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ABSTRACT

Generating desirable molecular structures is a fundamental problem for drug dis-
covery, and recently there is a growing interest in developing deep learning models
to accelerate this process. Despite the considerable progress we have achieved, ex-
isting methods usually generate atoms auto-regressively and ignore intrinsic local
structures such as rings, which is however ubiquitous in drug-like biomolecules,
making the generated structures still far away from satisfactory. In this paper, we
propose a hierarchical diffusion based generative model for drug-like molecule
generation in 3D space, effectively preserving the validity of local segments. Our
method first generates coarse-grained geometries via an equivariant diffusion pro-
cess, where nodes represent possible fragments. Then, the coarse nodes are de-
coded as fine-grained atoms to assemble atomic molecular structures. However,
such a process is non-trivial since generated neighborhood fragments may suf-
fer from atom-bonds conflicts, preventing them to be connected. We view this
problem as a constrained generative modeling task and propose a novel Monte
Carlo sampling approach which iteratively refines fragments to achieve effective
valid molecules sampling. Finally, extensive experiments demonstrate that the
proposed method could consistently improve the quality of molecule generation
over existing methods, especially for larger drug-like biomolecules.

1 INTRODUCTION

In recent years, we have witnessed huge success in various applications using deep learning for com-
putational biology and chemistry problems (Jumper et al., 2021; Gawehn et al., 2016; Kell et al.,
2020). Among them, deep generative models have specifically shown great promise in modeling
complex graph-like structures in the field of life science, e.g., biomolecules and proteins. For exam-
ple, AlphaFold II (Jumper et al., 2021) has demonstrated the effectiveness of data-driven methods
for predicting highly complex conformations. Besides, with the rapid growth of graph representation
learning (Wu et al., 2020), great progress has also been achieved for molecular modeling, ranging
from generating molecular atom-bond graphs (Li et al., 2018b; Liu et al., 2018; Jin et al., 2018a) to
generating molecular conformations from graphs (Xu et al., 2022).

Despite the significant progress achieved, a remaining but vital research direction in this track is de
novo design of drug molecules in 3D space. The molecular conformations in 3D physical space can
directly determine many functional properties of compounds, e.g., energy, pocket binding affinity.
Therefore, integrating the 3D conformation into the molecule design process enjoys several advan-
tages over only involving topological information in many important applications, e.g., structure-
based drug design (Peng et al., 2022; Luo et al., 2021), molecular dynamic simulation (Hansson
et al., 2002), 3D similarity searching (Shin et al., 2015). Thus, a more natural and meaningful sce-
nario is to directly generate molecules in 3D, modeling the joint distribution of molecular category,
topological structure, and the conformations through a single principled generative model (Gebauer
et al., 2019; Satorras et al., 2022; Hoogeboom et al., 2022).

However, how to generate desirable molecules in 3D space, especially large biomolecules, remains
an unsolved problem. Current existing approaches (Gebauer et al., 2019; Satorras et al., 2022;
Hoogeboom et al., 2022) typically generate the 3D molecules in the atomic resolution with an
auto-regressive approach, which may result in serious problems for generating drug-like molecules.
Firstly, the atom-level generation manner, though enjoys higher flexibility to place each atom, lacks
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necessary constraints to obtain reliable molecule structures. For example, without imposing eu-
clidean geometric constraints, the generated 3D aromatic rings could seriously violate basic chemi-
cal rules. Without strong dependency constraint on the atom generation, the obtained molecule may
suffer from compatibility problem between fragments, that is, two fragments is unable to connect to
each other. Secondly, the auto-regressive approach suffers from error accumulation problem. There-
fore, existing auto-regressive based 3D molecule generation models are limited in generating large
molecules, which prevents these models from wide applications in real scenarios.

In this paper, different from previous work that generates molecules at atom-level, we instead pro-
pose a novel hierarchical diffusion-based model generating 3D molecules in a dual-phase fashion.
Our model first generates molecules by coarsened structures instead of atomic graphs, where each
coarse-grained node represents a certain type of fragment. Then in the second phase, the coarsened
nodes are further decoded to corresponding atomic structures and all substructures are assembled
as realistic molecules that preserve valid local structures. Such a two-stage generation process
nicely mimic chemistry expert’s drug design process as combining fragments from a pre-defined
functional group database. In this way, important inductive biases in this area are encoded in our
model, e.g. most important chemical properties are determined by the fragments with rigid local
3D structure. Furthermore, from machine learning’s perspective, the fragment based representation
of molecules significantly reduce unnecessary degrees of freedom in the atomic based methods,
thus will lead to global optimum convergence and better generalization ability. Nevertheless, such
a two-stage framework is indeed challenging, because generated fragments are required to be con-
nected to a single reasonable molecular structure. In this work, we treat 3D molecule generation as
a constraint generation problem, and provide both principled modeling and sampling to address this
problem. Inspired by the concept of pharmacophore in drug design that fragments could be divided
into different binding groups by their functions, we propose to generate the fragment representation
instead of a single deterministric fragment. Specifically, we utilize two sets of chemically inter-
pretable features to represent a fragment. Then we propose a geometric diffusion model to generate
these fragment representations and their Cartesian coordinates in an efficient non-autoregressive
manner. After that, we propose an iterative Monte Carlo sampling algorithm to preserve the chem-
ical validity and drug-likeness of sampled structures. Specifically, we iteratively sample fragments
from the fragment representation and continue this refinement procedure until a valid geometry is
sampled.

We conducted extensive experiments on several 3D molecular generation benchmarks to com-
pare our proposed model with the competitive baseline models. Specifically, instead of small
toy molecules from QM9, we trained our model on GEOMDRUG (Axelrod & Gomez-Bombarelli,
2022) dataset which contains more realistic drug-like molecules, and evaluated two sets of well-
designed and comprehensive metrics. Quantitative results show that our method can always generate
molecules with better drug-like chemical properties and less unstable or unrealistic substructures.
Compared to the baseline model, our method can generate conformations that are much closer to
those generated with expensive cheminformatics software. Visualized results also demonstrate our
model is capable of generating molecules of higher quality both at 2D graph level and 3D conforma-
tion level. All experimental results suggest that our model enjoys a much higher capacity to sample
3D molecules from the drug chemical space.

2 RELATED WORK

In earlier works, molecule generation tasks are tackled by generating sequential representations of
molecules, smiles e.g. Kusner et al. (2017); Dai et al. (2018); Segler et al. (2018). Motivated
by rapid development in the graph neural network, researchers then use graph generative model
to generate novel molecules e.g. Jin et al. (2018b;a); Li et al. (2018a) However, both text and
graph ignore the 3D position of the atoms which is important for molecule properties. Research
has been addressing the task of generating 3D molecules these days. MolVAE (Ragoza et al., 2020)
generate ligand-like molecules in a coarse-grained 3D grid using 3D-CNN. These studies did not
guarantee rotation + translation equivariant, so they output conformations of low quality and can
only sample from the embedding space of a seed molecule. Most works that take equivariance into
account deal with small organic molecules from the QM9 dataset. G-schNet (Gebauer et al., 2019)
applied SchNet (Schütt et al., 2017) to acquire equivariant latent space and generate molecules by
sampling atom types and distances iteratively. With the rapid development of equivariant network
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architectures, SphereNet (Liu et al., 2021) and EGNN (Satorras et al., 2021) are also adapted to gen-
erative models for molecule generation. G-SphereNet (Luo & Ji, 2022) used the flow-based model
to formalize the generative procedure which defines the angle, torsion, and distance for coordinates
computing. There are two generative models derived from EGNN. E(n)-flow (Satorras et al., 2022)
and EDM (Hoogeboom et al., 2022) are both non-autoregressive models that generate atom types
and atom coordinates in one forward pass. The only difference is that E(n)-flow adapted continues
normalizing flow as a generative network while EDM applied a diffusion network. EDM was the
only work that succeeds to generate drug-like molecules by training on the GEOMDRUG dataset (Ax-
elrod & Gomez-Bombarelli, 2022) that usually have larger molecular weights than simple organic
molecules from the QM9. However, EDM always generates unrealistic ring systems and broken
molecules, which have proven to be unsuitable for generating drug-like molecules. In the litera-
ture of hierarchical graph generation, most previous works derive the hierarchical structure in graph
based on some intrinsic rules: Some use the different granularity levels, e.g. atom-to-motif (Jin et al.,
2020; 2019) or edge-to-node (Xianduo et al., 2022), as the modeling hierarchy; (Zhou et al., 2019;
Chauhan et al., 2019) used predefined rules to distinguish different nodes into different levels; (Mi
et al., 2021) utilized the natural topology in graph to get the hierarchy. (Kuznetsov & Polykovskiy,
2021) get the hierarchy by adding latent variables to different module layers of the model. While
in our method, we use the learnable decoding module to approximate a semantic guided hierarchy,
i.e., a coarse feature could refer to a cluster of property-level/element-level related fragments. Such
hierarchies are inspired by the ”pharmacophore” to fragment process in traditional drug design.

3 PRELIMINARIES

3.1 NOTATIONS AND FRAGMENT-BASED 3D GENERATION

We study the problem of generating 3D geometries of molecules with fragments as the smallest unit.
Let G = {Gi}mi=1 be the empirical distribution of the 3D graphs. Here, each 3D graph Gi consists
of the fragment set Vi and the edge set Ei. More specifically, every fragment Vi ∈ Vi represents a
combination of several atoms and bonds, e.g., a benzene ring could be a fragment that includes six
carbon atoms and aromatic bonds. And each edge Emn ∈ Ei indicates that a bond/atom is shared
by two fragments Vm and Vn. And we also use the variable E to scoop the attachment information,
e.g. the area of the molecule surface intersects with the neighbor fragments. The fragment-based 3D
generation model aims to learn a probabilistic model Pθ(·) to fit the empirical data set, which could
also be easily sampled from, the sampled fragments are further integrated into the 3D molecule.

3.2 EQUIVARIANCE AND SE(3)-INVARIANT DENSITY ESTIMATION

Equivariance widely exists in the physical world, especially in the atomic systems. For example,
the vector fields of atomic forces should rotate or translate correspondingly with the 3D positions
of the molecule. Thus integrating such inductive bias into the function modeling has appealing
properties and has been widely explored(Wu et al., 2018; Schütt et al., 2017; Satorras et al., 2021).
More specifically, given two transformation Tg and Sg acting on the space X and Y , a function f is
considered as equivariant with respect to the group G if the following is satisfied:

f ◦ Tg(x) = Sg ◦ f(x) (1)

In this task, we mainly focus on the SE(3) group, i.e., the group of rotation and translation in the 3D
space. For generative modeling of 3D molecule graph, the density function of the model distribution
Pθ(.) should be SE(3)-invariant, i.e., Pθ(x) = Pθ(Tg(x)). This is, the likelihood of a specific
conformation of some determined molecule graph should not be influenced by the transformations
such as the rotation and translation. To this end, previous methods either directly model the invariant
components, e.g., bond length, or use some invariant base distribution and model the transformation
by the equivariant neural network (Hoogeboom et al., 2022; Satorras et al., 2022).

3.3 DENOISING DIFFUSION PROBABILISTIC MODEL

Denoising diffusion probabilistic model (DDPM) Yang et al. (2022b); Sohl-Dickstein et al.
(2015)provides a powerful generative modeling tool by reversing a diffusion process. More specif-
ically, the diffusion process project the noise into the ground truth data and the generative process

3



Under review as a conference paper at ICLR 2023

learn to reverse such process. The two processes imply a latent variable model, where x1, · · · ,xt−1

are the latent variables. The forward process could be seen as a fixed approximate posterior distri-
bution:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) q (xt | xt−1) = N
(
xt;
√

1− βtxt−1, βtI
)

(2)

Here β1, · · · , βT corresponds to a fixed variance schedule. For simplicity, we let αt = 1 − βt

and ᾱt =
∏t

i=1 αi, the forward pass for arbitrary time step has an analytic form, i.e., q (xt | x0) =
N (xt;

√
ᾱtx0, (1− ᾱt) I). The generative process parameterized the transition kernel Pθ(xt−1|xt)

of the Markov chains, the corresponding likelihood function could be derived as:

Pθ (xt−1 | xt) = N
(
xt−1;µθ (xt, t) , σ

2
t I
)

Pθ(x0) =

∫
p (xT )Pθ (x0:T−1 | xT ) dx1:T (3)

Here the µθ refers to parameterized means function and the σ2
t is the predefined variance. For the

initial distribution Pθ(xT ), one natural selection could be the standard Gaussian distribution.

4 METHODS

In this section, we will first emphasize several challenges of building fragment based molecule
generative model and introduce the overall probabilistic framework. Then we discuss our generative
model for the high-level features, i.e., the Coarse Set diffusion model, in Sec. 4.2. After that, we will
show how to decode the specific fragment type and ensemble them together to get both the molecule
graphs and the 3D conformations. The whole framework could be found in the Fig. 1.

Random Noise

Coarse Set
Diffusion

Fragment
Assembling

Conformation
Generation

High-level Feature + Coordinates Fragment 3D Graph Drug-like 3D Molecules

Figure 1: An overview of the hierarchical diffusion based generation model.

4.1 TOWARDS THE CHALLENGES OF FRAGMENT BASED GENERATION

There are generally two generative modeling fashions for molecule generation, i.e., autoregressive
and non-autoregressive. Modeling in the autoregressive fashion could in some sense reduce the
conflict among the fragments during sampling. However, in important application scenarios, e.g.,
pocket-guided generation, auto-regressive models will focus more on the local information due to
the intrinsic property and hence lack the ability to be consistent with the full context space. Non-
autoregressive generation is promising for its natural advantages of globally modeling (De Cao &
Kipf, 2018; Kwon et al., 2019; Satorras et al., 2022; Hoogeboom et al., 2022) and which has also
been demonstrated in the atom-level generation with superior performance. Though there are several
appealing properties, non-autoregressive model at the fragment-level indeed implies the following
structure generation procedure under hard constraint.

(V,E) ∼ Pθ(·), s.t. ∀0≤i,j<n,i̸=j,I(Eij=1) (Vi, Eij , Vj) ∈ W (4)

Here W stands for the valid bigrams of the consistent neighborhoods. For example, furan can
assemble with benzene by merging a double carbon-carbon bond to form a valid double-ring system.
However, the pyrrole cannot be assembled with two neighbors that need to be attached to a single
nitrogen atom within the fragment, as illustrated in Figure 2. Note that the problem of avoiding
fragment conflict has high complexity and brings the so-called ”combinatorial exploding” issues.
For non-autoregressive modeling fashion, the complexity increases exponentially with the structure
size.

One direct solution to get valid molecules from non-autoregressive generative model is to conduct
rejection sampling, i.e., only accept the connectable molecules. Nevertheless, rejection sampling
is not applicable in practice due to the extremely low acceptance rate. It is possible to relax such
hard constraint through a learnable module, e.g., Pϕ(·|Vi, Vj , Eij), which could result in another
generative as Pθ,ϕ(V,E) = Pθ(V,E)

∏
0≤i,j<n,i̸=j Pϕ(1|Vi, Vj , Eij). Unfortunately, the Gibbs
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sampling procedure for such model still suffers from efficiency issues. To preserve the efficiency,
we consider modeling the constraint in a reverse direction, e.g., Pϕ(V |·). To integrate the domain
prior and reduce the model complexity, we design the variable coarse set (H) as the latent variable
and which could be expressed Pθ,ϕ(V,E) = Pθ(H)Pϕ(V,E|H). And such model is trained through
maximum likelihood with the designing rule as a fixed approximate posterior (Q(H|V,E)), and we
leave its detailed implementation in the next section:

E(V,E)∼Pdata log
∑
H∈H

Pθ(H)Pϕ(V,E|H) ≥ (5)

E(V,E)∼PdataEH∼Q(H|V,E)[ logPθ(H)︸ ︷︷ ︸
Coarse Set Diffusion

+ logPϕ(V,E|H)︸ ︷︷ ︸
Fragment Assembling

− logQ(H|V,E)︸ ︷︷ ︸
Constant Term

]

H stands for the possible support of H and above inequality holds due to the concavity of logrithm.
The Coarse Set is inspired by the important concept of ”pharmacophore” in drug design, which
represents the category of fragments’ functionality. And the whole process is like first determining
the position and category of each component, then finding the connectable fragments from small
subsets, and assembling them. Such framework could maintain the global modeling property of
non-autoregressive methods and also significantly reduce the complexity of finding the connectable
fragments.
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Figure 2: An illustration of fragment conflicts. One-hop conflict means the two linked fragments do
not share any elements to form a valid edge. Two-hop conflict represents that though linked frag-
ments can form edges by sharing the same atom/bond, conflicts occur when the valence is violated

4.2 COARSE SET DIFFUSION MODEL

Motivated by the pharmacophore concept, we introduce the “Coarse Set” vector as a numerical
representation by quantizing some intrinsic properties. On one hand, We should carefully design the
Coarse Set feature to be discriminative enough for fragments and molecules with different chemical
and geometrical properties. On the other hand, this also allows us to easily integrate our domain
knowledge as inductive bias into the model. We show two different feature designs:

Property-Based
Coarsen

Element-Based
Coarsen

0
0
0
6
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35.9
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0
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Figure 3: Illustration of converting a 3D Ben-
zaldehyde into the 3D coarse set using two dif-
ferent sets of features

Property-based Feature: We summarize the
important properties which are the most widely
used in drug discovery into an 8-dimension vec-
tor. Such property includes the number of hy-
drogen bonds and rings, and the area of differ-
ent surfaces etc.
Element-based Feature: We also propose
a simplified version by directly using the
histogram of element frequency, i.e., a 3-
dimension vector, as the Coarse Set feature.
This is inspired by the fact that elements with
the same number of valence electrons share the
same properties.

The explanation and detailed implementations
is provide in Fig. 3, Table 9 and Table 10. The Coarse Set Diffusion (CS-Diff) model aims to
model both the feature and position distribution based on the diffusion probabilistic framework as
introduced in Sec. 3.3. Formally, we denote the whole variable as H = [Hf , Hp], Hf stands for
the variable of designed feature and Hp stands for the position related variable. There are several
possible ways to represent the 3D conformation systems in fragment level, e.g., the dihedral angle
between neighbor fragments, and distance matrix. Surprisingly, we find that using the center posi-
tion, i.e., the average of all the atoms in a fragment, could be sufficient to determine conformations
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as shown in Sec. 5.2. Note the center position of fragments could be seen as the center of the con-
formations sphere which includes all possible conformations generated from the degree of freedom
on rotation. The connected fragments correspond to the tangent condition which actually eliminates
a such degree of freedom. Formally, for each fragment V , Q(H|V,E) in Eq. 5 is implemented by
property-based/element-based feature extraction to get Hf and average all the atom coordinates to
get Hp. Specifically, the property-based Hf could not only be determined by fragment type V also
depends on the attachment E, e.g. the connection to neighbor fragments.

The modeling process of Hf could mostly follow the diffusion model with Gaussian noise for step
t > 0. While we find that the 0-th term for continuous feature H int

f and Hcont
f , i.e. L0, should be

coped with carefully as following to get better empirical performance:

L0(H
int
f , Hcont

f ) = − log[

∫ H int
f + 1

2

H int
f − 1

2

N
(
u | x(H int

f )

0 , σ0

)
du]−logN

(
Hcont

f | x
(Hcont

f )

0

α0
− σ0

α0
ϵ̂0,

σ2
0

α2
0

I

)
(6)

Next, we describe the generation for Hp. To make the likelihood function in Eq. 3 to be SE(3)-
invariant, we set the initial distribution under zero center of mass (CoM) systems (Köhler et al.,
2020), i.e., applying a CoM-free Gaussian:

N
(
Hp | 0, σ2I

)
= (
√
2πσ)−(M−1)·n exp

(
− 1

2σ2
∥Hp∥2

)
(7)

Here Hp ∈ RM×n, where M is the number of fragment nodes and n equals the coordinate dimen-
sion. Besides, an equivariant Markov transition kernel is constructed under the widely applied noise
parameterization (Ho et al., 2020):

µθ

(
Ht

p, t
)
=

1
√
αt

(
Ht

p −
βt√
1− ᾱt

ϵθ
(
Ht

p, t
))

(8)

If could be demonstrated that if the ϵθ is parameterized by SE(3)-equivariant networks,
then the transitional kernel Pθ(H

t−1
p |Ht−1

p ) is also SE(3)-equivariant, i.e., Pθ

(
Ht−1

p | Ht
p

)
=

Pθ

(
Tg

(
Ht−1

p

)
| Tg

(
Ht

p

))
(Xu et al., 2022). We leave the detailed discussion in Appendix A.2.

4.3 FRAGMENT ASSEMBLING

In this section, we introduce the detailed process of generating fine-grained fragment types and
determine the connection scheme to assemble them into valid drug-like 3D molecules. The pro-
cess corresponding to the term Pϕ(V,E|H) in Eq. 5. We briefly introduce the decoding logic here
and leave the details in the following paragraphs. During decoding, the fragment node could be
categorized into fine-grained or coarse-grained. Note that in the beginning, all the nodes are coarse-
grained. For each decoding step, we first predict a focal node from the fine-grained nodes with a
parameterized neural network module, ϕfocal. And then we utilize a link prediction network, i.e.
ϕedge, to identify a new linked node of the focal node among all the coarse-grained nodes. At last,
we obtain the fine-grained fragment type of the above new linked coarse-grained node with the help
of the other network, ϕnode. The above procedure is illustrated in Figure 4. For all three steps,
the prediction modules are conditioned on all coarse-grained nodes and fine-grained nodes and im-
plemented with equivariant message passing. After decoding of a fine-grained node, an iterative
refinement procedure is conducted to correct the bias with the help of a mask predict module ϕrefine.
Given all fine-grained nodes decoded, we obtain the attachment between linked fragments using
local structures as the scoring function. The formal sampling algorithm is left in the Appendix A.7.
And we emphasize several key elements of our assembling module in the following:

Message Passing for Decoding To avoid conflict as shown in Figure 2, we applied vanilla EGNN
for ϕfocal and three-step Tree EGNN for ϕedge, ϕnode. ϕedge firstly aggregate information of all fine-
grained nodes to the focal node by tree bottom-up pattern, in which the focal node is the root of the
tree structure. After the new edge is predicted, the network broadcast the addition of new edge to
all fine-grained nodes in a tree top-down pattern. Finally, ϕnode aggregates the information from all
fine-grained nodes in the bottom-up pattern to the new node for decoding the fine-grained fragment
type. The message passing pattern could also be found in Figure 4 and a more detailed description
is in Appendix A.3.

Iterative Refinement The iterative refinement process aims to correct the bias that lies in the de-
coded fine-grained nodes. To this end, we involve a mask prediction model ϕrefine to approximate
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the probability of each decoded fine-grained fragment conditioning on all coarse-grained nodes and
the other fine-grained nodes. With such a mask predict module, we could adopt Monte Carlo sam-
pling with node replacement as the transition to correct the error before the current state. The target
distribution is defined as: P =

∏
n∈T Pϕrefine(FRAG(n) | G,T \ n). We denote T as a fine-grained

subgraph, G as the coarse-grained full-size graph and FRAG() as a function that returns the fragment
type for a specific node.

Training and Objective During training, we start by firstly randomly sampling a connected sub-
graph. Then a random leaf node is picked, and we simulate the generation of this node: We keep
all the fine-grained fragment types and edges of the subgraph except the selected node. And for
all nodes not in the subgraph, we only maintain the coarse features. ϕfocal is trained based on the
above feature to predict the parent of the selected node among the nodes in the subgraph; ϕedge
are trained to predict the edge link between the parent node and the selected node among all other
coarse-grained nodes. Note here we use the coarse feature of the selected node; And ϕnode learns
the fine-grained fragment type of the selected node. For iterative refinement part, we just randomly
mask a node’s fine-grained feature on random sampled subgraphs, and ϕrefine is trained to reconstruct
its masked fragment type. Detailed implementation and objective can be found in the Appendix A.7.

Choose a Focal Node Predict a New Edge Choose the Fragment

... ...

Vanilla EGNN

C
O

C
C

C
C

C
C

φfocal φedge φnode

Three-Step Tree EGNN

Message passing direction

Focal Node

Determined Node

C
O

C
O

O

N

N

Figure 4: At each time step t, our model (1) chooses a focal node among coarse-grained nodes for
edge formation (2) links the edge from all candidate new edges marked with dashed lines (3) gener-
ate the exact fragment type

Attachment Determination: Given all fine-grained features and linked relations determined, we
need to decide which atoms within two linked fragments can be merged as one for attachment. To
this end, we enumerate all possible attachments for linking two fragments and select the one that has
the closest fragment center geometric to our generated fragment coordinate. We use RDkit to gen-
erate local conformation following Jing et al. (2022). And Root-mean-square deviation (RMSD) is
applied to measure the difference between fragment centers. After this step, we obtain the complete
molecule graph.

4.4 ATOM CONFORMATION GENERATION

Given the fine-grained fragment and the corresponding center positions, we discuss how we generate
coordinates of atoms. Due to the fact that the set of stable local structures is quite limited and could
be accurately generated by cheminformatics software, we follow previous works (Jing et al., 2022)
to use RDKit ETKDG (Riniker & Landrum, 2015) to predict local conformation. And to plug
the local conformations into each molecule coordinate system, the rotation matrix and translation
vector are acquired. Here we use Kabsch Algorithm (Kabsch, 1976) to compute the rotation and
translation factors based the software predicted fragment center and generated fragment center by
previous assembling step. The detailed algorithm is introduced in Appendix A.4.
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5 EXPERIMENTS

In this work, we mainly focus on the GEOMDRUG dataset (Axelrod & Gomez-Bombarelli, 2022),
which includes 304k drug-like molecules with an average molecule weight of 360. We also tested
our model on CrossDocked2020 (Francoeur et al., 2020), which 100k 3D ligand structures are ex-
tracted from complexs. We proposed two types of high-level feature and implement two types of
CS-Diff model accordingly, CS-DiffE denotes the implementation that takes element-level feature
as high-level feature input, while CS-DiffP is the implementation that takes property-based high-
level feature input. We mainly compare our method with EDM (Hoogeboom et al., 2022) and
G-SpherNet (Luo & Ji, 2022) on these 2 drug-like datasets. Though our model is not designed for
generating smaller molecules, results of training our model on QM9 (Axelrod & Gomez-Bombarelli,
2022) are provided for sanity check in Table 4. We also provide the anonymous code link in Ap-
pendix. A.8.

5.1 DRUG-LIKENESS EVALUATION

Table 1: Properties of the generated molecules. ∆ indicates that the evaluated metrics are computed
as the difference between sampled molecules and the ground truth and the absolute values are listed
in the (). ’-r’ is the notation that this model sample molecule without any iterative refinement.

QED↑ RA↑ MCF↑ SAS↓ ∆LogP ↓ (logP) ∆MW ↓ (MW)
G-SphereNet 0.382 – 0.489 – 2.306 (0.623) 170.7 (89.37)
EDM 0.608 0.441 0.621 4.054 0.566 (2.363) 23.71 (336.4)
CS-DiffE (-r) 0.628 0.626 0.681 3.669 0.638 (2.291) 27.33 (332.8)
CS-DiffP (-r) 0.635 0.638 0.656 3.512 0.185 (2.744) 10.33 (349.8)
CS-DiffE 0.632 0.548 0.727 3.859 0.653 (2.276) 30.33 (329.8)
CS-DiffP 0.639 0.643 0.659 3.547 0.128 (2.801) 13.33 (346.8)
GEOMDRUG 0.658 0.915 0.774 4.018 0.000 (2.929) 0.000 (360.1)

The purpose of our proposed generation method is to fabricate molecules that are similar to au-
thentic drug molecules from scratch, thus it is important to measure how drug-likely are those fab-
ricated molecules to true drug molecules. In this section, we mainly measure the drug-likeliness
of a molecule in 6 aspects. Quantitative estimate of drug-likeness (QED) was built on a series
of carefully selected molecular properties to evaluate drug-likeness and is one of the most widely
used metrics for virtual screening. Retrosynthetic accessibility (RA) is a machine learning-based
scoring function that also evaluates synthetical accessibilities. It is more sensitive to unsynthesizable
structures than SAS. Medicinal chemistry filter (MCF) is the rate of sampled molecules that do not
contain any undruggable substructures (Brown et al., 2019). Synthetic accessibility score (SAS) is
a ruled-based scoring function that evaluates the complexity of synthesizing a structure by organic
reactions. LogP is the octanol-water partition coefficient which is the main factor that determines
the distribution of the drug molecules. Molecular weight (MW), the average molecular weight of
generated molecules should be similar to ground truth MW statistics.

5.1.1 RESULTS AND DISCUSSION

Table 1 have shown that our proposed method performs significantly better than EDM (Hoogeboom
et al., 2022) in every aspect of property measure when testing on GEOMDRUG dataset (Axelrod &
Gomez-Bombarelli, 2022). The RA measure indicates that with all the sub-graphs derived from
a predefined vocabulary, our model generates molecules that are easier to synthesize in wet labs,
it is worth noting that dangerous substructures are also avoided. ∆MW have shown how close the
generated molecules are to ground truth MW, G-SphereNet is unable to generate large molecules
that could exist in ground truth drug distribution. Especially, G-SphereNet occurs the early-stopping
problem due to the error accumulation introduced by auto-regressive sampling, which is proven by
our ablation study provided in the Table 7 from Appendix. Therefore, these baselines are incapable
of learning the drug molecule distribution, where our results show that we are much closer to ground
truth statistics of MW. Because of the extremely small molecule size and poor drug-likeness perfor-
mance of the G-SphereNet model, we exclude G-SphereNet in followed conformation experiments.
Similar results are found when we experiment on CrossDocked2020 (Francoeur et al., 2020), which
is shown in Table 3.
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Table 2: RMSD of the sampled conformations. ’atom’ and ’frag’ indicates the granularity (atom,
fragment) of the coordinates we used for comparison. COV is the abbreviation for Coverage. MAT
is the abbreviation for Matching.

COV-atom↑ MAT-atom↓ COV-frag↑ MAT-frag↓
EDM 0.489 1.349 0.097 3.234
CS-DiffE 0.546 1.121 0.153 2.583
CS-DiffP 0.490 1.166 0.202 2.431
GEOMDRUG 0.589 0.494 0.435 1.494

We also carried out an ablation study in which we removed the iterative refining step in the sampling
process. According to the inadequate scores of QED and MCF, the model samples much simpler
molecules when without iterative refining, the reason for this change is that without refining, our
denoising model tends to choose fragments that are easier to assemble while the safety and drug-
likeness are sacrificed.

5.2 CONFORMATION QUALITY EVALUATION

In addition to drug-like property evaluation, we also evaluate the conformation of our generated 3D
molecules. RMSD is defined as the normalized Frobenius norm of the two conformations coordi-
nates. However, all molecules we sampled are novel so there isn’t any existing ground truth for us
to evaluate. To obtain ground truth conformations, we applied the same experimental procedure as
Axelrod & Gomez-Bombarelli (2022). This standard method has proven to be accurate enough for
3D conformation generation and utilized as ground truth in Xu et al. (2022); Jing et al. (2022). A
computational costly molecular dynamic simulation is carried out for all molecular graphs. The de-
tailed experimental procedure is described in Appendix A.5. Let C denote the set of MD simulated
conformations and C denote the generated conformation. We define Coverage metric and Matching
metric as follows:

COV (C, C∗) = 1

|C∗|

{ ∑
C∗∈C∗

1(RMSD(C,C∗) ≤ δ)

}
, (9)

MAT(C, C∗) = min
C∗∈C∗

RMSD(C,C∗), (10)

where C denotes the conformation generated by our model, C∗ represents the ground truth set of
conformations sampled with MD simulation, C∗ denotes a ground truth instance in C∗, 1(·) is the
indicator function which evaluates to 1 when the input is true otherwise 0, δ is the similarity thresh-
old set to 2 Å in practice. The coverage metric describes the rate of ground truth conformations that
are similar to the generated conformation, and in turn, indicates how likely the generated molecule
is in a low energy state. The matching value is the least RMSD value possible between the gener-
ated molecule and the conformation in the ground truth set. To measure conformations quality at
different levels, we ran experiments both on atom coordinates and fragment coordinates.

Result and Discussion We can see from Table 2 that our model outperforms EDM on all the metrics
we tested. Though our model only generates center coordinates for the fragments and the atom
coordinates depend highly on predefined rules, our model is able to achieve impressive results both
on the atom level and the fragment level. According to the results we visualize in Figure 5 and
Figure 9, the structures generated from EDM are more chaotic, on the contrary, our model generates
much more stable molecular scaffolds.

6 CONCLUSION

This paper is concerned with 3D molecule generation. To address the irrational molecule structure
and biased molecule size problems caused by existing atomic auto-regressive models, a hierarchical
diffusion probabilistic model is proposed. We also carefully design our method so that it can solve
the combinatorially constrained structure generation problem introduced by non-autoregressive frag-
ment generation modeling in an ordering agnostic way. Our model generates better drug-likeliness
molecules, in terms of several widely used evaluation metrics. We believe that the proposed frame-
work could inspire general solutions for other constrained structure generation tasks, such as Dis-
patching Route Generation (Ding et al., 2021), Optimal Experiment Design (Le Bras et al., 2012),
and Protein Alignment Generation (Xu et al., 2015).
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A APPENDIX

A.1 DISCUSSION AND IMPLEMENTATION FOR FRAGMENTIZING THE MOLECULE

To decrease the freedom in modeling large-size molecules, many models adopt fragment-based gen-
eration instead of building a model directly on atoms (Yang et al., 2022a). A number of methods
are developed to break a molecule into a set of fragments. A good decomposing algorithm should
satisfy that the derived fragment vocabulary needs to cover most of the molecular structures and also
maintains a reasonable vocabulary size. JT-VAE (Jin et al., 2018a) is the first deep-learning method
that generates molecule graphs at the fragment level. It derived fragments by applying the minimum
spanning tree algorithm to keep all chemical bond information while avoiding cycles. JT-VAE (Jin
et al., 2018a) succeed to cover all buyable structures with a vocabulary size of less than 800. Re-
cent works like MARS (Xie et al., 2021), FREED (Yang et al., 2021), MIMOSA (Fu et al., 2021),
FragSBDD (Powers et al., 2022) though applied different criterion on breaking bonds to generate
fragment vocabulary, fragments of low frequency need to be removed from the vocabulary to keep
the vocabulary size reasonable.

The chemical space of drug-like molecules is enormous. Leaving out fragments of low frequency
is undesirable. Therefore, we adopt the tree decomposition algorithm from Jin et al. (2018a) in a
3D space. The procedure of processing the molecules into fragment graphs is a four-step process.
Extract components We extract the set of chemical bonds which do not belongs to any rings and
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the set of simple rings which only represent a single topological cycle from the molecules. Merg-
ing The Bridged ring is a cluster of important chemical structures. They possess uncommon 3D
conformation. Therefore, all pairs of rings are merged if the ring pair has more than two overlap-
ping atoms. Edge linking Cycles in the fragment graph will cause problematic modeling since the
decomposition for a molecule is not unique. To avoid cycles, the intersecting atom which connects
more than 3 bonds is added to the graph as a fragment. Edges are linked between all fragment pairs
that have overlapping atoms. The minimum spanning tree algorithm is run on this graph to remove
overlapping edges. 3D coarse set At last, we assign 3D geometric information using the center of
mass of the atoms within the fragment and coarse features for each fragment.

A.2 COARSE SET DIFFUSION MODEL

In this section, we describe the non-autoregressive high-level feature generative model and its like-
lihood computation. Though diffusion models have been receiving outstanding results in computer
vision (Yang et al., 2022b; Ho et al., 2020; Vahdat et al., 2021), it was nontrivial to apply directly
on molecule fragment graphs. The graph features include integer features, continuous features, and
continuous coordinates. These different vectors require different likelihood computationsXu et al.
(2022); Hoogeboom et al. (2022).

The diffusion model adds noise sequentially to the feature and coordinates like Eq. 2. At the
time t, the data distribution of invariant features is expected to approximate the prior distribution
N (0, I). While in order to guarantee equivariance, the prior distribution for coordinates needs more
constraint, it has been proven that moving the normal distribution into a linear subspace where∑i=3

i Hpi = 0 (Xu et al., 2022).

The model minimizes the lower bound of the log-likelihood:

logP (H) ≥ L0 + Lbase +

T∑
t=1

Lt (11)

where:

L0 = logP (H | x0) (12)
Lbase = −KL (q (xT | H) | P (xT )) (13)
Lt = −KL (q (xs | H,xt) | P (xs | xt)) (14)

Lt and Lbase can be computed easily by estimating the KL divergence between the estimated dis-
tribution and the target Gaussian distribution. However, L0 needs special treatment. Following the
previous works (Hoogeboom et al., 2022; 2021), we define the L0 as follows:

P
(
Hint

f | x(H)
0

)
=

∫ Hint
f + 1

2

Hint
f − 1

2

N
(
u | x(Hint

f )

0 σ0

)
du (15)

P
(
Hcont

f | x0

)
= N

(
Hcont

f | x(Hcont
f )

0 /α0 − σ0/α0ϵ̂0, σ
2
0/α

2
0I

)
(16)

P (Hp | x0) = N
(
Hcont

f | x(Hp)
0 /α0 − σ0/α0ϵ̂0, σ

2
0/α

2
0I
)

(17)

For integer features, we centered the distribution to hint and integrate from −1/2 to 1/2. While
for continuous features and coordinates, the variance of the distribution is still approximated by
the network. During sampling, our model used a regular reverse diffusion to generate features and
coordinates. The only difference is that the integer feature dimensions are normalized using the
round function.

A.3 EQUIVARIANT NEURAL NETWORK IMPLEMENTATION

Improved EGNN In the node/edge sampling process, our nodes are endowed with a set of
invariant features and equivariant coordinates. Inspired by the recent equivariant neural net-
works (EGNN) (Satorras et al., 2021; Thomas et al., 2018; Brandstetter et al., 2021), we propose an
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improved version of the equivariant graph neural network. Each layer is formulated as:

muv = ϕm

(
nl
u, n

l
v,
∥∥xl

u − xl
v

∥∥2 , eluv) xl+1
u = xl

u + c tanh

 ∑
v∈N (u)

(
xl
u − xl

v

)
ϕx (muv)

 ,

nl+1
u = ϕn

nl
u,

∑
v∈N (u)

(muv)

 el+1
uv = ϕe

(
eluv,muv,

∥∥xl
u − xl

v

∥∥2)
n and e stands for the node/ edge embedding, while c is a distance constant. x stands for node
coordination. All ϕ are normal trainable MLPs. Previous works explore various kinds of techniques
to maintain the equivariance of node features, however, the invariant edge features are always ig-
nored to encode into the latent variables. Edge latent variables are needed for edge prediction in our
methods. As a result, instead of carrying out the message passing on fully connected graphs with
unified edges, we assigned edge features for sampling tasks. ϕfocal, ϕedge, ϕnode uses this improved
network for message passing.

A.4 ALGORITHM FOR FRAGMENTS TO ATOMS IN 3D

Algorithm 1 Algorithm for Conformation Alignment

Input: Fragment center coordinate: Fout, Molecule fragment graph: G
Output: Cout

1: function KABSCH(X ∈ R3, X̂ ∈ R3)
2: Xc =

∑n
i=1 Xi, X̂c =

∑n
i=1 X̂i

3: X = X −Xc, X̂ = X̂ − X̂c

4: H =
∑n

i=1 XX̂T

5: H = UΛV T

6: R =
(
UV T

)T
7: t = X̂c −RXc

8: return R, t
9: end function

10: Cin, Fin ← RDkit random conformation and fragment positions
11: Cout ← Cin
12: for n ∈ BFS(G) do
13: nfrag, natom ← fragment index , atom index of n
14: nnei

frag, n
nei
atom ← fragment index , atom index of n.neighbors

15: if n is not root then
16: npar

frag, n
par
atom ← fragment index , atom index of n.parent

17: nattach ← npar
atom ∩ natom

18: ref = {Fin[nfrag, n
nei
frag ], Cin[nattach ]}

19: out = {Fout[nfrag, n
nei
frag ], Cout[nattach ]}

20: else
21: ref = {Fin[nfrag, n

nei
frag ]}

22: out = {Fout[nfrag, n
nei
frag ]}

23: end if
24: R, t = KABSCH(ref, out)
25: Cout [natom] = RCout [natom] + t
26: end for

A.5 EXPERIMENTAL CONFIGURATION

Both our model and the baseline model are trained on the GEOMDRUG (Axelrod & Gomez-
Bombarelli, 2022), CrossDocked2020 (Francoeur et al., 2020) and QM9 (Axelrod & Gomez-
Bombarelli, 2022). In GEOMDRUG experiments, we randomly selected 4 conformations of each
molecule to train our model. To test EDM (Hoogeboom et al., 2022), we removed hydrogen atoms
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Figure 5: Visualization of the generated molecules, unstable or broken sub-structures from the EDM
sampled molecules are highlighted

from the conformations and retrained the EDM model. The implicit hydrogen atoms are recon-
structed using RDkit after all other heavy atoms are generated. Because EDM only generates atom
types and coordinates, a proportion of sampled molecules are not fully connected. The broken frag-
ments were removed for numerical evaluation. In all non-autoregressive methods, the number of
nodes used for sampling is drawn from the size distribution histogram calculated on the training set.

Conformation Generation In this paragraph, we introduce the way to generate ground truth con-
formation using MD simulation. Firstly, 50 initial conformations are generated for each molecule
graph using RDkit and optimized by MMF field. Then, these conformations are further optimized
by MD software XTB, while the energy terms are computed for each conformation. At last, we
choose the conformation with the minimum energy to sample the ground truth conformations using
MD software CREST. To balance between efficiency and accuracy, we set the level of optimiza-
tion to ’normal’ in the software for both energy computing and conformation sampling. It took
approximately 16 days to generate conformations for 400 different molecules on a 128-core server.

Table 3: Properties of the generated molecules from CrossDocked2020 (Francoeur et al., 2020). ∆
indicates that the evaluated metrics are computed as the difference between sampled molecules and
the ground truth and the absolute values are listed in the ().

QED↑ RA↑ MCF↑ SAS↓ ∆LogP ↓ (logP) ∆MW ↓ (MW)
G-SphereNet 0.442 – 0.449 – 3.359 (0.351) 200.95 (136.1)
EDM 0.499 0.332 0.613 7.056 2.840 (0.870) 28.40 (308.6)
CS-DiffE 0.614 0.574 0.759 4.051 1.872 (1.838) 44.56 (292.4)
CS-DiffP 0.585 0.262 0.687 5.397 1.176 (2.535) 1.15 (338.2)
CrossDocked 0.619 0.912 0.746 2.564 0.000 (3.710) 0.000 (337.0)

A.6 ADDITIONAL EXPERIMENTS

A.6.1 EVALUATION ON QM9

Metrics Although our model is designed to generate drug-like molecules with relatively large
molecule sizes, it can be applied for smaller organic molecule (QM9) generation tasks without ef-
fort. We measure the validity and uniqueness metric on 10000 generated small organic molecules
and compared them with various baselines by using RDkit. Baselines Our method is compared with
previous methods. Both graph-based and coordinate-based models are included here. Graph-based
methods like Graph VAE (Simonovsky & Komodakis, 2018), GTVAE (Mitton et al., 2021), and
Set2GraphVAE (Vignac & Frossard, 2021), do not explicitly define the coordinates, so they need
cheminformatic software to generate conformers. On the other hand, 3D coordinate-based models
like E-NF (Satorras et al., 2022), G-Schnet (Gebauer et al., 2019), and EDM (Hoogeboom et al.,
2022), need cheminformatic software to derive chemical bonds.

Results As shown in Table 4, our method performs comparable results in both validity and unique-
ness. Though EDM (Hoogeboom et al., 2022) achieved better performance, our method still out-
performs all other models. The slight performance drop compared to EDM could be due to the
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information loss ratio during fragmentization on the tiny graphs. Besides, our model is the only 3D
method that does not depend on any chemical bond linking software, like Openbabel. Hydrogen
atoms can be added by counting the valency for each atom in our method.

Table 4: Validity and Uniqueness over 10000 molecules generated by different models. Geometry:
model generation in 3D space. H: model Hydrogen atoms. Bond: model chemical bonds.

Method Geometry H Bond Valid (%) Unique (%) Valid and unique (%)
Graph VAE ✓ 55.7 75.9 42.3
GTVAE ✓ 74.6 22.5 16.8
Set2GraphVAE ✓ 59.9 93.8 56.2
E-NF ✓ ✓ 40.2 98.0 39.4
G-Schnet ✓ ✓ 85.5 93.9 80.3
EDM ✓ ✓ 91.9 98.7 90.7
CS-DiffE (ours) ✓ ✓ 87.8 97.9 86.0
CS-DiffP (ours) ✓ ✓ 83.6 98.5 82.3

A.6.2 EVALUATION OF DRUG-LIKE PROPERTIES FOR FRAGMENTS

Ring Size Ring Systems with the size of 5-6 are stable chemical groups in organic chemical theo-
ries. HeteroAtom The number of heteroatoms represents area of the polar surface in the organic
molecules, which highly determines the distribution of the drug molecules in the human body, e.g.,
the drug molecules that can cross the blood-brain barrier always has fewer heteroatoms. Aromati-
cRing The Number of aromatic rings in the molecules indicates the ability to form π−π interaction
with proteins or other biomolecules. Aromatic rings also stabilize the molecule into lower energy
conformations. AliphaticRing The Number of aliphatic rings in the molecules indicates the rigidity
of the molecules. Instead of lying in a plane as aromatic rings, aliphatic rings constrained the con-
formation by contributing a specific torsion angle to the molecule conformation. Radius The mean
radius of the fragment. A higher radius than the GEOMDRUG indicates too many rings are generated
by the model. A smaller radius indicates the model is not able to construct valid ring systems.

Result and Discussions In addition to the evaluation of properties on the molecule level, we also
break all the sampled molecules into fragments and test their performance on additional properties
As expected, our method chooses fragments that are similar to that of ground truth statistics. We
plotted the distribution of ring size in Fig. 6, the number of our method conforms best with ground
truth. It is obvious that ring sizes 5 and 6 are most commonly seen in drug datasets and our sampled
results, which are stable. However, on the contrary, the atom-based method such as EDM (Hooge-
boom et al., 2022) has failed to capture this basic chemical rule. Refer to Table 5 for additional
property evaluation.

Table 5: Properties of the fragments. All molecules are decomposed into fragments for statistical
analysis. The model performs better if the generated fragments have more similar properties to
GEOMDRUG.

Ring Size HeteroAtom AromaticRing AliphaticRing Radius
EDM 6.038 0.605 0.065 0.101 1.265
CS-DiffE 5.749 0.630 0.104 0.083 1.295
CS-DiffP 5.714 0.660 0.132 0.082 1.360
GEOMDRUG 5.747 0.677 0.134 0.066 1.351

A.6.3 EVALUTATION OF UNIQUENESS AND DIVERSITY ON GEOMDRUG

To prove that our method does not occur the issue of mode collapse, we tested the uniqueness of
generated molecules and evaluate the similarity of generated molecules with the GEOMDRUG test
set. Similarity which measures the average similarity between generated molecules with the most
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Figure 6: Histogram of the sampled molecules’ ring size frequency of our model, EDM, and
GEOMDRUG

similar molecule in the test set. We use the Tanimoto score between ECFP4 fingerprints to measure
the similarity between two molecules. High similarity indicates that the method lack generalization.
Unique is the proportion of unrepeated structures in generated molecules. Both metrics are tested
on molecule level and Murko Scaffold level. Numeric results are listed in Table 6 It is quite clear
that our model generates more diverse molecules.

Result Our method outperforms EDM (Hoogeboom et al., 2022) on this uniqueness and diversity
test. It should be noted that both our method and EDM generate mostly unique molecules when
training on GEOMDRUG. These methods succeed to generate diverse 3D molecules. Combining to
results from Table 1, our method is able to generate 3D molecules that are drug-like and diverse.

Table 6: Diversity metrics computed on 1000 drug-like molecules generated by our method with
two types of coarse feature and EDM (Hoogeboom et al., 2022).

Similarity-atom ↓ Unique-atom ↑ Similarity-scaffold ↓ Unique-scaffold ↑
EDM 0.176 1.000 0.189 0.930
CS-DiffE 0.164 1.000 0.171 0.957
CS-DiffP 0.168 1.000 0.169 0.946

A.6.4 EXPERIMENTAL PROOF OF ERROR ACCUMULATION

One of our motivations for developing a hierarchical method for molecule generation is that we dis-
covered the error accumulation in molecule generative models. This means that when the molecule
size increase, the error from the previous steps of generation influences later steps which leads to
unrealistic results. This issue has been discussed in the field of natural language modeling (Schmidt,
2019; He et al., 2019; Caccia et al., 2018). To prove this issue exists, we trained our method which
represents the non-autoregressive method, and G-Spherenet which represents the autoregressive
method on QM9. Both methods are set to generate molecules with the given molecule size. We
test the validity of the generated molecules. We also do the same test on GEOMDRUG, however, the
validity of the autoregressive model drops so fast that it cannot generate molecules with more than
20 heavy atoms. Numeric results on QM9 are listed in Table 7. Visualized results of GEOMDRUG
can be found in Figure 10.
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Table 7: Validity of sampled molecules with different sizes trained on QM9 (Axelrod & Gomez-
Bombarelli, 2022). All molecules that are broken or marked as invalid in RDkit package are regarded
as invalid samples. AR stands for the autoregressive model in G-SphereNet (Luo & Ji, 2022). non-
AR stands for our method.

Size 5 6 7 8
Valid (AR) 0.710 0.692 0.690 0.588

Valid (non-AR) 1.000 0.950 0.953 0.991

Table 8: Pearson correlation between the generated condition and true properties. When applying the
molecule generation model for conditional generation task, we expect the model to output molecules
with properties as the context we input.

P-SAS↑ P-QED↑
EDM -0.246 0.048
CS-DiffE 0.597 0.401

A.6.5 CONDITIONAL GENERATION EXPERIMENTS

Evaluation metrics In order to demonstrate our model’s capacity to capture abstract chemical infor-
mation without relying on human prior, we conduct a conditional generation experiment using the
element coarse feature model. We chose two properties, SAS and QED which stand for the synthe-
sis complexity of the molecules and the drug-likeness. Both of the properties represent high-level
information that cannot be tricked by the generative model by simply outputting more specific types
of elements. We use the same range of properties for conditional generation and we compute the
Pearson correlation between the real properties of the sampled molecules with the input condition.

Result and Discussion It’s pretty obvious in Table 8 that our model is able to capture abstract
information for the conditional generation task. However, EDM tends to output random guesses for
high-level context. We outperform the baseline model by a large margin which indicates our model
can be used for generating molecules with desirable properties in the 3D space.

Random Noise High-level Feature + Coordinates

xT xt xt-1...

... ...

x0...

Figure 7: Illustration of the process of sampling high-level features and coordinates. The Whole
chain start with the Gaussian noise and the 3D point set is refined by the reverse process of the
diffusion model.
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Table 9: Property-Based high-level feature

Property Description Type
HBA Numbers of hydrogen bond acceptor integer
HBD Numbers of hydrogen bond donor integer
Charge Numbers of explicit electric charge integer
Aromaticity The size of aromatic ring integer
Alicyclicity The size of alicyclic ring integer
Radius The radius of the force filed optimized conformation continuous
PSA Polar surface area contribution to the conformation continuous
ASA Accessible surface area contribution to the conformation continuous

Table 10: Element-Based high-level feature

Property Description Type
Hydrophobicity Numbers of C element integer
Hydrogen Bond Center Numbers of O, N, S, P element integer
Negative Charge Center Numbers of F, Cl, Br, I element integer

A.7 TRAINING AND SAMPLING ALGORITHM FOR DECODING

Algorithm 2 Training Algorithm for Node/edge decoding

Input: 3D molecules set: {G}, EGNN networks: ϕfocal, ϕedge, ϕnode, ϕrefine
Output: EGNN networks: ϕfocal, ϕedge, ϕnode, ϕrefine

1: function C(S, E: subgraph)
2: feat← Coarse-grained feature of n, n ∈ S
3: coord← Position of n, n ∈ S
4: return feat, coord
5: end function
6: function F(S, E: subgraph)
7: feat← Fine-grained feature of n, n ∈ S
8: coord← Position of n, n ∈ S
9: edge← {i, j}, {i, j} ∈ E

10: return feat, coord, edge
11: end function
12: function FRAG(n: node)
13: feat← Fine-grained feature of n
14: return feat
15: end function
16: for G in {G} do
17: T ∼ T ∈ G, s.t. T is connected subgraph
18: n ∼ n ∈ T , s.t. n is leaf node
19: m ∼ m ∈ T , s.t. m is single node
20: T̃ = T \ n, V = G \ T
21: T̂ = T \m
22: context = (F(T̃ ), C(V ∪ n))
23: Lsample = − logPϕfocal(n.parent | context)

− logPϕedge({n, n.parent} | context)
− logPϕnode(FRAG(n) | context, {n, n.parent})

24: Update ϕfocal, ϕedge, ϕnode ← Optimize(Lsample)

25: Lrefine = − logPϕrefine(FRAG(m) | [(F(T̂ ), C(m)])
26: Update ϕrefine ← Optimize(Lrefine)
27: end for
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Algorithm 3 Sampling Algorithm for Node/edge decoding

Input: Nodes with coarse-grained feature and positions: N
Refine step limit: max steps,
EGNN networks: ϕfocal, ϕedge, ϕnode, ϕrefine

Output: Fine-grained Graph T
1: function GENERATE STEP(T)
2: nfocal ∼ Pϕfocal(nfocal | T )
3: {nfocal, nnew} ∼ Pϕedge({nfocal, nnew} | T )
4: T ← T + {nfocal, nnew}
5: fragment ∼ Pϕnode(fragment | T )
6: FRAG(nnew)← fragment
7: end function
8: function REFINE STEP(T)
9: Tcoarse ← coarse-grained T

10: Tfine ← fine-grained T
11: nrefine = argminn(Pϕrefine(FRAG(n) | Tfine \ n,Tcoarse)), n ∈ T
12: fragment ∼ Pϕrefine(fragment | Tfine \ n,Tcoarse)
13: FRAG(nrefine)← fragment
14: end function
15: function PROB(T)
16: return

∑
n∈T (logPϕrefine(FRAG(n) | T \ n))

17: end function
18: T ← N
19: repeat
20: T ← GENERATE STEP(T )
21: for i in max steps do
22: T̂ ← REFINE STEP(T )
23: if PROB(T̂ ) > PROB(T ) then
24: Accept: T ← T̂
25: else
26: Break
27: end if
28: end for
29: until ∀n∈T , n is fine-grained node

A.8 REPRODUCIBILITY

We provide anonymous code link1 for reproducing the results in the paper.

1https://drive.google.com/drive/folders/1qoWnZccz9tph8pYJtVXWd8TmuK55GlXJ?usp=sharing
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Figure 8: Visualized 3D conformations generated by our model

Figure 9: Visualized 3D conformations generated by the baseline model EDM
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Figure 10: Visualized 3D conformations generated by G-SphereNet
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