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ABSTRACT

Conformal prediction (CP) converts any model’s output to prediction sets with a
guarantee to cover the true label with (adjustable) high probability. Robust CP ex-
tends this guarantee to worst-case (adversarial) inputs. Existing baselines achieve
robustness by bounding randomly smoothed conformity scores. In practice, they
need expensive Monte-Carlo (MC) sampling (∼ 104 samples per point) to main-
tain an acceptable set size. We propose a robust conformal prediction that produces
smaller sets even with significantly lower MC samples (e.g. 150 for CIFAR10) Our
approach binarizes samples with an adaptive bin selected to preserve the coverage
guarantee. Remarkably, we prove that robustness can be achieved by computing
only one binary certificate, unlike previous methods that certify each calibration
(or test) point. Thus, our method is faster and returns smaller robust sets. We also
eliminate a previous limitation that requires a bounded score function.

1 INTRODUCTION

Despite their extensive applications, modern neural networks lack reliability as their output prob-
ability estimates are uncalibrated (Guo et al., 2017). Many uncertainty quantification methods are
computationally expensive, lack compatibility with black-box models, and offer no formal guaran-
tees. Alternatively, conformal prediction (CP) is a statistical post-processing approach that returns
prediction sets with a guarantee to cover the true label with high adjustable probability. CP only
requires a held-out calibration set and offers a distribution-free model-agnostic coverage guarantee
(Vovk et al., 2005; Angelopoulos & Bates, 2021). The model is used as a black box to compute con-
formity scores which capture the agreement between inputs x and labels y. These prediction sets are
shown to improve human decision-making both in terms of response time and accuracy (Cresswell
et al., 2024). CP assumes exchangeability between the calibration and the test set (a relaxation of
the i.i.d. assumption), making it broadly applicable, including e.g. node classification (Zargarbashi
et al., 2023; Huang et al., 2023) where uncertainty quantification methods are limited. However,
exchangeability, and therefore the conformal guarantee, easily breaks when the test data is noisy or
subjected to adversarial perturbations.

Robust conformal prediction extends this guarantee to worst-case inputs x̃ within a maximum radius
around the clean point x, e.g. ∀x̃ s.t. ∥x̃− x∥2 ≤ r. In the evasion setting, we assume that the cali-
bration set is clean, and test datapoints can be perturbed. Building on the rich literature of robustness
certificates (Kumar et al., 2020), recent robust CP baselines (Gendler et al., 2021; Zargarbashi et al.,
2024; Jeary et al., 2024) use a conservative score at test time that is a certified bound on the con-
formity score of the clean unseen input. This maintains the guarantee even for the perturbed input
since “if CP covers x, then robust CP certifiably covers x̃”. However, the average set size increases,
especially if the bounds are loose. The certified bounds can be derived through model-dependent
verifiers (Jeary et al., 2024) or smoothing-based black-box certificates (Zargarbashi et al., 2024).

For the robustness of black-box models, an established approach is to certify the confidence score
through randomized smoothing (Kumar et al., 2020), obtaining bounds on the expected smooth
score. The tightness of these bounds depends on the information about the smooth score around the
given input, e.g. the mean Yan et al. (2024), or the CDF Zargarbashi et al. (2024). Such methods:
(i) assume the conformity score function has a bounded range, (ii) compute several certificates for
each calibration (or test) point, and (iii) need a large number of Monte-Carlo samples to get tight
confidence intervals. For the current SOTA method CAS (Zargarbashi et al., 2024), the effect of
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Figure 1: [Left] Average set size with different MC sample rates, [middle] empirical coverage of
vanilla and robust CPs under attack, and [right] runtime of robust CP methods given the MC samples
(single vs n lower bound computations).

sample correction is highly problematic for sample rates below 2000 (see Fig. 1 [left]). In contrast,
we obtain robust and small prediction sets with ∼ 150 MC samples. This inefficiency increases to
trivially returning Y as the prediction set when we run with higher coverage rates or higher radii (see
§ 6). Additionally, these methods require computing certified bounds for (at least) each calibration
point which we further show is a wasteful computation.

BinCP. We observe that smooth inference is inherently more robust. Even without certificates ran-
domized methods show a slower decrease in coverage under attack (see Fig. 7-left). Given any score
function s(x, y) capturing conformity, Zargarbashi et al. (2024) and Gendler et al. (2021) define the
smooth score as s̄(x, y) = Eϵ∼N (0,σI)[s(x+ϵ, y)]. Instead, we perform binarization via a threshold
τ , i.e. s̄(x, y) = Eϵ∼N (0,σI)[I[s(x+ ϵ, y) ≥ τ ]] = Pr[s(x+ ϵ, y) ≥ τ ]. Both are valid conformity
scores, and both change slowly around any x, however, our binarized CP (BinCP) method has sev-
eral advantages. First, we define robust CP that only computes a single certificate. In comparison,
SOTA requires at least one certificate per calibration (or test) point. Second, our method can ef-
fortlessly use many existing binary certificates out of the box without any additional assumptions
or modifications. A direct consequence is that we can use de-randomization techniques (Levine &
Feizi, 2021) that completely nullify the need for sample correction under ℓ1 norm. Third, when we
do need sample correction, working with Bernoulli parameters allows us to use tighter concentra-
tion inequalities (Clopper & Pearson, 1934). Thus, even with significantly lower MC samples, our
method still produces small prediction sets (see Fig. 1 left). This improvement is even more pro-
nounced for datasets with a large number of classes (e.g. ImageNet shown in Fig. 5). Finally, BinCP
does not require the score function to be bounded which is a limitation in current methods.

2 BACKGROUND

We assume a holdout set of labeled calibration datapoints Dcal = {(xi, yi)}ni=1 which is exchange-
able with future test points (xn+1, yn+1), both sampled from some distribution D. We have black-
box access to a model from which we compute an arbitrary conformity score s : X × Y→R, e.g.
score s(x, y) = πy(x) where πy(x) is the predicted probability for class y (other scores in § A).1

Vanilla CP. For a user-specified nominal coverage level 1−α, let qα = Q (α; {s(xi, yi)}ni=1 ∪{∞})
where Q (·; ·) is the quantile function. The sets defined as C(xn+1) = {y : s(xn+1, y) ≥ qα} have
1−α guarantee to include the true label yn+1. Formally, Pr[yn+1 ∈ C(xn+1)] ≥ 1−α (Vovk et al.,
2005) where the probability is over Dcal ∼ D,xn+1 ∼ D. This guarantee, and later our robust
sets, are independent of the mechanics of the model and the score function – the model’s accuracy
or the quality of the score function is irrelevant. A score function that better reflects input-label
agreement leads to more efficient (i.e., smaller) prediction sets. For noisy or adversarial inputs, the
exchangeability between the test and calibration set breaks, making the coverage guarantee invalid.
Fig. 1-middle (and Fig. 7-left) shows that an adversary (or bounded worst-case noise) can decrease

1Here s(x, y) quantifies agreement not the non-conformity between x, and y. The setups are equivalent to
a sign flip in scores.
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the empirical coverage drastically with imperceptible perturbations on each test point. As a defense,
robust CP extends this guarantee to the worst-case bounded perturbations.

Threat model. The adversary’s goal is to decrease the empirical coverage probability by perturbing
the input. Let B : X→2X be a ball that returns all admissible perturbed points around an input. For
images a common threat model is defined by the ℓ2 norm: Br(x) = {x̃ : ∥x̃− x∥2 ≤ r} where r
shows the magnitude of perturbation. Similarly, we can use the ℓ1 norm. For binary data and graphs,
Bojchevski et al. (2020) define Bra,rd(x) = {x̃ :

∑d
i=1 I[x̃i = xi−1] ≤ rd,

∑d
i=1 I[x̃i = xi+1] ≤

ra} where the adversary is allowed to toggle at most ra zero bits, and rd one bits.

Inverted ball B−1. At test time we are given a (potentially) perturbed x̃ ∈ B(x). However, to obtain
robust sets, we need to reason about (the score) of the unseen clean x. Naively, one might assume
that x ∈ B(x̃) – the clean point is in the ball around the perturbed point. However, this only holds
in special cases such as the ball defined by the l2 norm. For example, if a binary x̃ was obtained
by removing rd bits and adding ra bits, to able to reach the clean x from the perturbed x̃ we need
to add rd bits and remove ra bits instead since Bra,rd unlike Br is not symmetric. We define the
inverted ball B−1 as the smallest ball centered at x̃ ∈ B(x) that includes the clean x. Formally B−1

should satisfy ∀x̃ ∈ B(x) ⇒ x ∈ B−1(x̃). For symmetric balls like ℓp-norms, B−1 = B. For the
binary ball B−1

ra,rd
= Brd,ra we need to swap ra and rd to ensure this condition. Zargarbashi et al.

(2024) also discuss this subtle but important aspect without formally defining B−1.

Robust CP. Given a threat model, robust CP defines a conservative prediction set C̄ that maintains
the conformal guarantee even for worst-case input. Formally

Pr
Dcal∪{xn+1}∼D

[yn+1 ∈ C̄(x̃n+1),∀x̃n+1 ∈ B(xn+1)] ≥ 1− α (1)

The intuition behind existing methods is as follows: (i) Vanilla CP covers xn+1 with 1−α probability
(ii) if y ∈ C(xn+1) then y ∈ C̄(x̃n+1). Thus, robust CP covers x̃n+1 with the same probability. Here,
(ii) is guaranteed via certified lower bounds c↓[s,x,B] or certified upper bounds c↑[s,x,B−1].

Theorem 1 (Robust CP from Zargarbashi et al. (2024)). With c↑[sy, x̃,B−1] ≥
maxx′∈B−1(x̃) s(x

′, y), let C̄test(x̃n+1) =
{
y : c↑[sy, x̃n+1,B−1] ≥ q

}
, then C̄test satisfies Eq. 1

(test-time robustness). Alternatively, with c↓[sy,x,B] ≤ minx′∈B(x) s(x
′, y), define q↓ =

Q
(
α;

{
c↓[syi

,xi,B]
}n

i=1

)
. Then C̄cal(x̃n+1) =

{
y : s(x̃n+1, y) ≥ q↓

}
also satisfies Eq. 1

(calibration-time). Here sy(·) = s(·, y).

In Theorem 1 test-time robustness uses B−1 since the clean test point is unseen, but calibration-time
robustness uses B since the clean calibration point is given. We can obtain the c↓, c↑ bounds through
neural network verifiers Jeary et al. (2024) or randomized smoothing (Cohen et al., 2019). We focus
on the latter since we get model-agnostic certificates with black-box access. The coverage probabil-
ity is theoretically proved in CP. Similarly, (adversarially) robust CP also comes with a theoretical
guarantee. In both cases we can compute the empirical coverage as a sanity check. Another metric
of interest in both cases is the average set size (the efficiency) of the conformal sets.

Randomized smoothing. A smoothing scheme ξ : X → X maps any point to a random nearby
point. For continuous data Gaussian smoothing ξ(x) = x + ϵ adds an isotropic Gaussian noise to
the input ϵ ∼ N (0, σI). For sparse binary data Bojchevski et al. (2020) define sparse smoothing
as ξ(x) = x ⊕ ϵ where ⊕ is the binary XOR, and ϵ[i] ∼ Bernoulli(p = px[i]), where p1, and p0
are two smoothing parameters to account for sparsity. Regardless of how rapidly a score function
s(x, y) changes, the smooth score s̄(x, y) = E[s(ξ(x), y] changes slowly near x. This enables to
compute tight c↓, c↑ bounds that depend on the smoothing strength. See § 4, § B, and § E for details.

3 BINARIZED CONFORMAL PREDICTION (BINCP)

We define conformal sets by binarizing randomized scores. We first show that this preserves the
conformal guarantee for clean data. Then in § 4 we extends the guarantee to worst-case adversarial
inputs. As we will see in § 6 our binarization approach has gains in terms of Monte-Carlo sampling
budget, computational cost, and average set size.
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Proposition 1. For any two parameters p ∈ (0, 1), τ ∈ R, given a smoothing scheme ξ(x), define
the boolean function accept[·, ·; p, τ ] and the prediction set C(·; p, τ) as

accept[x, y; p, τ ] = I[Pr
ξ
[s(ξ(x), y) ≥ τ ] ≥ p] and C(x; p, τ) = {y : accept(x, y; p, τ)}

For any fixed p, let

τα(p) = sup
τ

{
τ :

n∑
i=1

accept(xi, yi; p, τ) ≥ (1− α) · (n+ 1)

}
(2)

then the set C(xn+1; p, τα(p)) has 1− α coverage guarantee. Alternatively, for any fixed τ , let

pα(τ) = sup
p

{
p :

n∑
i=1

accept(xi, yi; p, τ) ≥ (1− α) · (n+ 1)

}
(3)

again the prediction set C(xn+1; pα(τ), τ) has 1− α coverage guarantee.

The correctness of Prop. 1 can be directly seen by noticing that we implicitly define new scores.

Quantile view. Let Si = s(ξ(xi), yi) be the distribution of randomized scores for xi and the true
class yi. Let τi(p) = Q (p;Si), we have that τα(p) = Q (α; {τi(p)}ni=1) is a quantile of quantiles.
Similarly, define pi(τ) = Q−1 (τ ;Si) then pα(τ) = Q (α; {pi(τ)}ni=1) is a quantile of inverse
quantiles. Both τi(p) for a fixed p and pi(τ) for a fixed τ are valid conformity scores for instance xi,
since exchangeability is trivially preserved. Therefore, τα(p) and pα(τ) are just the standard quantile
thresholds from CP on some new score functions. This directly gives the 1− α coverage guarantee.
This view via the implicit scores is helpful for intuition, but we keep the original formulation since it
is more directly amenable to certification as we show in § 4. We provide an additional formal proof
of Prop. 1 via conformal risk control (Angelopoulos et al., 2022) in § C.

Using either variant from Prop. 1 let (pα, τα) equal (p, τα(p)) or (pα(τ), τ) as the final pair of
parameters. For test points xn+1 we accept labels whose smooth score distribution has at least
pα proportion above the threshold τα, i.e. accept(xn+1, y; pα, τα) = 1. The term “binarization”
refers to mapping each score sample above τ to 1 and all others 0. For distributions with a strictly
increasing and continuous CDF (e.g. isotropic Gaussian smoothing) both variants are equivalent.
Lemma 1. Given distributions {Si}ni=1 with strictly increasing and continuous CDFs, let τα(p) be
obtained from Eq. 2 with fixed p and pα(·) be as defined in Eq. 3. We have pα(τα(p)) = p.

We defer all proofs to § C. Let p be fixed, we get sets with (p, τα(p)). With Lemma 1 and fixing
τ = τα(p) we get the sets with (pα(τ), τ) = (pα(τα(p)), τα(p)) = (p, τα(p)) which are equal.
Fig. 2 shows the accept(x, y; p, τ) function for several examples. This function is non-increasing in
both parameters p and τ . In general, for any arbitrary p, and τ , the function accept(·, ·, p, τ) results
in a some expected coverage (Fig. 2-right). Intuitively, thresholds obtained from Prop. 1 are points
on the 1 − α contour of this function. The expected coverage probability is close to the empirical
coverage on the given calibration set due to exchangeability (Berti & Rigo, 1997).

Remarks. The scores τi(p) (and similarly pi(τ) remain exchangeable whether the quantile over the
smoothing distribution is computed exactly or estimated from any number of Monte-Carlo samples.
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Figure 2: [Left] Function accept(·, ·; p, τ) for different (p, τ) pairs for random CIFAR-10 instances.
Black equals 1 and white equals 0. [Right] Empirical coverage for different (p, τ) pairs. Any (p, τ)
pair on the dashed black line showing the 0.9 contour gives conformal sets with 90% coverage.
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That is, Prop. 1 holds regardless. However, when need to be more careful when we consider the
certified upper and lower bounds. In § 4 we first derive robust conservative sets that maintain worst-
case coverage, assuming that we can compute probabilities and expectations exactly. Since this is
not always possible, in § 5 we provide the appropriate sample correction that still preserves the
robustness guarantee when using Monte-Carlo samples. We also discuss a de-randomized approach
that does not need sample correction.

4 ROBUST BINCP

From Prop. 1 (either variant) we get a pair (pα, τα). From the conformal guarantee, it follows that
Pr[s(xn+1, yn+1) ≥ τα] ≥ pα with probability 1−α for clean xn+1. We will exploit this property.
Define fy(x) = I[s(x, y) ≥ τα], we have f̄y(x) = Eξ[I[s(ξ(x), y) ≥ τα]] = Prξ[s(ξ(x), y) ≥ τα].

Conventional robust CP. One way to attain robust prediction sets is to apply the same recipe as
Zargarbashi et al. (2024) by finding upper or lower bounds on the new score function. Zargarbashi
et al. (2024) use the smooth score s̄y(x) = Eξ[s(ξ(x), y)]. Instead, we can bound f̄y(x) which is a
smooth binary classifier. Following Theorem 1 the test-time, and calibration-time robust prediction
sets are

C̄test(x̃n+1) = {y : c↑[f̄y, x̃n+1,B−1] ≥ pα}, C̄cal(x̃n+1) = {y : f̄y(x̃n+1) ≥ q↓} (4)

where q↓ = Q
(
α; {c↓[f̄yi ,xi,B]}ni=1

)
. In short, we replace the clean Pr[s(xn+1, yn+1) ≥ τα] with

either its certified upper c↑ or lower c↓ bound. We elaborate on this approach before improving it.

Computing c↓ and c↑. Computing exact worst-case bounds on f̄ (f̄y for all y) is intractable and
requires white-box access to the score function and therefore the model. Following established tech-
niques in the randomized smoothing literature (Lee et al., 2019) we relax the problem. Formally,

c↓[f̄ ,x,B] = min
x̃∈B(x)
h∈H

Pr[h(ξ(x̃))] s.t. Pr[h(ξ(x))] = Pr[f(ξ(x))] = f̄(x) (5)

where H is the set of all measurable functions h. Since f ∈ H we have c↓[f̄ ,x,B] ≤ f̄(x̃) for all
x̃ ∈ B(x). The upper bound c↑[f̄ ,x,B−1] is the solution to a similar maximization problem.

Closed form. For ℓ2 ball with Gaussian smoothing Eq. 5 has a closed form solution
Φσ(Φ

−1
σ (f̄y(x))− r) where Φσ is the CDF of the normal distributionN (0, σI)(Cohen et al., 2019;

Kumar et al., 2020). The upper bound is similarly computed by changing the sign of r. Yang et al.
(2020) show the same closed-form applies solution for the ℓ1 ball, and additionally, discuss other
perturbation balls and smoothing schemes most of which are applicable. For sparse smoothing the
bounds can with a simple algorithm with O(ra + rd) runtime (Bojchevski et al., 2020), which we
discuss in § C. For ℓ1 ball and uniform smoothing the lower bound equals f̄y(x) − 1/(2λ) where
ϵ ∼ U [0, 2λ]d (Levine & Feizi, 2021). This bound can also be de-randomized (see § 5).

Single Binary Certificate. From the closed-form solutions we see that the bounds are independent
of the definition of f , and the test point x; i.e. their output is a function of the scalar p := f̄y(x).
We defer the discussion for why this holds to § B, but in short the solution for any x can be obtained
from alternative canonical points u, and ũ. Therefore, we write c↓[p,B] = c↓[f̄y,x,B] to show that
c↓ depends only on p and B, and the same for c↑. We also notice that in common smoothing schemes
and perturbation balls, it holds that c↓[c↑[p,B−1],B] = p which allows us to reduce both calibration-
time and test-time robustness to solving a single binary certificate. We formalize this in Lemma 2.
Lemma 2. If c↓[c↑[p,B−1],B] = p for all p, then C̄test(x̃n+1) = C̄cal(x̃n+1) = C̄bin(x̃n+1) where
C̄bin(x̃n+1) = {y : accept(x̃n+1, y; c

↓[pα,B], τα)} = {y : Pr[s(xn+1, yn+1) ≥ τα] ≥ c↓[pα,B]}.

To see why, let p̃n+1 = f̄yn+1
(x̃n+1). The test-time robust coverage requires c↑[p̃n+1,B−1] ≥ pα.

Since both c↓, and c↑ are non-decreasing w.r.t. p, we have c↓[c↑[p̃n+1,B−1],B] ≥ c↓[pα,B]. We
have the equivalent condition p̃n+1 ≥ c↓[pα,B]. This implies that we only need to compute a single
certificate c↓[pα,B] once with the single pα value given by Prop. 1. This also allows us to seamlessly
integrate other existing binary certificates in a plug and play manner. In contrast, with Theorem 1 for
C̄test or C̄cal we need at least one certificate per test (or calibration) point. Notably, these prediction
set are identical to our cheaper C̄bin. For completeness, Fig. 3 shows the certified lower and upper
bounds for various pα values and various smoothing schemes.
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Figure 3: c↓[p,B], and c↓[p,B−1] for [from left to right] sparse smoothing, ℓ1 ball with de-
randomized DSSN, and ℓ2 (and ℓ1) ball with Gaussian smoothing.

Intuitively c↓[c↑[p,B−1],B] = p holds due to symmetry of the smoothing scheme w.r.t. B, and B−1

and is satisfied by most smoothing schemes. In Lemma 3 we prove that Gaussian, uniform, and
sparse smoothing all have this property.

Lemma 3. For Gaussian, and uniform smoothing under ℓ1, and ℓ2 balls Br = B−1
r . For sparse

smoothing and Bra,rd we have B−1
ra,rd

= Brd,ra . In all three cases we have c↓[c↑[p,B−1],B] = p.

To summarize, for robust BinCP, we first compute conformal thresholds (pα, τα) from Prop. 1. Then
for a perturbation ball B that satisfies c↓[c↑[p,B−1],B] = p, we compute c↓[pα,B] and compute the
prediction sets with (c↓[pα,B], τα) instead. The resulting sets have 1− α robust coverage.

Corollary 1. With (pα, τα) from Prop. 1 on a calibration set Dcal, let xn+1 be exchangeable with
Dcal and x̃n+1 ∈ B(xn+1). If for the smoothing scheme ξ and the threat model B and for all p we
have c↓[c↑[p,B−1],B] = p, then the set C̄bin(x̃n+1) = {y : Pr[s(xn+1, yn+1) ≥ τα] ≥ c↓[pα,B]}
has 1− α coverage (the pseudocode is in § A).

5 ROBUST BINCP WITH FINITE SAMPLES

The certificate in Corollary 1, needs the computation of exact probabilities Pr[s(xn+1, yn+1) ≥ τα]
which is often intractable. Instead, we can either apply de-randomization techniques or estimate
high-confidence bounds of these probabilities. We first describe the latter approach. For each cal-
ibration point (xi, yi) we compute qi = 1

m

∑m
i=1 I[s(ξ(xi), yi) ≥ τα] where m is the number of

Monte-Carlo (MC) samples. For each label of the (potentially perturbed) test point we compute
q̃n+1,y = 1

m

∑m
i=1 I[s(ξ(x̃n+1), y) ≥ τα]. We use the Clopper-Pearson confidence interval (Clop-

per & Pearson, 1934) to bound the exact probabilities via the MC estimates. To ensure the sets are
conservative we compute a lower bound for calibration points and an upper bound for test points.
Collectively, all bounds are valid with adjustable 1 − η probability. To account for this, we set the
nominal coverage level to 1−α+η such that we have 1−α coverage in total. Similar to Zargarbashi
et al. (2024), we compute each bound with 1− η/(|Dcal + k|) probability where k is the number of
classes. Let pi = Pr[s(ξ(xi), yi) ≥ τα] for i ∈ {1, . . . , n + 1} be the exact probabilities. The final
sample-corrected robust predictions sets are given in Prop. 2.

Proposition 2. Let q↓i ≤ pi hold with 1 − η/(Dcal + k) for each calibration point i ∈ {1, . . . , n}
where k is the number of target classes. For a given test point x̃n+1 let q̃↑n+1,y ≥ p̃n+1,y with

1 − η/(Dcal + k) where p̃n+1,y = Pr[s(x̃n+1, y) ≥ τα]. With p↓α = Q
(
α− η; {q↓i }ni=1

)
, we

set the robust conformal threshold pair as (c↓[p↓α,B], τα). Then the prediction set defined as
C̄+(x̃n+1; c

↓[p↓α,B], τα) = {y : q̃↑n+1,y ≥ c↓[p↓α,B]} has 1− α coverage probability.

Such sample correction is a crucial step for smoothing-based robust CP, since the robustness certifi-
cate is probabilistic. The failure of the certificate depends to the failure of the confidence intervals.
In contrast, for deterministic and de-randomized certificates such as DSSN (Levine & Feizi, 2021),
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we do not need sample correction since we can exactly compute pi and pα = Q (α; {pi}ni=1). Note,
vanilla (non-robust) BinCP does not need sample correction to maintain the guarantee (see § 3).

6 EXPERIMENTS

We show that: (i) We can return guaranteed and small sets for both image classification and node
classification, with a significantly lower number of Monte Carlo samples. (ii) Our sets are computa-
tionally efficient. (iii) There is an inherent robustness in randomized methods. (iv) We can also use
de-randomized smoothing-based certificates that do not require finite sample correction.

Setup. We evaluate our method on two image datasets: CIFAR-10 (Krizhevsky, 2009) and Ima-
geNet (Deng et al., 2009), and for node-classification (graph) dataset we use Cora-ML McCallum
et al. (2004). For the CIFAR-10 dataset we use ResNet-110 and for the ImageNet dataset we use
ResNet-50 pretrained models with noisy data augmentation from Cohen et al. (2019). For the graph
classification task we trained a GCN model Kipf & Welling (2017) on CoraML dataset similarly
with noise augmentation. The GNN is trained with 20 nodes per class with stratified sampling as the
training set and similarly sampled validation set. The size of the calibration set is between 100 and
250 (sparsely labeled setting) unless specified explicitly. Our reported results on conformal predic-
tion performance are averaged over 100 runs with different calibration set samples. We calibrated
BinCP with a p = 0.6 fixed value, however small changes in p does not influence the result. For
graph dataset we calibrated BinCP with p = 0.9 following the intuition from Fig. 3. While we report
our results on mainly TPS (softmax), other score functions are reported in Fig. 7, and § D.

We conducted our experiment using three different smoothing schemes. (i) Smoothing with isotropic
Gaussian noise, σ = 0.12, 0.25, and 0.15. Our reported results for BinCP are valid for both ℓ1, and ℓ2
perturbation balls. (ii) De-randomized smoothing with splitting noise (DSSN) from Levine & Feizi
(2021) from which we attain ℓ1 robustness. We examine two smoothing levels λ = 0.25/

√
3, and

0.5/
√
3. (iii) Sparse smoothing from Bojchevski et al. (2020) with p+ = 0.01, and p− = 0.6 on node

attributes. We report robustness results on B0,3, and B1,3. We compare our the result from BinCP to
the SOTA method CAS (Zargarbashi et al., 2024). Previously it was shown that CAS significantly
outperforms RSCP (Gendler et al., 2021) both with and without finite sample correction. In § 7 we
discuss the other related works in detail. In the standard setup, we estimate the statistics (mean and
CDF, or Bernoulli parameters) with 2 × 103 Monte-Carlo samples, and we set 1 − α = 0.9. This
setup is picked in favor of the baseline since by increasing the nominal coverage or decreasing the
sample size BinCP outperforms the baseline with an even higher margin. Throughout the paper we
report different nominal coverages and MC sampling budgets.

Smaller set size. Fig. 4 shows that for all datasets, and both smoothing schemes (isotropic Gaussian
and sparse smoothing), BinCP produces smaller prediction sets compared to CAS. We show our ro-
bustness results for ℓ1 perturbation ball using derandomized DSSN in Fig. 7 (middle). Notably due to
exactness, for randomized DSSN-based certificate we do not correct for finite MC samples. For Ima-
geNet dataset Zargarbashi et al. (2024) report the set size only for asymptotically valid setup. As de-
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Figure 4: [Left to right] Average prediction set size of robust CP (1 − α = 0.9) for CIFAR-10,
ImageNet with Gaussian smoothing (σ = 0.5), and CoraML dataset with sparse smoothing. All
results are for 2000 Monte-Carlo samples. For the ImageNet we show the results for (1−α = 0.85).
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Figure 5: On ImageNet dataset, [Left] average set size for 1− α = 0.85 with various MC sampling
budgets. [Middle] Set size across various levels of 1−α for 2×103 samples. [Right] Set size without
sample correction (asymptotically valid assumption). The sample-corrected variants are shown with
a dotted line. In first two plots the y-axis is log-scaled.
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Figure 6: Comparison between BinCP and CAS for [left] various smoothing strengths σ, [middle]
effect of low samples without finite samples correction for CIFAR-10 dataset (σ = 0.25), and [right]
the effect of higher MC sample budget in CoraML dataset (sparse smoothing).

picted in Fig. 5, with sample correction, CAS produces trivial sets C̄(xn+1) = Y for 1−α = 0.9. For
sake of comparison, in Fig. 4 we selected 1−α = 0.85 for this dataset. We report the result on Ima-
geNet dataset across various sampling budgets, and coverages in Fig. 5. Increasing the Monte Carlo
sampling budget, the average set size of CAS and BinCP become closer – Fig. 1-left for CIFAR-10,
Fig. 5-right for ImageNet, and Fig. 6-right for CoraML depict the impact of higher sampling budget.
Additionally, we also show in § D that BinCP is consistently more efficient for smaller radii.

Ignoring sample correction. While unrealistic in practice, Gendler et al. (2021) report results with-
out applying finite sample correction. Zargarbashi et al. (2024) maintain small set sizes (with large
MC sampling budget) for CIFAR-10. However, for ImageNet and CoraML they only reported re-
sults without correction. Such results only have an “asymptomatically valid” coverage guarantee.
Here we show that CAS with sample correction fails for datasets like ImageNet, producing trivial
sets, likely due to multiple testing on a large number of classes (see Fig. 5 (left)). On CIFAR-10 and
ImageNet, both methods show similar prediction sets sizes without sample correction. Nevertheless,
in practice we need sample correction. As we see in Fig. 5 (right) BinCP with sample correction is
not far from the ideal setting (without correction), while CAS shows a large gap.

Number of samples. The upperbound in CAS is obtained through a two step process. First given
the corrected CDF, we compute the worst case (adversarial) CDF. Then using upper bounded (or
lower bounded) CDF, we apply the Anderson bound to obtain a bound on the mean from the CDF
(Zargarbashi et al., 2024). Increasing the number of bins increases the computation slightly but
produces tighter bounds. To observe that effect, in an “asymptomatically valid” setup we decrease
the number of samples to a very low number (∼ 10, however unrealistic) and in Fig. 6 (middle) we
see that set size in CAS slightly increases even without sample correction.
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Figure 7: [Left] Vanilla non-smooth and smooth (σ = 0.25) prediction (solid and dashed colored
lines show TPS and APS score function) under attack. [Middle] Set size of BinCP with ℓ1 robustness
and derandomized DSSN smoothing (σ = λ/

√
3). [Right] Performance of BinCP on different score

functions under Gaussian smoothing with σ = 0.25. All results are on CIFAR-10.

Effect of σ. The strength of Gaussian smoothing is controlled by σ in ξ(x) = x+ϵ, ϵ ∼ N (0, σ2I).
Similar to CAS, we observe a trade-off in choosing σ. Higher smoothing intensity results in larger set
sizes in the beginning, but by increasing the robustness radius the set size increases slowly (see Fig. 6
(left)). Still in all cases BinCP outperforms CAS. It is best practice to compute smooth prediction
probabilities using a model trained with similar noise augmentation. We reported this result in § D
(Table 2). Interestingly, BinCP shows less sensitivity to unmatching noise augmentation in training
and inference time.

Benefits of smoothing. The guarantee of robust CP breaks for adversarial (or noisy) inputs. In Fig. 7
(left) we compare vanilla prediction and smooth prediction sets under adversarial attack. Notably,
smooth models even without a conservative certificate show an inherent robustness. As illustrated,
the non-smooth model quickly breaks to near 0 coverage guarantee for very small r. Relatedly,
recent verifier-based robust CP (Jeary et al., 2024) report comparably larger prediction sets even for
one order of magnitude smaller radius (compared to the certified radii by BinCP). This intuitively
suggests that for robust CP it seems that randomization is inherently beneficial.

Exact ℓ1 robustness. We use the randomized DSSN, exact ℓ1 certificate (Levine & Feizi, 2021) to
derive the first smoothing-based de-randomized robust CP. Our prediction sets computed with Gaus-
sian noise are robust to both ℓ1, and ℓ2 perturbation balls with the same radius (Yang et al., 2020).
However, the de-randomized robust BinCP with uniform noise (Fig. 7-middle) shows a significantly
smaller set size across all radii compared to Gaussian noise (Fig. 4-left). In addition to smaller Lip-
schitz constant, de-randomized DSSN allows us to bypass the finite samples correction due to the
exactness of the computed statistics.

7 RELATED WORK

Robust CP via smoothing. Gendler et al. (2021) introduced the problem and defined a baseline
robust CP method, RSCP (randomly smoothed conformal prediction), which applies Theorem 1 in
combination with the mean-constrained upper bound for ℓ2 perturbations and Gaussian smoothing.
This upper bound has a closed form solution: s(x̃, y) = Φ(Φ−1(p) + r) where p = E[s(x+ ϵ, y)].
Originally, RSCP did not account for finite sample correction making its coverage guarantee only
asymptomatically valid. Yan et al. (2024) show that correcting for finite samples in RSCP leads to
trivial prediction sets C̄(x) = Y . As a remedy, they define a new score function based on temperature
scaling which in combination with conformal training (Stutz et al., 2021) improves the average set
size. We compared with their method in § D. So far both methods use test-time robustness.

In contrast Zargarbashi et al. (2024) utilizes the CDF structure of the score and instead apply the
tighter CDF-based constraint defining CDF aware sets (CAS). In combination with calibration-time
robustness, they show that only |Dcal| certificate bounds should be computed to maintain a robust
coverage guarantee as in Eq. 1. In addition to a gain in computational efficiency, they show that in
the calibration-time robustness, the error correction budget can be used more efficiently. On CIFAR-
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10 they return a relatively small conformal set size. In all aforementioned methods, a large MC
sampling budget (e.g. 104 samples) is assumed which is challenging for real-time applications. This
issue is exacerbated for datasets like ImageNet where the large number of classes amplifies the effect
of multiple testing corrections.

Robust CP via verifiers. Outside the scope of randomized smoothing Jeary et al. (2024) use neural
network verification to compute upper (or lower) bounds. This requires white-box access to the
model weights, while our proposed method works for any black-box model and randomized or exact
smoothing-based certificate. Interestingly, in (Jeary et al., 2024) (Table 1) the empirical evaluation is
for r = 0.02 which is smaller than the minimum radius we reported. For completeness, we evaluated
BinCP on very small radii in § D (Fig. 9), and for the same r our sets are 2× smaller. As discussed
in § 6 (Fig. 7) in general, smooth prediction shows to have an inherent robustness.

Other robustness results. Alternatively Ghosh et al. (2023) introduce probabilistic robust coverage
which intuitively accounts for average adversarial input. This is in contrast with our core assumption
of worst-case adversarial input. In other words, instead of 1 − α coverage for any point within the
perturbation ball around xn+1, “probabilistically robust coverage” guarantees that the probability to
cover the true label remains above 1 − α over (x, y, ϵ). Importantly, they average over all ϵ ∈ B,
while we consider the worst-case ϵ. Their “quantile of quantiles” method looks superficially similar
to BinCP as they also compute n+k+1 quantiles. However there are two notable differences. Their
first order of quantiles (on true calibration scores and the score for each class of the test point) is over
random draws from the perturbation set. BinCP computes the first order quantiles (τi(p) in fixed τ
setup) over the smooth score distribution. Their conservative quantile index is based on a user-
specified hyperparameter that accounts for conservativeness while BinCP finds the certified proba-
bility c↓[pα,B] for the worst case adversarial example. BinCP guarantees that any x̃ ∈ B(x) is cov-
ered if x is covered. Furthermore, there are other works addressing distribution or covariate shift in
general beyond the score of worst-case noise robustness (Barber et al., 2022; Tibshirani et al., 2019).

8 CONCLUSION

We introduce BinCP, a robust conformal prediction method based on randomized smoothing that
produces small prediction sets with a few Monte-Carlo samples. The key insight is that we binarize
the distribution of smooth scores, by a threshold (or thresholds) that maintains the coverage guaran-
tee. We show that both calibration and test-time robustness approaches are equivalent to computing
a single binary certificate. This directly enables us to use any certificate that returns a certified lower-
bound probability. The binarization enables us to use tighter Clopper-Pearson confidence intervals.
This leads directly to faster computation of prediction sets with a Monte Carlo sampling budget that
is significantly less than SOTA. In addition, our method in contrast to all previous smoothing-based
robust CP approaches does not require the score function to be bounded.

ETHICS STATEMENT

In this paper, we study the robustness of conformal prediction. The main focus of our work is to
increase the reliability of conformal prediction in presence of noise or adversarial perturbations.
Therefore, we don’t see any particular ethical concern to mention about this study.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have provided the algorithm is in § A, and our
anonymized code in supplementary materials available for download. The models we used are also
pre-trained and all accessible from the cited works. We specified the setup including parameter
selections in § 6.
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A ALGORITHM FOR ROBUST (AND VANILLA) BINCP

In the following, we provide the algorithm for p, and τ fixed BinCP. Note that the only difference
between the two setups is the calibration and finite sample correction. Otherwise, both are similar
in computing the certificate and computing the prediction set. Note that in p-fixed version after
computing the quantile τα we correct for finite samples which results in a lower p+.

Algorithm 1: BinCP with τ -fixed setup
Input: Score function s : X × Y → R; Calibration set D = {xi, yi}ni=1; Smoothing scheme ξ;

Threat model B satisfying the assumption in Lemma 2; Fixed threshold τ , and
(potentially perturbed) test point x̃n+1

Output: A prediction set C̄bin(x̃n+1) with 1− α robust coverage probability
for each calibration point (xi, yi) ∈ Dcal do

Sample from ξ(xi) for m times;
Compute qi =

1
m

∑m
j=1 I[s(ξ(xi), yi) ≥ τ ];

if Exact Certificate then
qi+ := qi;

else
qi+ := ClopperPearsonlow(qi);

end
end
Set pα = Q (α; {qi+}ni=0);
Compute c↓[pα,B] from Eq. 5 (Lower bound minimization);
for each class y ∈ Y do

Sample from ξ(x̃n+1) for m times;
Compute qn+1,y = 1

m

∑m
j=1 I[s(ξ(x̃n+1), y) ≥ τ ];

if Exact Certificate then
qn+1,y+ := qn+1;

else
qn+1,y+ := ClopperPearsonup(qn+1,y);

end
end
return C̄{y : qn+1,y+ ≥ c↓[pα,B]}

Algorithm 2: BinCP with p-fixed setup
Input: Data, score function, smoothing, and B same as algorithm 1. Fixed threshold τ
Output: Same as algorithm 1
for each calibration point (xi, yi) ∈ Dcal do

Sample from ξ(xi) for m times;
Compute τi = Q (p;m) {s(ξ(xi), yi)}mj=1;
if Exact Certificate then

pα,+ := pα;
else

pα,+ := ClopperPearsonlow(pα);
end

end
Set τα = Q (α; {τi}ni=0);
Compute c↓[pα,+,B] from Eq. 5 (Lower bound minimization);
for each class y ∈ Y do

Sample from ξ(x̃n+1) for m times;
Compute qn+1,y+ = 1

m

∑m
j=1 I[s(ξ(x̃n+1), y) ≥ τα];

qn+1,y+ := same as algorithm 1;
end
return C̄{y : qn+1,y+ ≥ c↓[p↓α,B]}
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Other score functions. Throughout the paper we used (TPS) directly take the model’s softmax result
as the score s(x, y) = π(x, y) (Sadinle et al., 2018). In vanilla CP, TPS tends to over-cover easy
examples and under-cover hard ones (Angelopoulos & Bates, 2021). On the other hand “adaptive
prediction sets” (APS) uses the score function defined as s(x, y) := − (ρ(x, y) + u · π(x)y) where
ρ(x, y) :=

∑K
c=1 π(x)c1 [π(x)c > π(x)y] is the sum of all classes predicted as more likely than

y, and u ∈ [0, 1] is a uniform random value that breaks the ties between different scores to allow
exact 1− α coverage (Romano et al., 2020). Since BinCP does not require the score function to be
bounded, we can also use the model logits directly as the score. In Fig. 7 we compared BinCP with
all three mentioned score functions. Interestingly we do not see any significant difference in set size
between APS and TPS when smoothed. Our results on APS score function is in § D.

B COMPUTING CERTIFICATE OPTIMIZATION

Canonical view. Turns out that for isotropic Gaussian and sparse smoothing, we can always attain
this minimum at canonical points; i.e. there is a pair (u, ũ) such that ρu,ũ = ρxn+1,x̃n+1 for any
xn+1, and x̃n+1 ∈ B(xn+1). Namely for the continuous ball Br the canonical vectors are u = 0
and ũ = [r, 0, 0, . . . ]. For the binary Bra,rd we have the canonical u = [0, . . . , 0, 1, . . . , 1] and
ũ = 1 − u where ∥u∥0 = rd and ∥ũ∥0 = ra. Intuitively it is due to the symmetry of the ball and
the smoothing distribution. To avoid many notations, we again use the x, and x̃ in the rest of the
discussion that refers to the canonical points.

To obtain an upper or lower bound (Eq. 5 as maximization or minimization) we partition the space
X to regions where the likelihood ratio between (x, x̃) is constant; formally X = ∪ki=1Ri where
∀z ∈ Ri : Pr[ξ(x) = z]/Pr[ξ(x̃) = z] = ci. For any h we can find an equivalent piecewise-
constant ĥ where inside each region it has a constant value equal to the expected value of h in that
region. Let ti = Pr[ξ(x) = z], and t̃i = Pr[ξ(x̃) = z] then Eq. 5 simplifies to the following linear
programming

min
h∈[0,1]k

h⊤t̃ s.t. h⊤t = pα (6)

Where h, t, and t̃ are vectors that include the values hi, ti, t̃i for each region. The optimum solution
to the simplified linear programming is obtained by sorting regions based on the likelihood ratio
and greedily assigning h to the possible maximum in each region until the budget h⊤t = pα is
met. The rest of the regions are similarly assigned to zero. For isotropic Gaussian smoothing Cohen
et al. (2019) show that the optimal solution has a closed form ρα = Φσ(Φ

−1
σ (pα) − r) where Φσ

is the Gaussian CDF function of the Gaussian distribution with standard deviation σ. For sparse
smoothing, following Bojchevski et al. (2020) we solve the greedy program on at most ra + rd + 1
distinct regions. The runtime is linear w.r.t. to the add and delete budget.

C SUPPLEMENTARY TO THEORY

Here we provide proof of the propositions and lemmas in manuscript in addition to supplementary
theoretical results.

C.1 VANILLA BINCP

Conformal risk control. We use conformal risk control (CRC) (Angelopoulos et al., 2022) to prove
the coverage guarantee in BinCP. Here we succinctly recall it before the proof of Prop. 1.
Theorem 2 (Conformal Risk Control - rephrased). Let λ be a parameter (larger λ yields more
conservative output), and Li : Λ→ (−∞, b] for i = 1, . . . , n+1 be exchangeable random functions.
If (i) Lis are non-increasing right-continuous w.r.t. λ, (ii) for λmax = supΛ we have Li(λmax) ≤ α,
and (iii) supλ Li ≤ b <∞, then we have:

E[Ln+1(λ̂)] ≤ α for λ̂ = inf

{
λ :

∑n
i=1 Li(λ)

n+ 1
+

B

n+ 1
≤ α

}
(7)

In case that B = 1, by simplifying Eq. 7, we have λ̂ = inf {λ :
∑n

i=1 Li(λ) ≤ α(n+ 1)− 1}We
use this framework to prove the guarantee in BinCP;
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Proof to Prop. 1. We prove the theorem through re-parameterizing of the conservativeness variable
in each case. For fixed p our we set τ = 1 − λ; similarly for fixed τ we set p = −λ. In both cases,
the risk is defined as

Li(τ, p) = 1− accept(xi, yi; p, τ)

which for simplicity we define reject(xi, yi; p, τ) = 1 − accept(xi, yi; p, τ) and by definition we
have reject(xi, yi; p, τ) = I[Pr[s(ξ(x), y) < τ ] > 1 − p] = I[Pr[s(ξ(x), y) ≥ τ ] < p]. We show
that the risk function satisfies the properties for a risk function feasible to the setup in Theorem 2.

1. Non-increasing to λ. In both cases the risk Li is non-inscreasing to λ; for fixed p we have

λ1 < λ2 ⇒ 1− λ1 > 1− λ2

⇒ Pr[s(ξ(x), y) < 1− λ1] ≥ Pr[s(ξ(x), y) < 1− λ2]

⇒ reject(x, y; p, 1− λ1) ≥ reject(x, y; p, 1− λ2)

Now for fixed τ , let px = Pr[s(ξ(x), y) ≥ τ ] then we have

λ1 < λ2 ⇒ p1 > p2 means that I[px ≤ p1] ≥ I[px ≤ p2]

⇒ reject(x, y;−λ1, τ) ≥ reject(x, y;−λ2, τ)

Intuitively by adapting the definition of the rejection (risk) function reject(xi, yi; p, τ) =
I[Pr[s(ξ(x), y) ≥ τ ] < p], if we increase λ which means decreasing p, the chance of re-
jecting a label decreases. This is because, we require the same probability mass to be lower
than a smaller value.

2. Right continuous. Formally the function accept is

accept(x, y; p, τ) =

{
1 if Pr[s(ξ(x), y) ≥ τ ] ≥ p

0 otherwise

Across the domain (for either p or τ ) this function has two values and it is just non-
continuous in the jump between the values. For both p and τ this function is left continuous
due to the ≥ comparison. Therefore for fixed p the function reject(x, y; p, 1 − λ) is right
continuous to λ = 1− τ . Similar argument follows for fixed τ .

3. Feasibility of risks less than α. For fixed p > 0 if we set λ = 1 − τ to ∞ (τ = −∞),
for all xi, we have accept(xi, yi; p, 0) = 1; i.e. the risk is 0 for every data. Similarly by
approaching p to zero in fixed τ setup, we decrease the risk to 0 for everyone. To avoid
corner cases we can restrict τ to max s(ξ(x), y) for x ∈ X from avive.

4. Limited upperbound risk. For any parameter and any input the highest possible risk is in
case of rejection which is 1 (b = 1).

Fixed p. The risk function Li(λ) = reject(xi, yi; p, 1 − λ) which means that the prediction set
C(xi; p, 1− λ) excludes yi. We have

E[reject(xn+1, yn+1; p, 1−λ̂)] ≤ α for λ̂ = inf
λ

{
λ :

n∑
i=1

reject(xi, yi; p, 1− λ) ≤ α(n+ 1)− 1

}
Setting back the τ = 1− λ, and rewriting the expectation as a probability form, we have

Pr[yn+1 ∈ C(xn+1; p, τp)] ≥ 1−α for τp = sup
τ

{
τ :

n∑
i=1

accept(xi, yi; p, τ) ≥ (1− α)(n+ 1)

}

In the above, we used the fact that if a test fails on α(n + 1) − 1 variables among the total of n
variables, it passes on n− [α(n+ 1)− 1] and (1− α)(n+ 1) = n− [α(n+ 1)− 1].

Fixed τ . Similarly, we define the risk function as Li(λ) = reject(xi, yi;−λ, τ). We have

E[reject(xn+1, yn+1; pτ , τ)] ≤ α for pτ = inf
λ

{
λ :

n∑
i=1

reject(xi, yi;−λ, τ) ≤ α(n+ 1)− 1

}
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Proof to Lemma 1. The function accept(x, y; p, τ) is non-increasing in both p and τ . Therefore the
term

∑n
i=1 accept(xi, yi; p, τ) is also non-increasing in p and τ and its range is the integer numbers

between 0 and n (or [n]). For a fixed p, let τα(p) be the solution to Eq. 2, then by definition it satisfies
that

n∑
i=1

accept(xi, yi; p, τα(p)) ≥ (1− α)(n+ 1)

This implies that p satisfies the same condition for pα(τα(p)). Therefore pα(τα(p)) ≥ p as p is a
feasible solution in Eq. 3. The supremum search for τα(p) directly implies that for any positive δ we
have

n∑
i=1

accept(xi, yi; p, τα(p)) ≥
n∑

i=1

accept(xi, yi; p, τα(p) + δ)− 1

which intuitively means that increasing the τ(p) by any small margin fails at least in one more
accept for calibration points. Since

∑n
i=1 accept(xi, yi; p, τα(p)) is the sum of n non-increasing

functions, there is one index i for which

accept(xi, yi; p, τα(p)) = 1 and accept(xi, yi; p, τα(p) + δ) = 0

For any small positive δ. Using the definition of the accept function we have

Pr[s(xi + ϵ, yi) ≥ τα(p)] ≥ p and Pr[s(xi + ϵ, yi) ≥ τα(p) + δ] < p

Due to the continuous strictly increasing CDF for Si we have Pr[s(xi + ϵ, yi) ≥ τ(p)] = p. There-
fore for any small positive δ

accept(xi, yi; p, τα(p)) = 1 and accept(xi, yi; p+ δ, τα(p)) = 0

which means that the accept function for xi fails by adding a small number to p. Since all other
accept functions are also non-increasing we have

∑n
i=1 accept(xi, yi; p, τα(p)) ≤ (1−α)(n+1)−1.

This implies that p is also the supremum for Eq. 2 with parameter pα(τ).

C.2 ROBUST BINCP

Proof to Lemma 2. With ftrue(xi) = I[s(xi, yi) ≥ τα] for true yi, the calibration-time robust
prediction set is defined as C̄cal(x̃n+1) = {p(x̃n+1, y; τα) ≥ Q

(
α; {c↓[f̄true(xi),B]}ni=1

)
}. By

definition we have pα = Q
(
α; {f̄true(x)}ni=1

)
}. Both lower bound and upper bound functions

are non-decreasing. As a result, the ranks, and hence the quantile index in {f̄true(xi)}ni=1 and
{c↓[f̄true(xi),B]}ni=1 are the same. Therefore, Q

(
α; {c↓[f̄true(xi),B]}ni=1

)
} = c↓[pα,B].

The test-time robust prediction set is defined as C̄test = {y : c↑[f̄y(x̃n+1),B−1] ≥ pα}, let p̃y =
f̄y(x̃n+1) then it follows

c↑[f̄y(x̃n+1),B−1] ≥ pα ⇔ c↓[c↑[f̄y(x̃n+1),B−1],B] ≥ c↓[pα,B]
⇔ f̄y(x̃n+1) ≥ c↓[pα,B]

By definition accept(x̃n+1, y; c
↓[pα,B], τα) = I[f̄y(x̃n+1) ≥ c↓[pα,B]].

In the above, we proved that BinCP results in a valid conformal prediction. Here we prove the
validity of robust BinCP to adversarial data within the bounded threat model.

Proof to Lemma 3. For each of the mentioned smoothing schemes we have:

Gaussian smoothing. In both cases since p norm is symmetric for any point x̃ it holds that ∥x̃ −
x∥p ≤ r. In other words, from any perturbed point the clean point is within Br(x̃). Therefore
B−1
r = Br.

Given the closed from solution c↓[p,Br] = Φσ(Φ
−1
σ (p)− r), and c↑[p,Br] = Φσ(Φ

−1
σ (p) + r) we

have

p = Φσ(Φ
−1
σ (p) + r)⇔ Φ−1

σ (p) = Φ−1
σ (p) + r ⇔ Φ−1

σ (p)− r = Φ−1
σ (p)

⇔ Φσ(Φ
−1
σ (p)− r) = p⇔ c↓[p,B] = p
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Figure 8: Illustration of likelihood ratio in sparse smoothing for both Bra,rd , and Brd,ra

Uniform smoothing. For the uniform smoothing from Levine & Feizi (2021) we have that the
smooth classifier is 1/(2λ)-Lipschitz continuous. Therefore

c↓[c↑[p,B−1
r ],Br] = c↓[p+

r

2λ
,Br] = p+

r

2λ
− r

2λ
= p

A similar argument can be applied to any Lipschitz continuous smoothing scheme.

Sparse smoothing. Any x̃ ∈ Bra,rd(x) has at most ra zero bits, and rd one bits toggled from x. By
toggling those bit back we can reconstruct x. The maximum needed toggles is therefore rd zero bits
and ra one bits which is the definition of Brd,ra .

As discussed in § B, canonical points for Bra,rd are x = [0, . . . , 0, 1, . . . , 1] and x̃ = 1 − x
where ∥x∥0 = rd and ∥x̃∥0 = ra. For B−1

ra,rd
the canonical points are u, ũ where ∥u∥0 = ra.

By applying a permutation over u, x̃ and every other point in all regions we can set u = x̃, and
ũ = x. For computing both Bra,rd , and B−1

ra,rd
there are ra + rd + 1 regions of constant likelihood

ratio, each including all points that have the same number of total flips from the source x, or u;
formally Rq = {z : ∥x − z∥0 = q}. The same region can also defined to preserve rd + ra − q
bits from x̃. With sq

s̃q
as the likelihood ratio of a point z in Bra,rd and q = qa + qd as the number

of changes in 1 and 0 bit, we have sq = (p+)
qa(1 − p+)

ra−qa(p−)
qd(1 − p−)

rd−qd , and similarly
s̃q = (p−)

qa(1− p−)
ra−qa(p−)

qd(1− p−)
rd−qd . Then the likelihood ratio is simplified to

sq
s̃q

=

[
p+

1− p−

]q−rd [ p−
1− p+

]q−ra

(8)

As illustrated in Fig. 8 regions for B−1
ra,rd

are same as Bra,rd only with reverse order. In other word,
let ti, t̃i be the probability of visiting region Rq from u and ũ, then ti = s̃ra+rd+1−q , and t̃i =
sra+rd+1−q . For a fixed z the probability to visit z from x is the probability of toggling q = ∥z−x∥0
bits which is the same as toggling q bits from ũ as ũ = x.

Solutions to c↓[p,Bra,rd ] and c↑[p,B−1
ra,rd

] are obtained from the following optimization functions:

c↓[p,Bra,rd ] = min
h∈[0,1]ra+rd+1

h⊤t̃ s.t. h⊤t = p

c↑[p,B−1
ra,rd

] = max
h∈[0,1]ra+rd+1

h⊤s̃ s.t. h⊤s = p

The solution to the lower bound optimization is obtained by a greedy algorithm. We visit each in
increasing order w.r.t. sq

s̃q
, we assign hq = 1 until the budget h⊤s is met and we set hq = 0 for

the remaining regions (fractional knapsack problem). For the maximization we do the same but in a
decreasing order.

We want to prove c↓[c↑[p,B−1
ra,rd

],Bra,rd ] = p. This is the solution to

min
h∈[0,1]ra+rd+1

h⊤t̃ s.t. h⊤t = c↑[p,B−1
ra,rd

] = h′⊤s̃
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Figure 9: Comparison between BinCP and CAS on CIFAR-10 dataset with σ = 0.25 and small
values of r. The nominal coverage 1− α is set to [from left to right] 85%, 90%, and 95%.

This directly means that h′ (the solution from maximization problem) is a feasible solution. Let
←−̃
s

be the vector s̃ in reverse order. Then t =
←−̃
s and therefore

←−
h′ is the solution to the maximization

greedy problem. So the optimal solution is
←−
h′⊤t̃ =

←−
h′⊤←−s = p.

For any ℓp with the same argument as ℓ2 ball we have B−1
r = Br. Similar to isotropic Gaussian

smoothing, the Lipschitz continuity in DSSN-smoothed distribution shows that Lemma 3 applies to
ℓ1 ball and this distribution as well.

C.3 CORRECTION FOR FINITE SAMPLE MONTE-CARLO ESTIMATION

Proof to Prop. 2. With pi = Pr[s(ξ(xi), yi) ≥ τα] as the true probability of crossing τα for each
true score distribution in calibration set. We have pα = Q (α; {pi}ni=1). For all i we have q↓i ≤ pi
which follows p↓α ≤ pα. The probability of failure in each calibration datapoint is η/(|Dcal|+ k); as
a result, from the union bound the probability of failure in q↓i ≤ pi is |Dcal|η/(|Dcal|+ k).

For all classes of the test point we have q̃↑n+1,y ≥ p̃n+1,y with η/(|Dcal|+k). Therefore, for the true
class we have q̃n+1 ≥ p̃n+1 with kη/(|Dcal|+ k).

Conformal guarantee implies that with 1 − α + η probability we have pn+1 ≥ pα. The robustness
certificate follows that p̃n+1 ≥ c↓[pα,B)]. Following holds by using the mentioned inequality:

q↑n+1 ≥
1− kη

n+k

p̃n+1 ≥
1−α+η

c↓[pα,B] ≥
1− nη

n+k

c↓[p↓α,B]

From the union bound it follows that the total failure probability is less than α.

Finite sample correction for fixed τ setup. What we showed in Prop. 2 adds MC sample correction
to BinCP with fixed τ computation. We can correct for finite samples in a fixed p setup in a similar
way. First, we compute the τi(p) for each of the calibration points. In an asymptomatically valid
setup this implies that for τi(p) we have Pr[s(ξ(xi), yi) ≥ τi(p)] ≥ p. To account for finite samples
we reduce p to p↓ (p↓ ≤ p). Again this holds for each calibration with 1/(|Dcal| + k) probability,
and the conformal threshold is (τp, p↓). In the test time the setup is identical to the fixed-τ setup.

D ADDITIONAL EXPERIMENTS

Various model and smoothing σ. In Table 2 we compare the result between SOTA CAS and BinCP
for CIFAR-10 dataset. The results are reported across various data smoothing σ values, and models
trained with different noise augmentations (data augmented during training with different σ values).
In the robustness certificate for classification, it is considered best practice to use the same σ in both
model’s noise augmentation, and the smoothing process. Similarly, in robust conformal prediction
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Figure 10: Comparison of coverage [left] and worst-slice coverage [right]. Here the STPS refers to
the smooth TPS which is the average of 2000 randomly smooth inferences per point. The results are
for CIFAR-10 dataset and r = 0 unless specified.

mismatching smoothing and model σ results in a larger prediction set. Interestingly this adverse
effect is much less observed in BinCP although it remains present. Overall, across all smoothing
parameters, model σ values, coverage rates, and perturbation radii, BinCP consistently outperforms
CAS.

Performance on small radii. For completeness, in Fig. 9, we report the performance of BinCP on
small values of r. As Jeary et al. (2024) reports ∼ 4.45 average set size for r = 0.02 (Table 1 in
(Jeary et al., 2024)) our report shows more than twice smaller sets for the same r. As in Table 2 we
observe the same average set size for r ∼ 0.5 (≥ 20× higher radius) for smallest σ = 0.12. As
we discussed, one effect of this eye-catching difference is the inherent robustness of the randomized
smooth prediction. As shown in Fig. 7, the empirical coverage of non-smooth prediction drastically
decreases to 0 for small radii, while in smooth prediction the coverage decreases slowly.

Table 1: Comparison of smoothing-based robust CP methods on APS score
1− α = 0.9 1− α = 0.95

CAS BinCP CAS BinCP

σ r Coverage Set Size Coverage Set Size Coverage Set Size Coverage Set Size

0.12

0.06 0.954 1.635 0.946 1.529 0.990 4.022 0.980 2.151
0.12 0.971 1.939 0.963 1.757 0.996 6.435 0.985 2.389
0.18 0.987 2.879 0.978 2.076 1.000 9.745 0.991 2.876
0.25 0.998 7.454 0.986 2.510 1.000 10.000 0.995 3.405
0.37 1.000 10.000 1.000 10.000 1.000 10.000 1.000 10.000
0.50 1.000 10.000 1.000 10.000 1.000 10.000 1.000 10.000
0.75 1.000 10.000 1.000 10.000 1.000 10.000 1.000 10.000

0.25

0.06 0.955 2.108 0.944 1.894 0.986 3.316 0.976 2.677
0.12 0.964 2.309 0.954 2.054 0.989 3.682 0.980 2.857
0.18 0.970 2.495 0.961 2.227 0.993 5.038 0.986 3.181
0.25 0.980 2.900 0.972 2.537 0.997 6.004 0.989 3.444
0.37 0.991 3.795 0.982 3.047 1.000 9.360 0.994 4.035
0.50 0.999 7.430 0.991 3.729 1.000 10.000 0.997 4.850
0.75 1.000 10.000 1.000 10.000 1.000 10.000 1.000 10.000

0.50

0.06 0.956 2.738 0.942 2.479 0.981 3.864 0.975 3.342
0.12 0.962 2.890 0.951 2.635 0.984 4.077 0.978 3.508
0.18 0.968 3.078 0.959 2.801 0.986 4.277 0.981 3.658
0.25 0.973 3.304 0.966 2.994 0.989 4.546 0.984 3.899
0.37 0.980 3.684 0.974 3.302 0.993 5.193 0.988 4.300
0.50 0.986 4.153 0.979 3.663 0.996 5.868 0.991 4.733
0.75 0.995 5.441 0.989 4.584 0.999 8.026 0.995 5.542
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1− α = 0.9 1− α = 0.95
CAS BinCP CAS BinCP

Model σ Data σ r Coverage Set Size Coverage Set Size Coverage Set Size Coverage Ave Set Size

0.12 0.12 0.06 0.950 1.581 0.942 1.483 0.987 3.353 0.976 2.009
0.12 0.968 1.839 0.959 1.671 0.996 6.731 0.986 2.387
0.18 0.985 2.761 0.974 1.946 0.999 9.417 0.990 2.666
0.25 0.997 7.078 0.985 2.369 1.000 10.000 0.994 3.213

0.25 0.06 1.000 10.000 0.943 4.911 1.000 10.000 0.977 6.500
0.12 1.000 10.000 0.953 5.328 1.000 10.000 0.984 6.880
0.18 1.000 10.000 0.961 5.711 1.000 10.000 0.991 7.366
0.25 1.000 10.000 0.974 6.323 1.000 10.000 0.994 7.628
0.37 1.000 10.000 0.988 7.133 1.000 10.000 0.998 8.387
0.50 1.000 10.000 0.996 7.990 1.000 10.000 0.999 9.049
0.75 1.000 10.000 1.000 10.000 1.000 10.000 1.000 10.000

0.50 0.06 1.000 10.000 0.950 8.836 1.000 10.000 0.980 9.310
0.12 1.000 10.000 0.960 8.985 1.000 10.000 0.984 9.402
0.18 1.000 10.000 0.965 9.075 1.000 10.000 0.986 9.450
0.25 1.000 10.000 0.974 9.222 1.000 10.000 0.990 9.535
0.37 1.000 10.000 0.983 9.403 1.000 10.000 0.996 9.656
0.50 1.000 10.000 0.991 9.557 1.000 10.000 0.999 9.789
0.75 1.000 10.000 0.999 9.820 1.000 10.000 1.000 9.947

0.25 0.12 0.06 0.954 2.570 0.937 2.232 0.991 7.016 0.968 2.992
0.12 0.969 3.049 0.949 2.395 0.998 9.042 0.976 3.301
0.18 0.984 4.573 0.956 2.562 1.000 9.845 0.981 3.567
0.25 0.999 9.510 0.969 2.908 1.000 10.000 0.986 3.895

0.25 0.06 0.953 2.051 0.941 1.836 0.984 3.307 0.974 2.551
0.12 0.960 2.183 0.950 1.951 0.991 4.077 0.981 2.832
0.18 0.969 2.411 0.959 2.126 0.994 5.242 0.984 3.054
0.25 0.979 2.790 0.969 2.394 0.997 6.749 0.988 3.295
0.37 0.991 3.867 0.981 2.858 1.000 9.660 0.994 3.888
0.50 0.999 7.824 0.989 3.480 1.000 9.948 0.996 4.564

0.50 0.06 1.000 10.000 0.947 6.762 1.000 10.000 0.979 7.837
0.12 1.000 10.000 0.956 7.024 1.000 10.000 0.983 8.016
0.18 1.000 10.000 0.960 7.212 1.000 10.000 0.988 8.221
0.25 1.000 10.000 0.969 7.523 1.000 10.000 0.992 8.430
0.37 1.000 10.000 0.981 7.935 1.000 10.000 0.996 8.763
0.50 1.000 10.000 0.990 8.350 1.000 10.000 0.998 9.040
0.75 1.000 10.000 0.997 9.008 1.000 10.000 0.999 9.494

0.50 0.12 0.06 0.948 3.701 0.923 3.060 0.994 8.485 0.965 4.196
0.12 0.961 4.230 0.929 3.159 0.999 9.564 0.971 4.457
0.18 0.980 5.843 0.937 3.330 1.000 9.960 0.973 4.538
0.25 0.998 9.329 0.947 3.550 1.000 10.000 0.977 4.753

0.25 0.06 0.943 3.152 0.925 2.792 0.990 7.254 0.969 4.013
0.12 0.951 3.417 0.933 2.929 0.995 7.818 0.973 4.172
0.18 0.961 3.771 0.942 3.112 0.996 8.476 0.976 4.276
0.25 0.970 4.095 0.948 3.246 0.998 8.916 0.978 4.416
0.37 0.987 5.773 0.959 3.586 1.000 9.958 0.984 4.753
0.50 0.999 9.121 0.970 3.952 1.000 10.000 0.988 5.171

0.50 0.06 0.957 2.767 0.943 2.428 0.984 3.995 0.974 3.288
0.12 0.964 2.948 0.949 2.558 0.986 4.165 0.977 3.405
0.18 0.968 3.071 0.955 2.673 0.988 4.351 0.980 3.542
0.25 0.974 3.272 0.962 2.835 0.991 4.850 0.983 3.806
0.37 0.982 3.721 0.973 3.182 0.993 5.160 0.986 4.044
0.50 0.987 4.215 0.980 3.524 0.997 6.439 0.990 4.511
0.75 0.996 5.708 0.987 4.285 1.000 9.287 0.994 5.316

Table 2: Comparison of CAS and BinCP for model trained with various smoothing σ, and input data
with different smoothing σ. Results are for CIFAR-10 dataset.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0.8

0.9

TPS
STPS

BinC
P

0.8

0.9

TPS
STPS

BinC
P

TPS
STPS

BinC
P

TPS
STPS

BinC
P

TPS
STPS

BinC
P

Figure 11: Comparison of methods in class-conditional coverage for all classes of CIFAR-10, note
that here BinCP is used without sampling correction. That is because the correction slightly increases
empirical coverage which can be misleading.

APS score function. Although we observe similar comparison between CAS and BinCP given APS
score function, for completeness we report the performance of both methods in Table 1.

Conditional and class-conditional coverage. We approximated the conditional coverage gap as the
worst coverage among n different slices. Each slice is defined as Xs = {xi ∈ D : a ≤ xi · v ≤ b}
for the random vector v and random scalers a, b (Romano et al., 2020). For that, we sampled 200
random vectors v and among all the scalers randomly sampled a, b from the set {xi · v,xi ∈ D}.
We report the result over 100 different calibration samplings. In each iteration of the experiment, we
exclude the slices with less than 200 points of support. To observe the effect of smoothing, binariza-
tion and robustness separately we reported all setups including vanilla TPS (without smoothing),
vanilla smooth TPS (labeled STPS), BinCP without robustness (set r = 0), and without sample
correction (since it slightly increases the coverage) and robust CP via BinCP. Note that sampling
correction and making CP robust increases the empirical coverage guarantee, therefore the worst
slice coverage is increased due to the inherent increase in marginal coverage. As shown in Fig. 10,
the smooth model has better worst-slice coverage than vanilla TPS. Though binarization although
the average worst-slice coverage remains the same, there is a slight decrease in the variance of this
metric.

We also reported the result of the class-conditional coverage in Fig. 11. Empirically in almost all
classes, BinCP is closer to the nominal guarantee compared to normal smoothing. Ultimately both
smooth prediction and BinCP are not comparable with vanilla TPS.

Comparison with RSCP+. Yan et al. (2024) shows a flaw of RSCP (Gendler et al., 2021) indicating
that the score function is not corrected for finite sample estimation. They show that by adding finite
sample correction to RSCP, it becomes significantly inefficient and produces trivial sets C(xn+1) =
Y . They remedy that by designing a ranking-based transformation on top of the given score function
which defines a new score as

sppt(x, y) = σ

(
1

T |Dtune|
rank(s(x, y); {s(xj , yj)}(xj ,yj)∈Dtune

)− b

T

)
(9)

Where Dtune is a holdout tuning index, T is the temperature parameter, b is a bias parameter,
and σ is the sigmoid function. The original experiment from Yan et al. (2024) has several issues,
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Figure 12: Comparison between BinCP and RSCP+ (PPT, Eq. 9) and BinCP with Eq. 9. The result
is on CIFAR-10 dataset with σ = 0.25.

which we resolved and compared with it: (i) The scores have possible ties; i.e. two different data
points can have the same score value. To remedy that we added an unnoticeable random number
δ ∼ Uniform[0, 1/|Dtune|] to the scores. (ii) The tuning set and the calibration set in the exper-
iments are significantly large. Yan et al. (2024) use 5250/10000 test datapoints as a tuning and
calibration set. This unrealistic holdout labeled set contradicts the sparse labeling assumption. In
our reproduction of their results we used a total of ∼ 380 datapoints where 200 of them are for
tuning. As shown in Fig. 12, BinCP still outperforms RSCP+(PPT). As the score function in Eq. 9
is also a valid score, we can use BinCP on top which shows slightly better efficiency for larger radii
compared to BinCP combined with TPS score. Here we set b = 1 − α, and T = 0.001, and report
the results on 2000 MC samples. The reported result is on CIFAR-10 dataset.

E SUPPLEMENTARY DISCUSSION

High-level understanding of robustness certificates. A certificate of robustness is a formal guar-
antee that the model predicts the same class for any perturbation within the specified threat model
around the input. In other words, if the function f is certified to be robust for the point x w.r.t. B, for
any x̃ ∈ B(x) we have argmaxy fy(x) = argmaxy fy(x̃). This certificate ensures that the top la-
bel remains the same within the threat model (binary certificate), we can similarly certify the model
confidence by providing a lower bound on the predicted probability of the given class within the
threat model. For this, one approach is to use verifiers. Verifiers need white-box access (knowledge
about the model structure and weights), however, our robust conformal guarantee is black-box.

A common approach for black-box certification is through randomized smoothing. A randomly
smoothed classifier results from inference given the input augmented with random noise. For ex-
ample g(x) = Eϵ∼N (0,σ2I)[f(x + ϵ)] – model g returns the expected output of f given randomly
augmented x where the noise comes from an isotropic Gaussian distribution with scale σ. The ran-
domization function is smooth even if the original function changes rapidly, which is the effect of
the expectation. It is also Lipschitz continuous, meaning that we can bound the output based on the
distance of x̃ from x. The latter allows us to provide formal guarantees that the top class probability
(or confidence) remains high (changes slowly) even if x̃ ∈ B is passed to the model instead of x.

Ultimately a randomized smoothing-based certificate returns a lower (or upper) bound probability
(or score) on the expected output (given the randomized x). In robust CP we use these bounds to
answer “if instead of the clean input xn+1 which is already exchangeable with the calibration set,
the model received the worst case x̃n+1 ∈ B(xn+1) how much lower the conformity score has
become”. Or in other words “if the model is queried with x̃n+1 ∈ B(xn+1) (which has a lower
conformity score in order not to be covered) how much higher the conformity score of the clean
input can be”. Technical details of smoothing-based certificates are mentioned in § 4. For a more
detailed discussion see (Cohen et al., 2019; Kumar et al., 2020).

Comparison of confidence intervals. As discussed in § 5, BinCP, CAS, and RSCP, all require true
probability, CDF, and mean from the distribution of scores which is intractable to compute (except
in the case of de-randomized BinCP). Therefore we use confidence bounds that are lower (or higher)
than the true values with collective probability 1− η (which is taken into account while calibrating).
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Figure 13: [Left] Confidence lower bound and the corresponding certified lower bound for scores
derived from Beta and Bernoulli distributions. [Middle and right] Correction error (lower bound
subtracted from the theoretical mean) of the scores distributed from the Gaussian distribution both
in continuous case (mean lower bound) and binarized case (lower bound on the Bernoulli parameter)
for [middle] 100 and [right] 1000 samples. Details of the experiments are in § E.

CAS, and RSCP are defined on continuous scores that are bounded by Hoeffding, Bernstein, or
DKW inequalities. BinCP is defined through binarized scores, and the final parameter is the success
probability of a Bernoulli distribution which can bounded by the Clopper-Pearson interval which is
exact (Clopper & Pearson, 1934). The width of all mentioned confidence intervals is decreasing w.r.t.
the sample size. Therefore a tighter interval can result in the same or better efficiency (correction
error) with fewer samples; e.g. For scores sampled from a Gaussian N (0.5, 0.1) Clopper Pearson
error (for z ≥ 0.6) with 100 samples is still lower than Bernstein’s error with 250 samples.

To illustrate this we conducted two experiments. First, to compare the tightness of each concentra-
tion inequality, we sampled from a Beta distribution with mean p to have continuous score values
between [0, 1]. The distribution for a fixed β is Beta( p

β(1−p) , β). Then for the continuous score,
we computed both Hoeffding’s and Bernstein’s lower bound on the mean, alongside the Clopper-
Pearson bound for the given parameter p and the same sample size. As shown in Fig. 13 (left, with
β = 1) the binary lower bound is always higher (better). Since the certified lower bound is an in-
creasing function of the given probability, the certified lower bound for the binary values is again
higher.

In another experiment shown in Fig. 13 (middle and right) we sample scores from a Gaussian dis-
tribution N (0.5, 0.1), and computed the lower-bound mean given both Hoeffding and Bernstein’s
inequalities. Then for various thresholds, we computed the probability of scores passing that thresh-
old and lower bounded this probability by Clopper Pearson concentration inequality. As shown in
the figure for lower sample rates, binarization results in less error compared to the theoretical mean.
Even with higher sample rates Clopper Pearson interval is significantly tighter than the other two for
low and high thresholds (which is a parameter of BinCP).
Proposition 3. Let X ∼ Beta(a, b) and x1, . . . , xm be m i.i.d. samples of X . Given the empirical
mean x̄ = 1

m

∑m
i=1 xi the upper bound for the true mean µ = E[X] is given by the Hoeffding’s

inequality as µ ≤ x̄ + bhoef , where bhoef =

√
ln( 1

η )
2m . For any user-specified τ ∈ (0, 1), let Y =

I[X > τ ]. The Clopper-Pearson (CP) upper bound pu for the true p = E[Y ] = Pr[X ≥ τ ] is:

pu = Φ−1
Beta(1− η; 1 +

m∑
i=1

I[xm > τ ],m−
m∑
i=1

I[xm > τµ])

Each upper bound holds with probability 1− η. For any number of samples m, and any significance
level η, the probability that the CP bound is tighther is Pr[pu − E[Y ] ≤ bhoef ] and equals:

Pr[pu − E[Y ] ≤ bhoef ] = ΦBinom(m̂;m,E[Y ]) (10)

where m̂ is defined in Eq. 12.

Proof. The variable Y is distributed as Y ∼ Bernoulli(p) where p = E[Y ] = 1 − ΦBeta(τ ; a, b)
and ΦBeta is the CDF of the beta distribution with parameters a and b.
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Figure 14: Probability of observing higher upper bound from Clopper Pearson confidence interval
in comparison with Hoeffding’s interval. The result is for Beta(2, 2), and η = 0.01.

Let m+ =
∑m

i=1 I[xm > τ ]. We will compute the probability that the inequality

pu − E[Y ] ≤

√√√√ ln
(

1
η

)
2m

(11)

holds. Substituting the definition of pu and E[Y ] we get:

Φ−1
Beta(1− η; 1 +m+,m−m+)− (1− ΦBeta(τ ; a, b)) ≤

√√√√ ln
(

1
η

)
2m

⇔

1− η ≤ ΦBeta


√√√√ ln

(
1
η

)
2m

+ 1− ΦBeta(τ ; a, b); 1 +m+,m−m+

⇔

η ≥ 1− ΦBeta


√√√√ ln

(
1
η

)
2m

+ 1− ΦBeta(τ ; a, b); 1 +m+,m−m+


Define m̂ as the break-point after which the CP bound becomes looser than the Hoeffding bound:

m̂ = sup

m+ : I

η ≥ 1− ΦBeta


√√√√ ln

(
1
η

)
2m

+ 1− ΦBeta(τ ; a, b); 1 +m+,m−m+




(12)

In other words, m+ > m̂⇔ pu − E[E] > bhoef . Since Φ is monotonic, it follows that:

Pr[pu − E[Y ] > bhoef ] = Pr[m+ > m̂] = 1− ΦBinom(m̂;m,E[Y ]) (13)

Where ΦBinom is the CDF of the Binomial distribution with the specified parameters.

Similarly, we can compare CP with the Bernstein bound we use µ ≤ x̄+ bbern where

bbern =

√√√√
2σ2

m

ln
(

2
η

)
m

+
7 ln

(
2
η

)
3(m− 1)

By replacing bhoef with bbern in Prop. 3 we can derive a similar result. We choose a Beta distribu-
tion to simulate the fact that conformity scores such as TPS and APS are bounded. Moreover, we
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need bounded scores to be able to apply Hoeffding’s inequality. Any other distribution (after some
transformation that ensures bounded scores) could be used, as long as we can compute its CDF.

In Fig. 14 we show the probability defined in Eq. 13 for X ∼ Beta(2, 2) for different values of m
and τ . There is a choice of τ such that the probability is effectively 0 for all values of m, i.e. the CP
bound is always better. Interestingly, at worst, both in terms of the number of samples m and τ , we
see that it is less than 25%. That is, CP is better on average for all configurations.

To get some additional intuition, instead of the exact CP bound for p we can use the following bound
derived from a Normal approximation which approximately holds with probability 1− η:

p ≤ p̂+
zη√
m

√
p̂(1− p̂)

where p̂ = 1
m

∑m
i=1 I[xm > τ ] and zη is the 1− η quantile of the standard normal distribution. It is

not difficult to verify that for all values of p̂ ∈ [0, 1] we have that

zη√
m

√
p̂(1− p̂) ≤

√√√√ ln
(

1
η

)
2m

To see this, note that the
√
m term cancels, and for η = 0.05 zη ≈ 1.64,

√
ln( 1

η )
2 ≈ 1.22. Since√

p̂(1− p̂) ∈ [0, 0.5], even in the worst-case 1.64 ·0.5 ≤ 1.22. This analysis again confirms that CP
gives tighter bounds. Prop. 3 can be analogues extended to lower bounds.
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