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ABSTRACT

The versatility of large language models has led to intensive ongoing work focused
on adaptations to other modalities. This can involve moderate modifications of an
existing model, piggybacking on the language model’s capabilities to train mul-
timodal models or even starting with pre-trained checkpoints and attaching spe-
cialized adapters to recast a new modality (e.g., time-series) as “language”. This
latter approach, prominent in a growing set of nice results, yields strong perfor-
mance across benchmarks. It also makes sense – while a large amount of temporal
data is acquired every day (e.g., wearable sensors, physiological measurements in
healthcare), unlike text/image corpus, much of it is not publicly available (except
financial markets) for various reasons. But training (or even fine-tuning) these
large models is expensive or difficult with limited resources. In this paper, we
study and characterize the performance profile of a simple model for multivariate
time-series forecasting. By simple, we mean that the model is restricted to tok-
enization based on classical ideas (as has been shown to be effective in vision)
which are then allowed to attend/interact: via self-attention but also via ways that
are a bit more general than dot-product attention, accomplished via basic geomet-
ric algebra ideas. We show that even a single or two layer model yields results
that are competitive with much bigger (and even LLM-based) models on most
benchmarks reported in the literature.

1 INTRODUCTION

Multivariate time-series (MTS) data are ubiquitous in various disciplines such as finance and eco-
nomics Andersen et al. (2005), climate science Mudelsee (2019), healthcare Zeger et al. (2006), geo-
physics Gubbins (2004), and industrial monitoring Truong et al. (2022). Consequently, MTS data
processing and analysis techniques have been extensively studied, going back to works in vector
autoregressive models Lütkepohl (2013), dynamic factor models Molenaar et al. (1992), state-space
models Rangapuram et al. (2018) and others. The literature provides rich theory and various solu-
tions depending on the assumptions that make the most sense for the data at hand, e.g., homoscedas-
ticity versus heteroscedasticity Rodrı́guez & Ruiz (2005), degree of autocorrelation Bence (1995),
and stationarity versus non-stationarity Das & Nason (2016). Such models refined over decades
inform decisions about monetary policy (e.g., stabilizing the economy) or to assess short/long-term
effects of fiscal policy measures such as tax cuts or government spending on economic growth.
While progress in deep learning architectures over the last 10+ years has led to the most significant
gains in performance capabilities for tasks involving image and natural language data, there is a
growing body of literature (discussed below) describing strategies for harnessing these models for
multivariate time-series data Liu et al. (2024); Huang et al. (2023); Zhang & Yan (2023).

Deep Architectures for MTS data. Most types of widely used deep architectures – from con-
volutional neural networks LeCun et al. (1998); Simonyan & Zisserman (2014); He et al. (2016)
to graph neural networks (GNN) Kipf & Welling (2016); Hamilton et al. (2017) to transformers
Vaswani (2017); Devlin (2018); Dong et al. (2021) – have all been adapted and attempted for var-
ious types of MTS data Bagnall et al. (2018). For instance, Zhang & Yan (2023); Zhou et al.
(2022b); Wu et al. (2022b); Liu et al. (2024) use an attention mechanism to model the long-term
interaction between different time points whereas approaches using GNNs Cheng et al. (2022); Li
et al. (2023a); Jin et al. (2022) seek to extract interaction adaptively between different time-series.
However, as noted in Huang et al. (2023), all methods face challenges in handling temporal fluctua-
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tions and heterogeneity between variables (i.e., different time-series in the same data). But perhaps
more importantly, there is an immense degree of variability between different MTS datasets. For
instance, MTS data from wearable sensors will bear little to no similarity to electroencephalogram
(EEG) recordings of brain activity. We know that internet-scale text and image data corpus have
been used, to train large language and vision models, where the sheer size of the dataset provides
the model some ability to handle heterogeneity. But while the raw sizes of MTS data produced
or acquired each day (e.g., in physiological recordings or wearable sensors) is enormous, only a
minor fraction of it is publicly available due to strict privacy regulations (HIPAA) or laws surround-
ing sharing of consumer behavior data or entirely non-legal reasons (proprietary, competitiveness).
The only exception is MTS data from publicly traded financial markets. To summarize, such data
remain scarce and thereby, deploying these models in a specific setting involving our own MTS
dataset requires utmost care. In fact, Zeng et al. (2023) found that for a number of publicly available
datasets, a simple one-layer linear model can frequently outperform generic approaches based on
Transformers, suggesting that translating the same backbone to complex and heterogeneous MTS
data is challenging. Promisingly, in the last year, a number of interesting approaches Liu et al.
(2024); Wang et al. (2024); Nie et al. (2023); Chen et al. (2024), have been proposed which make
specific adjustments/modifications to the architecture to better handle the nuances and complexity
of MTS data, and show robust/reproducible performance. Several of these models will serve as our
baselines later.

Repurposing LLMs for Time-series data. A related but distinct line of work seeks to re-interpret
time-series data as natural language, and operates on top of powerful large language models Jin
et al. (2024). Such an approach can benefit from the vast amount of text data the language model
has already been trained on, which is kept frozen, and one assumes that a mechanism to map chunks
of time-series to word embeddings can be estimated based on a sufficiently large MTS dataset. This
mapping is often accomplished by training specialized adapters placed before and after the LLM
in the pipeline. This direction is evolving rapidly and providing promising results, but as of now,
deploying the model on a domain specific dataset with its own specific characteristics of stationarity
and seasonality, while possible, remains quite compute intensive.

This work. Our paper aligns more closely with the aforementioned non-generalist approaches in
that the intended use of the model will only be multi-variate time-series data. Instead of modify-
ing a large Transformer-based backbone, we will add in modules, one by one, quite conservatively.
Similar to LLMs, we also use tokenization but given the well-defined application scope (time-series
data), we will use ideas based directly on classical signal processing Haykin & Van Veen (2007).
Then, we borrow the self-attention module and make a small but useful modification to it, so it
can capture a richer dependency structure between tokens, endowing it with the capability of cap-
turing dependencies across-time and across-dimensions. The key contributions of our work are
summarized as follow:

• We propose a simple yet effective architecture that uniquely combines classical signal pro-
cessing techniques with a geometric algebra-enhanced attention mechanism.

• Our approach demonstrates that the careful integration of well-understood principles can
yield powerful models with minimal complexity and parameters.

• We show that this simple construction actually works well - achieving a performance profile
comparable with most existing baselines on nearly all available benchmarks reported in the
literature.

2 PRELIMINARIES: PROBLEM SETUP AND NOTATIONS

Univariate time-series. Let (x1, · · · , xL) be a single historical (or lookback) time-series of lengthL
where xt ∈ R denotes the measurement/value at the t-th timestep. Let (y1, · · · , yH) be a single time-
series of length H in the future. We call H the forecast/horizon window length and L the lookback
window length. The problem of time-series forecasting asks if we can predict (y1, · · · , yH) from
(x1, · · · , xL).
Multi-variate time-series. Let X ∈ RC×L and Y ∈ RC×H be two matrices, jointly drawn from
some distribution P . We also write xt and yt as the t-th column of X and Y respectively. That is,
we observe L measurements for each of C channels or variables from X. Our goal is to “forecast”
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the time-series of H timesteps, each timestep t in the forecast window is a vector of length C,
collectively called Y.

Multiple Multi-variate time-series. Denote by N the sample size: the number of multi-variate
time-series we observe and we can use i as a generic index for a specific sample for i ∈ [N ].

Remark. This multivariate setting captures scenarios where we are measuring time-series data for
C different channels or variables in a synchronized manner, which becomes particularly valuable
when there are correlations or dependencies among these variables.

Definition 1 (Forecasting error) Assume a multi-variate time-series (X,Y) ∼ P , where X ∈
RC×L and Y ∈ RC×H . For any mapping f : RC×L → RC×H , we call it a forecasting function.
We define the forecasting error with regards to f as

L(f) := E(X,Y)∼P ||Y − f(X)||F , (1)

where || · ||F denotes the Frobeneus norm of the matrix and E is the expectation over the joint
distribution P . Furthermore, given a set of i.i.d. samples {(Xi,Yi)}Ni=1. We define the empirical
risk with regard to forecasting function f as

L(f) :=
1

N

N∑
i=1

||Y (i) − f(X(i))||F . (2)

Our goal is to optimize over f to minimize the empirical forecasting error. We will now introduce
the specific modules in our overall model, after which we will describe the experimental evaluations.

3 MODULE 1: TOKENIZATION VIA STATIONARY WAVELET TRANSFORM

Motivation/Rationale. For this first module, we

Figure 1: For each channel, the time-series mea-
surements are passed through a stationary wavelet
transform followed by a linear projection to obtain
L′ tokens.

seek a tokenization scheme for MTS data that re-
lieves the amount of work that the downstream mod-
ules need to do – discovering all local/global depen-
dencies – which raises both the compute footprint
and also the sample sizes needed. Ideally, if our
tokens could capture temporal information across
multiple scales (rapid, short-term variations to slow,
long-term trends), and capture both local/global pat-
terns within each of the C variables/sites, then the
task of exactly how to synthesize this information
for forecasting Y would be simplified. If we can
allow scale-specific processing, then arguably the
synthesis task can benefit from the specific modules
processing each scale, acting collaboratively.

One possible solution. The reader will immediately
see that the Wavelet transform is a first principles
based solution to the requirements outlined above, and this idea has recently found use in processing
image data in Transformer models Yao et al. (2022); Zhu & Soricut (2024). It offers a multi-scale
decomposition of each signal while maintaining temporal localization. We will treat each wavelet
scale separately which will allow learning scale-specific interactions within each variable. If our
forecast window is dominated by dependencies that are prominent at one scale but not the other,
such a construction provides the downstream modules relevant information to operate with.

Details of the construction. We now present our tokenization scheme. Let X = {x1, · · · ,xL} ∈
RC×L denote our multivariate time-series, where C is the number of channels as before.

A) Linear Projection. We first apply a linear projection g(·;θ) : RL → RL′
to embed each channel

into a hidden/latent space which gives X̃ = {x̃1, x̃2, · · · , x̃L′} = g(X).

B) Stationary Wavelet Transform (SWT). To achieve a multi-scale representation, we use a learnable
stationary wavelet transformation (SWT). SWT Nason & Silverman (1995) is defined as

SWT(·;h0, g0) : RC×L′
→ RC×L′×(S+1),

3
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where h0, g0 ∈ RC×k are learnable filters with kernel size k, and S is the decomposition level.
This transformation produces a set of time-frequency tokens {u(s)

1 ,u
(s)
2 , . . . ,u

(s)
L′ }Ss=0, capturing

information at different temporal scales for each channel independently, see Figs. 1–2. SWT is
suitable since it provides a time-invariant decomposition while preserving the original temporal
structure. This is achieved by avoiding downsampling at each decomposition level, thus maintaining
the up-scaled length/size L′. SWT is also shift-invariant making it effective in capturing localized
events across multiple scales. At the core of the SWT are the mother wavelet ψ(t) and scaling
function ϕ(t). The family of discrete wavelets can be expressed as:

ψs,k(t) = 2−s/2ψ(2−st− k) and ϕs,k(t) = 2−s/2ϕ(2−st− k),

where s controls the scale (dilation) and k determines the

Figure 2: Tokenization via SWT: The
input series is padded and processed
through learnable filters. SWT in-
serts zeros between filter coefficients
at each scale, resulting in a non-
decimated output. This approach,
shown for scale 2 approximation, al-
lows for shift-invariant feature extrac-
tion while preserving the temporal
resolution.

position (translation).

C) Obtaining Wavelet Coefficients. The embedded time
series {x̃t}L

′

t=1 undergoes decomposition via the station-
ary wavelet transform (SWT), yielding approximation co-
efficients a(s)t and detail coefficients u(s)t at each level s.
For clarity, we present the process for a univariate series.
SWT uses two main filters: a low-pass filter h and a high-
pass filter g, derived from the scaling function ϕ(t) and the
wavelet function ψ(t) respectively:

h(k) = ⟨ϕ(t), ϕ(2t−k)⟩ and g(k) = ⟨ψ(t), ϕ(2t−k)⟩.

Starting with a
(0)
t = x̃t, the decomposition at level s is

computed as:

a
(s+1)
t =

∑
k

h(s)(k)a
(s)
t+k and u

(s+1)
t =

∑
k

g(s)(k)a
(s)
t+k.

Here, h(s) and g(s) are upsampled versions of h and g, ob-
tained by inserting 2s−1 zeros between each original filter
coefficient. This upsampling preserves the signal length,
ensuring time invariance. Instead of keeping filter coefficients fixed, we allow the coefficients h and
g to adapt to the data, i.e., making them learnable (Michau et al., 2022) allowing them to capture rel-
evant patterns and features at each variate level more effectively. Our experiments demonstrate that
the learned filters exhibit correlation patterns that resemble those in the respective variables/channels
but switching this adaptivity/learning off does not adversely impact the results much.

Summary of tokenization scheme. The iterative decomposition yields a final approximation u(0)t =

a
(S)
t and a set of wavelet coefficients {u(s)t }

S

s=1 at each time point t across various scales. This
decomposition allows for a complete reconstruction of the original time series:

x̃t =
∑

ku
(0)
k ϕ

(t)
S,k +

S∑
s=1

∑
k

u
(s)
k ψs,k(t). (3)

In our tokenization scheme, each time-frequency point u(s)t serves as a token, encapsulating infor-
mation at a specific scale s and time t. This multi-resolution representation provides a rich, struc-
tured view of the data, where each token inherently retains both its temporal context and frequency
information. This approach is simple but aligns well with our initial objectives.

4 MODULE 2: A SMALL GENERALIZATION OF SELF-ATTENTION

Motivation. Recall that each token represents multiple channels at a specific “pseudo” time point
(pseudo because the length is L′ and not L) for a specific wavelet scale. SWT already captures some
temporal/frequency information. But we also want to characterize the full range of inter-channel
dynamics, cheaply. In finance, some asset prices move together and others move inversely, and
this can change over time. Tokens from a fine resolution might show high linear independence for a
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rapidly changing variable, capturing short-term dynamics, while those from coarser scales can reveal
long-term correlations between different channel subsets, reflecting slower, persistent patterns. The
degree of inter-channel complementarity or linear independence is not fully encoded by a scalar. In
a five channel (or variable) system, tokens (1, 1, 0, 0, 0) and (0, 0, 1, 1, 0) give a zero dot product, but
span a 4D subspace, indicating high complementarity. This could reveal, for instance, that the first
two channels and the next two channels are behaving as coupled pairs. Leveraging such information
explicitly may be unnecessary in a large Transformer model with many layers – where we conjecture
that these complex dependencies may get picked up anyway. But in a smaller model, endowing the
model with such a capability explicitly appears like a good idea.

One possible solution. It turns out that geometric algebra product which instantiates Clifford alge-
bra Artin (2016) directly yields these abilities. It extends classical linear algebra to provide a unified
language for expressing geometric constructions. Put simply, we obtain a generalization of self-
attention which preserves the capabilities of standard dot-product attention. Note that Transformer
models based on Clifford Algebra have been proposed recently Brehmer et al. (2023); de Haan et al.
(2024) – these are broadly applicable but computationally heavy. This is because the size of the
geometric product scales exponentially with the number of dimensions involved in the product. Our
design is quite light, involves minimal changes to self-attention and well suited for our problem.

Details of the construction. We summarize a few concepts before describing the low-level details.

A) Brief Geometric Algebra Review. Geometric

(a) (b)

Figure 3: Geometric product objects. (a) shows the
oriented parallelogram of the wedge product α ∧ β
while (b) shows the progression from scalars to vectors,
bivectors, and trivectors.

Algebra (GA) provides a framework for rep-
resenting and manipulating geometric objects.
We focus on G2, the GA over a 2-dimensional
vector space because we consider pairs of to-
kens in our attention mechanism, regardless of
the tokens’ dimensionality. The fundamental
object in G2 is the multivector, expressed as
M = ⟨M⟩0 + ⟨M⟩1 + ⟨M⟩2, where ⟨M⟩k is
the k−vector part of M for k ∈ {0, 1, 2}. The
key operation in GA is the geometric product,
denoted by: αβ = α · β + α ∧ β, where ·
denotes the dot product and ∧ denotes the wedge (or outer) product. The wedge product ∧, also
known as the exterior product, represents the oriented area of the parallelogram spanned by two
vectors. For vectors α and β, the wedge product α ∧ β results in a bivector (a 2-dimensional ele-
ment in the algebra). As an example in G2, consider α = ae1 + be2 and β = ce1 + de2, where e1
and e2 are orthonormal basis vectors. Their wedge product is α ∧ β = (ad − bc)(e1 ∧ e2). Here
(ad− bc) represents the area magnitude, while e1 ∧ e2 indicates the orientation in the plane.

B) Instantiating Geometric Product in our case. We can

Figure 4: A simplified illustration of ge-
ometric product attention. The entries of
the attention matrix are multi-vectors.

reformulate the attention mechanism using the geometric
product. For tokens t and t′, instead of just computing their
dot product, we can use the geometric product which com-
bines the dot product (scalar part) with the wedge product
(bivector part), encoding both magnitude-based similarity
and geometric relationships between the tokens. So, we
capture not only the scalar similarity between tokens (via
dot product) but also their linear independence and the ori-
entation of the space they span (via wedge product). This
allows detecting complementary information across chan-
nels and changing inter-channel dynamics. For two tokens
α and β for different time points across C channels, the
α · β part is the scalar similarity, while α ∧ β tells us how
these tokens complement each other across the C channels.

C) Linear Projection. Given time-frequency tokens U (s) = {u(s)
1 ,u

(s)
2 , · · · ,u(s)

L′ } ∈ RC×L′
for

scale s and shared weights WQ, WK , WV ∈ RL′×L′
, the query, key, and value matrices are:

Q(s) = U (s)WQ , K(s) = U (s)WK , V (s) = U (s)WV , for scale s ∈ {0, 1, · · · , S}. (4)
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To keep the number of channels/variables unchanged, so we apply the linear projection along L′.

D) Geometric attention calculation. Consider the expression α · β + α ∧ β and let us evaluate
how we can minimally modify the self-attention block to mimic this behavior. We can consider two
different V (s)’s: say V

(s)
1 and V

(s)
2 . The dot-product attention between the tokens can act upon

V
(s)
1 for the term Q(s)TK(s). Separately, the matrix of wedge-product objects acts upon V

(s)
2 for

the second term B = {Btt′} for t, t′ ∈ {1, · · · , L′} with Btt′ = q
(s)
t ∧ k

(s)
t′ .

The first part can be viewed simply as the vanilla attention mechanism, so no special treatment is
needed. The wedge product results in a matrix of bivector objects, where each element Btt′ is a
bivector for the pair-wise tokens; we indeed compute it element-wise for each pair t and t′. Viewing
V

(s)
2 column by column, the operation BV

(s)
2 is well defined and is closed within the algebra. For

example, B is an L′ × L′ matrix where each element Btt′ is a bivector resulting from the wedge
product of the t-th query vector and the t′-th key vector, while V

(s)
2 is an L′ × C matrix. The

operation can be written explicitly as the sum over the geometric product between a bivector Btt′

and entries from a column of V (s)
2 . The only remaining task is to combine this result with vanilla

self-attention, and to do so, we need to map these bivectors down. For this, we use a reduction
function ζ(·) to match dimensions. There is much flexibility in choosing ζ(·): it can be the bivector’s
magnitude or a trainable MLP that takes both magnitude and orientation as an input.

Summary of geometric product attention mechanism. The geometric attention mechanism is:

GeoProdAttn(Q,K,V ) = softmax
(

dot-prod(Q,K)√
C

)
V + ζ

((
wedge-prod(Q,K)√

C

)
V

)
(5)

where C is a scaling factor and we have used V instead of two separate variables. Also, the matrix
of bivectors acts upon V individually for each column in V .

5 MODULE 3: RECONSTRUCTION OF MULTIVARIATE TIME SERIES

Motivation/Rationale. After processing the time-frequency tokens through the geometric product
attention module described above, we need to reconstruct the signal in the time domain. This is
achieved using a learnable ISWT(·;h1, g1), where h1 and g1 are the learnable synthesis filters for
the low-pass and high-pass components, respectively. These filters are the direct counterparts to the
analysis filters h0 and g0 used in the forward SWT.

Details of the construction. The reconstruction is performed iteratively, starting from the coarsest
scale and progressing to the finest scale. Given the initial approximation coefficients â(S) = û(0)

and the processed tokens at each scale s, denoted as {û(s)
1 , û

(s)
2 , . . . , û

(s)
L′ }Ss=0, the reconstruction

can be written as:
â
(s−1)
t =

∑
k

h
(s)
1 (k)â

(s)
t+k +

∑
k

g
(s)
1 (k)û

(s)
t+k. (6)

where h
(s)
1 and g

(s)
1 are the upsampled versions of h1 and g1 at level s. The reconstruction process

iteratively computes â(s−1) using â(s) and û(s) until we reach â(0).

Summary of reconstruction. The final reconstructed time series X̂ = {x̂1, x̂2, · · · , x̂L′} is given
by â(0). This reconstructed representation preserves the temporal structure of the original input
while incorporating the multi-scale information processed via geometric product attention. This
reconstructed time-domain representation X̂ is then passed through a feed-forward network and
layer normalization for final refinement, which produces the forecast output to calculate the loss.
We perform end-to-end training.

6 EXPERIMENT

In this section, we cover our experimental findings in detail. We divide our experimental protocol
into two phases: evaluating the quality of forecasting both for long-term and short-term and an
ablation study to evaluate the efficacy of our model.
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Figure 5: A simplified illustration of the overall model with the main modules.

6.1 SETUP AND BASELINES

Baselines. We compare our model with 15 well-known forecasting models for MTS data, including

(a) MLP-based methods: TimeMixer Wang et al. (2024), TiDE Das et al. (2024), RLinear Li et al.
(2023b), DLinear Zeng et al. (2023);

(b) Transformer-based methods: iTransformer Liu et al. (2024), PatchTST Nie et al. (2023), Cross-
former Zhang & Yan (2023), FEDformer Zhou et al. (2022b), Autoformer Wu et al. (2022b),
FiLMZhou et al. (2022a), StationaryLiu et al. (2022c);

(c) CNN-based methods: TimesNet Wu et al. (2023), SCINet Liu et al. (2022a), MICN Wang et al.
(2023);

(d) GNN-based method: CrossGNN Huang et al. (2023).

Datasets. The datasets that are covered in our experiments include:

(a) Long-term forecasting: We evaluate our model on 8 widely recognized benchmarks: the ETT
datasets (ETTh1, ETTh2, ETTm1, and ETTm2), which provides seven factors of electricity trans-
former data recorded at hourly and 15-minute intervals, as well as the Weather, Solar-Energy,
Electricity, and Traffic datasets, which include diverse meteorological, power production, con-
sumption, and road occupancy data Wu et al. (2022b).

(b) Short-term forecasting: We adopt the PeMS dataset Chen et al. (2001) with four public traffic
subsets (PEMS03, PEMS04, PEMS07, and PEMS08) recorded every 5 minutes, along with the
M4 dataset, which contains 100000 time-series data across varying frequencies. We also assess the
forecastability of all datasets, noting that ETT, M4, and Solar-Energy present modeling challenges
due to their low forecastability.

6.2 EVALUATION RESULTS

Long-term forecasting results: Forecast results from our experiments are presented in Table 1, with
optimal performance denoted in red and second-best in blue. A lower MSE/MAE values indicates
superior prediction accuracy. Our simple baseline demonstrates robust performance across diverse
benchmarks, achieving optimal MSE/MAE in 7 out of 8 datasets. We briefly discuss comparisons
with two of the closest methods in terms of performance.

(a) TimeMixer Wang et al. (2024): Our method exhibits MSE reductions of 8.3% for ETTh2 and
9.3% for ECL compared to TimeMixer. In the Solar-Energy dataset, acknowledged for its complex-
ity, our model attains the best MSE, surpassing TimeMixer by 13.0%. Although TimeMixer uses
a multi-scale approach, it underperforms in high-dimensional datasets because its mixing mecha-
nism is limited to linear or lower-order interactions. Its reliance on average pooling and ensemble
predictions leads to information loss during scale transitions. Our proposed baseline overcomes
these challenges with a geometric attention mechanism in G2 space, combined with a classical to-
kenization method, enabling it to capture complex, higher-order relationships by considering both
the magnitude and orientation of token pairs.

(b) iTransformer Liu et al. (2024): Against iTransformer, our method achieves MSE reductions of
6.9%, 7.0%, and 7.3% for ETTm1, ETTh1, and ECL respectively. While iTransformer excels on
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Table 1: Long-term forecasting results for various prediction horizons H ∈ {96, 192, 336, 720} with fixed
lookback window L = 96. Values are averaged across prediction lengths. Full results are in the Appendix.

Model Ours TimeMixer
(2024)

iTransformer
(2024)

CrossGNN
(2023)

RLinear
(2023b)

PatchTST
(2023)

Crossformer
(2023)

TiDE
(2024)

TimesNet
(2023)

DLinear
(2023)

SCINet
(2022a)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTm1 0.379 0.394 0.381 0.395 0.407 0.410 0.393 0.404 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481

ETTm2 0.276 0.323 0.278 0.325 0.288 0.332 0.282 0.330 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537

ETTh1 0.422 0.428 0.458 0.445 0.454 0.447 0.437 0.434 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647

ETTh2 0.352 0.389 0.384 0.407 0.383 0.407 0.393 0.413 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723

ECL 0.165 0.257 0.182 0.272 0.178 0.270 0.201 0.300 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365

Traffic 0.444 0.289 0.484 0.297 0.428 0.282 0.583 0.323 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509

Weather 0.244 0.272 0.245 0.276 0.258 0.278 0.247 0.289 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363

Solar-Energy 0.188 0.244 0.216 0.280 0.233 0.262 0.249 0.313 0.369 0.356 0.270 0.307 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375

Table 2: Short-term forecasting results on PEMS datasets with multiple variates. Results are shown for pre-
diction horizon H = 12 with a fixed lookback window L = 96. A lower MAE, MAPE or RMSE indicates a
better prediction.

Models Ours iTransformer TimeMixer Crossformer PatchTST TimesNet MICN DLinear FiLM FEDformer Stationary Autoformer
(2024) (2024) (2023) (2023) (2023) (2023) (2023) (2022a) (2022b) (2022c) (2022b)

PEMS03
MAE 14.54 18.13 14.80 15.64 18.95 16.41 15.71 19.70 21.36 19.00 17.64 18.08

MAPE 14.79 19.19 14.79 15.74 17.29 15.17 15.67 18.35 18.35 18.57 17.56 18.75
RMSE 23.11 28.86 23.58 25.56 30.15 26.72 24.55 32.35 35.07 30.05 28.37 27.82

PEMS04
MAE 18.71 23.42 18.97 20.38 24.86 21.63 21.62 24.62 26.74 26.51 22.34 25.00

MAPE 12.11 17.83 12.24 12.84 16.65 13.15 13.53 16.12 16.46 16.76 14.85 16.70
RMSE 30.53 35.75 30.70 32.41 40.46 34.90 34.39 39.51 42.86 41.81 35.47 38.02

PEMS07
MAE 20.44 22.54 20.76 22.54 27.87 25.12 22.28 28.65 28.76 27.92 26.02 26.92

MAPE 8.55 12.77 8.77 9.38 12.69 10.60 9.57 12.15 11.21 12.29 11.75 11.83
RMSE 33.22 33.92 33.71 35.49 42.56 40.71 35.40 45.02 45.85 42.29 42.34 40.60

PEMS08
MAE 14.61 18.79 15.26 17.56 20.35 19.01 17.76 20.26 22.11 20.56 19.29 20.47

MAPE 9.36 12.19 9.71 10.92 13.15 11.83 10.76 12.09 12.81 12.41 12.21 12.27
RMSE 23.54 28.86 24.35 27.21 31.04 30.65 27.26 32.38 35.13 32.97 38.62 31.52

high-dimensional time-series datasets, such as Traffic (862 variables/channels), it struggles with the
rapidly fluctuating ETT datasets due to its variate tokenization, which fails to capture fine-grained
local patterns and lacks sufficient inter-channel context in lower-dimensional scenarios. In contrast,
our model uses wavelet-based tokens that prioritize intra-variable local interactions and effectively
capture oscillatory patterns across multiple resolutions.

Short-term forecasting results: Table 2 presents the short-term forecasting results for the high
dimensional PEMS datasets. This is evaluated using three metrics: Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE), where lower
values indicate better prediction. Our simple baseline demonstrates superior performance across all
four PEMS datasets (PEMS03, PEMS04, PEMS07, and PEMS08), consistently achieving the best
results. These results validate our model’s superior performance for high-dimensional, short-term
forecasting tasks, complementing its strong performance in long-term forecasting scenarios.

6.3 MISCELLANEOUS ADDITIONAL ANALYSIS: ABLATIONS, WAVELETS

Ablation Study. We conducted an ablation study, including both component replacement (Replace)
and removal (w/o) experiments. Table 3 presents a summary of the results across diverse datasets
and prediction horizons. The findings consistently indicate that geometric attention helps across all
metrics.

Table 3: Ablation study results comparing geometric and vanilla
attention across datasets and prediction horizons.

Attention Type ETTm2-720 ETTh1-720 ETTm2-336 ETTh2-336 ETTh1-192 ETTh2-96

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Geometric 0.393 0.394 0.460 0.461 0.297 0.338 0.366 0.400 0.422 0.424 0.281 0.337
Vanilla 0.399 0.398 0.472 0.470 0.301 0.339 0.374 0.403 0.427 0.426 0.290 0.342

Filters in the wavelet de-
composition. This section
investigates the properties of
the learned filters. We ran-
domly initialized the wavelet
basis with ℓ2 normalization
and compared the resulting
filters to the wavelet bank for
the ETTh2 dataset, identify-
ing the most similar ground truth wavelet for each learned wavelet. As shown in Fig 6a (left), ran-
domly initialized filters occasionally approximated wavelet-like structures, displaying higher ampli-
tude peaks and maintaining overall patterns, although with some amplitude variations. This suggests
that the model can inherently discover wavelet-like features without explicit wavelet priors. In con-
trast, filters initialized with standard wavelets (the right in Fig 6a) retained their core structure while
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(a) (b)

Figure 6: Analysis of learned filters and their correlations in wavelet-based time series forecasting. (a) Com-
parison of learned filters with theoretical wavelet bases (Bior3.3). Left: synthesis low-pass filter; Right: forward
high-pass filter. (b) Correlation heatmaps of learned filters (left) and original channels (right).

Figure 7: Multiscale forecasting visualization: MTS prediction shows global pattern and cyclical nature. Scale
decomposition demonstrates the ability to capture low-frequency trends (Scale 0) and progressively higher-
frequency fluctuations (Scales 1-2).

exhibiting subtle adaptations, indicating that a wavelet initialization provides a strong inductive
bias for refining theoretically grounded filters based on empirical data. Comparing the correlation
heatmaps of the filters (all initialized with identical standard wavelets) and original channels reveals
notable patterns. The filter correlation matrix shows a distinct block-like structure with high correla-
tions (0.7− 0.9), primarily due to shared initialization. However, dark horizontal and vertical lines
suggest that some filters have developed lower correlations, indicating a degree of specialization. In
contrast, the original channel correlation matrix shows weaker overall correlations (0.4− 0.6) with
a less pronounced block structure. The persistence of some block-like patterns in both matrices,
albeit at different scales, implies that the model retains aspects of the original data structure while
enhancing certain relationships through learned filters.

Multi-scale visualization. Fig. 7 presents a representative example of our multiscale forecasting
results. The MTS forecasting panel illustrates the model’s effectiveness in accurately predicting
overall patterns, including significant peaks and troughs, while capturing the cyclical nature of the
data. Our model excels at decomposing and reconstructing the time series across multiple scales.
The Scale 1 and Scale 2 panels highlight the model’s ability to capture high-frequency fluctuations,
while the Scale 0 panel reveals the underlying low-frequency trend. This multi-resolution analy-
sis enables the model to extract relevant features from various timescales and integrate them into a
coherent forecast in the original domain. In summary, our multiscale forecasting technique demon-
strates robust performance in capturing both macro trends and micro fluctuations.

Compute and Memory Footprint. With a 96-step lookback window predicting a 96-step forecast,
our method only has a 846MB memory footprint and runs at 32ms per iteration with a batch size
of 16 (on a single A100 40G GPU). As shown in Fig. 5, our model uses a single level of wavelet
decomposition and geometric product attention. The current implementation of calculations with
bivector objects is not optimized, and we expect that further improvements are likely.
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7 RELATED WORK

Time Series Forecasting. Time-series forecasting is a mature topic and has advanced from tradi-
tional statistical models like AIRMA (AutoRegressive Integrated Moving Average) Box & Jenkins
(1994) and ARMA (AutoRegressive Moving Average) Markidakis & Hibon (1997) models to so-
phisticated deep learning approaches that better handle the complexity of time-series data. These
approaches can be broadly categorized as follows.

1. CNN models effectively capture local temporal patterns in time series data. TCN Bai et al. (2018)
introduced causal and dilated convolutions, while SCINet Liu et al. (2022a) employed sample con-
volutions. TimesNet Wu et al. (2023) used 2D variation modeling with inception blocks to capture
both inter-period and intra-period patterns. CNNs sometimes struggle with long-range forecasting
due to their limited receptive field.

2. Graph Neural Network (GNN) methods are capable of capturing inter-variable relationships in
MTS data. MTGNN Wu et al. (2020) used graph learning to infer variable interactions, and Cross-
GNN Huang et al. (2023) further refined this with cross-scale and cross-variable modeling to manage
noise in MTS data. However, GNNs can often be quite computationally intensive.

3. MLP models Zeng et al. (2023) offer a balance between simplicity and efficiency. TimeMixer
Wang et al. (2024) introduced multi-scale mixing however average pooling in this context leads to
some information loss when transferring between scales. RLinear Li et al. (2023b) showed that lin-
ear models, with a careful design, could effectively capture periodic features, achieving competitive
performance with more complex architectures.

4. Transformer models Wu et al. (2022b); Zhou et al. (2021); Wu et al. (2022a); Zhou et al. (2022b)
are prominent results that have demonstrated efficacy in capturing long-range dependencies. Cross-
former Zhang & Yan (2023) introduced cross-dimension self-attention, iTransformer Liu et al.
(2024) applied attention to channel-tokens but lacked the resolution to capture fine-grained local
patterns and can struggle to gain sufficient inter-channel context, and PatchTST Nie et al. (2023)
used a patch-based representation with channel-independent processing and a fixed resolution.

Multi-scale Modeling. Capturing patterns at different resolutions is very common in vision Fan
et al. (2021); Lin et al. (2017). Inspired by these successes, multi-scale modeling has been adapted
to time-series forecasting as well. N-HiTS Challu et al. (2022) constructed a hierarchical forecast
with multi-rate sampling, while Scaleformer Shabani et al. (2023) progressively refined forecasts
through repeated upsampling and downsampling operations. Pathformer Chen et al. (2024) ap-
plied dual attention over patches of varying temporal size. Pyraformer Liu et al. (2022b) used a
pyramidal attention structure to handle inter-scale dependencies. TimeMixer Wang et al. (2024)
used a decomposable mixing approach, combining seasonal and trend components separately across
scales for both past and future temporal variations. Different subsets of these methods face differ-
ent challenges. Manually designed scales can make the model inflexible to adapt to dynamic time
series, while average pooling often results in the loss of fine-grained details. In some models, the
aggregation and reconstruction mechanisms are fragmented, requiring ensemble strategies or more
complicated architectures.

8 CONCLUSIONS

Our work introduces a novel approach to multivariate time series (MTS) analysis that integrates
a simple wavelet-based tokenization and a generalized form self-attention that captures both multi-
scale temporal dynamics and complex inter-channel relationships. Our empirical results demonstrate
competitive performance against most existing baselines across various MTS tasks. Our experimen-
tal results suggest that exploiting inter-channel dependency does not always yield improvements, and
the performance varies from one dataset to other other. The construction is simple and can provide
a sensible lightweight baseline for more sophisticated methods although in its current form, cannot
easily be extended to token-by-token generation. We must acknowledge that as MTS datasets that
are publicly available grow in size, larger models may be better suited to maximize performance.
Nonetheless, we believe that the individual components utilized in our formulation can still mean-
ingfully inform the design of specialized adapters and/or embedding/tokenization schemes.
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A EXPERIMENT DETAILS

Datasets. We evaluate our model on several benchmark datasets covering both long-term and short-
term forecasting tasks. Among long-term forecasting tasks, we evaluate our method on 1) ETT Zhou
et al. (2021): a dataset of electricity transformer data, which includes four subsets (ETTh1, ETTh2,
ETTm1, ETTm2). ETTh1 and ETTh2 record data hourly, while ETTm1 and ETTm2 record data
every 15 minutes; 2) Weather Wu et al. (2022b): a dataset comprising 21 meteorological parame-
ters and is collected at a 10-minute interval; 3) Solar-Energy Lai et al. (2018): a dataset recording
power generation data from multiple plants, with data collected every 10 minutes in 2006; 4) Elec-
tricity Wu et al. (2022b): a dataset of electricity consumption for 321 clients; 5) Traffic Wu et al.
(2022b): a datasets monitoring hourly road occupancy rates through 862 sensors in San Francisco
from 2015 to 2016. Additionally, we evaluate our method on PEMS dataset for short-term forecast-
ing. The PEMS dataset collects traffic network data from various locations and covers four subsets
(PEMS03, PEMS04, PEMS07, PEMS08), which has been widely adopted as benchmarks since Liu
et al. (2022a).

We mainly follow the experimental configurations in Wu et al. (2023), including the same data
processing and splitting protocol. For both the long-term and short-term forecasting settings, we
fix the lookback window length to 96 for all datasets and baselines. The prediction lengths vary
according to the forecasting tasks: for ETT family, Weather, Solar-Energy, ECL, and Traffic datasets
in the long-term forecasting task, we use prediction lengths of {96, 192, 336, 720}, while for the
PEMS dataset in the short-term forecasting task, we employ prediction lengths of {12, 24, 48, 96}.
Details of the dataset are provided in Table 4.

Table 4: Dataset statistics. The dimension indicates the number of channels, and the dataset size is
organized in (training, validation, testing).

Tasks Dataset Dim. Prediction Length Dataset Size Frequency Domain
ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Temperature

Long-term ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Temperature

Forecasting ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Temperature

ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Temperature

Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly Transportation

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min Weather

Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10 min Electricity

PEMS03 358 {12, 24, 48, 96} (15617, 5135, 5135) 5 min Transportation

PEMS04 307 {12, 24, 48, 96} (10172, 3375, 3375) 5 min Transportation

PEMS07 883 {12, 24, 48, 96} (16911, 5622, 5622) 5 min Transportation

Short-term PEMS08 170 {12, 24, 48, 96} (10690, 3548, 265) 5 min Transportation

Hyperparameter search. Table 5 summarizes the hyperparameters and training settings used in
our experiments. Our hyperparameter selection followed a systematic approach, combining grid
search with domain-specific considerations. The number of layers was fixed at 1, and the input
length L was set to 96 to ensure fair comparisons across benchmark datasets. The pseudo length L′

was configured based on the input dimensionality of each dataset. Larger values (L′ = 256) were
assigned to datasets with more input channels, and smaller values (L′ = 32) were used for datasets
with fewer channels to balance computational efficiency with model capacity.

The selection of wavelet initialization types was guided by both systematic evaluation and signal
processing principles. We explored common wavelet families {db1, db4, db8, db12, bior3.1}, with
specific choices informed by the temporal characteristics (i.e., sampling frequency) of each dataset.
Specifically, the db1 (Haar) wavelet was primarily employed for datasets exhibiting high total varia-
tion (e.g., hourly-sampled datasets such as ETTh1, ETTh2, ECL, Traffic) due to its effectiveness in
capturing sharp transitions. Conversely, longer filters (bior3.1, db8, db12) were utilized for higher-
frequency data (e.g., minute-level datasets such as ETTm2, Weather, Solar-Energy, PEMS04) to
better capture their smoother temporal patterns. We acknowledge that any of them are suitable
initializations. The scale parameter S was fixed at 3.
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For training parameters, we performed a grid search over learning rates within a logarithmic scale
from 10−3 to 2 × 10−2. Batch sizes and training epochs were systematically evaluated within the
ranges {16, 24, 256} and {10, 20}, respectively. Larger batch sizes (256) and fewer training epochs
(10) were typically assigned to long-term forecasting tasks, while smaller batch sizes (16) and more
training epochs (20) were used for short-term forecasting scenarios. This structured approach to
hyperparameter optimization enabled us to achieve optimal performance while accounting for the
distinct temporal and structural characteristics of each dataset.

Fair comparison settings. To ensure a fair comparison, we maintained a consistent lookback win-
dow length of 96 across all experiments. Our baseline comparisons adhere to the experimental
protocols established in TimesNet Wu et al. (2023), including identical data processing and splitting
procedures. We applied early stopping to all baselines when the validation loss failed to decrease
for three consecutive epochs. Recent baselines, such as iTransformer Liu et al. (2024), TimeMixer
Wang et al. (2024), and CrossGNN Huang et al. (2023), adopted the same fair comparison set-
tings. Therefore, their experimental configurations required no modifications, and we utilized their
official repositories directly for reproduction. For baselines published prior to 2024, we used the
long-term forecasting results provided in the TimesNet Wu et al. (2023) repository. These results
were built on the experimental configurations provided by each model’s original paper or official
code. We verified that all hyperparameters for these baselines were selected from their respective
official repositories while ensuring consistency with the fair comparison settings, where the only
change were the input and output sequence lengths of all baseline models. Additionally, we adopted
all baselines’ short-term forecasting results directly from TimeMixer Wang et al. (2024), which also
adhered to the fair comparison settings established by TimesNet.

Implementation Details. All experiments were conducted using PyTorch Paszke et al. (2019) on
a single NVIDIA A100 40GB GPU. The model was trained using the Adam optimizer Kingma &
Ba (2015) with Mean Squared Error (MSE) as the loss function. For statistical significance testing,
we reproduced the results of TimeMixer and iTransformer using their official repositories under fair
comparison settings, with no additional modifications required as they adhered to the same protocols.
For TimeMixer, we observed performance variations, with MSE increasing by up to 9.7% compared
to the reported values, although most results were reproducible. For iTransformer, the reproduced
results closely matched the reported values. Results for CrossGNN were sourced directly from
its official papers and repositories. Additionally, we independently verified iTransformer’s short-
term forecasting performance using its official repository, ensuring metrics were computed on the
original data scale. CrossGNN’s performance was further validated on the Solar-Energy dataset
using its official implementation and experimental configuration. Furthermore, we also confirmed
that all reported baselines adhered to the fair comparison settings.

Table 5: An overview of the experimental configurations for the datasets.

Dataset / Configuration Model Hyperparameter Training Process

Layers Input Length L Pseudo Length L′ Wavelet Initialization Scale S LR∗ Attention Batch Size Epochs

ETTh1 1 96 32 db1 3 2× 10−2 Geometric 256 10

ETTh2 1 96 32 db1 3 10−2 Geometric 256 10

ETTm1 1 96 32 db1 3 2× 10−2 Geometric 256 10

ETTm2 1 96 32 bior3.1 3 6× 10−3 Geometric 256 10

Weather 1 96 32 db4 3 10−2 Geometric 256 10

Solar-Energy 1 96 256 db8 3 6× 10−3 Geometric 256 10

Electricity 1 96 256 db1 3 10−2 Geometric 256 10

Traffic 1 96 256 db1 3 6× 10−3 Geometric 24 10

PEMS03 1 96 256 db1 3 2× 10−3 Geometric 16 20

PEMS04 1 96 256 bior3.1 3 2× 10−3 Geometric 16 20

PEMS07 1 96 256 db12 3 2× 10−3 Geometric 16 20

PEMS08 1 96 256 db12 3 10−3 Geometric 16 20

∗ LR represents the initial learning rate.
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B FULL RESULTS OF FORECASTING TASKS

B.1 FULL RESULTS

Long-term forecasting task. In the long-term forecasting results presented in Table 1 of the main
paper, we reported only the averaged performance across four prediction lengths due to space con-
straints. Table 6 provides a comprehensive breakdown of empirical results for each prediction length.
Within each row, the lowest MSE and MAE scores are highlighted in red, and the second-lowest
scores are underscored in blue. Our proposed method consistently achieves top-2 performance in all
but one task.

Additional baselines in long-term forecasting. We evaluated our approach against conventional
statistical time series forecasting methods, specifically ARIMA and ETS models, using the ETTh1
dataset. The evaluation covered four prediction horizons ({96, 192, 336, 720} time steps), with stan-
dardized preprocessing procedures applied across all models to ensure a fair comparison. Our pro-
posed model consistently outperformed these methods across all prediction horizons, as shown in
Table 9. This performance gap widened with increasing prediction lengths, aligning with our ob-
servations of these models. Statistical methods like ARIMA and ETS require a sufficient lookback
period for robust parameter estimation and struggle with longer forecasting lengths due to error
accumulation.

Short-term forecasting task. For short-term forecasting, we conducted additional comparisons
with TimeMixerWang et al. (2024), the previous state-of-the-art model, using its official repository
and experimental configuration. The evaluation covered four prediction lengths {12, 24, 48, 96}.
Table 8 presents the averaged RMSE/MAE values, along with their pooled standard deviations. Our
model demonstrates consistent and statistically significant improvements across all PEMS datasets,
with error reductions ranging from 5.4% to 17.4%. The most substantial improvements were ob-
served on PEMS08, where our model reduced RMSE by 15.8% and MAE by 17.4%. Notably,
our model also shows more stable performance, as evidenced by the considerably smaller pooled
standard deviations across all metrics and datasets.

B.2 STABILITY ANALYSIS

Pooled standard deviation. The pooled standard deviation is calculated as

s̄d =

√∑4
i=1

∑n
j=1(xij − x̄i)2

4× (n− 1)
,

where n is the repeat times, n− 1 is the degree of freedom within each prediction length, i indexes
the prediction lengths, j indexes the repeats, xij represents individual measurements, and x̄i is the
mean of repeats for each prediction length.

Significance test. To establish statistical significance, we used a Type II ANOVA analysis to assess
the model effects (our proposed model versus other baseline model) while accounting for predic-
tion length variations. The blocking design for prediction length effectively removed this source
of variation from our error term, and increased statistical power to detect genuine differences be-
tween model architectures. The p-values reported in Table 7 test the null hypothesis that there is no
difference in performance between the proposed model and the baseline model.

Results. We compare our proposed model with the second-best linear-based model, TimeMixer
Wang et al. (2024) and third-best transformer-based model, iTransformer Liu et al. (2024) across
three repeats and four prediction lengths for both long-term and short-term forecasting tasks. As
shown in Table 8, the pooled standard deviations are consistently small across all datasets, indi-
cating the stability of our model’s performance regardless of initialization. The consistently low
p-values (p < 0.05) across all datasets confirm that the superior performance of our model is sta-
tistically significant and not attributable to random chance or prediction length variability. This is
further supported by our additional short-term forecasting results with extended prediction lengths
{12, 24, 48, 96}.
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Table 6: Full results of the long-term forecasting task. The input sequence length is set to be 96 for
all the tasks.

Model Ours
(2024)

TimeMixer
(2024)

iTransformer
(2024)

CrossGNN
(2024)

RLinear
(2023)

PatchTST
(2023)

Crossformer
(2023)

TiDE
(2023)

TimesNet
(2023)

DLinear
(2023)

SCINet
(2022)

FEDformer
(2022)

Stationary
(2022)

Autoformer
(2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.314 0.352 0.328 0.363 0.334 0.368 0.335 0.373 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475
192 0.360 0.379 0.364 0.384 0.377 0.391 0.372 0.390 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496
336 0.392 0.403 0.390 0.404 0.426 0.420 0.403 0.411 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537
720 0.451 0.440 0.458 0.445 0.491 0.459 0.461 0.442 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561

Avg 0.379 0.394 0.385 0.399 0.407 0.410 0.393 0.404 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517

E
T

T
m

2

96 0.174 0.256 0.176 0.259 0.180 0.264 0.176 0.266 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339
192 0.242 0.302 0.242 0.303 0.250 0.309 0.240 0.307 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340
336 0.296 0.337 0.304 0.342 0.311 0.348 0.304 0.345 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372
720 0.393 0.394 0.393 0.397 0.412 0.407 0.406 0.400 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432

Avg 0.276 0.323 0.278 0.325 0.288 0.332 0.282 0.330 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347 0.327 0.371

E
T

T
h1

96 0.368 0.393 0.381 0.401 0.386 0.405 0.382 0.398 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491 0.449 0.459
192 0.422 0.424 0.440 0.433 0.441 0.436 0.427 0.425 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504 0.500 0.482
336 0.439 0.434 0.501 0.462 0.487 0.458 0.465 0.445 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535 0.521 0.496
720 0.460 0.461 0.501 0.482 0.503 0.491 0.472 0.468 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616 0.514 0.512

Avg 0.422 0.428 0.458 0.445 0.454 0.447 0.437 0.434 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537 0.496 0.487

E
T

T
h2

96 0.281 0.337 0.292 0.343 0.297 0.349 0.309 0.359 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388
192 0.351 0.383 0.374 0.395 0.380 0.400 0.390 0.406 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452
336 0.363 0.400 0.428 0.433 0.428 0.432 0.426 0.444 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486
720 0.414 0.436 0.454 0.458 0.427 0.445 0.445 0.444 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511

Avg 0.352 0.389 0.384 0.407 0.383 0.407 0.393 0.413 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459

E
C

L

96 0.137 0.230 0.153 0.244 0.148 0.240 0.173 0.275 0.201 0.281 0.181 0.270 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308 0.169 0.273 0.201 0.317
192 0.152 0.245 0.166 0.256 0.162 0.253 0.195 0.288 0.201 0.283 0.188 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315 0.182 0.286 0.222 0.334
336 0.171 0.264 0.184 0.275 0.178 0.269 0.206 0.300 0.215 0.298 0.204 0.293 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329 0.200 0.304 0.231 0.338
720 0.200 0.290 0.226 0.313 0.225 0.317 0.231 0.335 0.257 0.331 0.246 0.324 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355 0.222 0.321 0.254 0.361

Avg 0.165 0.257 0.182 0.272 0.178 0.270 0.201 0.300 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.193 0.296 0.227 0.338

Tr
af

fic

96 0.410 0.274 0.464 0.289 0.395 0.268 0.570 0.310 0.649 0.389 0.462 0.295 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338 0.613 0.388
192 0.430 0.280 0.477 0.292 0.417 0.276 0.577 0.321 0.601 0.366 0.466 0.296 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340 0.616 0.382
336 0.449 0.290 0.500 0.305 0.433 0.283 0.588 0.324 0.609 0.369 0.482 0.304 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328 0.622 0.337
720 0.486 0.309 0.548 0.313 0.467 0.302 0.597 0.337 0.647 0.387 0.514 0.322 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355 0.660 0.408

Avg 0.444 0.289 0.497 0.300 0.428 0.282 0.583 0.323 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340 0.628 0.379

W
ea

th
er

96 0.161 0.205 0.165 0.212 0.174 0.214 0.159 0.218 0.192 0.232 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223 0.266 0.336
192 0.209 0.248 0.209 0.253 0.221 0.254 0.211 0.266 0.240 0.271 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285 0.307 0.367
336 0.265 0.291 0.264 0.293 0.278 0.296 0.267 0.310 0.292 0.307 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338 0.359 0.395
720 0.344 0.343 0.342 0.345 0.358 0.347 0.352 0.362 0.364 0.353 0.354 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410 0.419 0.428

Avg 0.244 0.272 0.245 0.276 0.258 0.278 0.247 0.289 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382

So
la

rE
ne

rg
y 96 0.170 0.225 0.215 0.294 0.203 0.237 0.222 0.301 0.322 0.339 0.234 0.286 0.310 0.331 0.312 0.399 0.250 0.292 0.290 0.378 0.237 0.344 0.242 0.342 0.215 0.249 0.884 0.711

192 0.187 0.243 0.237 0.275 0.233 0.261 0.246 0.307 0.359 0.356 0.267 0.310 0.734 0.725 0.339 0.416 0.296 0.318 0.320 0.398 0.280 0.380 0.285 0.380 0.254 0.272 0.834 0.692
336 0.193 0.248 0.252 0.298 0.248 0.273 0.263 0.324 0.397 0.369 0.290 0.315 0.750 0.735 0.368 0.430 0.319 0.330 0.353 0.415 0.304 0.389 0.282 0.376 0.290 0.296 0.941 0.723
720 0.200 0.255 0.244 0.293 0.249 0.275 0.265 0.318 0.397 0.356 0.289 0.317 0.769 0.765 0.370 0.425 0.338 0.337 0.356 0.413 0.308 0.388 0.357 0.427 0.285 0.295 0.882 0.717

Avg 0.188 0.244 0.237 0.290 0.233 0.262 0.249 0.313 0.369 0.356 0.270 0.307 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381 0.261 0.381 0.885 0.711

Table 7: Performance comparison of models on various datasets. Metrics include averaged Mean
Squared Error (MSE) and Mean Absolute Error (MAE) across four prediction lengths with their
pooled standard deviations (SD). Lower values indicate better model performance.

Dataset Model MSE (Pooled SD) MAE (Pooled SD) MSE p-value MAE p-value

ECL
SimpleBaseline 0.166 (0.0008) 0.260 (0.0006) - -
TimeMixer 0.182 (0.0012) 0.272 (0.0006) 0.000 0.000
iTransformer 0.175 (0.0009) 0.267 (0.0008) 0.000 0.000

ETTh1
SimpleBaseline 0.422 (0.0015) 0.428 (0.0007) - -
TimeMixer 0.456 (0.0111) 0.444 (0.0071) 0.000 0.000
iTransformer 0.456 (0.0035) 0.448 (0.0024) 0.000 0.000

ETTh2
SimpleBaseline 0.353 (0.0021) 0.391 (0.0015) - -
TimeMixer 0.386 (0.0074) 0.407 (0.0043) 0.000 0.000
iTransformer 0.384 (0.0017) 0.407 (0.0010) 0.000 0.000

ETTm1
SimpleBaseline 0.381 (0.0009) 0.396 (0.0008) - -
TimeMixer 0.385 (0.0048) 0.399 (0.0032) 0.022 0.003
iTransformer 0.408 (0.0012) 0.412 (0.0010) 0.000 0.000

ETTm2
SimpleBaseline 0.275 (0.0012) 0.322 (0.0011) - -
TimeMixer 0.278 (0.0026) 0.325 (0.0018) 0.001 0.000
iTransformer 0.292 (0.0011) 0.335 (0.0010) 0.000 0.000

Solar
SimpleBaseline 0.184 (0.0016) 0.247 (0.0031) - -
TimeMixer 0.237 (0.0088) 0.290 (0.0242) 0.000 0.000
iTransformer 0.235 (0.0032) 0.262 (0.0010) 0.000 0.000

Traffic
SimpleBaseline 0.440 (0.0013) 0.292 (0.0003) - -
TimeMixer 0.497 (0.0087) 0.300 (0.0029) 0.000 0.000
iTransformer 0.422 (0.0008) 0.282 (0.0005) 0.000 0.000

Weather
SimpleBaseline 0.243 (0.0005) 0.271 (0.0007) - -
TimeMixer 0.245 (0.0012) 0.275 (0.0019) 0.000 0.000
iTransformer 0.261 (0.0023) 0.281 (0.0021) 0.000 0.000
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Table 8: Performance comparison of models on PEMS datasets. Metrics include averaged Mean
Squared Error (MSE) and Mean Absolute Error (MAE) across four prediction lengths with their
pooled standard deviations (SD). Lower values indicate better model performance

Dataset Model MSE (Pooled SD) MAE (Pooled SD) MSE p-value MAE p-value

PEMS03 SimpleBaseline 29.08 (0.154) 17.96 (0.065) - -
TimeMixer 31.73 (0.529) 19.22 (0.278) 0.000 0.000

PEMS04 SimpleBaseline 32.91 (0.121) 20.34 (0.077) - -
TimeMixer 34.78 (0.472) 21.99 (0.304) 0.000 0.000

PEMS07 SimpleBaseline 38.00 (0.139) 23.36 (0.085) - -
TimeMixer 40.65 (0.498) 25.44 (0.363) 0.000 0.000

PEMS08 SimpleBaseline 27.42 (0.114) 17.09 (0.069) - -
TimeMixer 32.58 (2.453) 20.68 (1.776) 0.000 0.000

Table 9: Performance comparison across different models for the ETTh1 dataset with varying pre-
diction lengths. Metrics include Mean Squared Error (MSE) and Mean Absolute Error (MAE).

Model ETTh1-96 ETTh1-192 ETTh1-336 ETTh1-720
MSE MAE MSE MAE MSE MAE MSE MAE

SimpleBaseline 0.368 0.393 0.422 0.424 0.439 0.434 0.460 0.461
ETS 1.145 0.658 1.185 0.855 1.234 0.963 2.298 1.818
ARIMA 1.010 0.719 1.033 0.635 1.204 0.700 2.269 1.072

C ABLATION STUDY

C.1 ABLATIONS ON ARCHITECTURAL COMPONENTS

To rigorously validate our approach, we conducted additional experiments across four datasets
ETTh1, ETTm1, Weather, Solar-Energy–with four prediction lengths, each repeated three times.
Through systematic component ablation, we evaluated two key architectural elements: geometric
attention mechanism and the stationary wavelet transform.

Geometric attention mechanism. For geometric attention, we performed a direct comparison with
vanilla attention. While not every dataset benefits equally–depending on the degree of cross-talk
between channels–our findings show consistent performance improvements. For example, we ob-
served a 3.55% MSE reduction on ETTh1 and a 5.43% reduction on Solar-Energy, all achieved
without any increase in model parameters. The pooled standard deviations, as shown in Table 10,
are small across all datasets, indicating that the performance advantages are stable/reproducible.

To test statistical significance, we performed a Type II ANOVA analysis with the null hypothesis that
there is no difference in performance between baseline model with and without geometric attention.
The consistently low p-values (p < 0.05) across all datasets confirm that the observed improvements
are statistically significant and not attributable to random chance or prediction length variability.

Stationary wavelet transform. For the SWT, we conducted three types of ablation experi-
ments: (i) complete removal of the SWT decomposition and reconstruction; (ii) replacement
with the Fast Fourier Transform (FFT) as the tokenizer and inverse FFT as the de-tokenizer;
(iii) replacement with parameter-matched 1-D convolution layers to ensure fair comparison. The
Performance/Parameters∆% column in Table 10 shows the percentage change in performance and
total trainable parameters relative to the baseline model.

The results in Table 10 strongly suggest that removing SWT leads to substantial performance degra-
dation, particularly evident in the Solar dataset where we observed a 34.8% MSE increase despite
only reducing parameters by 5.27%. Even parameter-matched alternatives underperformed com-
pared to our model: replacing SWT with equivalent convolutions increased MSE by 16.8% on Solar
and 9.8% on Weather. Additionally, FFT-based variants showed noticeable performance drops, with
20.7% and 9.8% MSE increases on Solar and Weather, respectively.
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All of these differences are statistically significant (p < 0.01), showing that both architectural com-
ponents contribute meaningfully to the performance of our simple baseline presented here. Particu-
larly interesting is the substantial performance gap between SWT and its convolution-based replace-
ment, which suggests that SWT’s effectiveness stems from its multi-resolution analysis capabilities
rather than merely adding model capacity.

Table 10: Ablation study results for different models on various datasets. Metrics include Mean
Squared Error (MSE) and Mean Absolute Error (MAE) with their pooled standard deviations (SD),
and performance/parameters deltas percentage relative to our baseline model. Lower MSE/MAE
values indicate better model performance, while a negative performance delta signifies a degradation
in performance.

Dataset Model Number of parameters changes? MSE (Pooled SD) Performance worse? MAE (Pooled SD) Performance worse? MSE p-value MAE p-value

ETTh1

SimpleBaseline - 0.422 (0.0015) - 0.428 (0.0007) - - -
w/o GeomAttn None 0.437 (0.0010) Yes, by -3.55% 0.440 (0.0009) Yes, by -2.80% 0.000 0.000
w/o SWT Yes, by -0.436% 0.432 (0.0050) Yes, by -2.37% 0.435 (0.0043) Yes, by -1.60% 0.000 0.000
Conv-SWT None 0.433 (0.0063) Yes, by -2.60% 0.435 (0.0035) Yes, by -1.60% 0.000 0.000
FFT-SWT Yes, by -0.436% 0.433 (0.0063) Yes, by -2.60% 0.435 (0.0040) Yes, by -1.60% 0.000 0.000

ETTm1

SimpleBaseline - 0.381 (0.0009) - 0.396 (0.0008) - - -
w/o GeomAttn None 0.385 (0.0011) Yes, by -1.05% 0.398 (0.0009) Yes, by -0.51% 0.000 0.000
w/o SWT Yes, by -0.436% 0.386 (0.0031) Yes, by -1.31% 0.398 (0.0021) Yes, by -0.51% 0.000 0.002
Conv-SWT None 0.389 (0.0025) Yes, by -2.10% 0.399 (0.0020) Yes, by -0.76% 0.000 0.000
FFT-SWT Yes, by -0.436% 0.390 (0.0017) Yes, by -2.36% 0.399 (0.0009) Yes, by -0.76% 0.000 0.000

Solar

SimpleBaseline - 0.184 (0.0016) - 0.247 (0.0031) - - -
w/o GeomAttn None 0.194 (0.0123) Yes, by -5.43% 0.253 (0.0127) Yes, by -2.40% 0.018 0.120
w/o SWT Yes, by -5.27% 0.246 (0.0010) Yes, by -34.8% 0.289 (0.0008) Yes, by -17.0% 0.000 0.000
Conv-SWT None 0.215 (0.0125) Yes, by -16.8% 0.273 (0.0158) Yes, by -10.5% 0.000 0.000
FFT-SWT Yes, by -5.27% 0.222 (0.0187) Yes, by -20.7% 0.284 (0.0198) Yes, by -15.0% 0.000 0.000

Weather

SimpleBaseline - 0.243 (0.0005) - 0.271 (0.0007) - - -
w/o GeomAttn None 0.245 (0.0021) Yes, by -0.82% 0.273 (0.0018) Yes, by -0.74% 0.007 0.032
w/o SWT Yes, by -0.426% 0.247 (0.0014) Yes, by -1.65% 0.274 (0.0006) Yes, by -1.11% 0.000 0.000
Conv-SWT None 0.267 (0.0006) Yes, by -9.88% 0.285 (0.0005) Yes, by -5.17% 0.000 0.000
FFT-SWT Yes, by -0.426% 0.267 (0.0008) Yes, by -9.88% 0.286 (0.0005) Yes, by -5.54% 0.000 0.000

C.2 ADDITIONAL ABLATIONS

Inter-channel dependencies. In our tested datasets, recent results (e.g., PatchTST Nie et al. (2023))
have shown that individual channels were often sufficient for making reasonable forecasts, indicating
limited direct correlations between channels. However, our experiments show that incorporating all
channels in the token embedding improves forecasting performance compared to single-channel
embeddings (where the bivector reduces to a scalar), as shown in Table 11.

This improvement likely comes from how our attention mechanism uses the channel information.
While not explicitly mixing channels through projection layers, it computes attention weights using
all channels simultaneously as well as using cross-channel relationship through the wedge product.
This allows features across all channels to collectively determine how much each token’s full channel
vector contributes to the final representation, creating an implicit form of channel interaction. We
hypothesize that the model adaptively captures useful channel relationships when they exist, while
avoiding imposing artificial correlations when they do not.

Table 11: Performance comparison of SimpleBaseline with and without Independence feature across
various datasets. Metrics include Mean Squared Error (MSE) and Mean Absolute Error (MAE) with
pooled standard deviations (SD), and p-values for statistical significance.

Dataset Model MSE (Pooled SD) MAE (Pooled SD) MSE p-value MAE p-value

ETTh1 SimpleBaseline 0.422 (0.0015) 0.428 (0.0007) - -
+ Independence 0.451 (0.0073) 0.444 (0.0035) 0.000 0.000

ETTm1 SimpleBaseline 0.381 (0.0009) 0.396 (0.0008) - -
+ Independence 0.394 (0.0079) 0.400 (0.0055) 0.000 0.007

Weather SimpleBaseline 0.243 (0.0005) 0.271 (0.0007) - -
+ Independence 0.268 (0.0024) 0.286 (0.0019) 0.000 0.000
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D EFFICIENCY ANALYSIS

To provide a thorough efficiency comparison, we evaluated our model against two of the most com-
petitive baselines: the transformer-based iTransformer Liu et al. (2024) and linear-based TimeMixer
Wang et al. (2024). Our experimental setup used a consistent batch size of 256 across all models
and measured four key metrics: total trainable parameters, inference time, GPU memory footprint,
and peak memory usage during the backward pass. Results for all baseline models were compiled
using PyTorch.

Our findings demonstrate remarkable efficiency improvements: On the Weather dataset, our model
achieves better accuracy while using only 0.3% of iTransformer’s parameters (13K vs 4.8M) and
13% of TimeMixer’s parameters (13K vs 104K). Our memory footprint is 38% smaller than iTrans-
former’s and 66% smaller than TimeMixer’s. In terms of speed, our model is 1.7x faster than
iTransformer and 3.4x faster than TimeMixer. These efficiency gains are even more pronounced
on the larger SolarEnergy dataset, where our model uses just 1.3% of TimeMixer’s parameters
(166K vs 13M) while achieving 24% better accuracy. Our memory consumption is 73% lower
than TimeMixer’s, and inference speed is 5.8x faster. Notably, these improvements come without
compromising performance, as our model maintains superior or comparable MSE scores across both
datasets.

In the reported experiments, we deliberately maintained memory and computation efficiency by
choosing the bivector’s magnitude for the reduction function ζ(·). However, we have a fair bit of
flexibility to upgrade the reduction function later for additional performance gains.

Table 12: Performance and resource utilization metrics across different datasets and models. Metrics
include Mean Squared Error (MSE), total parameters, inference time, GPU memory footprint, and
peak memory usage.

Dataset Model MSE Total Params Inference Time (s) GPU Mem Footprint (MB) Peak Mem (MB)

Weather

SimpleBaseline 0.162 13,472 0.0132 994 181.75
TimeMixer 0.164 104,433 0.0453 2,954 2,281.38
iTransformer 0.176 4,833,888 0.0222 1,596 847.62

Solar

SimpleBaseline 0.163 166,304 0.0455 2,048 1,181.56
TimeMixer 0.215 13,009,079 0.2644 7,576 6,632.40
iTransformer 0.203 3,255,904 0.0663 4,022 2,776.50

E FORECASTING SHOWCASE

Our forecasting model demonstrates capabilities in predicting trends across various time series
datasets, including ECL, Traffic, Solar Energy, and Weather datasets, using a 96-step input win-
dow to predict 96 steps ahead.

Strengths. The model’s strengths lie in pattern recognition and trend prediction. It is good at
identifying and extrapolating recurring patterns, particularly evident in the Traffic dataset (Fig 8),
where it accurately captures cyclical nature and oscillations. In the Solar Energy dataset (Fig 10),
the model successfully predicts overall directional trends.

Areas for the improvement. However, there are areas for improvement. The model sometimes
struggles with precise amplitude prediction, as seen in the ECL dataset, where predicted peaks and
troughs don’t always align perfectly with the ground truth. Phase shifts between predicted and actual
values are also observed in some Traffic dataset forecasts (Fig 9), suggesting a need for improved
timing mechanisms. Handling anomalies shows another challenge. The model occasionally strug-
gles with sudden spikes or dips, particularly evident in the Solar Energy dataset. Additionally, in
longer predictions, the model shows signs of instability or drift, as observed in certain forecasts for
the ECL and Weather dataset datasets.

Summary. In summary, while the model demonstrates adaptability to different scales and patterns,
there’s room for improvement in amplitude accuracy, phase alignment, anomaly handling, and long-
term stability. Future work should focus on addressing these limitations to enhance the model’s
robustness and accuracy across diverse time series forecasting tasks.
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Figure 8: Forecasting examples from the ECL dataset with varying starting points, using an input
window of 96 and predicting 96 steps ahead. Blue lines represent the lookback window, orange lines
show the ground truth forecasting window, and red lines indicate the model predictions.

Figure 9: Forecasting examples from the Traffic dataset with varying starting points, using an input
window of 96 and predicting 96 steps ahead. Blue lines represent the lookback window, orange lines
show the ground truth forecasting window, and red lines indicate the model predictions.
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Figure 10: Forecasting examples from the Solar Energy dataset with varying starting points, using
an input window of 96 and predicting 96 steps ahead. Blue lines represent the lookback window,
orange lines show the ground truth forecasting window, and red lines indicate the model predictions.

Figure 11: Forecasting examples from the Weather dataset with varying starting points, using an
input window of 96 and predicting 96 steps ahead. Blue lines represent the lookback window,
orange lines show the ground truth forecasting window, and red lines indicate the model predictions.
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