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Reflective Deformable Linear Object

Anonymous Authors

Abstract—An end-to-end monocular 3D recovery framework
for Deformable Linear Object (DLO) is proposed in this paper.
The fragmented and unreliable 3D point clouds caused by
the thin profile and reflective surfaces of DLOs have been a
critical challenge in 3D DLO perception. Conventional algorithms
circumvent these issues by relying on simplified background envi-
ronments or expensive multi-sensor systems, yet such constraints
severely limit their practical downstream applications. This paper
proposes a mixed body of multiple branches, including RGB
segmentation, relative depth estimation, relative-to-metric scaling
transformation, and a recovery fusion module. Our framework
achieves state-of-the-art performance in recovering DLO from
highly noisy inputs, recovering 93.8% (median) of the target
point cloud within a 5cm error band, with a mean distance
error of 4.3cm. An open-sourcing implementation of the proposed
algorithm, a GUI-based data collection tool, and a ready-to-use
dataset have also been provided for the benefit of the community.

Index Terms—DLO Perception, Depth Recovery, Sensor Fusion

I. INTRODUCTION

DEformable Linear Objects (DLOs), including power ca-
bles, network cables, and surgical sutures, play crucial

roles in diverse applications such as industrial assembly [1] [2]
and surgical operations [3]. Robotic manipulations of DLOs
are typically grasping [4], pulling [5], knotting [6] and unknot-
ting [7]. As a vital prerequisite for these tasks, reconstructing
the cable’s configuration has become an increasingly important
research topic in recent years. In this task, the depth data is
severely affected by geometrical and optical errors [8] [9] due
to its thin diameter and reflective surface. Approaches, such as
deploying higher-resolution sensors [10] or multi-view stereo
systems [11] can sometimes reduce perception noise to a level
negligible for subsequent manipulation tasks. However, they
are often impractical for many DLO manipulation scenarios
due to the significant resource requirements. Recently, learning
models have paved a potential way to assist the DLO recovery
by “predicting” missing DLO geometry. Inspired by recent
success in depth completion and relative depth estimation, a
new algorithm is proposed, named DLODepth, which learns
from complete point cloud references and inferring reliable
DLO point cloud even from highly noisy RGB-D inputs, as
pictorially demonstrated in Fig. 1.

The contributions of this paper can be listed as follows:
1) A novel formulation for DLO depth recovery task is

introduced, designed for correcting sensing-erroneous
depth data, as opposed to those with missing data.

2) The first end-to-end framework is proposed that recov-
ers the accurate 3D shape of a DLO from monocular

Fig. 1. Illustration of the proposed algorithm through analysis on a chal-
lenging DLO perception case. Due to the cable’s highly reflective nature, the
majority of DLO points in the raw point cloud data are erroneously projected
onto the background, with only a sparse, noisy set of points remaining in the
foreground. The proposed algorithm estimates the relative depth of the DLO
from the RGB channels, learns a relative-to-metric scaling factor from the
available (albeit noisy) foreground points, and fuses the recovered depth values
with the raw data, replacing erroneous measurements. As such, A refined point
cloud is generated that accurately reconstructs the true spatial configuration
of the DLO.

data. The algorithm achieves state-of-the-art results on
challenging reflective DLOs, with a mean distance error
of 4.3cm (1.4cm median) and a mean recovery rate of
69.4% (93.8% median).

3) A projection loss is introduced to compensate for the
discrepancy between the point-to-camera distance and
the depth value reported.

4) The implementation of the proposed algorithm, a data
collection tool with a GUI front-end, and the ready-to-
use dataset used in this paper are all open-sourced, at:
https://anonymous.4open.science/r/701A.

II. PROPOSED ALGORITHM

A. Network Structure

The input depth image is denoted as D ∈ RH×W , its cor-
responding RGB image denoted as I ∈ RH×W×3, and the
intrinsic matrix of the sensor is known. The proposed network
is four-folded: RGB Segmentation, Relative Depth Estimation,
Relative-to-Metric Scaling Transformation, and Recovery Fu-
sion. The systematic flowchart is provided in Fig. 2.

RGB Segmentation. The main challenge of identi-
fying foreground DLO points from RGB image is the
extreme foreground-background imbalance and finding a
solution that prioritises a low false-positive rate. PP-
LiteSeg [12] is the implementation. The segmentation con-
fidence Mconf = RGBSeg(I) and predictive binary mask M̂ =
argmax(softmax(Mconf)).

https://anonymous.4open.science/r/701A
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Fig. 2. Flowchart of the proposed algorithm. All visual elements used in this figure are results from an actual experiment, not conceptual illustrations.

(a) (b) (c)

Fig. 3. Demonstration of the DLO dataset annotation. (a) Point clouds from
single frames. (b) Merged point cloud. (c) The annotated DLO point cloud.

Relative Depth Estimation. Relative depth estimation is to
assign a depth value to each pixel in an RGB image ordinally
correct (i.e., closer points have lower values) in a normalised to
a fixed range ([0,1]). In this paper, this module is implemented
by DepthAnythingV2 [13], i.e., Drel = RelativeDepth(I).

Relative-to-Metric Scaling Transformation. A learning
model with a ResNet-18 [14] backbone and a DPT [15]
decoder is constructed to predict a certainty map Ĉ ∈ RH×W ,

Ĉ = Certainty
([
(Dnorm ⊙ M̂,G⊙ M̂,M̂

]
)
)

(1)

where Dnorm = D/max(D) , G is the gradient of Dnorm
calculated using a Sobel operator Gradient(Dnorm), ⊙ denotes
element-wise multiplication, and [·] denotes concatenation.

A set of anchor points A is then collected, containing all
the points that have high certainty to be the foreground points:

A = {(u,v) | (Ĉ(u,v)> 0.5)∧ (M̂(u,v) = 1)} (2)

A least-square optimisation problem is formulated to esti-
mate the scale factor s that best aligns the relative depth with
the corresponding raw depth at the anchor points,

s = argmin
s

∑
(u,v)∈A

∥s ·Drel(u,v)−D(u,v)∥2
2 (3)

Recovery Fusion. The recovered metric depth image D̂
is obtained by fusing the raw depth D and the predicted data
s ·Drel based on the segmentation mask M̂,

D̂ = D⊙ (1− M̂)⊕ (s ·Drel)⊙ M̂ (4)

where ⊕ denotes element-wise addition.

B. Loss Functions

Loss terms Lrel, Lproj, Lcont, Lcert, and Lseg are adopted in
this framework, where Lrel is the scale-invariant logarithmic
loss [16] to supervise Drel with normalized ground truth depth,

Fig. 4. Illustration of test results of the compared algorithms on the blue
cable dataset. Each row shows the results from the same DLO configuration,
where red arrows highlight the predicted DLO.

Focal loss for certainty prediction Lcert = FocalLoss(Ĉ,C∗),
and weighted CE loss to supervise segmentation branch
Lseg = CE(Mconf,M∗).

Projection Loss. A novel projection loss is introduced to
eliminate the bias between the perpendicular distance from the
point to the image plane and the geometric distance from the
point to the camera centre,

Lproj =
1

|Ω̂∪Ω∗| ∑
(u,v)∈Ω̂∪Ω∗

∣∣D̂(u,v)−D∗(u,v)
∣∣ ·∥n(u,v)∥ (5)

where n(u,v) =
[

u−cx
fx

,
v−cy

fy
, 1

]T
, (cx,cy) is the coordinate

of the principle point, and fx and fy are the focal lengths of
the camera, and Ω̂ and Ω∗ are the set of foreground pixel
coordinates in the predicted mask M̂ and GT mask M∗ 1.

Continuity Loss. Huber [17] penalty is applied
to encourage local smoothness of DLO depth, Lcont =

1
|Ω̂| ∑(u,v)∈Ω̂

Hδ (σ(u,v)) , where σ(u,v) is the local depth
variance within a k×k window, and Hδ is the Huber function.

III. REFLECTIVE DLO DATASET

This dataset is collected by a handheld Orbbec Gemini
336L camera. An ArUco tag is placed at a random but fixed
pose in the scene. During collection, the operator moves
the camera around the cable whilst keeping the ArUco tag
clearly visible. This dataset includes 20 distinct configurations
for both blue and yellow Ethernet cables (diameter: 0.6cm),
containing 6,840 and 4,636 RGB-D pairs, respectively.

1The construction of M∗ will also be described in Section III.
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TABLE I
COMPARISON RESULTS ON TEST DATASET

Methods Train Depth Fusion Success Num MAD(m) ↓ CR@5cm(%) ↑ AbsRel ↓ RMSE ↓ δ1 ↑ Time (s) ↓mean median mean median

Raw depth - Met.1 - 0(0.0%) 0.310 0.305 48.5 47.6 0.009 0.045 0.988 -
AdaBins [18] Train Met. - 230 (17.57%) 0.081 0.075 66.7 71.9 0.107 0.104 0.904 0.027
AdaBins [18] Train Met. SAM 2 [19] 230 (17.57%) 0.081 0.075 66.7 71.9 0.003 0.016 0.995 0.027+0.1432

Metric3Dv2 [20] Zero3 Met. - 17 (1.30%) 0.351 0.341 2.9 0.0 0.241 0.178 0.644 0.050
Depth Pro [21] Zero Met. - 155 (11.84%) 0.140 0.123 25.1 18.2 0.140 0.126 0.805 0.404
UniDepthV2 [22] Zero Met. - 0(0.00%) 0.542 0.497 0.3 0.0 0.498 0.364 0.270 0.042
Depth Anything V2 [13] Zero Rel(lstsq) - 214 (16.35%) 0.130 0.109 26.6 17.2 0.200 0.181 0.574 0.015
[23](with depthFM [24]) Zero Met. completion 1 (0.08%) 0.223 0.220 30.0 23.8 0.044 0.064 0.959 14.64

Ours Train Met. PP-LiteSeg [12] 957 (73.11%) 0.043 0.014 69.4 93.8 0.005 0.034 0.994 0.031
1 ”Met”: metric depth. ”Rel”: relative depth. ”lstsq”: least squares fitting.
2 The 0.143s is the average single frame inference time of Grounded SAM 2 on NVIDIA GeForce RTX 4090 GPU.
3 ”Zero”: zero-shot. ”Train”: fine-tuned on the proposed DLO dataset.

The ground-truth of the RGB mask is semi-automatically
annotated using SAM 2 [19] with manual refinement, denoted
as M∗. For pseudo-GT depth annotation, the frames of each
DLO configuration are first aligned with the ArUco tag pose
to construct a complete point cloud (Fig. 3 (a) and (b)), and
then manually annotated using MATLAB Lidar Labeller tool.
The pseudo-GT depth image is generated by simulating the
raytracing from the camera’s optical centre. The pseudo-GT
depth image D∗ is

D∗(u,v) =

{
Dproj(u,v), (u,v) ∈ Ω

∗

D(u,v), otherwise
(6)

The pseudo-GT certainty map C∗ is hereby defined as

C∗(u,v) =

{
1, (u,v) ∈ Ω∗ and |D(u,v)−D∗(u,v)| ≤ 0.05m
0, otherwise

(7)
The dataset statistics show that the RGB mask of the DLO
constitutes only 1.5% of the whole image, and fewer than
20% of these points can be recognised as anchor points.
These underscore severe class imbalance problems in the DLO
recovery task.

IV. EXPERIMENTS

Metrics. The accuracy and completeness metrics are used
to evaluate the DLO recovery. The Accuracy Distance (AD) is
defined as the distance from the point to its closest ground truth
point [25], and the Mean Accuracy Distance (MAD) metric is
then computed as the average AD value across all predicted
DLO points. An RGB-D frame is recognised as “success” if
the MAD is within 5cm. The CR@5cm metric [26] is defined
as the proportion of ground truth DLO points for which the
distance to the nearest predicted DLO point is less than 5cm.

Comparative Experiments. The proposed algorithm is
evaluated against several categories of algorithms that re-
searchers might consider for the DLO recovery task, including
pure RGB-based DLO segmentation [27], monocular depth
estimation [18], [20], [21], [22], [13], and depth com-
pletion [23] algorithms. See demonstrations in Fig. 4 and
results in Table I. The proposed algorithm achieves a mean
MAD of 0.043m and a median MAD of 0.014m, successfully
recovering 957 out of 1309 DLO instances in the dataset. In

TABLE II
GENERALIZATION RESULTS OF TRAINING DATA NUMBER

DLO Train/Test Success Num MAD (m) ↓ CR@5cm (%) ↑
mean median mean median

Blue
Cable

16 / 4 957 (73.11%) 0.043 0.014 69.4 93.8
10 / 10 2639 (78.36%) 0.055 0.012 72.1 92.8
5 / 15 3819 (72.87%) 0.065 0.016 65.1 85.9

Yellow
Cable

16 / 4 823 (86.91%) 0.041 0.015 76.3 87.9
10 / 10 1937 (85.52%) 0.049 0.016 73.3 84.9
5 / 15 2498 (71.41%) 0.077 0.025 60.1 71.2

contrast, all baseline algorithms perform significantly worse,
with the best competitor reaching a mean MAD no lower
than 8cm and a median MAD no lower than 7cm. Regarding
the recovery completeness, the proposed algorithm achieves
a mean CR@5cm of 69.4% and a median of 93.8%. This
performance surpasses all compared algorithms, among which
the best AdaBins [18] attains a mean CR@5cm of 66.7% and
a median of 71.9%.

Evaluation on more objects. The proposed algorithm is
trained and tested on a different yellow rope. Results reveal
that the proposed algorithm maintains a mean MAD of 4.1cm
and a median MAD of 1.5cm, which remains sufficient for
DLO manipulation. These results are collected in Table II.

Evaluation on fewer-shot cases. Furthermore, the algo-
rithm’s performance proves robust to the size of the training
set. Reducing the train-test ratio from 16:4 to 10:10, the
proposed algorithm still maintains a mean MAD below 5cm
and a mean CR@5cm greater than 69%. These verify the
robustness and effectiveness of our approach across different
training data volumes and DLOs.

V. CONCLUSION

The proposed algorithm in this paper integrates relative
depth estimation through a delicate fusion strategy, addressing
the problem of reconstructing thin and reflective DLOs under
severe optical artifacts. Experimental results have validated
that the proposed algorithm has been ready for plug-and-
play deployment into existing DLO manipulation pipelines.
A Python implementation has been provided for the benefit of
the research community.
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