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Abstract

Determining the direction of relationships be-
tween variables is fundamental for understand-
ing complex systems across scientific domains.
While observational data can uncover relation-
ships between variables, it cannot distinguish be-
tween cause and effect without experimental in-
terventions. To effectively uncover causality, pre-
vious works have proposed intervention strategies
that sequentially optimize the intervention val-
ues. However, most of these approaches primarily
maximized information-theoretic gains that may
not effectively measure the reliability of direc-
tion determination. In this paper, we formulate
the causal direction identification as a hypothesis-
testing problem, and propose a Bayes factor-based
intervention strategy, which can quantify the ev-
idence strength of one hypothesis (e.g., causal)
over the other (e.g., non-causal). To balance the
immediate and future gains of testing strength,
we propose a sequential intervention objective
over intervention values in multiple steps. By
analyzing the objective function, we develop a
dynamic programming algorithm that reduces the
complexity from non-polynomial to polynomial.
Experimental results on bivariate systems, tree-
structured graphs, and an embodied AI environ-
ment demonstrate the effectiveness of our frame-
work in direction determination and its extensi-
bility to both multivariate settings and real-world
applications.
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1. Introduction
Determining the direction of causal relationships between
pairs of variables is a fundamental challenge in understand-
ing complex systems. In fields like genetic research (Pinna
et al., 2010; Jia & Zhang, 2022), while we may observe
strong associations between genetic variants and pheno-
types, determining which variable causally influences the
other remains difficult. This directional uncertainty com-
plicates our understanding of underlying mechanisms and
limits our ability to make reliable predictions about system
behavior.

Traditional methods for inferring causal direction rely pri-
marily on observational data, representing relationships
through directed edges between variable pairs. However,
observational data alone often proves insufficient for deter-
mining causal direction due to the fundamental limitation
of Markov equivalence (Pearl, 2009) - different causal di-
rections can generate identical observational distributions,
making them indistinguishable without intervention data.

The limitations of observational studies necessitate experi-
mental interventions as the gold standard for determining
causal direction (Fisher, 1936). While interventional ex-
periments like gene knockouts have become increasingly
feasible (Pinna et al., 2010), they remain costly and resource-
intensive. This limitation has motivated the development
of active learning methods for causal direction determina-
tion. Traditional approaches typically employ information-
theoretic objectives (Tong & Koller, 2001; Murphy, 2001;
Agrawal et al., 2019), greedily maximizing the mutual in-
formation between interventions and outcomes. However,
recent studies (Gong et al., 2023) have shown that successful
causal direction inference depends not only on the informa-
tiveness of generated data but also on its evidential complex-
ity. This highlights a potential misalignment: maximizing
information gain alone may not be optimal for bivariate
causal discovery, as it does not directly optimize for the
probability of drawing correct directional conclusions. This
is a crucial distinction from a Bayesian decision-theoretic
perspective (Trimmer et al., 2011), where the objective is
typically to select actions that maximize the expected util-
ity of the outcome, in our case, the correct identification
of causal direction. Simply acquiring information is often
a surrogate for, but not identical to, achieving a specific
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decision-making goal.

In this paper, we study sequential intervention strategies
to effectively determine causal direction while minimizing
experimental costs. Working with a fixed intervention bud-
get requires to consider intervention decisions jointly rather
than independently (Huan & Marzouk, 2016; Lim et al.,
2022), as myopic approaches focusing solely on immediate
information gain may lead to suboptimal outcomes once the
budget is exhausted. Our framework balances two key objec-
tives: maximizing the probability of discovering the correct
causal direction early in the sequence, while maintaining
the capability to reach definitive conclusions by the end of
the budget period. This requires carefully planning each
intervention by considering both its immediate evidential
value and its impact on future discovery potential. More-
over, sequential optimization is computationally expensive,
especially when the intervention budget or the action space
is large, necessitating efficient algorithmic solutions.

To address these challenges, we propose a framework that
employs Bayes factors (Kass & Raftery, 1995) to formulate
an objective for edge orientation. This approach is inher-
ently decision-focused: Bayes factors enable systematic hy-
pothesis testing by quantifying the relative evidence support-
ing competing directional hypotheses, directly informing the
decision about causal direction. This formulation allows us
to explicitly optimize for obtaining decisive and correct di-
rectional evidence—aligning with established thresholds for
when evidence is deemed conclusive—rather than pursuing
broader informational criteria that may not be as efficiently
targeted towards the specific decision at hand. We develop
a sequential objective that explicitly balances immediate
and future rewards, and use dynamic programming to effi-
ciently optimize the intervention selection process, ensuring
that each intervention not only provides immediate insights
but also maintains flexibility for future direction determi-
nations. While the framework is introduced for bivariate
cases, it extends to tree-structured graphs (Greenewald et al.,
2019), enabling root cause localization through sequential
interventions.

To demonstrate the effectiveness and generality of our frame-
work, we evaluate our methods on bivariate edge orien-
tation tasks and further extend to more challenging sce-
narios including root source localization in tree-structured
graphs (Greenewald et al., 2019) and a switch-light reason-
ing task in embodied AI environments (Peng et al., 2024).
Our experiments on tree-structured graphs demonstrate the
potential for handling multivariate settings through sequen-
tial interventions, particularly in applications such as biol-
ogy (Jia & Zhang, 2022) and system anomaly detection (Han
et al., 2023). Additionally, results from the embodied AI ex-
periment show that our method can efficiently make correct
decisions about causal relationships in physical environ-

ments. These results validate the framework potential for
both scaling to complex multivariate systems and practical
deployment in real-world scenarios.

The main contributions of this paper are:

1. We propose an active intervention framework that lever-
ages Bayes factors to quantify the strength of direc-
tional evidence, providing an alternative to traditional
information-theoretic approaches.

2. We formulate a sequential objective that balances short-
term and long-term intervention outcomes, and develop
a dynamic programming algorithm for efficient opti-
mization of intervention selection.

3. We evaluate our method on bivariate edge orienta-
tion tasks, root source localization in tree-structured
graphs (Greenewald et al., 2019), and a switch-light
reasoning task in embodied AI settings.

2. Related work
Active causal discovery. Traditional causal discovery meth-
ods based on observational data face the inherent challenge
of the Markov equivalence class (Pearl, 2009), where multi-
ple causal structures can induce identical observations. To
overcome this constraint, researchers have developed ac-
tive intervention techniques. For example, (He & Geng,
2008) proposed to maximize edge recovery per interven-
tion; (Shanmugam et al., 2015) selected the optimal inter-
vention vertices based on graph coloring. Works that are
most relevant to ours are (Murphy, 2001; Tong & Koller,
2001; Masegosa & Moral, 2013; Agrawal et al., 2019; Toth
et al., 2022), which selected interventions that maximize
the mutual information between the graph and hypothetical
samples. However, such information-theoretic objectives
can be suboptimal from a Bayesian decision-theoretic stand-
point (Trimmer et al., 2011) when the goal is a specific,
correct determination, as they do not always maximize the
probability of achieving confident causal conclusions (Gree-
newald et al., 2019). In contrast to purely information-
theoretic goals, we employ Bayes factors to directly opti-
mize for decisive and accurate evidence for a specific causal
hypothesis, aiming for more efficient discovery for this tar-
geted decision.

Bivariate causal discovery. To identify the causal direction
between two variables, previous works leverage asymme-
try prior between the cause and the effect for identification
through only observational data. Upon this prior, one line
of works employed Kolmogorov complexity as a measure
of causal direction (Tagasovska et al., 2020; Mitrovic et al.,
2018). However, the Kolmogorov complexity is computa-
tionally intractable. Another line of work imposed restric-
tions on the functional class of causal relationships, such
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as assuming additive noise models (Hoyer et al., 2008; von
Kügelgen et al., 2019; Blöbaum et al., 2018). However, it
may fail to generalize to a broader family of models. In this
paper, we achieve bivariate causal identification through
active intervention, without imposing any asymmetry con-
straints to the causal relationship.

Sequential experiment design (SED). SED proposes to
generate the design points in a sequential manner until
the convergence of optimization, in order to overcome the
oversampling or undersampling issue met in design of ex-
periments (DOE) (Rainforth et al., 2024). For example,
(Chakraborty & Chowdhury, 2016) introduced a novel dis-
tribution adaptive sequential experimental design for gener-
alised analysis of variance; (Foster et al., 2021) reduced the
computational cost of traditional Bayesian DOE by learning
an amortized deep design network; and (Blau et al., 2022)
induced the design policy by solving a Markov decision pro-
cess. Particularly, in causal discovery, researchers such as
(Tigas et al., 2022; Toth et al., 2022) proposed to apply SED
using information-theoretic criteria, aiming to maximize
information gain with each intervention. However, infor-
mation gain maximization can be suboptimal for achiev-
ing specific, correct decisions. For decision-focused SED,
Bayesian decision theory (Reggiani & Weerts, 2008; Berger,
2013) offers an alternative by optimizing choices for desired
outcomes or minimal loss. This aligns with broader needs
in tasks like sequential decision-making under causal un-
certainty (Gonzalez-Soto et al., 2018), where robust causal
models guide subsequent actions. In this paper aligning
with a decision-theoretic approach, we introduce an SED
that explicitly gathers information for obtaining decisive
and correct evidence regarding causal direction, making
the optimization more effective for achieving correct causal
conclusions.

3. Preliminaries
Problem setup & Notations. Consider a bivariate system
with X ∈ X and Y ∈ Y , our goal is to design an interven-
tion strategy to effectively distinguish the causal relation
H1 : X → Y from the anti-causal one H0 : X ← Y . To
achieve this, we assume the availability of n observational
data Dobs = {(x1, y1), · · · , (xn, yn)} that are i.i.d drawn
from the joint distribution P(X,Y ). When X → Y , the
underlying structural causal model (SCM) is:

xi := fX(NX,i), yi := fY (xi, NY,i), ∀i,

where fX and fY are structural equations, and {NX,i}ni=1,
{NY,i}ni=1 are independent noise. Throughout, we assume
NX and NY are d-separated in the graph, i.e., NX ⊥⊥d NY ,
which implies the causal sufficiency condition (Spirtes et al.,
2001) that is standard in causal discovery. For notational
convenience, we denote N the set of natural numbers, and

denote 1 : k = {1, 2, . . . , k} for any 1 ≤ k ∈ N. For
a vector x ∈ RK , we denote x−k as the sub-vector that
excludes the k-th element.

Bayes factor. To measure the uncertainty during the inter-
vention, we borrow the concept of Bayes factor (Jeffreys,
1961; Kass & Raftery, 1995) defined as the likelihood ratio
BF01 = P(D|H0)/P(D|H1) over data D, which measures
the strength of evidence in favor of the null hypothesis over
the alternative. It has been widely used in selecting the true
graph among Markov equivalence classes (Madigan et al.,
1996; Castelo & Perlman, 2004; Castelletti & Consonni,
2024). In particular, (Castelletti & Consonni, 2024) em-
ployed the Bayes factor in active causal discovery; however,
it only used it to determine the minimum number of interven-
tions, without truly interacting with the environment. In this
paper, we provide a framework that incorporates the Bayes
factor to actively interact with the environment, enabling
more effective identification of the causal relationship.

4. Methodology
In this section, we present our intervention strategy for
learning causal direction. In section 4.1, we first introduce
the Bayesian objective over a single-step intervention for
interaction. To interact, section 4.2 introduces an iterative
algorithm, including prior initialization, optimization, and
posterior updating. Section 4.3 extends the framework to
multi-step interventions. Finally, section 4.4 applies our
approach to multivariate causal discovery.

4.1. Bayesian sample selection

Suppose we have conducted m interventions so far, and
the corresponding intervention data are denoted as Dm :=
{(x1, y1), . . . , (xn0 , ym)}. To determine the next interven-
tion value x, we propose to maximize the probability of
decisive and correct evidence (denoted as PDC):

PDC(x) = P0
DC(x) · P(H0) + P1

DC(x) · P(H1) (1a)

P0
DC(x) = P {BF01 (Dm ∪ {x, y}) > k0|H0,Dm} (1b)

P1
DC(x) = P {BF01 (Dm ∪ {x, y}) < k1|H1,Dm} . (1c)

The objective PDC is the weighted sum of the probability
of determination under the null and alternative hypothesis.
The Bayes factor is defined as:

BF01(Dm) =
P(Dm | H0)

P(Dm | H1)
.

Therefore, the objective (1a) takes expectation over p(y)
under H0, and p{y|do(x)} under H1. Since we cannot
identify causal directions through only Dobs, we set the
prior P(H0) = P(H1) = 1/2. Here, k0, k1 are related
to the decisive evidence under H0 and H1, respectively.

3



Bayesian Active Learning for Bivariate Causal Discovery

Specifically, we say the data provide decisive evidence in
favor of H0 at level γ0 if BF01(D) > k0 := γ0

ω(1−γ0)
with

ω := P(H0)
P(H1)

, since we have P(H0|D) > γ0.

The objective has been similarly used to determine the sam-
ple size for interventions (Castelletti & Consonni, 2024),
without actually interacting with the environment. In con-
trast, we consider the scenario where we can interact with
the environment. During the interaction, our goal is sequen-
tially choosing the values of X for intervention to most
effectively reduce the uncertainty about the causal direction.

Connection to information gain. One may consider op-
timizing the intervention sample by maximizing the infor-
mation gain (Lindley, 1956; Bernardo, 1979) that has been
employed in causal discovery (Mian et al., 2023; Toth et al.,
2022). We have demonstrated in Appx. A that the infor-
mation gain is a monotonic transformation of the Bayes
factor, meaning it may favor interventions that maximize
the Bayes factor given each hypothesis. However, the Bayes
factor is more related to the causal hypothesis testing con-
sidered in our scenario, it is therefore employed to guide the
intervention process.

4.2. Optimization and posterior update

We introduce how to optimize x and update the causal belief
at each iteration. Our procedure involves estimating the
initial intervention distribution for calculating the Bayes
factor, optimization of x, and posterior update.

Estimating the intervention distribution. To compute the
Bayes factor in (1a), we need to compute p{y|do(x),Hj}
under each hypothesis, which equals to:

p{y|do(x),H0} =
∫

p(y | θ0)p(θ0|H0)dθ0; (2)

p{y|do(x),H1} =
∫

p(y|x, θ1)p(θ1|H1)dθ1, (3)

since the edge Y → X is broken when we intervene on
x, we have p{y|do(x)} = p(y) under H0. Under H1, we
have p{y|do(x)} = p(y|x). For each hypothesis, we take
the expectation over p(θj |Hj). Following (Kass & Raftery,
1995), we specify p(θj |Hj) as the data-dependent prior cen-
tered around the MLE estimate. when X,Y are continuous,
we set it as Gaussian distribution N (θ̂, Σ̂) , where θ̂ is the
MLE estimate, and Σ̂ is the inverse Hessian of the negative
log-likelihood. When X,Y are categorical, we use Beta dis-
tribution to specify each level’s parameter, where the param-
eters in Beta distribution is obtained as the MLE estimate.
Suppose X,Y respectively have lX and lY levels, the param-
eters we specify include θ0,i := P(Y = i) for i < lX under
H0, and θ1,j,i := P(Y = j|X = i) for j < lY and i ≤ lX
under H1. For each parameter θ0,i := Beta(α0,i, β0,i) (the
prior of θ1,j,i is similar), where α0,i, β0,i are MLE estimates

from observational data.

In this paper, we do not update these priors using interven-
tional data. This is because, even when H0 holds, the data
may be better fit by p(θ0|H1), making it difficult for the
Bayes factor to provide sufficient evidence to support H0.
While we can put constraints on θ1 to avoid this issue, it is
not necessary in the scenario considered in this paper.

Optimization. Having identified the interventional distribu-
tions, we now focus on optimizing PDC over x. To this end,
we expand P0

DC and P1
DC in (1) with the following form:

P0
DC(x) =

∫
Y
I {BF01(Dm ∪ {(x, y)}) > k0}

× p{y|do(x),H0}dyP(H0|Dm); (4)

P1
DC(x) =

∫
Y
I {BF01(Dm ∪ {(x, y)}) < k1}

× p{y|do(x),H0}dyP(H1|Dm). (5)

This objective integrates over all possible outcomes y af-
ter intervention. When X,Y are continuous, we employ
Monte-Carlo approximation to estimate the objective and
apply a smooth approximation of the indication function,
which enables gradient-based optimization. When X,Y are
discrete, we can directly evaluate the objective by enumer-
ating all possible intervention values to find the optimum.
Please refer Appendix B.3 for details.

Posterior update. Having obtained the optimal x, we get
y through interaction. We can append the interventional
data Dm+1 = Dm ∪ {x, y}. With these data, we update our
causal belief, a.k.a, posterior of each hypothesis as follows:

P (Hj |Dm+1) =
p ({x, y}|Hj)P(Hj |Dm)∑

j∈{0,1} p ({x, y}|Hj)P(Hj |Dm)

=
p(x)p(y|x,Hj)P(Hj |Dm)∑

j∈{0,1} p(x)p(y|x,Hj)P(Hj |Dm)
,

where p(y|x,Hj) are given by (2-3) for j = 0, 1.

We summarize the whole procedure in Alg. 1 with k = 1 in
lines 6-7.

4.3. Multi-step optimization

While the single-step intervention design presented in sec-
tion 4.2 provides a foundation, its greedy and myopic nature
may lead to suboptimal solutions (Rainforth et al., 2024).
In this section, we propose a multi-step version that opti-
mizes a sequence of interventions by considering cumula-
tive evidence across multiple steps, along with an efficient
algorithm for solving the resulting optimization problem.

Multi-step objective. Following (González et al., 2016;
Jiang et al., 2020), we optimize the next step by also looking
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Algorithm 1 Bayesian active intervention
1: Input: Observational data Dobs, total budget B
2: Output: Dint, posterior P(Hj |Dint) for j = 0, 1.
3: Initialize Dint = ∅, P(H0) = P(H1) =

1
2 .

4: Specify P(θ|Hj) from Dobs for j ∈ {0, 1}.
5: while |Dint| < B do
6: Set remaining budget K = B − |Dint|.
7: Obtain {xt}Kt=1 by maximizing

∑K
i=1 γ

kPDC(x1:i).
8: Perform do(X=x1) and observe y.
9: Update Dint ← Dint ∪ {(x1, y)}.

10: Update posterior P(Hj |Dint).
11: end while

ahead its next K − 1 steps (for simplicity, we omit Dm):

PDC(x1:K) = P {BF01({x1, y1} ∪ Dfut) > k0|H0}P(H0)

+ P {BF01({x1, y1} ∪ Dfut) < k1|H1}P(H1),
(6)

whereDfut = {z2, ..., zK} represents data of the next K−1
steps, with zi := (xi, yi). To determine the optimal x1 for
intervention, we need to optimize over x1:K . Here, K is
a trade-off between the short-term and long-term benefits.
Although a large value of K would maximize certainty in
the long run, it may affect the effectiveness in the immediate
steps. To balance the short-term and long-term benefits, we
propose to optimize the following objective:

J(x1, · · · , xK) :=

K∑
k=1

γkPDC(x1:k), (7)

where 0 < γ < 1 denotes the discount factor. Such a de-
sign is common in sequential experimental design (Foster
et al., 2021) and reinforcement learning (Huan & Marzouk,
2016) that balances immediate and future rewards. How-
ever, our work differs in its optimization target: instead of
maximizing information gain or expected utility, we directly
optimize the probability of reaching decisive causal conclu-
sions. This arises from the practical goal that determines
causal relationships within limited experimental budgets.

Optimization via dynamic programming. We consider
both categorical and continuous cases for optimizing (7).

When X is continuous, we can follow Sec. 4.2 to employ
Monte Carlo approximation for the smooth approximation
of the objective. When X is discrete, evaluating (7) requires
considering |X |k possible sequences, which is computa-
tionally infeasible when k is large. To accelerate, we use
dynamic programming, which builds upon two key proper-
ties that allow for efficient optimization, as presented below.

Proposition 4.1. Suppose X has lX categories, x̃1, ..., x̃lX .
For any k, PDC(x1:k) is symmetric with respect to its argu-
ments (x1, · · · , xk).

This property implies that PDC(x1:k) depends only on the
count of each value from X that appears in the sequence
x1:k. Therefore, we can rewrite J(x1, . . . , xK) as J(nK)
and PDC(x1:k) as PDC(nk), where nk ∈ |N|lX for any
k ≤ K represents the count vector. The i-th element of nk

records how many times the value x̃i appears in the sequence
x1:k. Upon this property, the following proposition ensures
us to optimize J(x1:K) via dynamic programming.
Proposition 4.2. Denote x∗

1:K as the optimal value of
J(x1:K). Given x∗

1:k−1 for each k ≤ K, the optimal value
of x∗

k only depends on n∗
k−1.

The proof is left to Appx. B.2. This property ensures us to
solve x∗ in a recursive manner:

Jk(nk) := max
xk

{PDC(nk) + γJk−1(nk − exk
)}

x∗
k := argmax

xk

{PDC(nk) + γJk−1(nk − exk
)}

(8)

for each k ≤ K, where exk
∈ {0, 1}lX represents the

one-hot encoded vector, where the element corresponding
to xk is 1, and all other elements are 0. In this recursive
formulation, the optimal solution to the original problem is
composed of the optimal solution to each subproblem.

Complexity Analysis. For a given remaining intervention
budget K, our algorithm determines the optimal interven-
tion sequence (x∗

1, ..., x
∗
K) that maximizes the cumulative

reward J(x1:K). Since both x∗ and J are determined by
count vectors n, we first enumerate all possible count vec-
tors and compute their corresponding PDC values (Phase 1),
then recursively compute the optimal cumulative rewards
Jk(n) for each k (Phase 2). Finally, we obtain x∗ through
backward optimization (Phase 3). The complexity analysis
for each phase proceeds as follows.

Phase 1: State Precomputation (lines 4-6). This phase
enumerates all feasible count vectors n = (n1, ..., n|X |)
where nx ∈ N denotes the number of applications for in-
tervention x ∈ X , constrained by

∑
x∈X nx ≤ K. This

represents all possible ways to distribute K interventions
across |X | different intervention types, with the total num-
ber of combinations being

(
K+|X |−1
|X |−1

)
= O(K |X |−1). Each

state’s PDC value is precomputed and stored for subsequent
optimization.

Phase 2: Recursive State Optimization (lines 8-12). For
each step k = 1, . . . ,K, the algorithm computes opti-
mal cumulative rewards Jk(n) through backward induc-
tion: i) State Generation: Enumerate all count vectors
with

∑
x nx = k, requiring O(k|X |−1) states. ii) State

Update: Evaluate all possible interventions x ∈ X using
the recursive relation (Equation (8)) with O(|X |) opera-
tions per state. Aggregating across all budget levels yields:∑K

k=1 O(|X | · k|X |−1) = O(|X | ·K |X |).
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Phase 3: Optimal Path Reconstruction (lines 14-18).
Starting from the terminal state n∗

K , the optimal intervention
sequence is reconstructed by iteratively subtracting unit vec-
tors: n∗ ← n∗ − ex∗

t
, k = K, . . . , 1 This backtracking

process requires O(K) operations, independent of |X |.

Total Complexity. Combining all phases yields: O(K |X |)+
O(|X | ·K |X |) +O(K) = O(|X | ·K |X |). which is a poly-
nomial complexity for K. This represents an exponential
improvement over the naive O(|X |K) brute-force approach.

Algorithm 2 Dynamic Programming for Optimal Interven-
tion Design

1: Input: Remaining budget K, intervention space X
2: Output: Optimal intervention sequence (x∗

1, ..., x
∗
K)

3: Phase 1: Precompute PDC values
4: for all count vectors n with

∑
x∈X nx ≤ K do

5: Store PDC(n) {Compute via causal model}
6: end for
7: Phase 2: Forward value iteration
8: for each budget k = 1 to K do
9: for all feasible nk with

∑
x nx = k do

10: Compute Jk(nk) via Equation (8)
11: end for
12: end for
13: Phase 3: Backward path retrieval
14: Initialize n∗ ← argmaxn JK(n)
15: for k = K down to 1 do
16: Find x∗

k that maximized Equation (8) for n∗

17: Update n∗ ← n∗ − ex∗
k

18: end for

4.4. Application to multivariate causal discovery

Our approach can be naturally applied to causal discovery
over multiple variables, when combined with off-the-shelf
approaches in identifying the target variable for intervention
(He & Geng, 2008; Hauser & Bühlmann, 2014). For such
target variable, it may be associated with multiple causal
directions to determine. We can therefore optimize the
value by combining the objective of all directions of interest.
Besides, since we do not update p{y|do(x)} once it is fixed,
we require it to be identifiable. To illustrate, we provide
examples over three variables in Appx. C.

Causal trees. The type of causal graph that naturally sat-
isfies this identifiable condition is causal trees, which can
be widely applied in various domains, such as microservice
systems diagnostics (Xin et al., 2023; Pham et al., 2024;
Fariha et al., 2020), general system anomaly detection (Han
et al., 2023; Palanki, 2024).

Specifically, given a tree skeleton with vertex set V and
edge set E , existing methods like (Greenewald et al., 2019)
provide strategies for selecting intervention targets. For each

selected intervention target V ∈ V , our goal is to determine
which neighboring node is its parent, thereby identifying
edge directions in the causal tree. Let N (V ) denote the
neighbors of node V in the tree skeleton. We design optimal
intervention values xV by maximizing (1) that is associated
with multiple hypothesis:∑

U∈N (V )

PDC(xV ;U),

where PDC(xV ;U) denotes the objective whose goal is to
discriminate H1 : V → U . from its null H0 : V ← U .

5. Experiments
In this section, we evaluate our method on bivariate causal
discovery and tree-structure causal graph learning (Gree-
newald et al., 2019). We also consider a switch-light reason-
ing task to demonstrate the usage of our method in embodied
artificial intelligence (Embodied AI).

Compared baselines. We compare our method with the
following baselines: i) Rand that randomly selects the inter-
vention value; ii) InfoGain (Tigas et al., 2022; Toth et al.,
2022) that optimizes the information gain to choose the
best intervention value. To accommodate this method to
our hypothesis testing setting, we compute the Bayes factor
after optimization to inform the decision; and iii) Multi-
step InfoGain that enhances (Tigas et al., 2022; Toth et al.,
2022) by incorporating the multi-step optimization scheme
described in Sec. 4.3.

Evaluation metrics. For bivariate causal discovery, we
report the rate of type I error and recall, which are the
probabilities of incorrectly rejecting the null hypothesis
when it is true, and correctly rejecting it when it is false,
respectively. We also report the probability of decisive
and correct evidence PDC defined in (1). For tree-structure
causal discovery and the switch-light reasoning task, we
report the total number of interventions required to recover
the causal graph.

Implementation details. We set the evidence levels in (1b)
and (1c) to k0 = 10 and k1 = 1/10, respectively. Results
for alternative parameter settings, including k0 = 30, k1 =
1/30 and k0 = 100, k1 = 1/100, are presented in D.3. The
selection of these parameter values is based on the classifi-
cation of Bayes factor detailed in Appendix D.1, following
(Kass & Raftery, 1995; Schönbrodt & Wagenmakers, 2018).
For Alg. 1, we set the total budge to B = 100 and the
number of observational samples to |Dobs| = 1000. For
the optimization over discrete variables, we consider Alg. 2.
For the optimization over continuous variables, we employ
the Adam optimizer with a learning rate of 0.1 and a total
iterations of 4000 steps. We decay the learning rate to 0.001
after the first 200 steps. The switch-light reasoning task
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Figure 1. Results on bivariate causal discovery. The two rows presents results in two different settings. Columns (a)-(d) report the type I
error rate, recall, PDC under H0, and PDC under H1, respectively, in relation to the number of intervention samples.

Figure 2. Ablation study on the multi-step optimization algorithm. The red and blue lines denote our method with and without multi-step
optimization, respectively. The first two columns are results from Setting-1, and the last two columns are results from Setting-2.

is implemented on the TongSim (Peng et al., 2024) engine
running on a server with NVIDIA 2080-Ti GPUs.

5.1. Bivariate causal discovery

Data generation. We consider binary variables1, where
the data is generated from P(Y ) ∼ Bern(0.5) (resp. P(X))
and P(X|Y = 0) ∼ Bern(p0), P(X|Y = 1) ∼ Bern(p1)
(resp. P(Y |X)) under the null hypothesis H0 (resp. the
alternative hypothesis H1). Here, the quantity |p0 − p1| =
TV(P(X|Y = 0),P(X|Y = 1)) measures the strength of
the causal influence. A small value of |p0 − p1| indicates
weak causal interaction, whereas a large one means the
causal influence is strong. Accordingly, we consider two
different data settings: Setting-1: Weak Causation with
|p0 − p1| ∈ [0.1, 0.2] and Setting-2: Strong Causation with
|p0 − p1| ∈ [0.8, 0.9]. To remove the effect of randomness,

1Please refer to Appx. D.4 for results on continuous variables.

we repeat the generation process 20 times. For each time,
we generate 100 replications under H0 and H1, respectively,
to record the type I error rate and recall.

Comparsion with baselines. We report the performance of
our method and the baseline approaches in Fig. 1. As shown,
in Setting-1: Weak Causation, our method outperforms the
baselines in recall, and achieving competitve type I error
rate, indicating effective causal discovery with controlled
false positives; wheras in Setting-2: Strong Causation, the
performance of our method and the baselines is similar.
To interpret these results, the advantage of our method in
Setting-1 largely stems from the use of the PDC as the
optimization objective, which facilitates a more efficient
collection of decisive and correct evidence (see columns (c)
and (d)), leading to a better intervention strategy. On the
other hand, for Setting-2, the causal relationship is strong
and therefore can be identified without the need for refined
interventions. Consequently, information gain-based meth-

7



Bayesian Active Learning for Bivariate Causal Discovery

Table 1. Results under different observational sample sizes |Dobs|

|Dobs|
Setting 1 Setting 2

Type I Error Recall Type I Error Recall
800 0.025±.015 0.607±.047 0.000±.00 1.000±.00

1000 0.0385±.022 0.627±.044 0.001±.00 1.000±.00

1200 0.0395±.013 0.623±.059 0.000±.00 1.000±.00

ods (Tigas et al., 2022; Toth et al., 2022) can also achieve
results similar to ours.

Ablative study. We conduct an ablation study on the
multi-step optimization algorithm introduced in Sec. 4.3
and present the results in Fig. 2. As we can see, the se-
quential optimization algorithm significantly enhances the
performance of our method, particularly in Setting-1 where
the causal relationship is more challenging to identify. This
result demonstrates that our sequential optimization scheme
can effectively balance the short-term and long-term bene-
fits, leading the optimization of our PDC objective towards
the optimal solution.

Influence of the observational sample sizes |Dobs|. In
Tab. 1, we report the type I error rate and recall under differ-
ent observation sample sizes |Dobs| = {800, 1000, 1200}.
As shown, our method works consistently well under dif-
ferent observational data settings. This result demonstrates
that our method is robust to changes in hyperparameters,
consistently achieving reliable causal identification.

5.2. Tree-structured causal graph learning

Data generation. We consider tree graphs with 30 ver-
tices. To generate the data, we first randomly sample 200
trees from the space of all possible trees. Next, we se-
lect a root vertex and generate its value by sampling from
Bern(0.5). For the remaining vertices, we sample accord-
ing to the following distributions: P(Xi|PAi = 0) ∼
Bern(ϵ),P(Xi|PAi = 1) ∼ Bern(1 − ϵ), where PAi rep-
resents the parent of Xi in the tree. For each vertex, we
randomly select ϵ from the interval [δ, 0.5− δ]. We explore
five different choices of δ ∈ {0.05, 0.1, 0.15, 0.2, 0.25}.

Results analysis. In Fig. 3, we show the averaged number
of interventions required when applying (Greenewald et al.,
2019) and our method to recover the tree graph. As we
can see, our method demonstrates consistent advantage over
baselines under all settings of δ. Particularly, in the most
challenging scenario with δ = 0.05, our method recover
the graph with averagely 140 interventions, which is about
10% fewer than the information-theoretic methods proposed
by (Tigas et al., 2022; Toth et al., 2022). These results
highlight the effectiveness of our Bayes factor objective in
optimizing reliable causal discovery, as well as the efficacy
of our sequential optimization algorithm in identifying the
optimal intervention values.
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Figure 3. Results on tree causal discovery. The Y-axis is the aver-
age number of interventions conducted when using (Greenewald
et al., 2019) and our method to recover the whole tree. The X-axis
represents different choices of the parameter δ. Please refer to
Appx. D.5 for variance analysis.

5.3. Causal reasoning in embodied AI

In this section, we consider a switch-light reasoning task to
illustrate the usage of our method in causal Embodied AI.

Experimental setup. We develop a simulation environ-
ment based on TongSim (Peng et al., 2024), which includes
an embodied agent, two switches (S1 and S2), and two
lights (L1 and L2). The agent is tasked to identify which
switch controls which light through active intervention. The
data of switch activation and lighting status is generated
using Bernouli distributions P(Li|Sj = 0) ∼ Bern(p0) and
P(Li|Sj = 1) ∼ Bern(p1) for i, j = 1, 2. We select the pa-
rameter |p0 − p1| = TV(P(Li|Sj = 0),P(Li|Sj = 1))
from the set {(0.2, 0.3), (0.4, 0.5), (0.6, 0.7), (0.8, 0.9)}
for various strength of causal influence. To further increase
the complexity, we introduce a latent confounder between
the switch activations, making the results unidentifiable
based solely on observational data. To remove the effect
of randomness, we repeat the generation process 100 times.
The environment and its underlying causal structures are
illustrated in Fig. 4.

Result analysis. Tab. 2 shows the average number of inter-
ventions needed to recover the underlying causal structures.
As we can see, our method demonstrates competitive per-
formance across various settings of |p0 − p1|. Notably, the
advantage is particularly pronounced when |p0−p1| is small
and the causal influence is weak, which aligns with observa-
tions from the bivariate causal discovery experiment. These
results underscore the applicability of our method to causal
reasoning tasks in Embodied AI.

6. Conclusions and limitations
In this paper, we propose a novel Bayesian framework for
active causal discovery. We formulated an objective based
on Bayes factors and the probability of obtaining decisive
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H0 : S1 S2

L1L2

H1 : S1 S2

L1 L2

Figure 4. The simulation environment for the switch-light reason-
ing task. The agent is required to identify which swich (S1 and
S2) controls which light (L1 and L2) though active exploration.
The causal graphs under H0 and H1 are shown on the right.

Table 2. Average number of interventions required in the switch-
light reasoning task. Best results are boldfaced.

Methods Range of |p0 − p1|
(0.2, 0.3) (0.4, 0.5) (0.6, 0.7) (0.8, 0.9)

Rand 46.15±14.5 14.77±2.7 7.44±1.3 4.00±0.7

InfoGain 33.51±13.9 9.97±3.9 5.05±1.7 2.60±0.8

Multi-step InfoGain 32.52±14.3 9.66±3.6 4.99±1.6 2.63±0.7

Ours 32.11±13.2 9.88±3.3 4.89±1.5 2.61±0.7

and correct evidence for causal relationships under interven-
tions. To optimize this objective, we present an efficient
sequential optimization algorithm grounded in dynamic pro-
gramming. The effectiveness of our method is demonstrated
through superior performance in bivariate causal discovery
and tree-structured causal graph learning tasks.

Limitation and Future works. While our method can ef-
fectively identify causal relationships in the bivariate case,
extending it to multivariate graphs can be non-trivial, since
we currently rely on the identifiability of p{y|do(x)} for
optimization. To resolve this problem, we will develop
algorithms that simultaneously estimate the interventional
distribution and compute the Bayes factors from the inter-
ventional samples for a dedicated solution. Moreover, we
are also interested in applying our method to various causal
reasoning and intuitive physics tasks in Embodied AI.
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Peharz, R., and Von Kügelgen, J. Active bayesian causal
inference. Advances in Neural Information Processing
Systems, 35:16261–16275, 2022.

Trimmer, P. C., Houston, A. I., Marshall, J. A., Mendl, M. T.,
Paul, E. S., and McNamara, J. M. Decision-making under
uncertainty: biases and bayesians. Animal cognition, 14:
465–476, 2011.
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A. The connection between PDC and information gain
Here we provide a detailed analysis of the relationship between our objective function and the information gain criterion.
The mutual information between the hypothesis H and new observation Y given intervention X = x can be expressed as:

I(Y ;H | X = x) =
∑
h

∫
Y
p{y,H = h | do(X = x)} log p{y,H = h | do(X = x)}

p{y | do(X = x),H = h}
dy

=
∑
h

∫
Y
p{y | do(X = x),H = h}P(H) log

p{y,H = h | do(X = x)}
p{y | do(X = x),H = h}

dy

(9)

For the term p{y,H = h | do(X = x)}/p{y | do(X = x),H = h} when h = H0, we can derive:

p{y,H0 | do(X = x)}
p{y | do(X = x),H0}

=
p{y | do(X = x),H0}∑

h′ p{y | do(X = x), h′}p{h′}

=
p{y | do(X = x),H0}

p{y | do(X = x),H0}p{H0}+ p{y | do(X = x),H1}p{H1}

=
BF01({(x, ynew)})

BF01({(x, ynew)})p{H0}+ p{H1}

(10)

Similarly, when h = H1, we can obtain:

p{y,H1 | do(X = x)}
p{y | do(X = x),H1}

=
1

BF01({(x, ynew)})p{H0}+ p{H1}
(11)

Therefore:

I(Y ;H | X = x) =

∫
Y
p{H0} log

BF01({(x, ynew)})
BF01({(x, ynew)})p{H0}+ p{H1}

p{Y = y | do(X = x),H0}dy

+

∫
Y
p{H1} log

1

BF01({(x, ynew)})p{H0}+ p{H1}
p{Y = y | do(X = x),H1}dy

(12)

Comparing the summands in equations 5 and above, we can observe that both are monotonic functions of BF01({(x, ynew)}).
When BF01({(x, ynew)}) increases, both the indicator function in PDC and the logarithm term in information gain increase,
indicating these objectives are aligned in preferring interventions that yield high Bayes factors when H0 is true, and low
Bayes factors when H1 is true.

B. Multi-step optimization
B.1. Proof of symmetry property

Here we provide a detailed proof that PDC(x1:k) is symmetric in its arguments (x1, · · · , xk) for any fixed k. This symmetry
property is crucial for reducing the computational complexity of our optimization problem.

Proposition B.1. For any fixed k, PDC(x1:k) is symmetric in its arguments (x1, · · · , xk).

Proof. By definition of PDC (Equation (6)), we have:

PDC(x1:k) = P{BF01({x1, y1} ∪ Dfut) > k0 | H0}P(H0) + P{BF01({x1, y1} ∪ Dfut) < k1 | H1}P(H1)

=
∑

y1:k∈Yk

P{y1:k | do(x1:k),H0}P(H0)I {BF01({x1, y1} ∪ Dfut) > k0}

+
∑

y1:k∈Yk

P{y1:k | do(x1:k),H1}P(H1)I {BF01({x1, y1} ∪ Dfut) < k1}

(13)

13



Bayesian Active Learning for Bivariate Causal Discovery

For each hypothesis Hj , the likelihood term can be expressed as:

P{y1:k | do(x1:k),Hj} =
∫ k∏

i=1

P{yi | do(xi), θ,Hj}P{θ | Hj}dθ (14)

The Bayes factor is the ratio of these likelihoods:

BF01({x1, y1} ∪ Dfut) =

∫ ∏k
i=1 P{yi | do(xi), θ,H0}P{θ | H0}dθ∫ ∏k
i=1 P{yi | do(xi), θ,H1}P{θ | H1}dθ

(15)

Both the likelihood terms and the Bayes factor are invariant under any permutation of the indices of (y1, · · · , yk) due to the
product form inside the integrals. By Fubini’s theorem, we can interchange the order of summation over y1:k in the original
expression. Since both the likelihoods and the decision criteria (through the Bayes factor) are invariant under permutations
of corresponding (xi, yi) pairs, PDC(x1:k) must be symmetric in (x1, · · · , xk).

This symmetry property leads to significant computational savings in the main optimization problem. Rather than evaluating
all possible ordered sequences of interventions, we only need to consider unique combinations of intervention values,
reducing the complexity from O(|X |k) to O(k|X |).

B.2. Proof of count-dependent only property

To develop an efficient optimization algorithm, we first prove that our k-step optimization decisions depend only on the
aggregate statistics of previous interventions. This property enables us to solve the problem recursively using dynamic
programming.

Proposition B.2. For the sequential optimization problem in Equation 7, the optimal policy π∗
t : X t−1 → X at step t

depends only on the aggregate statistics of previous interventions:

π∗
t (x1:t−1) = ft

(
t−1∑
i=1

exi

)

where exi is the unit vector corresponding to intervention xi, and ft : N|X | → X is some function.

Proof. Let nt ∈ N|X | denote the vector of counts for each intervention value in X up to step t, where the i-th element
represents how many times the i-th intervention value has been used in the first t steps. Our objective function is to maximize∑k

i=1 PDC (x1:i). By the symmetry property (Proposition 4.1), PDC (x1:i) = PDC (ni), meaning the value at each step
depends only on the count vector rather than the specific sequence of interventions.

We can then transform the optimization problem as follows:

max
x

K∑
k=1

γkPDC (x1:k)

⇐⇒ max
valid n1,··· ,nK

K∑
k=1

γkPDC (nk)

⇐⇒ max
valid nK

{
max

valid n1,··· ,nK−1

K−1∑
k=1

γkPDC (nk)

}
+ γKPDC (nK) (16)

Here, a count vector nk is valid if there exists an intervention sequence x1:k that generates it, i.e., if there exists some xk

such that nk = nk−1 + exk
. This decomposition reveals that at each step we need to: (i) track the current count vector nk,

(ii) choose the next intervention xk that generates a valid next count vector, and (iii) solve the subproblem for the previous
k − 1 steps. This structure suggests maintaining value functions Jk(nk) and policies πk(nk) for each possible count vector
at each step, which can be computed recursively through dynamic programming.
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B.3. Estimation and optimization for continuous interventions

In the continuous intervention setting, estimating interventional distributions and computing likelihoods requires careful
consideration of the continuous parameter space. Here we detail our approach for implementation.

B.4. Estimation of Interventional Distributions

For continuous interventions, we first estimate the parameters of the interventional distributions under each hypothesis using
maximum likelihood estimation:

Under H0 where X has no causal effect on Y , the interventional distribution reduces to the marginal distribution:

P{y | do(X = x), θ,H0} = P{y | θ} (17)

Under H1 where X causes Y , the interventional distribution equals the conditional distribution:

P{y | do(X = x), θ,H1} = P{y | x, θ} (18)

The maximum likelihood estimates θ̂ for each hypothesis are obtained by:

θ̂H = argmax
θ

Nobs∑
i=1

logP{yi | xi, θ,H} (19)

B.5. Parameter Prior and Likelihood Computation

Following (Kass & Raftery, 1995), we employ a data-dependent parameter prior centered around the MLE estimate. For
each hypothesis H, we approximate the parameter posterior as a Gaussian distribution:

P{θ | Dm,H} ≈ N (θ̂, Σ̂) (20)

where Σ̂ is the inverse Hessian of the negative log-likelihood at θ̂.

The marginal likelihood is then approximated using Laplace’s method:

P{y | do(X = x),H} ≈ (2π)d/2P{y | do(X = x), θ̂,H}|Σ̂|1/2P{θ̂ | H} (21)

In practice, computing the Hessian for all data points in each likelihood evaluation can be computationally intensive. An
alternative is to use an empirical Bayes approach with a point mass prior (Σ̂ → 0), which reduces the computation to a
likelihood ratio test while maintaining computational efficiency.

B.6. Smooth Approximation for Gradient-based Optimization

To enable gradient-based optimization in continuous intervention space, we need to address the non-differentiability of the
indicator functions in PDC. We introduce a smooth approximation using the exponential function:

Hβ(x) =

{
exp(−x/β) if x < 0

1 if x ≥ 0
(22)

This can be expressed compactly using the ReLU function:

Hβ(x) = exp(−ReLU(−x)/β) (23)

Using this approximation, we can first rewrite the single-step PDC in a differentiable form:

PDC(Dm, x) ≈ Ey∼m̂0
{exp(−ReLU(k0 − BF01(Dm ∪ {(x, y)}))/β)}P(H0 | Dm)

+ Ey∼m̂1
{exp(−ReLU(BF01(Dm ∪ {(x, y)})− k1)/β)}P(H1 | Dm)

(24)
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The expectations are approximated using Monte Carlo sampling:

P̂DC =
1

N

N∑
i=1

exp
{
−ReLU(k0 − BF01(Dm ∪ {(x, y0i )}))/β

}
P(H0 | Dm)

+
1

N

N∑
i=1

exp
{
−ReLU(BF01(Dm ∪ {(x, y1i )})− k1)/β

}
P(H1 | Dm)

(25)

Similarly, for the multi-step case, we can write:

PDC(x1:K) ≈ Ey∼m̂0
{exp(−ReLU(k0 − BF01(Dm ∪ {(x1, y1)} ∪ Dfut))/β)}P(H0 | Dm)

+ Ey∼m̂1
{exp(−ReLU(BF01(Dm ∪ {(x1, y1)} ∪ Dfut)− k1)/β)}P(H1 | Dm)

(26)

where Dfut = {(x2, y2), ..., (xK , yK)} represents data of the next K − 1 steps.

This differentiable approximation enables the use of gradient-based optimization methods to find the optimal intervention
values. The smoothing parameter β controls the trade-off between approximation accuracy and optimization stability.

C. Application to multivariate causal discovery
To illustrate both the applicability and limitations of our method in general graphs, consider a three-node complete graph
(as shown in Figure 5). Figure 6 shows all possible configurations under H0 : X ← Y , and Figure 7 shows configurations
under H1 : X → Y .

X Y

Z

?

??

Figure 5. A complete three-node graph with uncertain edge directions

X Y

Z

(a) Case (i)

X Y

Z

(b) Case (ii)

X Y

Z

(c) Case (iii)

Figure 6. Possible configurations under H0 : X ← Y

X Y

Z

(a) Case (i)

X Y

Z

(b) Case (ii)

X Y

Z

(c) Case (iii)

Figure 7. Possible configurations under H1 : X → Y

When testing the causal direction between X and Y in this setting, under H0 : X ← Y , the possible configurations are
shown in Figure 6. For all these cases, P{Y | do(X),H0} = P{Y } since X has no causal effect on Y.
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Under H1 : X → Y , we have the configurations shown in Figure 7. The interventional distributions differ across these
cases: for cases (a) and (b), P{Y | do(X),H1} = P{Y | X}, while for case (c), P{Y | do(X),H1} =

∫
P{Y | X,Z =

z}P{Z = z}dz.

However, when certain structural information is known (e.g., if we know X ← Z → Y exists), the interventional
distributions become uniquely identifiable, corresponding to case (c) in Figure 7. In such cases, our method directly applies.

D. Experiments
D.1. Bayes Factor classification

The Bayes factor can be classified into different categories of evidence strength (Jeffreys, 1961; Schönbrodt & Wagenmakers,
2017), which helps interpret its value in supporting H0 or H1. Table 3 presents these classifications:

Table 3. Classification for the evidence levels of the Bayes factor BF01 (from (Schönbrodt & Wagenmakers, 2017) adapted from (Jeffreys,
1961)).

Bayes factor Evidence Level
> 100 Extreme evidence for H0

30− 100 Very strong evidence for H0

10− 30 Strong evidence for H0

3− 10 Moderate evidence for H0

1− 3 Anecdotal evidence for H0

1 No evidence
1/3 - 1 Anecdotal evidence for H1

1/10 - 1/3 Moderate evidence for H1

1/30 - 1/10 Strong evidence for H1

1/100 - 1/30 Very strong evidence for H1

< 1/100 Extreme evidence for H1

This classification provides a systematic framework for interpreting Bayes factors, with values further from 1 indicating
stronger evidence for the respective hypothesis. The reciprocal nature of the classification (e.g., BF01 > 100 and
BF01 < 1/100 representing extreme evidence for opposing hypotheses) reflects the symmetry in evidence interpretation.

D.2. Additional results on the discrete setting with k0 = 10

This appendix presents comprehensive performance results across the full range of total variation (TV) distances from 0
to 1.0, examining how the choice of |p1 − p0| described in Section 5 affects both the recall rate and Type I error control.
For each TV distance range (spanning intervals of 0.1), we show recall rates under H1 and Type I error rates under H0,
presented in consecutive columns.
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Figure 8. Performance evaluation showing recall rates and Type I error rates for different causal strengthness (evalueted by the total
variation (TV) distance ranges between P{Y | do(X = 0)} and P{Y | do(X = 1)}

These results provide a complete picture of method performance across different distributional distances, complementing the
focused analysis of representative TV ranges presented in the main text. The figures maintain a consistent layout: each row
shows two pairs of metrics - recall and Type I error rates for consecutive TV distance ranges, allowing direct comparison of
performance as the distributional similarity varies from highly similar (TV range 0-0.1) to highly distinct (TV range 0.9-1.0).

18



Bayesian Active Learning for Bivariate Causal Discovery

Figure 9. Results on bivariate causal discovery with k0 = 30 (very strong evidence). The two rows presents results in two different
settings. Columns (a)-(d) report the type I error rate, recall, PDC under H0, and PDC under H1, respectively, in relation to the number of
intervention samples.

The paired layout facilitates examination of how performance evolves across adjacent TV ranges, with each row capturing
the transition between consecutive intervals.

D.3. Performance evaluation with different evidence thresholds

Following established Bayesian evidence interpretation frameworks (Jeffreys, 1961; Schönbrodt & Wagenmakers, 2018), we
conducted additional experiments with more stringent evidence thresholds to verify the robustness of our proposed method.
This subsection presents results for k0 = 30 (very strong evidence) and k0 = 100 (extreme evidence), complementing the
k0 = 10 results shown above. These experiments were conducted in response to reviewer feedback and demonstrate the
utility of our methods across different evidence strength requirements.

Results with stringent evidence thresholds. We report the performance under more stringent evidence requirements in
Fig. 9 and Fig. 10. Our method consistently outperforms baselines in recall while maintaining competitive type I error rates
across both k0 = 30 and k0 = 100 settings. The advantage stems from our PDC-based optimization that efficiently collects
decisive evidence. Importantly, the superior performance of our approach remains consistent across different evidence
threshold requirements, demonstrating the robustness of the proposed intervention strategy.

D.4. Experiments on Continuous Settings

Experimental Setup For continuous intervention variables, we employ the Adam optimizer (Kingma & Ba, 2014) with
cosine learning rate scheduling (Loshchilov & Hutter, 2016) (initial rate 0.1, cosine decaying to 0.001 over 200 steps, total
4000 optimization steps). Following the same rejection criterion as in the discrete case, we maintain k0 = 1

k1
= 10 and use

ns = 1, 000 observational samples with T = 100 sequential interventions.

Data Generation We evaluate our method using additive noise models (ANMs):

Under H1 : X → Y :
Y = f(X) + ε (27)

Under H0 : X ← Y :
X = f(Y ) + ε (28)

Here f(x) = tanh(x) is the nonlinear link function. To test robustness across different noise distributions, we create a pool
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Figure 10. Results on bivariate causal discovery with k0 = 100 (extreme evidence). The two rows presents results in two different
settings. Columns (a)-(d) report the type I error rate, recall, PDC under H0, and PDC under H1, respectively, in relation to the number of
intervention samples.

of noise models including uniform, normal, Student’s t, and two different 4-component Gaussian mixtures:

ε ∼
4∑

i=1

πiN (µi, σ
2
i ), π =

1

8
1+

3

4
Softmax(z) (29)

where z ∼ N (0, I4). For each experimental setting, we randomly select one distribution from this pool. This approach
allows us to evaluate our method’s performance under diverse and complex noise patterns.

Parameter Estimation For each hypothesis H, we model the functional relationship as:

fθ(x) = a tanh(bx) (30)

where θ = (a, b) are learnable parameters. The output distribution is modeled using a mixture of 4 Gaussian components
to approximate arbitrary distributions flexibly. We jointly learn these structural parameters along with the mixture model
parameters (means, variances, and mixing weights) using maximum likelihood estimation on observational data. The
optimization is performed using Adam optimizer (Kingma & Ba, 2014) for 10,000 steps with an initial learning rate of 0.1,
which is decreased by a factor of 2 at steps 3000, 5000, and 7500.

After learning the model parameters from observational data, we compute the likelihood of interventional samples using the
method described in Appendix B.5.

Results The experimental results in Figure 11 demonstrate that all methods achieve comparable performance in the
continuous setting. Both recall and Type I error rates show similar performance levels across different approaches, with
well-controlled Type I error rates. This convergence can be attributed to the identifiability properties of ANMs, where causal
direction can often be determined from observational data alone. The intervention selection strategy thus becomes less
critical compared to the discrete case, highlighting how model structure influences the complexity of causal discovery.

D.5. Variance Analysis for Tree Structure Experiments

To better understand the performance characteristics of different methods, we analyze the distribution of required interven-
tions across 200 random trials, visualized through violin plots partitioned into five groups. While the average performance
of random intervention appears competitive in certain settings, the violin plots reveal high variance in its performance
distribution. Specifically, the random strategy exhibits a bimodal distribution with a concentrated mass of trials requiring
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Figure 11. Performance comparison in continuous settings showing recall and Type I error rates. All methods achieve comparable
performance with relatively few interventions, suggesting that in the continuous additive noise setting, causal direction can be effectively
determined regardless of the intervention strategy.

few interventions and a longer tail of trials requiring significantly more interventions. In contrast, both information gain and
multi-step information gain methods demonstrate more uniform distributions, indicating more consistent and predictable
performance across trials. This suggests that the seemingly competitive average performance of random intervention is
largely driven by a small subset of fortunate trials, rather than reliable systematic efficiency.
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Figure 12. Distribution of required interventions across different effect sizes ε, visualized using violin plots. Each violin plot represents
the distribution of 200 trials partitioned into five groups.
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