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Abstract001

Existing LLM-based medical question-002
answering systems lack citation generation003
and evaluation capabilities, raising concerns004
about their adoption in practice. In this work,005
we introduce MedCite, the first end-to-end006
framework that facilitates the design and007
evaluation of LLM citations for medical008
tasks. Meanwhile, we introduce a novel009
multi-pass retrieval-citation method that gen-010
erates high-quality citations. Our evaluation011
highlights the challenges and opportunities of012
citation generation for medical tasks, while013
identifying important design choices that have014
a significant impact on the final citation quality.015
Our proposed method achieves superior016
citation precision and recall improvements017
compared to strong baseline methods, and we018
show that evaluation results correlate well with019
annotation results from professional experts.020

1 Introduction021

Large Language Models (LLMs) have demon-022

strated remarkable capabilities in various natural023

language processing tasks, such as question an-024

swering (QA) and instruction following (Kaplan025

et al., 2020; Wei et al., 2022a,b). Progress in026

LLMs has also enabled the development of med-027

ical agents that understand language used by pa-028

tients and physicians, offering rich just-in-time as-029

sistance (Singhal et al., 2022, 2023; Temsah et al.,030

2023; Tangadulrat et al., 2023; Maples et al., 2024).031

While the early signs are positive, current LLM-032

powered medical QA systems still have multiple033

limitations. For example, medical data often con-034

tains sensitive information, such as personal health035

records, which cannot be used for training large lan-036

guage models without strict compliance with eth-037

ical standards (Gilbert et al., 2023). Furthermore,038

trustworthiness is particularly important in the039

medical field. Issues such as hallucination, where040

the model generates information that is incorrect041

Figure 1: Medical QA system comparison. State-of-the-
art systems generate answers without citations. Med-
Cite not only generates answers but also associates each
answer with citations, improving the verifiability and
trustworthiness of the medical system.

or misleading, pose significant challenges to the re- 042

liability of LLM-based medical systems (Pal et al., 043

2023; Ahmad et al., 2023; Huang et al., 2024). 044

To overcome the issue, researchers and practition- 045

ers have studied retrieval-augmented generation 046

(RAG) (Xiong et al., 2024a; Yang et al., 2024), 047

which combines LLMs with information retrieval 048

from external trustworthy data source (Canese and 049

Weis, 2013). By providing the model with accurate 050

and relevant medical knowledge, these systems 051

allow LLMs to maintain relevance in responses. 052

Despite promising results, existing methods lack 053

verifiability (Liu et al., 2023), meaning that the an- 054

swers provided are not backed by reliable sources 055

or evidence. This can lead to misinformation and 056

potentially harmful consequences if incorrect med- 057

ical advice is followed. For instance, as shown in 058

Fig. 1, when providing a diagnosis based on a list 059

of symptoms without any references, the accuracy 060

of prognosis or treatment recommendations cannot 061

be assured, which creates a sense of uncertainty, 062

leading to suboptimal or even harmful decisions. 063

One promising approach to mitigate the verifia- 064

bility concern is through attribution (Bohnet et al., 065

2022; Huang and Chang, 2024), i.e., associating 066

statements with citations, which offers the system 067

more credibility and accountability while provid- 068

ing users a way to explore the source in greater 069
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Figure 2: The overview figure of MedCite.

depth and verify the information source. However,070

although there are prior efforts that analyze cita-071

tion capabilities through LLMs on general domain072

QA tasks (Liu et al., 2023; Gao et al., 2023c; Djed-073

dal et al., 2024), citing sentences for medicine is074

especially challenging and not widely adopted in075

practice due to the following reasons.076

First, existing works on medical QA often lever-077

age multi-choice accuracy to benchmark and eval-078

uate their performance (Xiong et al., 2024a; Yang079

et al., 2024; Yu et al., 2024), which focuses on080

evaluating the ability to select the correct answer081

from a set of given options. However, citation gen-082

eration is more challenging due to its open-ended083

nature. For example, when prescribing medica-084

tion for a rare genetic disorder or planning surgery085

for a patient, both physicians and patients have086

to rely on richer information. Therefore, a query087

can have multiple answers, supported by multiple088

possible sources. These aspects are important to089

consider for the evaluation of citation generation090

methods, but existing medicine QA frameworks do091

not inherently account for them.092

Second, there is a huge design space for citation093

generation with complex interactions among re-094

trievers (Asai et al., 2024; Izacard et al., 2022),095

backbone LLMs (MetaAI, 2024; Zhang et al., 096

2024; OpenAI, 2023), and citation generation al- 097

gorithms (Gao et al., 2023c). Therefore, it can be 098

challenging to determine which aspects contribute 099

the most. However, the analysis is crucial for de- 100

veloping strategies to improve the verifiability of 101

medical systems. 102

Third, while there has been a continuous rise 103

in the number of contributions in this field (Gao 104

et al., 2023c; Xiong et al., 2024a; Yang et al., 2024; 105

Yu et al., 2024), there is a noticeable deficiency 106

in open-source frameworks useful for designing, 107

developing, and evaluating citation generation qual- 108

ity for medical tasks. The existing citation eval- 109

uation frameworks are constructed from generic 110

questions, where the selection of metrics and eval- 111

uators for medical tasks remains an open question. 112

Moreover, it is quite costly to obtain high-quality 113

medical expert annotations, which demands a high- 114

quality classifier to judge whether a citation at- 115

tributes to a statement. 116

In this paper, we tackle these challenges with 117

the hope of fostering research in improving veri- 118

fiability for medicine systems. In particular, our 119

contributions are as follows: 120

• An in-depth study of different citation meth- 121

ods and key design components for medical 122

tasks using LLMs, ranging from text genera- 123

tion methods, information retrieval methods, 124

and citation attribution methods. Our study 125

disentangles the importance of different fac- 126

tors from the backbone LLM. 127

• We present MedCite, the first end-to-end sys- 128

tem for enabling LLMs to generate verifiable 129

texts for medical QA systems with automatic 130

evaluation. Meanwhile, we introduce a novel 131

multi-pass retrieval-citation method that con- 132

ciliates retrieval-augmented generation and 133

post-generation citation. 134

• A comprehensive evaluation of MedCite 135

across different LLMs, which shows that Med- 136

Cite outperforms existing methods in both 137

text generation and citation generation quality 138

by up to 47.39% recall and 31.61% precision 139

respectively. We conduct human evaluation 140

by having medical doctors verify the attribu- 141

tion results. The results show that our auto- 142

matic evaluation pipeline correlates well with 143

domain expert judgments, demonstrating the 144

effectiveness of efficient and automatic cita- 145

tion evaluation for medicine. 146

2



2 Problem Setup147

In this section, we first formulate the citation gen-148

eration task for biomedical QA and then give an149

overview of the approaches that we will examine150

experimentally in the following section. Due to151

space limitations, we have included the related152

work on biomedical QA and citation methods for153

LLM generation in Appendix A.154

2.1 Problem Objective155

The objective is to develop a system that automat-156

ically add relevant and accurate citations to text157

statements generated by a large language model.158

In particular, the inputs to the system include a user159

query q, an LLM Φ, an external database D, which160

contains ground truth documents. The outputs of161

the system include a generated text passage, which162

contains a list of statements S = {s0, s1, ..., sn} by163

Φ. For each statement si, a set of in-line citations164

Ci = {c0i , c1i , ..., }, where cji ∈D, is assigned to it.165

2.2 Dataset166

Following prior work (Bolton et al., 2024; Ya-167

sunaga et al., 2022; Xiong et al., 2024a), We use168

the BioASQ-Y/N dataset (Nentidis et al., 2024),169

which is a commonly used dataset for benchmark-170

ing biomedical question answering systems. The171

dataset consists of questions, human-annotated an-172

swers, and relevant contexts that provide the nec-173

essary information to answer the questions. The174

BioASQ-Y/N dataset has three characteristics that175

motivate us to use it for the study: 1) Unlike other176

datasets used for medical QA (Jin et al., 2020;177

Hendrycks et al., 2021; Pal et al., 2022), which are178

primarily multi-choice QA tasks, BioASQ-Y/N not179

only provides option choices (Yes/No) but also a180

gold set of answers w.r.t the informativeness of an-181

swer statements. 2) BioASQ-Y/N provides ground182

truth labels of the supporting documents for each183

question. Meanwhile, it can be easily modified184

to answer questions without the ground-truth doc-185

uments provided, which represents a more real-186

istic medical setting. 3) It has not so far been187

used by existing generic citation methods. Apart188

from BioASQ used for the analysis in Section 3,189

we also include PubMedQA (Jin et al., 2019) in190

Section 5. We include the details of the datasets191

and hyperparameters in Appendix D. On the exter-192

nal database side, we primarily consider PubMed193

database (Canese and Weis, 2013), which contains194

24.6 million biomedical documents vetted by med-195

ical professionals. This vast database provides ac-196

cess to a wealthy source of precise and legitimate 197

documents LLM-generated text can attribute to. 198

2.3 Evaluation Metrics 199

For medicine QA, evaluating both text and citation 200

generation quality is crucial to ensure that the out- 201

puts of LLMs are not only coherent and relevant 202

but also well-supported by accurate citations. As 203

such, we consider the following aspects. 204

Answer correctness. Different from multi-choice 205

QA, real medical systems often generate long and 206

open-ended answers. Therefore, we use ROUGE- 207

L (Lin, 2004) and MAUVE (Pillutla et al., 2021) 208

to evaluate the correctness and relevance of the 209

answer based on the ground truth answer. We still 210

let the model generate a Yes/No answer in addi- 211

tion to the long answer, such that we can make 212

comparisons with existing non-citation methods. 213

Citation quality. We consider an attribution judge 214

Attr : X ,Y → {0, 0.5, 1} that outputs 1 if the state- 215

ments X can be fully attributed to the statements Y , 216

i.e., Y is the source of X , 0.5 if X can be partially 217

attributed to Y , and 0 otherwise. To justify the 218

introduction of partial support, we refer to findings 219

from recent studies, such as Wührl et al. (2024), 220

which showed that in medical fact-checking tasks, 221

62.4% of claims were partially supported by evi- 222

dence. This highlights the importance of capturing 223

partial attribution, as it is a frequent occurrence in 224

real-world medical statements. 225

For the use of citations in medical QA, an an- 226

swer can have multiple verifiable statements, and 227

multiple citations may be attached to support one 228

statement. With the attribution judge, we measure 229

citation qualities with two metrics: citation recall, 230

and citation precision. Both citation recall and pre- 231

cision heavily affect the usability of medical QA, 232

as a high recall means that the generated responses 233

are well supported by evidence, and a high preci- 234

sion indicates that the assigned citations have high 235

quality that can be used to verify the truthfulness of 236

the generated texts. For simplicity, let us consider 237

a single statement s with n citations c1, c2, . . . , cn, 238

where each of them is a set of axioms. 239

Citation recall. We define recall as a statement- 240

level metric, which measures whether all the infor- 241

mation in the statement is fully supported by the 242

citations. Such a metric can be formally defined as 243

Recall(s, c1, · · · , cn) =


1 if s ⊆

n⋃
i=1

ci,

0 if s ̸⊆
n⋃

i=1

ci.

(1) 244
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In our experiments, we use the concatenation245

of the citation documents to represent the union246

of citations and make a judgment on whether the247

statement can or cannot be fully supported by the248

concatenated citations. Using the attribution judge249

defined above, we have Recall(s, c1, · · · , cn) =250

1 if and only if Attr(s,
⋃n

i=1 ci) = 1. We then251

average over all statements to get the final recall252

score of an answer passage.253

Citation precision. Following previous research254

(Liu et al., 2023), we define the precision metric255

as a citation-level measurement, which assesses if256

each individual citation contributes to supporting257

the statement. Precision is 1 for a citation if it258

either fully or partially supports the statement by259

containing at least some of the necessary axioms260

from the statement. Formally, the precision of a261

citation ci for the given statement s is defined as262

Precision(s, ci) =
{
1 if s ∩ ci ̸= ∅,
0 if s ∩ ci = ∅.

(2)263

The precision of ci for s is computed as 1 if and264

only if Attr(s, ci) > 0. When having multiple265

statements, we compute its citation precision by266

averaging the precision scores of all citations in it.267

Citation F1. We use citation F1 (Liu et al., 2023)268

to measure the combined citation precision and269

recall via: F1 = 2× citation precision×citation recall
citation precision+citation recall .270

3 Citation Procedure Analysis271

This section explores and quantifies which choices272

are important for successfully citing sentences for273

medical tasks. Given that each component can be274

varied, we investigate how each of these compo-275

nents impacts the citation generation quality while276

isolating the other components.277

3.1 Parametric vs. Non-Parametric Citation278

Recent LLMs can be prompted to include citations279

in the text they generate by relying on its para-280

metric contents, i.e., information internalized from281

the training data. Given this advancement, one282

question naturally arises: can we rely on LLMs to283

self-cite their generated sentences? We compare284

this strategy with non-parametric citation where285

we generate citations by purely relying on non-286

parametric information-retrieval (IR) contents, e.g.,287

PubMed. In particular, for parametric citation, we288

generate a prompt that includes the user question,289

and a directive instruction for LLM to generate290

answers while adding in-line citations in formatted291

output for each statement. In this case, the model292

solely depends on its pre-training data to generate293

citations. For the non-parametric citation, we let 294

LLM to directly generate an answer without cita- 295

tions. Then we use a dense retriever MedCPT (Jin 296

et al., 2023) to retrieve a list of relevant document 297

(e.g., top-3) from D for each answer statement and 298

those documents as in-line citations. The prompts 299

used can be found in Appendix B.
Citation
Method Model Accuracy

(EM)
Text Quality Citation Quality

MAUVE ROUGE-L Rec. Prec.

Parametric (LLM)
Llama-3-8B-I. 74.76 61.94 17.72 / /
UltraMedical 69.09 67.70 13.96 / /

GPT-4o 88.51 74.82 20.03 / /

Non-parametric (IR)
Llama-3-8B-I. 73.95 65.31 19.05 60.89 53.90
UltraMedical 68.12 51.18 12.69 52.48 62.32

GPT-4o 87.70 70.15 20.20 79.72 80.95

Table 1: Comparison of parametric (LLM) vs. non-
parametric (IR) citation methods across different LLMs.

300

Table 1 compares the parametric vs. non- 301

parametric citation results across different LLMs. 302

We find that while LLMs have made significant 303

strides in understanding and following human in- 304

structions, they do have limitations when it comes 305

to generate citations in medical settings. In partic- 306

ular, both Llama-3-8B-I. and UltraMedical cannot 307

follow those instructions accurately. As a result, 308

the generated citations are either incorrect, fabri- 309

cated, or ill-formatted, and even though a small 310

proportion of them do exist, such citations might 311

not be freely accessible (e.g., some scientific ar- 312

ticles are behind a paywall). As such, without 313

API access to the content of any scientific articles 314

generated as citations by parametric methods, it is 315

challenging to automatically evaluate their quality. 316

This is unsurprising because these models are still 317

trained on next-token prediction, and LLM needs 318

to extrapolate the citation information with its pre- 319

training knowledge or hallucination. Interestingly, 320

GPT-4o not only achieves the highest accuracy 321

on the BioASQ task, but it can also consistently 322

follow the instructions to generate well-formatted 323

citations. However, the references GPT-4o gener- 324

ated are outdated (all before year 2018), making it 325

hard to include new studies. We include several ex- 326

amples of generated citations in Appendix C. This 327

observation highlights a critical limitation of the 328

parametric-only approach when applied to citation 329

generation, particularly in the medicine domain 330

with public LLMs. Given these limitations, we 331

focus on non-parametric citation methods using 332

trusted datasets like PubMed in the remainder of 333

the experiments. 334
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Figure 3: Comparison of parametric (LLM) and non-parametric (IR) citation generation pipelines.

3.2 RAG Makes Better Citations335

While non-parametric citation improves the cita-336

tion quality, the answer statement generation still337

relies on the pre-training data itself. Therefore, the338

answers can be based on outdated or incomplete339

medical data. Despite multiple recent papers ob-340

serving that adding retrieval-augmented generation341

(RAG) helps improve LLM to better understand342

biomedical tasks, producing higher accuracy than343

non-RAG based approaches (Xiong et al., 2024a;344

Yang et al., 2024; Yu et al., 2024), experiments345

on how RAG affects both text and citation quality346

are rarely reported. We dig deeper into the role347

of RAG in citation generation by comparing sev-348

eral different methods. For all methods, we use349

the same dense MedCPT based retriever to assign350

top-k (e.g., top-3) relevant documents as citations.351

Non-RAG (CoT): We perform chain-of-thought352

(CoT) prompting (Wei et al., 2022b) to leverage the353

reasoning capability of LLMs to provide an answer354

(e.g., a polar Yes/No answer) and text explanations355

S to the question q. This is similar as the method356

in (Xiong et al., 2024a), but no supporting context357

is retrieved from the external database.358

RAG: We first retrieve a shortlist of top-k support-359

ing documents {d1, ..., dk} to the query q from D.360

We then feed the concatenate shortlist documents361

together with q to the LLM, and instruct the LLM362

to generate the answer and text explanations S.363

RAG w. Oracle: Similar to the above config-364

uration, but using the ground truth supporting365

documents (i.e., assuming a perfect retriever) in366

BioASQ for each question.367

Retrieval
Method

Accuracy
(EM)

Text Quality Citation Quality

MAUVE ROUGE-L Recall Precision

Non-RAG 71.36 53.24 18.07 59.05 52.93

RAG 82.85 52.22 14.79 49.01 42.77

RAG w. Oracle 94.34 63.45 20.63 57.46 43.20

Table 2: Comparison of RAG and Non-RAG methods
for citation generation.

Table 2 shows a comparison of non-RAG and368

RAG methods for medicine. Interestingly, we ob-369

serve that without RAG, the correctness of gen-370

erated answers tend to be low (71.36). However,371

the citation recall and precision are relatively high.372

Conversely, integrating RAG leads to a significant 373

increase in answer correctness while resulting a 374

decrease in citation recall and precision. This is 375

because the citation quality metrics only assess 376

whether the LLMs’ generated statements are sup- 377

ported by verifiable sources, rather than directly 378

assessing the correctness of each statement. There- 379

fore, it is possible that the identified citations can 380

still support a hallucinated statement, even though 381

that statement is irrelevant to the user’s question. 382

This finding suggests that we need to holistically 383

assess LLM’s capability for both text and citation 384

generation. Specifically, we treat the correctness 385

of the answers (e.g., accuracy and text quality) as 386

a prerequisite of the evaluation of citations, and en- 387

abling citation capabilities should not compromise 388

the quality of answer generation. 389

Table 2 also shows that by using the ground truth 390

documents (oracle), the best obtainable results for 391

accuracy using RAG can go up to 94.34% and the 392

citation recall and precision can go up to 57.46% 393

and 43.20% respectively, leaving room to investi- 394

gate better retrieval augmentation methods. Never- 395

theless, these results indicate that RAG is crucial 396

to generating context relevant texts and is a critical 397

step for getting high-quality citations. Therefore, 398

we use RAG in the remainder of our experiments. 399

3.3 The Efficacy of Citation Seeker 400

Till now we have fixed the choice of the citation 401

seeker, i.e., how to find relevant documents and 402

assign them as citations to a statement. However, 403

one may wonder how the choice of citation-seeking 404

methods affects citation quality. To investigate this, 405

we consider the following strategies: 406

Pre-generation shortlist + LLM rerank. For 407

each generated statement, we instruct LLM to as- 408

sign a document retrieved as one of the supporting 409

documents from the pre-generation retrieval. No 410

additional retrieval is needed in this case. 411

Retriever-only re-retrieval. For each generated 412

statement, we relaunch the retriever to retrieve top- 413

k documents relevant to the statement from D and 414

append those as citations for each statement. 415

Re-retrieval + NLI rerank. For each generated 416

statement, we relaunch the retriever to retrieve top- 417

k documents relevant to the statement from D, and 418
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use a light-weighted medicine NLI model to assign419

those retrieved documents as citations.420

Re-retrieval + LLM rerank. Similar as above421

config, except that we instruct LLMs to assign422

retrieved documents as citations.423

Attribution Strategy Accuracy
(EM)

Text Quality Citation Quality

MAUVE ROUGE-L Recall Precision

Pre-Gen. shortlist + LLM rerank 83.33 59.22 16.78 54.66 41.40

Retriever-only re-retrieval 83.33 59.22 16.78 65.69 47.69

Re-retrieval + NLI rerank 83.33 59.22 16.78 65.38 55.12

Re-retrieval + LLM rerank 83.33 59.22 16.78 65.78 60.95

Table 3: Comparison of citation seeking methods. We
use the Hybrid configuration described in Section 4
because it has overall better citation quality.

Table 3 shows the comparison results of different424

citation seeking strategies. We find that re-retrieval425

+ LLM reranking has the best overall performances,426

which confirms the benefits of (1) re-retrieval leads427

to improved citation precision and recall, and (2)428

citation reranking as an effective approach for seek-429

ing high quality citations. It is worth noting that430

while re-retrieval + NLI reranking achieves similar431

citation recall but with 5.8% lower recall precision,432

the NLI model is overall much more lightweight433

than an LLM. Therefore, if cost is a major con-434

straint, a medicine-specialized NLI classifier can435

also be considered for citation seeking.436

4 MedCite: A Citation Generation437

System for LLM-Powered Medical QA438

In the previous section we investigate several im-439

portant design choices for citation generation of440

medical tasks. We now aggregate these improve-441

ments and evaluate their combined impact and442

provide it as an open-source framework MedCite443

(Fig. 2). We call our final approach MedCite-444

Hybrid. Specifically, MedCite-Hybrid is built with445

non-parametric citation (§ 3.1), RAG (§ 3.2), and446

the retrieval + LLM reranking citation seeking447

method (§ 3.3). Additionally, we investigate an-448

other two important factors that have been under-449

emphasized in previous work: (1) what if we450

combine parametric and non-parametric citations451

through multi-pass approaches; and (2) the impact452

of retriever choices to the citation seeking.453

Multi-pass citation generation. Intuitively, it454

seems possible to leverage both LLM’s internal455

parametric knowledge to provide initial answer456

and citations while employing post-generation non-457

parametric method to validate and refine the cita-458

tions, utilizing the externally retrieved content. To459

verify our hypothesis, we consider a new multi-460

pass method: Similar to the approach in § 3.2, 461

we employ RAG to generate answers. Different 462

from that approach, we instruct LLM to assign 463

citations to statements based on the retrieved doc- 464

uments while answering the question. Then we 465

retrieve top-k relevant documents to each state- 466

ment. We deduplicate any redundant citations 467

from these two stages and combine the remaining 468

ones to form the final citations. Table 4 presents 469

the comparison results of the double-pass method 470

against non-parametric citation. The results in- 471

dicate that the double-pass approach consistently 472

outperforms the non-parametric method in citation 473

precision and recall while maintaining comparable 474

and slightly better answer correctness. By combin- 475

ing the strengths of both generative and retrieval 476

systems, the double-pass method mitigates the lim- 477

itations inherent in each individual approach. 478

Configuration Accuracy
(EM)

Text Quality Citation Quality

MAUVE ROUGE-L Rec. Prec.

Non-parametric
RAG + Citation

Seeker
82.85 52.22 14.79 49.01 42.77

Hybrid
Double-pass 83.33 59.22 16.78 65.69 47.69

Table 4: Comparison of non-parametric and MedCite’s
double-pass method for citation generation.

Hierarchical two-stage ranking based citation 479

retrieval. Another factor is the choice of retriever 480

for the citation seeking. The recently proposed 481

MedRAG (Xiong et al., 2024a) uses a Reciprocal 482

Rank Fusion (RRF) based hybrid method to com- 483

bine results from BM25 (Robertson and Zaragoza, 484

2009) and MedCPT (Jin et al., 2023) to find sup- 485

porting documents in the pre-generation phase. 486

However, while it is possible to find a broad range 487

of relevant documents to enhance the context of 488

LLM-generated answers, citation retrieval must be 489

more fact-focused to ensure precise and accurate 490

referencing. In the ablation studies, we show that 491

a hierarchical two-stage ranker that first retrieve 492

documents based on key word matching through 493

BM25 (Robertson and Zaragoza, 2009) and then 494

semantic retriever based on MedCPT (Jin et al., 495

2023) brings further improvements in performance 496

in citation quality, validating the importance of the 497

choice of retriever for citation. 498

5 Evaluation 499

5.1 Main Results 500

We compare MedCite with three baseline meth- 501

ods: the medical domain RAG method and two 502
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Model Method Acc. (EM) Text Gen. Quality Citation Quality

MAUVE ROUGE-L Recall Precision F1-Score

BioASQ PubMedQA BioASQ PubMedQA BioASQ PubMedQA BioASQ PubMedQA BioASQ PubMedQA BioASQ PubMedQA

Llama-3-8B-I.

MedRAG 82.85 70.80 53.74 42.39 14.78 14.22 / / / / / /

PRG 84.95 69.40 72.53 47.79 17.97 20.99 35.44 30.08 38.71 35.00 32.50 36.73

PGC* 72.10 55.80 61.90 44.53 18.06 19.11 64.75 62.18 69.32 71.75 66.96 66.62

MedCite 84.95 69.40 72.53 47.79 17.97 20.99 74.86 69.50 69.47 67.73 71.74 68.60

UltraMedical

MedRAG 74.92 65.00 57.24 58.82 17.33 20.54 / / / / / /

PRG 63.43 53.60 63.87 48.02 13.27 14.89 27.54 28.51 30.80 31.17 28.01 30.94

PGC 68.12 44.80 50.71 41.04 12.69 13.33 49.91 54.28 62.18 72.82 55.37 62.21

MedCite 63.43 53.60 63.87 48.02 13.27 14.89 74.93 60.12 45.42 64.19 66.71 53.14

GPT-4o

MedRAG 92.39 73.80 51.29 38.00 15.77 24.11 / / / / / /

PRG 92.56 75.60 60.74 52.32 19.97 27.18 53.86 51.33 57.27 55.27 52.45 56.26

PGC 87.70 50.60 67.01 61.72 20.80 21.37 79.59 75.94 81.01 82.40 80.29 79.04

MedCite 92.56 75.60 60.74 52.32 19.97 27.18 84.86 84.54 83.85 89.43 84.36 86.48

Table 5: Comparison results of MedCite and alternative methods on BioASQ and PubMedQA datasets. * The
generation phase for PGC utilizes CoT, which is non-RAG. Consequently, the Accuracy (EM) score for PGC is the
same as that of the CoT (non-RAG) method.

general-domain citation methods from recent work,503

including the post-retrieval generation and post-504

generation citation method across different back-505

bone LLMs: (1) MedRAG: The method described506

in (Xiong et al., 2024a). (2) Post-retrieval gen-507

eration (PRG): Following the method in (Gao508

et al., 2023c), we prompt LLMs with a query, a509

list of retrieved documents and instruct the LLMs510

to include citations in their generated answer.511

(3) Post-generation citation (PGC): Following512

RARR (Gao et al., 2023a), We perform chain-of-513

thought (CoT) prompting (Wei et al., 2022b) to514

let LLM generate an answer, followed by the re-515

retrieval + LLM reranking to assign citations to516

each statement. We evaluate three models: Llama-517

3-8B-I. (Llama-3-8B-Instruct) (MetaAI, 2024), Ul-518

traMedical (Zhang et al., 2024), and commercial519

LLM GPT-4o (gpt-4o-0806) (OpenAI, 2024).520

We present the main results in Table 5. The main521

takeaways from the experiments are as follow.522

Generated responses remain correct with en-523

abled citations. State-of-the-art medical QA sys-524

tems such as MedRAG do not have citations in525

their generated answers. We show that it is pos-526

sible to enable citations in medical systems while527

maintaining the correctness of generated answers.528

In particular, both MedCite and PRG are able529

to achieve comparable accuracy, MAUVE, and530

ROUGE scores to MedRAG on Llama-3-8B-I. and531

GPT-4o while providing citations to support gen-532

erated answers. On the other hand, UltraMedical533

obtains the highest accuracy with MedRAG de-534

spite with an absolute accuracy (74.92%) much535

lower than Llama-3-8B-I. (82.85%) and GPT-4o536

(92.39%). By examining the generated output from537

UltraMedical, we find that adding additional in-538

structions seems to confuse the model, leading to539

incorrect responses. This can be because Ultra- 540

Medical was trained with a context length of 2048, 541

making it harder for the model to focus on the most 542

relevant parts of the prompt as additional instruc- 543

tions are provided. 544

MedCite outperforms PRG and PGC in citation 545

quality. While both PRG and PGC enable citation 546

for medicine, MedCite outperforms the two meth- 547

ods by a large margin (e.g., 71.74% vs. 66.96% 548

and 32.50% on BioASQ). MedCite outperforms 549

PRG because MedCite’s second pass of citation 550

seeking leverages post-generation non-parametric 551

retrieval to refine the citations, which allows LLMs 552

to mitigate citation hallucinations. MedCite ob- 553

tains better performance than PGC, because it ex- 554

ploits pre-generation retrieval and LLM’s internal 555

parametric knowledge to obtain an initial set of 556

citations, which turns out to be useful for obtain- 557

ing high-quality final citations. These results have 558

demonstrated MedCite-Hybrid’s effectiveness in 559

combining the strengths of both generative and 560

retrieval systems for citation generation. 561

MedCite consistently brings citation quality im- 562

provements over different LLMs. We see a uni- 563

versal trend that MedCite improves citation recall 564

and F1 score across LLMs. Using GPT-4o as the 565

backbone LLM leads to the highest-performing ci- 566

tation quality (e.g., GPT-4o 86.48 vs. Llama-3-I. 567

68.60 in F1 on PubMedQA), mainly driven by its 568

advanced reasoning and instruction following ca- 569

pabilities. In contrast, citation quality is the lowest 570

when the system is evaluated on UltraMedical (e.g., 571

66.71 on BioASQ). These results underscore that 572

incorporating MedCite bolsters LLM’s capacity to 573

generate verifiable texts. 574
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5.2 Ablation Studies575

Citation retrieval analysis. We evaluate how dif-576

ferent citation retrievers affect the quality of Med-577

Cite. In particular, we compare semantic-only (Jin578

et al., 2023), lexical-only (Robertson and Zaragoza,579

2009), and retrieval-fusion via RRF-2 (Xiong et al.,580

2024a), and hierarchical two-stage retriever. Dif-581

ferent from prior findings that the RRF-2 based582

hybrid retriever leads to the best performance re-583

sults, we find that lexical-only (e.g., BM25) re-584

triever leads to the higher citation quality. Unlike585

the retriever used in RAG, which aims to provide586

supporting documents for LLM generation, cita-587

tion retrieval requires examination of precise med-588

ical terminology and quoting verbatim from the589

source. For example, in our experiment, given the590

LLM claim "peptides are short chains of amino591

acids, and chlorotoxin is a specific type of pep-592

tide," the semantic retriever retrieves a document593

discussing the features of calitoxin. Although both594

calitoxin and chlorotoxin are toxins, the document595

does not help support the claim. Therefore, it can-596

not serve as a valid citation for this statement. Be-597

cause of this, a lexical retriever based on exact598

match provides more precise citations. In contrast,599

semantic-only and retrieval-fusion based retriev-600

ers negatively affect the citation quality. Finally,601

the hierarchical two-stage retriever fist performs602

lexical retrieval to obtain a long list of citation can-603

didates followed by a semantic retriever to rank the604

long list by the similarity score between the query605

and the citation candidates. As a result, it offers606

the best-performing results among our tested con-607

figurations by achieving a good trade-off between608

citing comprehensively and precisely.609

Retriever Type Method Accuracy Citation Quality

(EM) Rec. Prec.

Lexical-only BM25 94.34 77.53 79.89

Semantic-only MedCPT 94.34 65.93 66.78

Combination RRF-2 94.34 75.74 76.46

Hierarchical BM25 then MedCPT 94.34 77.84 80.02

Table 6: Effectiveness of different retrievers on Med-
Cite quality with Llama-3-8B-I. using Oracle relevant
documents as the supporting documents in the pre-
generation retrieval stage and re-retrieve top-3 docu-
ments per statement with LLM reranking.

Attribution judge analysis and human anno-610

tations. We dig deeper by evaluating the per-611

formance of various models in making attribu-612

tion judgments for medical tasks and compar-613

ing their results with the judgments of the pro-614

Model Source Domain Cohen’s Kappa Score
Rec.

Judge
Prec.
Judge

SciFive-MedNLI Open Medical 0.2593 0.1945
JSL-MedPhi2-2.7B Open Medical 0.1845 0.2218
UltraMedical Open Medical 0.4518 0.2162
Llama-3.1-8B-Instruct Open General 0.5862 0.5422
mistral-7B-Instruct Open General 0.6211 0.4241
GPT-3.5-Turbo Close General 0.3834 0.4075
GPT-4o Close General 0.4146 0.4075
GPT-4o-mini Close General 0.3834 0.3894

Table 7: Correlation of different models’ attribution
judge with human annotations.

fessional medical doctor. We include several 615

SoTA medicine-specialized NLI models such as 616

SciFive-Pubmed+PMC Large on MedNLI(Phan 617

et al., 2021), public top-performing LLMs such 618

as Llama-3.1-I. (Dubey et al., 2024) and Mistral- 619

Instruct (Jiang et al., 2023), and commercial LLMs 620

such as GPT-4o. To assess the correlation between 621

the model judgment and the human annotation of 622

attributability, we ask medical doctors to manually 623

annotate 100 pairs of statements and citations, us- 624

ing the same judgment criteria described in § 2.3 625

with the guidelines in Appendix E. We calculate 626

Cohen’s Kappa score (McHugh, 2012), providing 627

a measure of agreement. Surprisingly, Table 7 628

indicates that existing medicine-specialized NLI 629

models exhibit poor correlation with professional 630

medical doctor judgments (e.g., <22.3% score in 631

precision judge). Also interestingly, GPT-4o/GPT- 632

3.5 are not the top performing models in this con- 633

text. Instead, public models such as Llama-3.1 and 634

Mistral achieve the best correlation with expert 635

judgments, demonstrating a higher level of agree- 636

ment with medical professionals. We include some 637

hypothesis on why this happens in Appendix E.3. 638

Nevertheless, given the high correlation between 639

recent top-performing LLMs and expert judgments, 640

we consider using LLMs as attribution judgments 641

to be more promising for medicine, and we see this 642

as an opportunity for future work. 643

6 Conclusion 644

We introduce MedCite, the first end-to-end frame- 645

work fostering research that targets improving the 646

verifiability and trustworthy of medical systems 647

with citations. Our in-depth examination of im- 648

portant design choices for LLM-based medical 649

systems inspires us to propose MedCite-Hybrid, 650

a novel method for generating high quality cita- 651

tions for medical systems. Extensive evaluation 652

across LLMs show that our approach leads to con- 653

sistent improvements to citation generation over 654

alternative methods. 655
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7 Ethical Considerations and Limitations656

The primary goal of this work is to assess and657

improve the verifiability in LLM-based medical658

systems via citations. In addition to gaining trust659

from physicians and patients, there is also urgency660

from regulation and audition consideration, where661

the US Food and Drug Administration (FDA) has662

called for regulation methods for using LLMs in663

the medical industry (Baumann, 2024). However,664

incorrect citations can have serious consequences665

in the medical field, as they can affect patient and666

physician’s treatment decisions. As such, the de-667

ployment of LLM-based systems in medical con-668

texts requires careful design while adhering to ethi-669

cal considerations, e.g., the system should augment670

human decision-making rather than replace it, and671

human oversight remains critical to validate gener-672

ated citations.673

While conducting this research, we have also674

identified several critical yet unexplored challenges675

in generating citations for medicine. For instance,676

manual human verification by professional med-677

ical doctors remains a costly and time-intensive678

process, making it difficult to scale. Additionally,679

whether a document supports a statement can be680

subject to interpretation, even among medical ex-681

perts, who may disagree on the extent to which a682

document partially supports a statement. There-683

fore, it is crucial to assess whether a high level of684

consensus among doctors can be achieved. An-685

other challenge is the limited availability of medi-686

cal datasets that include both ground truth answers687

and supporting documents, aside from BioASQ688

and PubMedQA. The absence of certain informa-689

tion, such as ground truth references, in medical690

datasets complicates the overall verifiability eval-691

uation in medicine. Future work should focus692

on developing high-quality citation datasets for693

medicine, which would significantly enhance the694

trustworthiness and effectiveness of medical QA695

systems, ultimately benefiting healthcare profes-696

sionals and patients.697

While MedCite is specifically tailored to the698

medical domain, its generalization to other fields699

presents notable challenges. Key components,700

such as multi-pass citation generation and curated701

database reliance, may not translate directly to702

general-domain applications without significant703

modifications. For example, the availability of704

well-curated corpora like PubMed is unique to the705

medical field. General domains often lack central-706

ized resources, requiring extensive dataset prepa- 707

ration or integration of diverse sources. Similarly, 708

retriever selection, such as the use of MedCPT in 709

this study, may need to be adapted to align with 710

the characteristics and retrieval objectives of dif- 711

ferent fields. The effectiveness of retrieval con- 712

figurations and strategies could vary significantly 713

depending on corpus diversity and domain-specific 714

needs. Moreover, citation evaluation strategies may 715

need to accommodate varying requirements across 716

domains. In medicine, most claims necessitate cita- 717

tions due to high stakes and reliance on specialized 718

knowledge, whereas general domains may involve 719

claims rooted in common sense or widely accepted 720

facts. Evaluating citations in such contexts might 721

require adjustments to account for optional cita- 722

tions or more loosely defined relevance criteria. 723

Automatic evaluation approaches, while valuable, 724

would also need adaptation to handle the simpler or 725

binary relationships typical of claims and citations 726

in general fields. These limitations suggest that 727

while MedCite’s core framework offers a strong 728

foundation, further work is needed to ensure its 729

components are broadly applicable to non-medical 730

domains. 731
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A Related Work1376

A.1 Biomedical Question Answering1377

Biomedical question answering (QA) is a spe-1378

cialized field within natural language process-1379

ing. It focuses on answering questions related1380

to biomedical and clinical domains. Early ap-1381

proaches rely heavily on rule-based systems (Lee1382

et al., 2006; Cao et al., 2011). These methods1383

utilize structured databases and ontologies to re-1384

trieve answers to clinical questions. While pio-1385

neering, these systems were limited by their re-1386

liance on predefined rules and lack of scalabil-1387

ity. Subsequently, ML/DL based solutions have1388

brought significant improvements to biomedical1389

QA. Models such as BioBERT (Lee et al., 2020)1390

and ClinicalBERT (Huang et al., 2019) adapt pre-1391

trained BERT (Devlin et al., 2019) to biomedi-1392

cal texts, resulting in improved performance on1393

various biomedical QA tasks (Yang et al., 2024).1394

Recently, generative models represent a newer1395

paradigm in biomedical QA. Models such as GPT-1396

3.5/4 (Brown et al., 2020; OpenAI, 2023) and Med-1397

Gemini (Saab et al., 2024) generate answers di-1398

rectly from input text without relying on prede-1399

fined answer options, which enable more flexible1400

and contextually appropriate responses. However,1401

generative models also pose challenges, such as1402

the risk of generating incorrect or hallucinated an-1403

swers. To tackle the issue, recent work employs1404

retrieval-augmented generation (RAG) to retrieve1405

relevant documents and generate answers based 1406

on the retrieved information (Lozano et al., 2023; 1407

Xiong et al., 2024a; Yang et al., 2024; Yu et al., 1408

2024; Zakka et al., 2024; Xiong et al., 2024b). Dif- 1409

ferent from these efforts, we focus on improving 1410

the verifiability of medical systems. 1411

A.2 Citation Methods for LLM Generation 1412

The integration of citation mechanisms in LLM 1413

based generation is a burgeoning area of research. 1414

Recent advancements in LLMs can be prompted 1415

to include citations in the text it generates (Brown 1416

et al., 2020; Thoppilan et al., 2022; Anil et al., 1417

2023; OpenAI, 2023, 2024). However, the accu- 1418

racy and relevance of these citations can be a chal- 1419

lenge. Similar as hallucination in generated texts, 1420

the model (e.g., ChatGPT) can generate plausible- 1421

looking citations that are not actually accurate or 1422

verifiable (Zuccon et al., 2023). Multiple meth- 1423

ods have been proposed to add citations to LLM- 1424

generated content. Direct model-driven attribution 1425

methods allow the model to self-attribute, though 1426

this often leads to unreliable results (Sun et al., 1427

2023; Agrawal et al., 2023; Weller et al., 2024). 1428

Post-retrieval generation (PRG) involves retriev- 1429

ing a list of documents relevant to the user query 1430

before generating an answer and the relevant doc- 1431

uments (Guu et al., 2020; Borgeaud et al., 2022; 1432

Reddy et al., 2023). Post-generation citation (PGC) 1433

seeks relevant documents after generating the an- 1434

swer (Huo et al., 2023). Both PRG and PGC of- 1435

fer more reliable attribution but increase system 1436

complexity (Gao et al., 2023b), and as we show 1437

in the paper, they may not achieve the optimal 1438

citation quality for medicine systems due to the 1439

nuanced nature of biomedical queries and the need 1440

for precise, verifiable citations. Our hybrid double- 1441

pass citation method aims to address these gaps 1442

by integrating RAG with post-generation refine- 1443

ment. Fine-tuning LLMs for citation generation 1444

represents another approach, where models are 1445

trained using curated or synthetic data to directly 1446

produce citations during text generation (Ye et al., 1447

2024). Finally, there has been overall an absence 1448

of automated evaluation for the citation methods 1449

over LLM-based QA. Therefore, there has been 1450

efforts that aim to improve the evaluation protocols 1451

and benchmarks for LLM attributions (Rashkin 1452

et al., 2023; Gao et al., 2023c; Li et al., 2024). 1453

Different from those efforts, which measures cita- 1454

tions for general domain subjects, our evaluation 1455

is medicine-centric and we also explore the other 1456
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components, such as medical-specific retrieval and1457

citation seeking strategies that impact LLM based1458

medicine tasks.1459

A.3 Evaluation Frameworks for1460

LLM-Generated Citations in Medical1461

Domain1462

Wu et al. (2024) introduced an evaluation pipeline1463

for assessing the validity of LLM-generated cita-1464

tions in medical domain, focusing on URL-based1465

online sources. Their work highlights significant1466

limitations in LLM citation quality, with even top-1467

performing models like GPT-4 (RAG) failing to1468

fully support all statements in nearly half of their1469

responses.1470

While both our study and Wu et al. share the1471

goal of improving citation reliability, our work dif-1472

fers in scope and methodology. Wu et al. provides1473

a comprehensive evaluation pipeline, with primary1474

focus on analyzing citation quality for parametric1475

methods by prompting API-based LLMs to provide1476

source URL in their answer, rather than proposing1477

methods to address identified gaps. In contrast, our1478

work not only evaluates but also introduces a modu-1479

lar framework combining hierarchical retrieval and1480

multi-pass citation to improve citation quality for1481

biomedical tasks. In Section 3.1, we explain why1482

parametric methods are unsuitable especially for1483

open-source LLMs due to challenges such as fabri-1484

cated citations, lack of access to reliable content,1485

and the difficulty of automatic evaluation without1486

API-level access to online sources. By empha-1487

sizing domain-specific hierarchical retrieval from1488

curated medical sources like PubMed, we address1489

challenges unique to the biomedical domain, such1490

as ensuring precision for highly specialized terms1491

like drug names or genomic markers.1492

B Prompt Templates1493

Figure 4: Prompt templates used for CoT generations.

Figure 5: Prompt templates for parametric citations.

Figure 6: Prompt templates for MedRAG generations.

Figure 7: Prompt templates for MedRAG plus citation
generations.

C Examples of Generated Medical 1494

Citations 1495

Table 8 shows examples of generated medical 1496

references with parametric citation method using 1497

Llama-3-8B-I., UltraMedical, and GPT-4o. For 1498

16



Figure 8: Prompt templates for citation seekers.

Figure 9: Prompt templates for attribute judge.

Llama-3-8B-I., the URL provided in Reference [1]1499

is incorrect, and References [2] and [3] have dif-1500

ferent authors despite having the same title. Upon1501

inspection, it was found that the article in question1502

does not exist. UltraMedical includes poorly for-1503

matted in-line citations and fabricated references.1504

GPT-4o, on the other hand, provides correct refer-1505

ences, but they are challenging to evaluate due to1506

limited API access to the sources.1507

D Additional Experimentation Details1508

D.1 Datasets1509

We use medical question answering datasets that1510

have ground truth answers to evaluate MedCite.1511

Specially, we use BioASQ (Nentidis et al., 2024)1512

and PubMedQA (Jin et al., 2019) in the final eval-1513

uation. In both cases, we only use questions1514

and remove all ground truth supporting contexts,1515

which represents a more realistic setting as often1516

no demonstrations are provided in real usage sce-1517

narios. Table 9 summarizes the details about these1518

two datasets.1519

PubMedQA. PubMedQA is a dataset for biomed- 1520

ical question answering (QA) tasks. The questions 1521

are either the titles of existing research articles or 1522

derived from them. The context provides the ab- 1523

stract of the article. The answer includes a ground 1524

truth answer to the question, which is derived from 1525

the conclusion of the abstract. 1526

BioASQ-Y/N. BioASQ-Y/N is also a biomedical 1527

QA dataset. For each instance in the dataset, it con- 1528

tains a question, contexts that provide the informa- 1529

tion to answer the question, and human annotated 1530

answers. 1531

D.2 Hyperparameters 1532

To ensure reproducibility, we use greedy decoding 1533

for all LLMs. For retrieval, we use a hierarchical 1534

two-stage ranking process: (1) BM25 implemented 1535

with Pyserini (Lin et al., 2021) using default hyper- 1536

parameters for indexing, and (2) MedCPT Cross- 1537

Encoder1 with default settings to rank the retrieved 1538

documents for a given query. We retrieve the top- 1539

32 documents for answer generation, ensuring they 1540

fit within the model’s context window, and discard 1541

those with lower similarity scores if necessary. We 1542

retrieve top-3 documents for a single statement 1543

when seeking citation after answer generation. 1544

D.3 Correlation between Rouge-L and 1545

Accuracy 1546

The following table illustrates the relationship be- 1547

tween ROUGE scores and accuracy under different 1548

conditions: 1549

The table clearly demonstrates a positive correla- 1550

tion between ROUGE scores and accuracy. Specif- 1551

ically, when the system prompt is introduced to 1552

the MEdRAG model, the ROUGE score increases 1553

from 17.04 to 17.98, and the accuracy also im- 1554

proves from 0.8414 to 0.8576. This indicates that 1555

by optimizing the prompts, we can enhance the 1556

model’s output quality and accuracy to some ex- 1557

tent. Moreover, when a new prompt is introduced, 1558

although the ROUGE score slightly decreases, the 1559

accuracy drops more notably, suggesting that the 1560

new prompt may have affected the model’s perfor- 1561

mance in certain aspects. Most notably, when using 1562

the oracle relevant documents, both the ROUGE 1563

score and accuracy reach their peak values, fur- 1564

ther confirming the positive correlation between 1565

ROUGE scores and the accuracy of the model’s 1566

output. These results suggest that ROUGE scores 1567

can serve as an effective metric to assess and opti- 1568

1https://huggingface.co/ncbi/MedCPT-Cross-Encoder
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Question: Is obesity related to cognitive decline?
Llama-3-8B-I. answer:
Obesity is a complex condition that is associated with various health risks, including cardiovascular
disease, type 2 diabetes, and certain types of cancer [1]. Research has also suggested that obesity may be
linked to cognitive decline, as it can lead to chronic inflammation, oxidative stress, and changes in brain
structure and function [2]. Studies have shown that obese individuals are at a higher risk of developing
dementia and Alzheimer’s disease, and that weight loss may help to improve cognitive function [3].
Therefore, it is likely that obesity is related to cognitive decline.
References: [1] World Health Organization. (2018). Obesity and overweight. Retrieved from
<https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight>; [2] Yaffe, K., et al. (2013).
The association between obesity and cognitive decline in older adults. Journal of the American Medical
Association, 310(11), 1155-1162; [3] Luchsinger, J. A., et al. (2013). Obesity and cognitive decline in
older adults. Journal of Alzheimer’s Disease, 35(2), 247-255.
UltraMedical answer:
Obesity is a condition characterized by excessive body fat that poses a risk to health. It is associated
with various health issues, including cardiovascular diseases, diabetes, and certain types of cancer. To
determine if obesity is related to cognitive decline, we need to consider the evidence linking obesity to
brain health. 1. Research has shown that obesity can lead to changes in the brain’s structure and function.
For instance, studies have indicated that obesity is associated with reduced brain volume and alterations
in brain activity, which could potentially affect cognitive functions. 2. Additionally, obesity is known
to increase the risk of metabolic syndrome, which includes conditions such as hypertension, high blood
sugar, and high cholesterol. These conditions have been linked to an increased risk of cognitive decline
and dementia. 3. Inflammation is another factor to consider. Obesity is a state of chronic low-grade
inflammation, and inflammation is a known risk factor for cognitive decline. Adipose tissue, particularly
visceral fat, secretes pro-inflammatory cytokines that can affect brain health. 4. Furthermore, obesity
can lead to sleep apnea and other sleep disturbances, which are associated with cognitive deficits. Poor
sleep quality has been linked to a higher risk of cognitive decline and Alzheimer’s disease. 5. Based on
the evidence, it is reasonable to conclude that obesity is related to cognitive decline. The mechanisms
include direct effects on brain structure and function, metabolic disturbances, inflammation, and sleep
disturbances. Therefore, the answer is A. Yes, obesity is related to cognitive decline.
References: [1] Hall, K. D., & Guo, J. (2017). Obesity: portable operating instructions. JAMA, 318(17),
1685-1686; [2] Yaffe, K., et al. (2013). The metabolic syndrome, inflammation, and risk of cognitive
decline and dementia: the Health, Aging, and Body Composition Study. JAMA, 310(3), 197-208; [3]
Spiegel, K., et al. (2009). Sleep, cognition, and health: emerging research directions. Dialogues in
Clinical Neuroscience, 11(4), 667-679.
GPT-4o answer:
Obesity has been linked to cognitive decline through various mechanisms. Excess body fat can lead to
inflammation and insulin resistance, both of which are associated with negative effects on brain health
[1][2]. Additionally, obesity is a risk factor for cardiovascular diseases, which can impair blood flow to
the brain and contribute to cognitive decline [2][3]. Studies have shown that individuals with obesity may
have a higher risk of developing conditions like Alzheimer’s disease and other forms of dementia [1][3].
Therefore, there is substantial evidence supporting the relationship between obesity and cognitive decline.
References: [1] Smith, E., Hay, P., Campbell, L., & Trollor, J. N. (2011). A review of the association
between obesity and cognitive function across the lifespan: implications for novel approaches to prevention
and treatment. Obesity Reviews, 12(9), 740-755; [2] Kivipelto, M., Ngandu, T., Fratiglioni, L., Viitanen,
M., Kreholt, I., Winblad, B., & Nissinen, A. (2005). Obesity and vascular risk factors at midlife and the
risk of dementia and Alzheimer disease. Archives of Neurology, 62(10), 1556-1560; [3] Whitmer, R. A.,
Gunderson, E. P., Quesenberry, C. P., Zhou, J., & Yaffe, K. (2007). Obesity in middle age and future risk
of dementia: a 27 year longitudinal population based study. BMJ, 335(7630), 705.

Table 8: Examples of generated medical references using parametric citation methods. The citations are often
incorrect and ill-formatted. Most importantly, they are hard to evaluate due to lack of API access with sources.
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Dataset Size Question Type Example Question GT Answer

PubMedQA* 500 Yes/No/Maybe Is anorectal endosonography
valuable ... ?

yes

BioASQ-Y/N 618 Yes/No
Is medical hydrology the same as
Spa ... ? yes

Table 9: The two datasets used in MedCite experiments.

Conditions ROUGE-L Score Accuracy
medrag + medcpt 17.04 0.8414

medrag + MedCPT + system prompt 17.98 0.8576
medrag + medcpt + new prompt 17.34 0.8269

oracle relevant docs 22.00 0.9401

Table 10: Analysis of ROUGE-L Scores and Accuracy
under Different Conditions

mize the output quality of Large Language Models1569

(LLMs).1570

E Annotation Guidelines and Analysis1571

Below we provide the guidelines we used for the1572

human annotation in Section E.3. We ask annota-1573

tors to follow these guidelines to make an attribu-1574

tion judge.1575

E.1 Annotation Guidelines1576

Citation Recall measures how well the combina-1577

tion of all citations supports the statement.1578

• For each statement, review all the provided1579

citations (e.g., PubMed articles) as a group.1580

• Determine if the combined information from1581

these citations fully supports, or cannot fully1582

support the statement.1583

Citation Precision measures how well each in-1584

dividual citation supports the statement.1585

• For each citation, evaluate whether it alone1586

fully supports, partially supports, or does not1587

support the statement.1588

• Repeat this evaluation for each citation inde-1589

pendently.1590

Note: Please only use the abstract of the1591

PubMed article as a citation, not the whole body1592

(only review the abstract instead of the whole1593

article).1594

Clarification on "Fully Supported": The de-1595

termination depends on the relationship between1596

the statement and the content in the citation(s).1597

• Words Not Mentioned in Articles: If the1598

word(s) in the statement represent something1599

entirely different from what the article de-1600

scribes (e.g., distinct medical terms with no1601

overlap), the statement cannot be considered1602

"fully supported." In such cases, the support1603

would likely be "not supported" or "partially1604

supported", depending on how closely related1605

the information is.1606

If the word(s) describe a subclass or specific1607

instance of a broader concept mentioned in 1608

the article (e.g., the article discusses a class 1609

of treatments, and the statement mentions one 1610

treatment within that class), the citation may 1611

qualify as "partially supported". 1612

• Fully Supported Criteria: A statement can 1613

only be considered "fully supported" if all 1614

key terms and concepts in the statement are 1615

directly addressed and explicitly supported by 1616

the information in the citation(s). 1617

E.2 Examples 1618

• Statement: "Fruits like apples are a rich 1619

source of Vitamin C." 1620

• Citation 1: The article mentions that "fruits 1621

like oranges, strawberries, and kiwis are ex- 1622

cellent sources of Vitamin C". 1623

• Citation 2: The article discusses "apples be- 1624

ing nutritious but focuses on their fiber con- 1625

tent", without mentioning Vitamin C. 1626

Recall (Combination of Citations): If you look 1627

at both citations together, they do not fully support 1628

the statement. Although Citation 1 mentions fruits 1629

rich in Vitamin C, it does not explicitly include 1630

apples, and Citation 2 does not provide relevant 1631

information about Vitamin C in apples. 1632

Recall Score: Not supported. 1633

Precision (Each Citation Individually): 1634

• Citation 1: Provides "partial support" be- 1635

cause it mentions fruits rich in Vitamin C but 1636

does not specify apples. 1637

• Citation 2: Provides "no support" because it 1638

does not mention Vitamin C at all. 1639

E.3 Attribution Judge Analysis and Human 1640

Annotations in Details 1641

While prior studies often assume that Natural Lan- 1642

guage Inference (NLI) models correlate well with 1643

human judgements in making attribution evalua- 1644

tion (Gao et al., 2023c; Bohnet et al., 2022), those 1645

studies focus on general domain questions. To our 1646

knowledge, no study has evaluated the effective- 1647

ness of different models in attribution judgment 1648

for medical tasks. We evaluate the performance of 1649

various models in making attribution judgments for 1650

medical tasks and comparing their results with pro- 1651

fessional medical doctor judgments as discussed 1652

in ??. Surprisingly, Table 7 indicates that ex- 1653

isting medicine-specialized NLI models exhibit 1654

poor correlation with professional medical doctor 1655

judgments (e.g., <22.3% score in precision judge). 1656

Also interestingly, GPT-4o/GPT-3.5 are not the top 1657

performing models in this context. Instead, pub- 1658
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lic models such as Llama-3.1 and Mistral achieve1659

the best correlation with expert judgments, demon-1660

strating a higher level of agreement with medical1661

professionals. We hypothesize that this could be1662

because public LLMs might have been trained on1663

datasets that include more medical literature, al-1664

though it is hard to verify because the details of1665

the datasets used for training these models are not1666

publicly disclosed. At the same time, we recognize1667

that reasoning capabilities play a central role in1668

the attribution judgment task, as described in Ap-1669

pendix B, the prompt requires models to evaluate1670

the connection between a premise and a hypoth-1671

esis based on self-contained excerpts. However,1672

domain knowledge remains essential for interpret-1673

ing specialized claims(Wadden et al., 2020). For1674

instance, verifying claims such as “Cardiac injury1675

is common in critical cases of COVID-19” requires1676

medical expertise to connect elevated troponin lev-1677

els with cardiac injury. Thus, better-performing1678

LLMs likely benefit from extensive pretraining1679

on medical datasets, which enhances both reason-1680

ing and domain-specific understanding. Neverthe-1681

less, given the high correlation between recent top-1682

performing LLMs and expert judgments, we con-1683

sider using LLMs as attribution judgements to be1684

more promising for medicine, and we see this as1685

an opportunity for future work.1686

We acknowledge that expert annotations can1687

vary significantly, especially in knowledge-1688

intensive domains such as medicine. For instance,1689

in the SciFact dataset for scientific claim verifica-1690

tion, the inter-annotator agreement measured by1691

Cohen’s kappa is approximately 0.75 (Phan et al.,1692

2021). Similarly, in our annotation process, we ob-1693

served Cohen’s kappa scores of 0.83 for statement-1694

level recall and 0.66 for citation-level precision.1695

These results indicate a comparable level of agree-1696

ment to prior studies, despite the inherent chal-1697

lenges of maintaining consistency in complex an-1698

notation tasks.1699
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