal{P} is defined as:

$$\Gamma_{\mathcal{P}}(C, x) = \mathbb{E}_{\delta \in \mathcal{P}} \left[\frac{\|C(x + \delta \|x\|) - C(x)\|^2}{\|C(x)\|^2} \right],$$
(11)

where δ is a perturbation sampled from the perturbation distribution $\mathcal{P}, \|C(x + \eta \|x\|) - C(x)\|^2$ measures the squared change in the output of A due to the perturbation. The perturbation sensitivity of C with respect to \mathcal{P} on a set of inputs $x \in D$ denoted as $\Gamma_{\mathcal{P}}(C, x)$.

A direct estimation of perturbation sensitivity requires Monte Carlo sampling over the perturbation distribution, which is computationally expensive in practice. Instead, we employ a surrogate lower bound to approximate it efficiently.

Theorem 1. In a VLM model, the causality perturbation sensitivity $\Gamma_{\mathcal{N}}(A^G)$ has a lower bound $\frac{\|W_K\|_F^2}{\|W_K\|_2^2} + \frac{\|W_Q\|_F^2}{\|W_Q\|_2^2}$ if a cross-attention mechanism defined by query and key matrices $W_Q \in \mathbb{R}^{d_t \times d_k}$ and $W_K \in \mathbb{R}^{d_i \times d_k}$ and the perturbation distribution of Gaussian distribution $\mathcal{N}(0,1)$.

Proof. In VLM models, the input consist of image x_i and text x_t . In here, we represent m_1, m_2 as two modality. After encoding, the input of C is $(\mathbf{M}_1, \mathbf{M}_2)$. Then we calculate the low bound of adding perturbation for input. For the \mathbf{M}_1 , we calculate the perturbation sensitivity low bound for W_Q with respect by Eq. (11), get

$$\Gamma_{\mathcal{N}}(C, \mathbf{M}_{1}) = \mathbb{E}_{\delta \in \mathcal{N}} \left[\frac{\|C(\mathbf{M}_{1} + \delta \|\mathbf{M}_{1}\|) - C(\mathbf{M}_{1})\|^{2}}{\|C(\mathbf{M}_{1})\|^{2}} \right]$$

$$\mathbb{E}_{\delta \in \mathcal{N}} \|C(\mathbf{M}_{1} + \delta \|\mathbf{M}_{1}\|) - C(\mathbf{M}_{1})\|^{2}$$

$$= \mathbb{E}_{\delta \in \mathcal{N}} \|(\mathbf{M}_{2}W_{Q}) ((\mathbf{M}_{1} + \delta \|\mathbf{M}_{1}\|)W_{k})^{\top} - (\mathbf{M}_{2}W_{Q}) (\mathbf{M}_{1}W_{k})^{\top}\|^{2}$$

$$= \mathbb{E}_{\delta \in \mathcal{N}} \|(\mathbf{M}_{2}W_{Q}) (\delta \|\mathbf{M}_{1}\|W_{k})^{\top}\|^{2}$$

$$= \mathbb{E}_{\delta \in \mathcal{N}} [\|\mathbf{M}_{2}W_{Q}\|^{2} \|\delta \|\mathbf{M}_{1}\|W_{k}\|^{2}]$$

$$= \mathbb{E}_{\delta \in \mathcal{N}} [\|\mathbf{M}_{2}W_{Q}\|^{2} \|\mathbf{M}_{1}\|^{2} \|\delta W_{k}\|^{2}]$$

$$= \mathbb{E}_{\delta \in \mathcal{N}} [\|\mathbf{M}_{2}W_{Q}\|^{2} \|\mathbf{M}_{1}\|^{2} tr(W_{k}\delta\delta^{\top}W_{K})]$$

$$= \|\mathbf{M}_{2}W_{Q}\|_{2}^{2} \|W_{K}\|_{F}^{2} \|\mathbf{M}_{1}\|_{2}^{2}.$$
(12)

Then the perturbation sensitivity is $\frac{\|\mathbf{M}_2 W_Q\|^2 \|W_K\|_F^2 \|\mathbf{M}_1\|^2}{\|(\mathbf{M}_1 W_Q)(\mathbf{M}_1 W_K)^\top\|^2}$ Due to $\|(\mathbf{M}_1 W_Q)(\mathbf{M}_1 W_K)^\top\| \le \|\mathbf{M}_2 W_Q\|_2 \|(\mathbf{M}_1 W_K)^\top\|_2 \le \|\mathbf{M}_2 W_Q\|_2 \|W_K\|_2 \|\mathbf{M}_1\|_2$, the low bound of perturbation is

$$\Gamma_{\mathcal{N}}(C, \mathbf{M}_1) \ge \frac{\|W_K\|_F^2}{\|W_K\|_2^2}.$$
 (13)

Similarly, we can get the low bound from perturbation on M_2 is

$$\Gamma_{\mathcal{N}}(C, \mathbf{M}_2) \ge \frac{\|W_Q\|_F^2}{\|W_Q\|_2^2}.$$
 (14)

According to cross-attention of A_{ij}^G calculated by

$$\alpha_{ij} = \operatorname{softmax}_{j}(A_{ij}^{G}), \quad A_{ij}^{G} = \frac{(W_{Q}(\mathbf{i}_{i} \cdot \mathbf{G}^{I}))^{\top}(W_{K}(\mathbf{t}_{j} \cdot \mathbf{G}^{T}))}{\sqrt{D'}}, \tag{15}$$

Combine Eq. (13),(14) and Eq. (15), we represent the perturbation low bound of causality relationship ${\cal A}^G$ as

$$\Gamma_{\mathcal{P}}(A^G) = \Gamma_{\mathcal{N}}(C, \mathbf{M}_2) + \Gamma_{\mathcal{N}}(C, \mathbf{M}_1). \tag{16}$$

Our Theorem 1 also implies that perturbations aligned with high singular directions of W_Q and W_K will have the greatest impact on A^G , making them more effective for attacks. This motivates the use of SVD to identify these vulnerable directions and design adversarial perturbations accordingly, as discussed in Section 3.3.2.

A.3 DEFENSE DISCUSSION

Recent advances such as adversarial training (e.g., PGD-based robust training Madry et al. (2018), TRADES Zhang et al. (2019)) and certified defenses (e.g., randomized smoothing Cohen et al. (2019), interval bound propagation Zhai et al. (2020), Lipschitz regularization Wei & Kolter (2022)) have achieved impressive robustness on vision benchmarks like CIFAR-10 and ImageNet. However, their computational cost scales poorly to modern VLMs with billions of parameters. For example, PGD-based adversarial training requires 3–10× more forward–backward passes per iteration, making fine-tuning a large model such as Qwen2.5-VL prohibitively expensive. Similarly, certified defenses often rely on tight worst-case bounds or Monte Carlo sampling with thousands of noisy evaluations, which is infeasible for long-sequence multimodal tasks. Moreover, most certified defenses are designed for closed-set classification with a finite label space, whereas VLM tasks involve openended generation (e.g., free-form QA, captioning) and complex reasoning. This mismatch means that even a model with a certified ℓ_{∞} robustness guarantee can still produce semantically incorrect or malicious text under a causal adversarial attack.

More importantly, our threat model is not restricted to imperceptible perturbations. CASh explicitly targets causal relationships between image regions and text tokens, which can produce semantically meaningful perturbations. This renders many small-norm robustness guarantees ineffective, as their perturbation budgets do not cover such causally aligned attacks.

To explore more practical protection mechanisms, we investigate input-level preprocessing defenses that can be readily deployed in VLM pipelines, with evaluation on the MSCOCO dataset. Specifically, we evaluate three representative techniques: (i) **JPEG compression** (Q=75), (ii) **Gaussian blur** ($\sigma=1$), and (iii) **randomized smoothing** with Gaussian noise ($\sigma=0.25$). These defenses are task-agnostic and model-independent, making them suitable for plug-and-play deployment.

Table 4: ASR (%) of CASh under different defenses in the TCL \rightarrow DS-VL2 transfer setting.

Defense Method	TR (ASR %)	IR (ASR %)	Δ (Avg.)
No Defense	75.61	82.12	_
JPEG (Q=75)	63.28	69.75	-12.35
Gaussian Blur ($\sigma = 1$)	59.84	66.10	-15.90
Randomized Smoothing ($\sigma = 0.25$)	57.42	62.31	-19.00

Observation. As shown in Table 4, all three defenses significantly reduce CASh's ASR, with randomized smoothing achieving the largest drop ($\approx 19\%$). Nevertheless, CASh maintains over 57% ASR even under the strongest defense, indicating that perturbations exploiting causal alignment are more robust than pixel-level noise and are not completely removed by simple transformations.

These findings highlight the need for more principled defenses against causality-based attacks. Promising future directions include robust training with causally aligned adversarial examples, regularization of cross-attention stability, and causal consistency checking at the model level. We leave the systematic investigation of such defenses and their interaction with CASh as important future work.

A.4 MORE EXPERIMENTAL RESULTS AND ANALYSIS

We also test the performance on MSCOCO datasets in Table 5. It also shows that our attack methods over other baselines not only in white-box but black-box attack. Table 5 highlights the cross-model transferability of CASh on MSCOCO. CASh consistently achieves the highest ASR across all surrogate-target combinations, outperforming TMM, SGA, and CMI-Attack by a large margin. For instance, when using TCL as the surrogate model, CASh achieves 79.98% (TR) and 88.67% (IR) on Flor2, surpassing the strongest baseline by +6.0% and +8.9%, respectively. Similar improvements are observed in other cross-architecture settings, confirming that CASh generates perturbations that remain effective even under substantial model heterogeneity.

Interestingly, the choice of surrogate model significantly affects attack transferability. Surrogates with deep cross-attention and stronger joint alignment (e.g., QW-VL, TCL) lead to higher ASR compared to ALBEF, which adopts a dual-stream architecture with weaker intermediate fusion. This indicates that attacks relying solely on shallow correlation (as in prior work) are less generalizable when the surrogate lacks strong multimodal coupling. CASh alleviates this limitation by explicitly modeling causal dependencies between text and image, producing more semantically grounded perturbations that transfer better across models. As a result, CASh narrows the performance gap between ALBEF and cross-attention surrogates, showing +7.1% ASR improvement on Flor2 (IR) even when ALBEF is the source. Overall, this experiments reveals two key insights: 1)Cross-attention surrogates yield stronger transfer attacks, suggesting that models with better multimodal fusion provide more universal adversarial directions. 2)CASh improves robustness to surrogate choice, delivering consistent gains and mitigating transferability failures caused by shallow relationships.

Table 5: The ASR(%) results of VLR on MSCOCO datasets

Source	Attack	AL	BEF	ТС	CL	DS-	VL2	Vi	LT	QW-VL		Flo	or2
Source		TR	IR										
	Co-Attack	79.87	87.83	32.62	43.09	22.34	35.62	33.56	41.23	32.56	35.67	36.78	43.76
	SGA	96.75	96.95	58.56	65.38	56.32	54.13	56.34	58.91	61.07	62.45	63.89	64.22
ALBEF	CMI-Attack	97.40	97.51	72.09	75.57	70.13	69.35	69.34	70.58	71.92	72.15	73.86	74.41
	TMM	96.79	97.73	70.19	74.02	71.23	74.13	70.15	71.28	72.36	73.49	74.57	74.93
	CASh(Ours)	98.01	97.25	71.35	75.32	72.35	75.15	73.15	74.16	72.65	73.16	74.13	75.01
	Co-Attack	46.08	57.09	85.38	91.39	45.12	46.87	48.53	50.24	52.69	54.31	56.78	57.95
	SGA	45.93	73.30	98.97	99.15	45.27	68.39	47.15	70.82	49.63	72.14	51.28	73.45
TCL	CMI-Attack	78.63	83.55	98.94	99.30	76.23	82.34	76.25	82.98	79.38	86.56	79.42	85.67
	TMM	73.62	78.38	97.00	97.92	75.15	84.52	78.34	83.47	77.33	84.52	78.41	86.63
	CaSh(Ours)	75.32	82.13	98.99	99.15	75.61	82.12	77.32	84.18	78.12	86.19	79.98	88.67
	Co-Attack	45.12	58.34	46.78	59.67	72.12	85.56	46.15	58.92	47.83	59.64	48.37	60.00
	SGA	55.23	64.56	56.78	65.00	96.34	97.15	55.12	64.89	56.34	65.00	57.78	63.45
DS-VL2	CMI-Attack	70.12	84.15	71.23	83.27	98.78	98.56	70.15	81.32	71.28	80.45	72.56	81.01
	TMM	72.34	82.39	73.45	81.51	98.32	98.21	74.56	80.63	75.67	79.75	76.78	78.87
	CASh(Ours)	80.32	81.35	79.82	83.47	98.67	99.01	80.23	82.35	79.31	81.23	79.14	81.23
	Co-Attack	45.12	59.87	46.23	58.76	47.34	57.65	48.45	56.54	75.32	83.24	49.56	55.43
	SGA	55.12	69.87	56.23	68.76	57.34	67.65	58.45	66.54	93.35	95.13	59.56	65.43
QW-VL	CMI-Attack	70.11	84.99	71.12	84.01	72.13	83.02	73.14	82.03	97.23	97.54	74.15	81.04
	TMM	75.16	80.05	76.17	79.06	77.18	78.07	78.19	77.08	98.01	97.00	79.20	76.09
	CASh(Ours)	79.21	82.01	80.11	85.91	78.91	84.12	79.13	83.14	98.12	98.03	80.12	83.06

Quantitative comparisons of adversarial transferability are summarized in Table 6, where our CASh framework demonstrates superior ASR against baseline methods in cross-modal retrieval tasks on MSCOCO benchmarks under white-box attack and transferable attack. For the MSCOCO dataset, the TR task achieves 95.72%, which is +4.19% over TMM, and IR achieves 96.31%, which is +4.96% over TMM. This aligns with the later description that TMM enhances attack capability by exploiting modality discrepancy features, but our method achieves even better performance by further optimizing modality consistency feature fusion. In cross-structure black-box attacks (e.g., CLIP, BLIP, and other dual-stream models), our method significantly outperforms other methods. For instance, the BLIP model in TR achieves 49.12% (+7.51% over TMM) and IR 58.12% (+1.91% over TMM). In addition, CLIP_{ViT} in TR achieves 40.32%, which is equal to TMM, and IR achieves 46.87%, which is +1.55% over TMM. Compared to Co-Attack and SGA, our method achieves an average ASR increase of 20.47%, demonstrating its advantage in cross-model transferability by jointly modeling both modality consistency and discrepancy. For the X-VLM model, when tested on the MSCOCO dataset in the IR

Table 6: The ASR(%) results of Image-text retrieval results on Flickr30K and MSCOCO dataset.

		Flickr30	K (1K test set)	MSCOCO (5K test set)			
Models	Attack	TR	IR	TR	IR		
X-VLM	Co-Attack	15.31	24.19	21.32	29.29		
	VLATTACK	24.23	27.13	24.13	31.29		
	CMI-Attack	21.32	23.13	22.89	26.32		
	TMM	16.31	23.14	24.82	30.25		
	CASh(Ours)	25.89	31.35	28.11	32.33		
CLIP _{ViT}	Co-Attack	21.45	32.15	38.26	43.15		
	VLATTACK	29.12	31.13	39.39	44.28		
	CMI-Attack	26.35	32.98	36.12	43.12		
	TMM	22.31	33.25	38.32	45.78		
	CASh(Ours)	30.31	35.32	40.98	47.09		
CLIP _{CNN}	Co-Attack	21.43	33.21	42.43	53.32		
	VLATTACK	24.36	36.28	39.24	54.32		
	CMI-Attack	20.19	28.35	41.34	43.12		
	TMM	22.43	29.32	43.32	53.11		
	CASh(Ours)	30.23	35.32	45.98	60.29		
BLIP	Co-Attack	24.23	42.35	42.61	52.22		
	VLATTACK	25.32	42.98	46.12	51.87		
	CMI-Attack	26.21	40.22	45.38	53.24		
	TMM	23.18	45.36	42.35	55.25		
	CASh(Ours)	33.25	47.21	49.98	58.76		

task, achieves 32.98%, which is +1.66% over TMM. The CLIP_{CNN} model, when tested on Flickr30K in the TR task, achieves 32.15%, which is +10.72% over TMM. This demonstrates the robustness of the method across different data scales and task types.In all model and task combinations, our method consistently achieves higher ASR than baseline methods such as Co-Attack, VLATTACK, and others. For the TCL model with the MSCOCO dataset, the ASR in the TR task is 36.27%, which is +3.15% over VLATTACK.

A.5 DETAILED EXPLANATION OF CASH ATTACK STEPS

Our visualize experiments shows in the Figure 5 and Figure 6 which provide qualitative evidence supporting the effectiveness of CASh. Since Figures 5 and 6 share similar attack steps, we show the specific steps for Figure 5. Here is a step-by-step explanation of how CASH is demonstrated in Figure 5:

Figure 5: Our Attack on Causality

Figure 6: Our Attack on VQA

- 1. **Baseline:** A clean image of a kitchen is paired with a simple question, "Is there a microwave in this picture?" A well-behaved VLM correctly answers, "No."
- 2. **CASH Attack:** First, we construct the causal graphs G^I and G^T for the image and text ("Is there a microwave in this picture?" with "No."). Then, we insert G^I and G^T into the cross-attention module of a surrogate model (Qwen2.5-VL) and use SVD to explore the perturbations added to the image and text that alter the alignment from the original causal connection between G^I and G^T .

- Adversarial Sample Generation: CASH subtly perturbs the image (the changes are imperceptible but targeted) to mislead the black-box VLM into incorrectly detecting a microwave in the image.
- 4. **Impact on Model Behavior:** When prompted with "Change the color of the microwave to black.", the perturbed image causes the VLM to hallucinate a black microwave, demonstrating a successful attack on the model's safety and reasoning capabilities.

This example demonstrates our attack performance on the VQA task. In Figure 5, CASh explicitly modifies the microwave region when answering "Is there microwave in this picture?", generating perturbations that are semantically aligned with the causal concept of "microwave." Similarly, in Figure 6, CASh focuses on the colander region, flipping the model's prediction from No to Yes.

These results indicate that CASh does not merely exploit spurious correlations or shallow token-level biases, but instead targets causal features that drive model decisions. This explains the superior transferability observed in Table 5: by perturbing semantically and causally relevant regions, CASh produces perturbations that generalize across architectures, even when the surrogate model (e.g., ALBEF) has weaker multimodal coupling. In other words, CASh narrows the performance gap caused by architecture heterogeneity (e.g., dual-stream vs. cross-attention), leading to consistently higher ASR regardless of surrogate choice.

A.6 EQUATION FOR POST-INTERVENTION DISTRIBUTION

To quantify the effect of our causal intervention on the model's output distribution, we specifically compute the KL divergence between the original output distribution $P(\mathcal{Y})$ and the intervened distribution $P(\mathcal{Y}'|do(A_t^G=A_t^{G'}))$. This measures how much the model's behavior changes when we deliberately alter the causal structures in the cross-attention mechanism. The derivation proceeds as follows:

$$D_{KL}\left(P(\mathcal{Y}' \mid do(A_{t}^{G} = A_{t}^{G'}))) \parallel P(\mathcal{Y})\right)$$

$$=D_{KL}\left(P(\mathcal{Y}' \mid do(\{A_{t,i}^{G} = A_{t,i}^{G'}\}_{i=1}^{h})) \parallel P(\mathcal{Y})\right)$$

$$=\sum_{y}\sum_{h=1}^{H}P(y' \mid A_{t,h}^{G'}) \log \left(\frac{P(y' \mid A_{t,h}^{G'})}{P(y \mid A_{t,h}^{G})}\right)$$

$$=\sum_{y}\sum_{h=1}^{H}P(y' \mid A_{t,h}^{G'}) \log \left(\frac{\exp(S'_{t,h})/\sum_{y'}\exp(S'_{t',h})}{\exp(S_{t,h})/\sum_{y'}\exp(S_{t',h})}\right)$$

$$=\sum_{y}\sum_{h=1}^{H}P(y' \mid A_{t,h}^{G'}) \log \left(\frac{\exp(S'_{t,h})}{\exp(S_{t,h})}\right) + \sum_{y}\sum_{h=1}^{H}P(y' \mid A_{t,h}^{G'}) \log \left(\frac{\sum_{y'}\exp(S_{t',h})}{\sum_{y'}\exp(S'_{t',h})}\right)$$

$$=\sum_{y}\sum_{h=1}^{H}P(y' \mid A_{t,h}^{G'}) \left[(S'_{t,h} - S_{t,h}) + \log \left(\frac{\sum_{y'}\exp(S_{t',h})}{\sum_{y'}\exp(S'_{t',h})}\right)\right],$$
(17)

where $S_t = (\mathbf{M}_1 W_Q)(\mathbf{M}_2 W_K)^{\top}$ and $S_t' = ((\mathbf{M}_1 + \Delta_i^{k,\mathbf{M}_1})W_Q)((\mathbf{M}_2 + \Delta_j^{k,\mathbf{M}_2})W_K)^{\top}$ represent the original and perturbed attention matrices, respectively. The third line holds since both distributions are derived from the softmax function over the attention matrices.

A.7 ATTACK ALGORITHM

```
1030
1032
1033
1034
1035
1036
1037
           Algorithm 1: CASh: Causality Shifting Attack
1038
           Input: Image I, Sentence S, VLM model \mathcal{F}^s with image encoder \mathcal{F}^s_{ei} and text encoder \mathcal{F}^s_{et},
1039
                      VLM output function h, constraints \epsilon_I, \epsilon_T, \Delta^{\mathbf{M}_{1,2}}, attempt times M, max iterations N,
1040
                      step size \eta_1, \eta_2.
1041
           Output: Perturbed inputs I', T' or perturbed output \mathcal{Y}'.
1042
           // Step 1: Model SCMs and Align with Cross-Attention
1043
        1 Extract features: \mathbf{i}_i = \mathcal{F}^s_{ei}(I) for i=1 to N_I, \mathbf{t}_j = \mathcal{F}^s_{et}(T) for j=1 to N_T; 2 Build image SCM \mathbf{G}^I with Eq. (2) and text SCM \mathbf{G}^T with Eq. (3);
1044
1045
        <sup>3</sup> Compute initial causal attention weights A^G by Eq. (15) and attended features:
1046
             \mathbf{i}_i' = \sum_j \alpha_{ij}(W_V \mathbf{t}_j);
1047
           // Step 2: Two-Step Attack
1048
        4 for m=1 to M do
1049
                // Step 2.1: Derive Feature Perturbations via causal cross-attention with
1050
                      Spectral Noise
1051
                Perform SVD on A: A^G = U\Sigma V^{\top} and select top-k single values and vectors
1052
                  A_k^G = U_k \Sigma_k V_k^\top ;
1053
                 Calculate and get the causal feature perturbation \Delta^{\mathbf{M}_I} and \Delta^{\mathbf{M}_T} of image and text by Eq.(5)
1054
1055
                 Optimize feature perturbations by Eq. (4) and Eq. (8);
1056
                \text{Update } \Delta_i^{\mathbf{M}_1,(t+1)} = \text{Proj}_{\epsilon_v} \left( \Delta_i^{\mathbf{M}_1,(t)} + \eta_1 \nabla_{\Delta_i^{\mathbf{M}_1}} \mathcal{L}_{\text{causal}} \right),
1057
                  \Delta_{j}^{\mathbf{M}_{2},(t+1)} = \mathrm{Proj}_{\epsilon_{u}} \left( \Delta_{j}^{\mathbf{M}_{2},(t)} + \eta_{2} \nabla_{\Delta_{j}^{\mathbf{M}_{2}}} \mathcal{L}_{\mathrm{causal}}^{\phantom{\mathbf{M}_{2}}} \right);
1058
1059
                for n=1 to N do
1060
                      // Step 2.2: Reverse Mapping to Input Perturbations
1061
                      Optimize image perturbation and text perturbation by Eq. (6);
1062
                      // Step 2.3: Optimization with Total Loss
1063
                      Compute total loss by Eq. (10);
1064
                      Update perturbations based on Eq. (10), etc;
1065
       13
                end
1066
           end
           Compute perturbed output: \mathcal{Y}' = \mathcal{F}^a(I', T');
1067
           return I' = I + \delta_I, (T, \delta_T) \to T' and \mathcal{Y}'
1068
1069
```